writeback: Move requeueing when I_SYNC set to writeback_sb_inodes()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31
32 /*
33 * 4MB minimal write chunk size
34 */
35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
36
37 /*
38 * Passed into wb_writeback(), essentially a subset of writeback_control
39 */
40 struct wb_writeback_work {
41 long nr_pages;
42 struct super_block *sb;
43 unsigned long *older_than_this;
44 enum writeback_sync_modes sync_mode;
45 unsigned int tagged_writepages:1;
46 unsigned int for_kupdate:1;
47 unsigned int range_cyclic:1;
48 unsigned int for_background:1;
49 enum wb_reason reason; /* why was writeback initiated? */
50
51 struct list_head list; /* pending work list */
52 struct completion *done; /* set if the caller waits */
53 };
54
55 /*
56 * We don't actually have pdflush, but this one is exported though /proc...
57 */
58 int nr_pdflush_threads;
59
60 /**
61 * writeback_in_progress - determine whether there is writeback in progress
62 * @bdi: the device's backing_dev_info structure.
63 *
64 * Determine whether there is writeback waiting to be handled against a
65 * backing device.
66 */
67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69 return test_bit(BDI_writeback_running, &bdi->state);
70 }
71
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74 struct super_block *sb = inode->i_sb;
75
76 if (strcmp(sb->s_type->name, "bdev") == 0)
77 return inode->i_mapping->backing_dev_info;
78
79 return sb->s_bdi;
80 }
81
82 static inline struct inode *wb_inode(struct list_head *head)
83 {
84 return list_entry(head, struct inode, i_wb_list);
85 }
86
87 /*
88 * Include the creation of the trace points after defining the
89 * wb_writeback_work structure and inline functions so that the definition
90 * remains local to this file.
91 */
92 #define CREATE_TRACE_POINTS
93 #include <trace/events/writeback.h>
94
95 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
96 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
97 {
98 if (bdi->wb.task) {
99 wake_up_process(bdi->wb.task);
100 } else {
101 /*
102 * The bdi thread isn't there, wake up the forker thread which
103 * will create and run it.
104 */
105 wake_up_process(default_backing_dev_info.wb.task);
106 }
107 }
108
109 static void bdi_queue_work(struct backing_dev_info *bdi,
110 struct wb_writeback_work *work)
111 {
112 trace_writeback_queue(bdi, work);
113
114 spin_lock_bh(&bdi->wb_lock);
115 list_add_tail(&work->list, &bdi->work_list);
116 if (!bdi->wb.task)
117 trace_writeback_nothread(bdi, work);
118 bdi_wakeup_flusher(bdi);
119 spin_unlock_bh(&bdi->wb_lock);
120 }
121
122 static void
123 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
124 bool range_cyclic, enum wb_reason reason)
125 {
126 struct wb_writeback_work *work;
127
128 /*
129 * This is WB_SYNC_NONE writeback, so if allocation fails just
130 * wakeup the thread for old dirty data writeback
131 */
132 work = kzalloc(sizeof(*work), GFP_ATOMIC);
133 if (!work) {
134 if (bdi->wb.task) {
135 trace_writeback_nowork(bdi);
136 wake_up_process(bdi->wb.task);
137 }
138 return;
139 }
140
141 work->sync_mode = WB_SYNC_NONE;
142 work->nr_pages = nr_pages;
143 work->range_cyclic = range_cyclic;
144 work->reason = reason;
145
146 bdi_queue_work(bdi, work);
147 }
148
149 /**
150 * bdi_start_writeback - start writeback
151 * @bdi: the backing device to write from
152 * @nr_pages: the number of pages to write
153 * @reason: reason why some writeback work was initiated
154 *
155 * Description:
156 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
157 * started when this function returns, we make no guarantees on
158 * completion. Caller need not hold sb s_umount semaphore.
159 *
160 */
161 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
162 enum wb_reason reason)
163 {
164 __bdi_start_writeback(bdi, nr_pages, true, reason);
165 }
166
167 /**
168 * bdi_start_background_writeback - start background writeback
169 * @bdi: the backing device to write from
170 *
171 * Description:
172 * This makes sure WB_SYNC_NONE background writeback happens. When
173 * this function returns, it is only guaranteed that for given BDI
174 * some IO is happening if we are over background dirty threshold.
175 * Caller need not hold sb s_umount semaphore.
176 */
177 void bdi_start_background_writeback(struct backing_dev_info *bdi)
178 {
179 /*
180 * We just wake up the flusher thread. It will perform background
181 * writeback as soon as there is no other work to do.
182 */
183 trace_writeback_wake_background(bdi);
184 spin_lock_bh(&bdi->wb_lock);
185 bdi_wakeup_flusher(bdi);
186 spin_unlock_bh(&bdi->wb_lock);
187 }
188
189 /*
190 * Remove the inode from the writeback list it is on.
191 */
192 void inode_wb_list_del(struct inode *inode)
193 {
194 struct backing_dev_info *bdi = inode_to_bdi(inode);
195
196 spin_lock(&bdi->wb.list_lock);
197 list_del_init(&inode->i_wb_list);
198 spin_unlock(&bdi->wb.list_lock);
199 }
200
201 /*
202 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
203 * furthest end of its superblock's dirty-inode list.
204 *
205 * Before stamping the inode's ->dirtied_when, we check to see whether it is
206 * already the most-recently-dirtied inode on the b_dirty list. If that is
207 * the case then the inode must have been redirtied while it was being written
208 * out and we don't reset its dirtied_when.
209 */
210 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
211 {
212 assert_spin_locked(&wb->list_lock);
213 if (!list_empty(&wb->b_dirty)) {
214 struct inode *tail;
215
216 tail = wb_inode(wb->b_dirty.next);
217 if (time_before(inode->dirtied_when, tail->dirtied_when))
218 inode->dirtied_when = jiffies;
219 }
220 list_move(&inode->i_wb_list, &wb->b_dirty);
221 }
222
223 /*
224 * requeue inode for re-scanning after bdi->b_io list is exhausted.
225 */
226 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
227 {
228 assert_spin_locked(&wb->list_lock);
229 list_move(&inode->i_wb_list, &wb->b_more_io);
230 }
231
232 static void inode_sync_complete(struct inode *inode)
233 {
234 inode->i_state &= ~I_SYNC;
235 /* Waiters must see I_SYNC cleared before being woken up */
236 smp_mb();
237 wake_up_bit(&inode->i_state, __I_SYNC);
238 }
239
240 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
241 {
242 bool ret = time_after(inode->dirtied_when, t);
243 #ifndef CONFIG_64BIT
244 /*
245 * For inodes being constantly redirtied, dirtied_when can get stuck.
246 * It _appears_ to be in the future, but is actually in distant past.
247 * This test is necessary to prevent such wrapped-around relative times
248 * from permanently stopping the whole bdi writeback.
249 */
250 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
251 #endif
252 return ret;
253 }
254
255 /*
256 * Move expired (dirtied after work->older_than_this) dirty inodes from
257 * @delaying_queue to @dispatch_queue.
258 */
259 static int move_expired_inodes(struct list_head *delaying_queue,
260 struct list_head *dispatch_queue,
261 struct wb_writeback_work *work)
262 {
263 LIST_HEAD(tmp);
264 struct list_head *pos, *node;
265 struct super_block *sb = NULL;
266 struct inode *inode;
267 int do_sb_sort = 0;
268 int moved = 0;
269
270 while (!list_empty(delaying_queue)) {
271 inode = wb_inode(delaying_queue->prev);
272 if (work->older_than_this &&
273 inode_dirtied_after(inode, *work->older_than_this))
274 break;
275 if (sb && sb != inode->i_sb)
276 do_sb_sort = 1;
277 sb = inode->i_sb;
278 list_move(&inode->i_wb_list, &tmp);
279 moved++;
280 }
281
282 /* just one sb in list, splice to dispatch_queue and we're done */
283 if (!do_sb_sort) {
284 list_splice(&tmp, dispatch_queue);
285 goto out;
286 }
287
288 /* Move inodes from one superblock together */
289 while (!list_empty(&tmp)) {
290 sb = wb_inode(tmp.prev)->i_sb;
291 list_for_each_prev_safe(pos, node, &tmp) {
292 inode = wb_inode(pos);
293 if (inode->i_sb == sb)
294 list_move(&inode->i_wb_list, dispatch_queue);
295 }
296 }
297 out:
298 return moved;
299 }
300
301 /*
302 * Queue all expired dirty inodes for io, eldest first.
303 * Before
304 * newly dirtied b_dirty b_io b_more_io
305 * =============> gf edc BA
306 * After
307 * newly dirtied b_dirty b_io b_more_io
308 * =============> g fBAedc
309 * |
310 * +--> dequeue for IO
311 */
312 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
313 {
314 int moved;
315 assert_spin_locked(&wb->list_lock);
316 list_splice_init(&wb->b_more_io, &wb->b_io);
317 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
318 trace_writeback_queue_io(wb, work, moved);
319 }
320
321 static int write_inode(struct inode *inode, struct writeback_control *wbc)
322 {
323 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
324 return inode->i_sb->s_op->write_inode(inode, wbc);
325 return 0;
326 }
327
328 /*
329 * Wait for writeback on an inode to complete.
330 */
331 static void inode_wait_for_writeback(struct inode *inode,
332 struct bdi_writeback *wb)
333 {
334 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
335 wait_queue_head_t *wqh;
336
337 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
338 while (inode->i_state & I_SYNC) {
339 spin_unlock(&inode->i_lock);
340 spin_unlock(&wb->list_lock);
341 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
342 spin_lock(&wb->list_lock);
343 spin_lock(&inode->i_lock);
344 }
345 }
346
347 /*
348 * Write out an inode's dirty pages. Called under wb->list_lock and
349 * inode->i_lock. Either the caller has an active reference on the inode or
350 * the inode has I_WILL_FREE set.
351 *
352 * If `wait' is set, wait on the writeout.
353 *
354 * The whole writeout design is quite complex and fragile. We want to avoid
355 * starvation of particular inodes when others are being redirtied, prevent
356 * livelocks, etc.
357 */
358 static int
359 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
360 struct writeback_control *wbc)
361 {
362 struct address_space *mapping = inode->i_mapping;
363 long nr_to_write = wbc->nr_to_write;
364 unsigned dirty;
365 int ret;
366
367 assert_spin_locked(&wb->list_lock);
368 assert_spin_locked(&inode->i_lock);
369
370 if (!atomic_read(&inode->i_count))
371 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
372 else
373 WARN_ON(inode->i_state & I_WILL_FREE);
374
375 if (inode->i_state & I_SYNC) {
376 if (wbc->sync_mode != WB_SYNC_ALL)
377 return 0;
378 /*
379 * It's a data-integrity sync. We must wait.
380 */
381 inode_wait_for_writeback(inode, wb);
382 }
383
384 BUG_ON(inode->i_state & I_SYNC);
385
386 /* Set I_SYNC, reset I_DIRTY_PAGES */
387 inode->i_state |= I_SYNC;
388 inode->i_state &= ~I_DIRTY_PAGES;
389 spin_unlock(&inode->i_lock);
390 spin_unlock(&wb->list_lock);
391
392 ret = do_writepages(mapping, wbc);
393
394 /*
395 * Make sure to wait on the data before writing out the metadata.
396 * This is important for filesystems that modify metadata on data
397 * I/O completion.
398 */
399 if (wbc->sync_mode == WB_SYNC_ALL) {
400 int err = filemap_fdatawait(mapping);
401 if (ret == 0)
402 ret = err;
403 }
404
405 /*
406 * Some filesystems may redirty the inode during the writeback
407 * due to delalloc, clear dirty metadata flags right before
408 * write_inode()
409 */
410 spin_lock(&inode->i_lock);
411 dirty = inode->i_state & I_DIRTY;
412 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
413 spin_unlock(&inode->i_lock);
414 /* Don't write the inode if only I_DIRTY_PAGES was set */
415 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
416 int err = write_inode(inode, wbc);
417 if (ret == 0)
418 ret = err;
419 }
420
421 spin_lock(&wb->list_lock);
422 spin_lock(&inode->i_lock);
423 if (!(inode->i_state & I_FREEING)) {
424 /*
425 * Sync livelock prevention. Each inode is tagged and synced in
426 * one shot. If still dirty, it will be redirty_tail()'ed below.
427 * Update the dirty time to prevent enqueue and sync it again.
428 */
429 if ((inode->i_state & I_DIRTY) &&
430 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
431 inode->dirtied_when = jiffies;
432
433 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
434 /*
435 * We didn't write back all the pages. nfs_writepages()
436 * sometimes bales out without doing anything.
437 */
438 inode->i_state |= I_DIRTY_PAGES;
439 if (wbc->nr_to_write <= 0) {
440 /*
441 * slice used up: queue for next turn
442 */
443 requeue_io(inode, wb);
444 } else {
445 /*
446 * Writeback blocked by something other than
447 * congestion. Delay the inode for some time to
448 * avoid spinning on the CPU (100% iowait)
449 * retrying writeback of the dirty page/inode
450 * that cannot be performed immediately.
451 */
452 redirty_tail(inode, wb);
453 }
454 } else if (inode->i_state & I_DIRTY) {
455 /*
456 * Filesystems can dirty the inode during writeback
457 * operations, such as delayed allocation during
458 * submission or metadata updates after data IO
459 * completion.
460 */
461 redirty_tail(inode, wb);
462 } else {
463 /*
464 * The inode is clean. At this point we either have
465 * a reference to the inode or it's on it's way out.
466 * No need to add it back to the LRU.
467 */
468 list_del_init(&inode->i_wb_list);
469 }
470 }
471 inode_sync_complete(inode);
472 trace_writeback_single_inode(inode, wbc, nr_to_write);
473 return ret;
474 }
475
476 static long writeback_chunk_size(struct backing_dev_info *bdi,
477 struct wb_writeback_work *work)
478 {
479 long pages;
480
481 /*
482 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
483 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
484 * here avoids calling into writeback_inodes_wb() more than once.
485 *
486 * The intended call sequence for WB_SYNC_ALL writeback is:
487 *
488 * wb_writeback()
489 * writeback_sb_inodes() <== called only once
490 * write_cache_pages() <== called once for each inode
491 * (quickly) tag currently dirty pages
492 * (maybe slowly) sync all tagged pages
493 */
494 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
495 pages = LONG_MAX;
496 else {
497 pages = min(bdi->avg_write_bandwidth / 2,
498 global_dirty_limit / DIRTY_SCOPE);
499 pages = min(pages, work->nr_pages);
500 pages = round_down(pages + MIN_WRITEBACK_PAGES,
501 MIN_WRITEBACK_PAGES);
502 }
503
504 return pages;
505 }
506
507 /*
508 * Write a portion of b_io inodes which belong to @sb.
509 *
510 * If @only_this_sb is true, then find and write all such
511 * inodes. Otherwise write only ones which go sequentially
512 * in reverse order.
513 *
514 * Return the number of pages and/or inodes written.
515 */
516 static long writeback_sb_inodes(struct super_block *sb,
517 struct bdi_writeback *wb,
518 struct wb_writeback_work *work)
519 {
520 struct writeback_control wbc = {
521 .sync_mode = work->sync_mode,
522 .tagged_writepages = work->tagged_writepages,
523 .for_kupdate = work->for_kupdate,
524 .for_background = work->for_background,
525 .range_cyclic = work->range_cyclic,
526 .range_start = 0,
527 .range_end = LLONG_MAX,
528 };
529 unsigned long start_time = jiffies;
530 long write_chunk;
531 long wrote = 0; /* count both pages and inodes */
532
533 while (!list_empty(&wb->b_io)) {
534 struct inode *inode = wb_inode(wb->b_io.prev);
535
536 if (inode->i_sb != sb) {
537 if (work->sb) {
538 /*
539 * We only want to write back data for this
540 * superblock, move all inodes not belonging
541 * to it back onto the dirty list.
542 */
543 redirty_tail(inode, wb);
544 continue;
545 }
546
547 /*
548 * The inode belongs to a different superblock.
549 * Bounce back to the caller to unpin this and
550 * pin the next superblock.
551 */
552 break;
553 }
554
555 /*
556 * Don't bother with new inodes or inodes beeing freed, first
557 * kind does not need peridic writeout yet, and for the latter
558 * kind writeout is handled by the freer.
559 */
560 spin_lock(&inode->i_lock);
561 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
562 spin_unlock(&inode->i_lock);
563 redirty_tail(inode, wb);
564 continue;
565 }
566 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
567 /*
568 * If this inode is locked for writeback and we are not
569 * doing writeback-for-data-integrity, move it to
570 * b_more_io so that writeback can proceed with the
571 * other inodes on s_io.
572 *
573 * We'll have another go at writing back this inode
574 * when we completed a full scan of b_io.
575 */
576 spin_unlock(&inode->i_lock);
577 requeue_io(inode, wb);
578 trace_writeback_sb_inodes_requeue(inode);
579 continue;
580 }
581 __iget(inode);
582 write_chunk = writeback_chunk_size(wb->bdi, work);
583 wbc.nr_to_write = write_chunk;
584 wbc.pages_skipped = 0;
585
586 writeback_single_inode(inode, wb, &wbc);
587
588 work->nr_pages -= write_chunk - wbc.nr_to_write;
589 wrote += write_chunk - wbc.nr_to_write;
590 if (!(inode->i_state & I_DIRTY))
591 wrote++;
592 if (wbc.pages_skipped) {
593 /*
594 * writeback is not making progress due to locked
595 * buffers. Skip this inode for now.
596 */
597 redirty_tail(inode, wb);
598 }
599 spin_unlock(&inode->i_lock);
600 spin_unlock(&wb->list_lock);
601 iput(inode);
602 cond_resched();
603 spin_lock(&wb->list_lock);
604 /*
605 * bail out to wb_writeback() often enough to check
606 * background threshold and other termination conditions.
607 */
608 if (wrote) {
609 if (time_is_before_jiffies(start_time + HZ / 10UL))
610 break;
611 if (work->nr_pages <= 0)
612 break;
613 }
614 }
615 return wrote;
616 }
617
618 static long __writeback_inodes_wb(struct bdi_writeback *wb,
619 struct wb_writeback_work *work)
620 {
621 unsigned long start_time = jiffies;
622 long wrote = 0;
623
624 while (!list_empty(&wb->b_io)) {
625 struct inode *inode = wb_inode(wb->b_io.prev);
626 struct super_block *sb = inode->i_sb;
627
628 if (!grab_super_passive(sb)) {
629 /*
630 * grab_super_passive() may fail consistently due to
631 * s_umount being grabbed by someone else. Don't use
632 * requeue_io() to avoid busy retrying the inode/sb.
633 */
634 redirty_tail(inode, wb);
635 continue;
636 }
637 wrote += writeback_sb_inodes(sb, wb, work);
638 drop_super(sb);
639
640 /* refer to the same tests at the end of writeback_sb_inodes */
641 if (wrote) {
642 if (time_is_before_jiffies(start_time + HZ / 10UL))
643 break;
644 if (work->nr_pages <= 0)
645 break;
646 }
647 }
648 /* Leave any unwritten inodes on b_io */
649 return wrote;
650 }
651
652 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
653 enum wb_reason reason)
654 {
655 struct wb_writeback_work work = {
656 .nr_pages = nr_pages,
657 .sync_mode = WB_SYNC_NONE,
658 .range_cyclic = 1,
659 .reason = reason,
660 };
661
662 spin_lock(&wb->list_lock);
663 if (list_empty(&wb->b_io))
664 queue_io(wb, &work);
665 __writeback_inodes_wb(wb, &work);
666 spin_unlock(&wb->list_lock);
667
668 return nr_pages - work.nr_pages;
669 }
670
671 static bool over_bground_thresh(struct backing_dev_info *bdi)
672 {
673 unsigned long background_thresh, dirty_thresh;
674
675 global_dirty_limits(&background_thresh, &dirty_thresh);
676
677 if (global_page_state(NR_FILE_DIRTY) +
678 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
679 return true;
680
681 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
682 bdi_dirty_limit(bdi, background_thresh))
683 return true;
684
685 return false;
686 }
687
688 /*
689 * Called under wb->list_lock. If there are multiple wb per bdi,
690 * only the flusher working on the first wb should do it.
691 */
692 static void wb_update_bandwidth(struct bdi_writeback *wb,
693 unsigned long start_time)
694 {
695 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
696 }
697
698 /*
699 * Explicit flushing or periodic writeback of "old" data.
700 *
701 * Define "old": the first time one of an inode's pages is dirtied, we mark the
702 * dirtying-time in the inode's address_space. So this periodic writeback code
703 * just walks the superblock inode list, writing back any inodes which are
704 * older than a specific point in time.
705 *
706 * Try to run once per dirty_writeback_interval. But if a writeback event
707 * takes longer than a dirty_writeback_interval interval, then leave a
708 * one-second gap.
709 *
710 * older_than_this takes precedence over nr_to_write. So we'll only write back
711 * all dirty pages if they are all attached to "old" mappings.
712 */
713 static long wb_writeback(struct bdi_writeback *wb,
714 struct wb_writeback_work *work)
715 {
716 unsigned long wb_start = jiffies;
717 long nr_pages = work->nr_pages;
718 unsigned long oldest_jif;
719 struct inode *inode;
720 long progress;
721
722 oldest_jif = jiffies;
723 work->older_than_this = &oldest_jif;
724
725 spin_lock(&wb->list_lock);
726 for (;;) {
727 /*
728 * Stop writeback when nr_pages has been consumed
729 */
730 if (work->nr_pages <= 0)
731 break;
732
733 /*
734 * Background writeout and kupdate-style writeback may
735 * run forever. Stop them if there is other work to do
736 * so that e.g. sync can proceed. They'll be restarted
737 * after the other works are all done.
738 */
739 if ((work->for_background || work->for_kupdate) &&
740 !list_empty(&wb->bdi->work_list))
741 break;
742
743 /*
744 * For background writeout, stop when we are below the
745 * background dirty threshold
746 */
747 if (work->for_background && !over_bground_thresh(wb->bdi))
748 break;
749
750 /*
751 * Kupdate and background works are special and we want to
752 * include all inodes that need writing. Livelock avoidance is
753 * handled by these works yielding to any other work so we are
754 * safe.
755 */
756 if (work->for_kupdate) {
757 oldest_jif = jiffies -
758 msecs_to_jiffies(dirty_expire_interval * 10);
759 } else if (work->for_background)
760 oldest_jif = jiffies;
761
762 trace_writeback_start(wb->bdi, work);
763 if (list_empty(&wb->b_io))
764 queue_io(wb, work);
765 if (work->sb)
766 progress = writeback_sb_inodes(work->sb, wb, work);
767 else
768 progress = __writeback_inodes_wb(wb, work);
769 trace_writeback_written(wb->bdi, work);
770
771 wb_update_bandwidth(wb, wb_start);
772
773 /*
774 * Did we write something? Try for more
775 *
776 * Dirty inodes are moved to b_io for writeback in batches.
777 * The completion of the current batch does not necessarily
778 * mean the overall work is done. So we keep looping as long
779 * as made some progress on cleaning pages or inodes.
780 */
781 if (progress)
782 continue;
783 /*
784 * No more inodes for IO, bail
785 */
786 if (list_empty(&wb->b_more_io))
787 break;
788 /*
789 * Nothing written. Wait for some inode to
790 * become available for writeback. Otherwise
791 * we'll just busyloop.
792 */
793 if (!list_empty(&wb->b_more_io)) {
794 trace_writeback_wait(wb->bdi, work);
795 inode = wb_inode(wb->b_more_io.prev);
796 spin_lock(&inode->i_lock);
797 inode_wait_for_writeback(inode, wb);
798 spin_unlock(&inode->i_lock);
799 }
800 }
801 spin_unlock(&wb->list_lock);
802
803 return nr_pages - work->nr_pages;
804 }
805
806 /*
807 * Return the next wb_writeback_work struct that hasn't been processed yet.
808 */
809 static struct wb_writeback_work *
810 get_next_work_item(struct backing_dev_info *bdi)
811 {
812 struct wb_writeback_work *work = NULL;
813
814 spin_lock_bh(&bdi->wb_lock);
815 if (!list_empty(&bdi->work_list)) {
816 work = list_entry(bdi->work_list.next,
817 struct wb_writeback_work, list);
818 list_del_init(&work->list);
819 }
820 spin_unlock_bh(&bdi->wb_lock);
821 return work;
822 }
823
824 /*
825 * Add in the number of potentially dirty inodes, because each inode
826 * write can dirty pagecache in the underlying blockdev.
827 */
828 static unsigned long get_nr_dirty_pages(void)
829 {
830 return global_page_state(NR_FILE_DIRTY) +
831 global_page_state(NR_UNSTABLE_NFS) +
832 get_nr_dirty_inodes();
833 }
834
835 static long wb_check_background_flush(struct bdi_writeback *wb)
836 {
837 if (over_bground_thresh(wb->bdi)) {
838
839 struct wb_writeback_work work = {
840 .nr_pages = LONG_MAX,
841 .sync_mode = WB_SYNC_NONE,
842 .for_background = 1,
843 .range_cyclic = 1,
844 .reason = WB_REASON_BACKGROUND,
845 };
846
847 return wb_writeback(wb, &work);
848 }
849
850 return 0;
851 }
852
853 static long wb_check_old_data_flush(struct bdi_writeback *wb)
854 {
855 unsigned long expired;
856 long nr_pages;
857
858 /*
859 * When set to zero, disable periodic writeback
860 */
861 if (!dirty_writeback_interval)
862 return 0;
863
864 expired = wb->last_old_flush +
865 msecs_to_jiffies(dirty_writeback_interval * 10);
866 if (time_before(jiffies, expired))
867 return 0;
868
869 wb->last_old_flush = jiffies;
870 nr_pages = get_nr_dirty_pages();
871
872 if (nr_pages) {
873 struct wb_writeback_work work = {
874 .nr_pages = nr_pages,
875 .sync_mode = WB_SYNC_NONE,
876 .for_kupdate = 1,
877 .range_cyclic = 1,
878 .reason = WB_REASON_PERIODIC,
879 };
880
881 return wb_writeback(wb, &work);
882 }
883
884 return 0;
885 }
886
887 /*
888 * Retrieve work items and do the writeback they describe
889 */
890 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
891 {
892 struct backing_dev_info *bdi = wb->bdi;
893 struct wb_writeback_work *work;
894 long wrote = 0;
895
896 set_bit(BDI_writeback_running, &wb->bdi->state);
897 while ((work = get_next_work_item(bdi)) != NULL) {
898 /*
899 * Override sync mode, in case we must wait for completion
900 * because this thread is exiting now.
901 */
902 if (force_wait)
903 work->sync_mode = WB_SYNC_ALL;
904
905 trace_writeback_exec(bdi, work);
906
907 wrote += wb_writeback(wb, work);
908
909 /*
910 * Notify the caller of completion if this is a synchronous
911 * work item, otherwise just free it.
912 */
913 if (work->done)
914 complete(work->done);
915 else
916 kfree(work);
917 }
918
919 /*
920 * Check for periodic writeback, kupdated() style
921 */
922 wrote += wb_check_old_data_flush(wb);
923 wrote += wb_check_background_flush(wb);
924 clear_bit(BDI_writeback_running, &wb->bdi->state);
925
926 return wrote;
927 }
928
929 /*
930 * Handle writeback of dirty data for the device backed by this bdi. Also
931 * wakes up periodically and does kupdated style flushing.
932 */
933 int bdi_writeback_thread(void *data)
934 {
935 struct bdi_writeback *wb = data;
936 struct backing_dev_info *bdi = wb->bdi;
937 long pages_written;
938
939 current->flags |= PF_SWAPWRITE;
940 set_freezable();
941 wb->last_active = jiffies;
942
943 /*
944 * Our parent may run at a different priority, just set us to normal
945 */
946 set_user_nice(current, 0);
947
948 trace_writeback_thread_start(bdi);
949
950 while (!kthread_freezable_should_stop(NULL)) {
951 /*
952 * Remove own delayed wake-up timer, since we are already awake
953 * and we'll take care of the preriodic write-back.
954 */
955 del_timer(&wb->wakeup_timer);
956
957 pages_written = wb_do_writeback(wb, 0);
958
959 trace_writeback_pages_written(pages_written);
960
961 if (pages_written)
962 wb->last_active = jiffies;
963
964 set_current_state(TASK_INTERRUPTIBLE);
965 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
966 __set_current_state(TASK_RUNNING);
967 continue;
968 }
969
970 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
971 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
972 else {
973 /*
974 * We have nothing to do, so can go sleep without any
975 * timeout and save power. When a work is queued or
976 * something is made dirty - we will be woken up.
977 */
978 schedule();
979 }
980 }
981
982 /* Flush any work that raced with us exiting */
983 if (!list_empty(&bdi->work_list))
984 wb_do_writeback(wb, 1);
985
986 trace_writeback_thread_stop(bdi);
987 return 0;
988 }
989
990
991 /*
992 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
993 * the whole world.
994 */
995 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
996 {
997 struct backing_dev_info *bdi;
998
999 if (!nr_pages) {
1000 nr_pages = global_page_state(NR_FILE_DIRTY) +
1001 global_page_state(NR_UNSTABLE_NFS);
1002 }
1003
1004 rcu_read_lock();
1005 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1006 if (!bdi_has_dirty_io(bdi))
1007 continue;
1008 __bdi_start_writeback(bdi, nr_pages, false, reason);
1009 }
1010 rcu_read_unlock();
1011 }
1012
1013 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1014 {
1015 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1016 struct dentry *dentry;
1017 const char *name = "?";
1018
1019 dentry = d_find_alias(inode);
1020 if (dentry) {
1021 spin_lock(&dentry->d_lock);
1022 name = (const char *) dentry->d_name.name;
1023 }
1024 printk(KERN_DEBUG
1025 "%s(%d): dirtied inode %lu (%s) on %s\n",
1026 current->comm, task_pid_nr(current), inode->i_ino,
1027 name, inode->i_sb->s_id);
1028 if (dentry) {
1029 spin_unlock(&dentry->d_lock);
1030 dput(dentry);
1031 }
1032 }
1033 }
1034
1035 /**
1036 * __mark_inode_dirty - internal function
1037 * @inode: inode to mark
1038 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1039 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1040 * mark_inode_dirty_sync.
1041 *
1042 * Put the inode on the super block's dirty list.
1043 *
1044 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1045 * dirty list only if it is hashed or if it refers to a blockdev.
1046 * If it was not hashed, it will never be added to the dirty list
1047 * even if it is later hashed, as it will have been marked dirty already.
1048 *
1049 * In short, make sure you hash any inodes _before_ you start marking
1050 * them dirty.
1051 *
1052 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1053 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1054 * the kernel-internal blockdev inode represents the dirtying time of the
1055 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1056 * page->mapping->host, so the page-dirtying time is recorded in the internal
1057 * blockdev inode.
1058 */
1059 void __mark_inode_dirty(struct inode *inode, int flags)
1060 {
1061 struct super_block *sb = inode->i_sb;
1062 struct backing_dev_info *bdi = NULL;
1063
1064 /*
1065 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1066 * dirty the inode itself
1067 */
1068 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1069 if (sb->s_op->dirty_inode)
1070 sb->s_op->dirty_inode(inode, flags);
1071 }
1072
1073 /*
1074 * make sure that changes are seen by all cpus before we test i_state
1075 * -- mikulas
1076 */
1077 smp_mb();
1078
1079 /* avoid the locking if we can */
1080 if ((inode->i_state & flags) == flags)
1081 return;
1082
1083 if (unlikely(block_dump))
1084 block_dump___mark_inode_dirty(inode);
1085
1086 spin_lock(&inode->i_lock);
1087 if ((inode->i_state & flags) != flags) {
1088 const int was_dirty = inode->i_state & I_DIRTY;
1089
1090 inode->i_state |= flags;
1091
1092 /*
1093 * If the inode is being synced, just update its dirty state.
1094 * The unlocker will place the inode on the appropriate
1095 * superblock list, based upon its state.
1096 */
1097 if (inode->i_state & I_SYNC)
1098 goto out_unlock_inode;
1099
1100 /*
1101 * Only add valid (hashed) inodes to the superblock's
1102 * dirty list. Add blockdev inodes as well.
1103 */
1104 if (!S_ISBLK(inode->i_mode)) {
1105 if (inode_unhashed(inode))
1106 goto out_unlock_inode;
1107 }
1108 if (inode->i_state & I_FREEING)
1109 goto out_unlock_inode;
1110
1111 /*
1112 * If the inode was already on b_dirty/b_io/b_more_io, don't
1113 * reposition it (that would break b_dirty time-ordering).
1114 */
1115 if (!was_dirty) {
1116 bool wakeup_bdi = false;
1117 bdi = inode_to_bdi(inode);
1118
1119 if (bdi_cap_writeback_dirty(bdi)) {
1120 WARN(!test_bit(BDI_registered, &bdi->state),
1121 "bdi-%s not registered\n", bdi->name);
1122
1123 /*
1124 * If this is the first dirty inode for this
1125 * bdi, we have to wake-up the corresponding
1126 * bdi thread to make sure background
1127 * write-back happens later.
1128 */
1129 if (!wb_has_dirty_io(&bdi->wb))
1130 wakeup_bdi = true;
1131 }
1132
1133 spin_unlock(&inode->i_lock);
1134 spin_lock(&bdi->wb.list_lock);
1135 inode->dirtied_when = jiffies;
1136 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1137 spin_unlock(&bdi->wb.list_lock);
1138
1139 if (wakeup_bdi)
1140 bdi_wakeup_thread_delayed(bdi);
1141 return;
1142 }
1143 }
1144 out_unlock_inode:
1145 spin_unlock(&inode->i_lock);
1146
1147 }
1148 EXPORT_SYMBOL(__mark_inode_dirty);
1149
1150 static void wait_sb_inodes(struct super_block *sb)
1151 {
1152 struct inode *inode, *old_inode = NULL;
1153
1154 /*
1155 * We need to be protected against the filesystem going from
1156 * r/o to r/w or vice versa.
1157 */
1158 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1159
1160 spin_lock(&inode_sb_list_lock);
1161
1162 /*
1163 * Data integrity sync. Must wait for all pages under writeback,
1164 * because there may have been pages dirtied before our sync
1165 * call, but which had writeout started before we write it out.
1166 * In which case, the inode may not be on the dirty list, but
1167 * we still have to wait for that writeout.
1168 */
1169 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1170 struct address_space *mapping = inode->i_mapping;
1171
1172 spin_lock(&inode->i_lock);
1173 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1174 (mapping->nrpages == 0)) {
1175 spin_unlock(&inode->i_lock);
1176 continue;
1177 }
1178 __iget(inode);
1179 spin_unlock(&inode->i_lock);
1180 spin_unlock(&inode_sb_list_lock);
1181
1182 /*
1183 * We hold a reference to 'inode' so it couldn't have been
1184 * removed from s_inodes list while we dropped the
1185 * inode_sb_list_lock. We cannot iput the inode now as we can
1186 * be holding the last reference and we cannot iput it under
1187 * inode_sb_list_lock. So we keep the reference and iput it
1188 * later.
1189 */
1190 iput(old_inode);
1191 old_inode = inode;
1192
1193 filemap_fdatawait(mapping);
1194
1195 cond_resched();
1196
1197 spin_lock(&inode_sb_list_lock);
1198 }
1199 spin_unlock(&inode_sb_list_lock);
1200 iput(old_inode);
1201 }
1202
1203 /**
1204 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1205 * @sb: the superblock
1206 * @nr: the number of pages to write
1207 * @reason: reason why some writeback work initiated
1208 *
1209 * Start writeback on some inodes on this super_block. No guarantees are made
1210 * on how many (if any) will be written, and this function does not wait
1211 * for IO completion of submitted IO.
1212 */
1213 void writeback_inodes_sb_nr(struct super_block *sb,
1214 unsigned long nr,
1215 enum wb_reason reason)
1216 {
1217 DECLARE_COMPLETION_ONSTACK(done);
1218 struct wb_writeback_work work = {
1219 .sb = sb,
1220 .sync_mode = WB_SYNC_NONE,
1221 .tagged_writepages = 1,
1222 .done = &done,
1223 .nr_pages = nr,
1224 .reason = reason,
1225 };
1226
1227 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1228 bdi_queue_work(sb->s_bdi, &work);
1229 wait_for_completion(&done);
1230 }
1231 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1232
1233 /**
1234 * writeback_inodes_sb - writeback dirty inodes from given super_block
1235 * @sb: the superblock
1236 * @reason: reason why some writeback work was initiated
1237 *
1238 * Start writeback on some inodes on this super_block. No guarantees are made
1239 * on how many (if any) will be written, and this function does not wait
1240 * for IO completion of submitted IO.
1241 */
1242 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1243 {
1244 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1245 }
1246 EXPORT_SYMBOL(writeback_inodes_sb);
1247
1248 /**
1249 * writeback_inodes_sb_if_idle - start writeback if none underway
1250 * @sb: the superblock
1251 * @reason: reason why some writeback work was initiated
1252 *
1253 * Invoke writeback_inodes_sb if no writeback is currently underway.
1254 * Returns 1 if writeback was started, 0 if not.
1255 */
1256 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1257 {
1258 if (!writeback_in_progress(sb->s_bdi)) {
1259 down_read(&sb->s_umount);
1260 writeback_inodes_sb(sb, reason);
1261 up_read(&sb->s_umount);
1262 return 1;
1263 } else
1264 return 0;
1265 }
1266 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1267
1268 /**
1269 * writeback_inodes_sb_nr_if_idle - start writeback if none underway
1270 * @sb: the superblock
1271 * @nr: the number of pages to write
1272 * @reason: reason why some writeback work was initiated
1273 *
1274 * Invoke writeback_inodes_sb if no writeback is currently underway.
1275 * Returns 1 if writeback was started, 0 if not.
1276 */
1277 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1278 unsigned long nr,
1279 enum wb_reason reason)
1280 {
1281 if (!writeback_in_progress(sb->s_bdi)) {
1282 down_read(&sb->s_umount);
1283 writeback_inodes_sb_nr(sb, nr, reason);
1284 up_read(&sb->s_umount);
1285 return 1;
1286 } else
1287 return 0;
1288 }
1289 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1290
1291 /**
1292 * sync_inodes_sb - sync sb inode pages
1293 * @sb: the superblock
1294 *
1295 * This function writes and waits on any dirty inode belonging to this
1296 * super_block.
1297 */
1298 void sync_inodes_sb(struct super_block *sb)
1299 {
1300 DECLARE_COMPLETION_ONSTACK(done);
1301 struct wb_writeback_work work = {
1302 .sb = sb,
1303 .sync_mode = WB_SYNC_ALL,
1304 .nr_pages = LONG_MAX,
1305 .range_cyclic = 0,
1306 .done = &done,
1307 .reason = WB_REASON_SYNC,
1308 };
1309
1310 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1311
1312 bdi_queue_work(sb->s_bdi, &work);
1313 wait_for_completion(&done);
1314
1315 wait_sb_inodes(sb);
1316 }
1317 EXPORT_SYMBOL(sync_inodes_sb);
1318
1319 /**
1320 * write_inode_now - write an inode to disk
1321 * @inode: inode to write to disk
1322 * @sync: whether the write should be synchronous or not
1323 *
1324 * This function commits an inode to disk immediately if it is dirty. This is
1325 * primarily needed by knfsd.
1326 *
1327 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1328 */
1329 int write_inode_now(struct inode *inode, int sync)
1330 {
1331 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1332 int ret;
1333 struct writeback_control wbc = {
1334 .nr_to_write = LONG_MAX,
1335 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1336 .range_start = 0,
1337 .range_end = LLONG_MAX,
1338 };
1339
1340 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1341 wbc.nr_to_write = 0;
1342
1343 might_sleep();
1344 spin_lock(&wb->list_lock);
1345 spin_lock(&inode->i_lock);
1346 ret = writeback_single_inode(inode, wb, &wbc);
1347 spin_unlock(&inode->i_lock);
1348 spin_unlock(&wb->list_lock);
1349 return ret;
1350 }
1351 EXPORT_SYMBOL(write_inode_now);
1352
1353 /**
1354 * sync_inode - write an inode and its pages to disk.
1355 * @inode: the inode to sync
1356 * @wbc: controls the writeback mode
1357 *
1358 * sync_inode() will write an inode and its pages to disk. It will also
1359 * correctly update the inode on its superblock's dirty inode lists and will
1360 * update inode->i_state.
1361 *
1362 * The caller must have a ref on the inode.
1363 */
1364 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1365 {
1366 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1367 int ret;
1368
1369 spin_lock(&wb->list_lock);
1370 spin_lock(&inode->i_lock);
1371 ret = writeback_single_inode(inode, wb, wbc);
1372 spin_unlock(&inode->i_lock);
1373 spin_unlock(&wb->list_lock);
1374 return ret;
1375 }
1376 EXPORT_SYMBOL(sync_inode);
1377
1378 /**
1379 * sync_inode_metadata - write an inode to disk
1380 * @inode: the inode to sync
1381 * @wait: wait for I/O to complete.
1382 *
1383 * Write an inode to disk and adjust its dirty state after completion.
1384 *
1385 * Note: only writes the actual inode, no associated data or other metadata.
1386 */
1387 int sync_inode_metadata(struct inode *inode, int wait)
1388 {
1389 struct writeback_control wbc = {
1390 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1391 .nr_to_write = 0, /* metadata-only */
1392 };
1393
1394 return sync_inode(inode, &wbc);
1395 }
1396 EXPORT_SYMBOL(sync_inode_metadata);