import PULS_20160108
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include "internal.h"
30
31 /*
32 * 4MB minimal write chunk size
33 */
34 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
35
36 /*
37 * Passed into wb_writeback(), essentially a subset of writeback_control
38 */
39 struct wb_writeback_work {
40 long nr_pages;
41 struct super_block *sb;
42 unsigned long *older_than_this;
43 enum writeback_sync_modes sync_mode;
44 unsigned int tagged_writepages:1;
45 unsigned int for_kupdate:1;
46 unsigned int range_cyclic:1;
47 unsigned int for_background:1;
48 enum wb_reason reason; /* why was writeback initiated? */
49
50 struct list_head list; /* pending work list */
51 struct completion *done; /* set if the caller waits */
52 };
53
54 /**
55 * writeback_in_progress - determine whether there is writeback in progress
56 * @bdi: the device's backing_dev_info structure.
57 *
58 * Determine whether there is writeback waiting to be handled against a
59 * backing device.
60 */
61 int writeback_in_progress(struct backing_dev_info *bdi)
62 {
63 return test_bit(BDI_writeback_running, &bdi->state);
64 }
65 EXPORT_SYMBOL(writeback_in_progress);
66
67 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
68 {
69 struct super_block *sb = inode->i_sb;
70
71 if (strcmp(sb->s_type->name, "bdev") == 0)
72 return inode->i_mapping->backing_dev_info;
73
74 return sb->s_bdi;
75 }
76
77 static inline struct inode *wb_inode(struct list_head *head)
78 {
79 return list_entry(head, struct inode, i_wb_list);
80 }
81
82 /*
83 * Include the creation of the trace points after defining the
84 * wb_writeback_work structure and inline functions so that the definition
85 * remains local to this file.
86 */
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/writeback.h>
89
90 static void bdi_wakeup_thread(struct backing_dev_info *bdi)
91 {
92 spin_lock_bh(&bdi->wb_lock);
93 if (test_bit(BDI_registered, &bdi->state))
94 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
95 spin_unlock_bh(&bdi->wb_lock);
96 }
97
98 static void bdi_queue_work(struct backing_dev_info *bdi,
99 struct wb_writeback_work *work)
100 {
101 trace_writeback_queue(bdi, work);
102
103 spin_lock_bh(&bdi->wb_lock);
104 if (!test_bit(BDI_registered, &bdi->state)) {
105 if (work->done)
106 complete(work->done);
107 goto out_unlock;
108 }
109 list_add_tail(&work->list, &bdi->work_list);
110 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
111 out_unlock:
112 spin_unlock_bh(&bdi->wb_lock);
113 }
114
115 static void
116 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
117 bool range_cyclic, enum wb_reason reason)
118 {
119 struct wb_writeback_work *work;
120
121 /*
122 * This is WB_SYNC_NONE writeback, so if allocation fails just
123 * wakeup the thread for old dirty data writeback
124 */
125 work = kzalloc(sizeof(*work), GFP_ATOMIC);
126 if (!work) {
127 trace_writeback_nowork(bdi);
128 bdi_wakeup_thread(bdi);
129 return;
130 }
131
132 work->sync_mode = WB_SYNC_NONE;
133 work->nr_pages = nr_pages;
134 work->range_cyclic = range_cyclic;
135 work->reason = reason;
136
137 bdi_queue_work(bdi, work);
138 }
139
140 /**
141 * bdi_start_writeback - start writeback
142 * @bdi: the backing device to write from
143 * @nr_pages: the number of pages to write
144 * @reason: reason why some writeback work was initiated
145 *
146 * Description:
147 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
148 * started when this function returns, we make no guarantees on
149 * completion. Caller need not hold sb s_umount semaphore.
150 *
151 */
152 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
153 enum wb_reason reason)
154 {
155 __bdi_start_writeback(bdi, nr_pages, true, reason);
156 }
157
158 /**
159 * bdi_start_background_writeback - start background writeback
160 * @bdi: the backing device to write from
161 *
162 * Description:
163 * This makes sure WB_SYNC_NONE background writeback happens. When
164 * this function returns, it is only guaranteed that for given BDI
165 * some IO is happening if we are over background dirty threshold.
166 * Caller need not hold sb s_umount semaphore.
167 */
168 void bdi_start_background_writeback(struct backing_dev_info *bdi)
169 {
170 /*
171 * We just wake up the flusher thread. It will perform background
172 * writeback as soon as there is no other work to do.
173 */
174 trace_writeback_wake_background(bdi);
175 bdi_wakeup_thread(bdi);
176 }
177
178 /*
179 * Remove the inode from the writeback list it is on.
180 */
181 void inode_wb_list_del(struct inode *inode)
182 {
183 struct backing_dev_info *bdi = inode_to_bdi(inode);
184
185 spin_lock(&bdi->wb.list_lock);
186 list_del_init(&inode->i_wb_list);
187 spin_unlock(&bdi->wb.list_lock);
188 }
189
190 /*
191 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
192 * furthest end of its superblock's dirty-inode list.
193 *
194 * Before stamping the inode's ->dirtied_when, we check to see whether it is
195 * already the most-recently-dirtied inode on the b_dirty list. If that is
196 * the case then the inode must have been redirtied while it was being written
197 * out and we don't reset its dirtied_when.
198 */
199 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
200 {
201 assert_spin_locked(&wb->list_lock);
202 if (!list_empty(&wb->b_dirty)) {
203 struct inode *tail;
204
205 tail = wb_inode(wb->b_dirty.next);
206 if (time_before(inode->dirtied_when, tail->dirtied_when))
207 inode->dirtied_when = jiffies;
208 }
209 list_move(&inode->i_wb_list, &wb->b_dirty);
210 }
211
212 /*
213 * requeue inode for re-scanning after bdi->b_io list is exhausted.
214 */
215 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
216 {
217 assert_spin_locked(&wb->list_lock);
218 list_move(&inode->i_wb_list, &wb->b_more_io);
219 }
220
221 static void inode_sync_complete(struct inode *inode)
222 {
223 inode->i_state &= ~I_SYNC;
224 /* If inode is clean an unused, put it into LRU now... */
225 inode_add_lru(inode);
226 /* Waiters must see I_SYNC cleared before being woken up */
227 smp_mb();
228 wake_up_bit(&inode->i_state, __I_SYNC);
229 }
230
231 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
232 {
233 bool ret = time_after(inode->dirtied_when, t);
234 #ifndef CONFIG_64BIT
235 /*
236 * For inodes being constantly redirtied, dirtied_when can get stuck.
237 * It _appears_ to be in the future, but is actually in distant past.
238 * This test is necessary to prevent such wrapped-around relative times
239 * from permanently stopping the whole bdi writeback.
240 */
241 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
242 #endif
243 return ret;
244 }
245
246 /*
247 * Move expired (dirtied before work->older_than_this) dirty inodes from
248 * @delaying_queue to @dispatch_queue.
249 */
250 static int move_expired_inodes(struct list_head *delaying_queue,
251 struct list_head *dispatch_queue,
252 struct wb_writeback_work *work)
253 {
254 LIST_HEAD(tmp);
255 struct list_head *pos, *node;
256 struct super_block *sb = NULL;
257 struct inode *inode;
258 int do_sb_sort = 0;
259 int moved = 0;
260
261 while (!list_empty(delaying_queue)) {
262 inode = wb_inode(delaying_queue->prev);
263 if (work->older_than_this &&
264 inode_dirtied_after(inode, *work->older_than_this))
265 break;
266 if (sb && sb != inode->i_sb)
267 do_sb_sort = 1;
268 sb = inode->i_sb;
269 list_move(&inode->i_wb_list, &tmp);
270 moved++;
271 }
272
273 /* just one sb in list, splice to dispatch_queue and we're done */
274 if (!do_sb_sort) {
275 list_splice(&tmp, dispatch_queue);
276 goto out;
277 }
278
279 /* Move inodes from one superblock together */
280 while (!list_empty(&tmp)) {
281 sb = wb_inode(tmp.prev)->i_sb;
282 list_for_each_prev_safe(pos, node, &tmp) {
283 inode = wb_inode(pos);
284 if (inode->i_sb == sb)
285 list_move(&inode->i_wb_list, dispatch_queue);
286 }
287 }
288 out:
289 return moved;
290 }
291
292 /*
293 * Queue all expired dirty inodes for io, eldest first.
294 * Before
295 * newly dirtied b_dirty b_io b_more_io
296 * =============> gf edc BA
297 * After
298 * newly dirtied b_dirty b_io b_more_io
299 * =============> g fBAedc
300 * |
301 * +--> dequeue for IO
302 */
303 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
304 {
305 int moved;
306 assert_spin_locked(&wb->list_lock);
307 list_splice_init(&wb->b_more_io, &wb->b_io);
308 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
309 trace_writeback_queue_io(wb, work, moved);
310 }
311
312 static int write_inode(struct inode *inode, struct writeback_control *wbc)
313 {
314 int ret;
315
316 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
317 trace_writeback_write_inode_start(inode, wbc);
318 ret = inode->i_sb->s_op->write_inode(inode, wbc);
319 trace_writeback_write_inode(inode, wbc);
320 return ret;
321 }
322 return 0;
323 }
324
325 /*
326 * Wait for writeback on an inode to complete. Called with i_lock held.
327 * Caller must make sure inode cannot go away when we drop i_lock.
328 */
329 static void __inode_wait_for_writeback(struct inode *inode)
330 __releases(inode->i_lock)
331 __acquires(inode->i_lock)
332 {
333 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
334 wait_queue_head_t *wqh;
335
336 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
337 while (inode->i_state & I_SYNC) {
338 spin_unlock(&inode->i_lock);
339 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
340 spin_lock(&inode->i_lock);
341 }
342 }
343
344 /*
345 * Wait for writeback on an inode to complete. Caller must have inode pinned.
346 */
347 void inode_wait_for_writeback(struct inode *inode)
348 {
349 spin_lock(&inode->i_lock);
350 __inode_wait_for_writeback(inode);
351 spin_unlock(&inode->i_lock);
352 }
353
354 /*
355 * Sleep until I_SYNC is cleared. This function must be called with i_lock
356 * held and drops it. It is aimed for callers not holding any inode reference
357 * so once i_lock is dropped, inode can go away.
358 */
359 static void inode_sleep_on_writeback(struct inode *inode)
360 __releases(inode->i_lock)
361 {
362 DEFINE_WAIT(wait);
363 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
364 int sleep;
365
366 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
367 sleep = inode->i_state & I_SYNC;
368 spin_unlock(&inode->i_lock);
369 if (sleep)
370 schedule();
371 finish_wait(wqh, &wait);
372 }
373
374 /*
375 * Find proper writeback list for the inode depending on its current state and
376 * possibly also change of its state while we were doing writeback. Here we
377 * handle things such as livelock prevention or fairness of writeback among
378 * inodes. This function can be called only by flusher thread - noone else
379 * processes all inodes in writeback lists and requeueing inodes behind flusher
380 * thread's back can have unexpected consequences.
381 */
382 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
383 struct writeback_control *wbc)
384 {
385 if (inode->i_state & I_FREEING)
386 return;
387
388 /*
389 * Sync livelock prevention. Each inode is tagged and synced in one
390 * shot. If still dirty, it will be redirty_tail()'ed below. Update
391 * the dirty time to prevent enqueue and sync it again.
392 */
393 if ((inode->i_state & I_DIRTY) &&
394 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
395 inode->dirtied_when = jiffies;
396
397 if (wbc->pages_skipped) {
398 /*
399 * writeback is not making progress due to locked
400 * buffers. Skip this inode for now.
401 */
402 redirty_tail(inode, wb);
403 return;
404 }
405
406 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
407 /*
408 * We didn't write back all the pages. nfs_writepages()
409 * sometimes bales out without doing anything.
410 */
411 if (wbc->nr_to_write <= 0) {
412 /* Slice used up. Queue for next turn. */
413 requeue_io(inode, wb);
414 } else {
415 /*
416 * Writeback blocked by something other than
417 * congestion. Delay the inode for some time to
418 * avoid spinning on the CPU (100% iowait)
419 * retrying writeback of the dirty page/inode
420 * that cannot be performed immediately.
421 */
422 redirty_tail(inode, wb);
423 }
424 } else if (inode->i_state & I_DIRTY) {
425 /*
426 * Filesystems can dirty the inode during writeback operations,
427 * such as delayed allocation during submission or metadata
428 * updates after data IO completion.
429 */
430 redirty_tail(inode, wb);
431 } else {
432 /* The inode is clean. Remove from writeback lists. */
433 list_del_init(&inode->i_wb_list);
434 }
435 }
436
437 /*
438 * Write out an inode and its dirty pages. Do not update the writeback list
439 * linkage. That is left to the caller. The caller is also responsible for
440 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
441 */
442 static int
443 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
444 {
445 struct address_space *mapping = inode->i_mapping;
446 long nr_to_write = wbc->nr_to_write;
447 unsigned dirty;
448 int ret;
449
450 WARN_ON(!(inode->i_state & I_SYNC));
451
452 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
453
454 ret = do_writepages(mapping, wbc);
455
456 /*
457 * Make sure to wait on the data before writing out the metadata.
458 * This is important for filesystems that modify metadata on data
459 * I/O completion.
460 */
461 if (wbc->sync_mode == WB_SYNC_ALL) {
462 int err = filemap_fdatawait(mapping);
463 if (ret == 0)
464 ret = err;
465 }
466
467 /*
468 * Some filesystems may redirty the inode during the writeback
469 * due to delalloc, clear dirty metadata flags right before
470 * write_inode()
471 */
472 spin_lock(&inode->i_lock);
473 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */
474 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
475 inode->i_state &= ~I_DIRTY_PAGES;
476 dirty = inode->i_state & I_DIRTY;
477 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
478 spin_unlock(&inode->i_lock);
479 /* Don't write the inode if only I_DIRTY_PAGES was set */
480 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
481 int err = write_inode(inode, wbc);
482 if (ret == 0)
483 ret = err;
484 }
485 trace_writeback_single_inode(inode, wbc, nr_to_write);
486 return ret;
487 }
488
489 /*
490 * Write out an inode's dirty pages. Either the caller has an active reference
491 * on the inode or the inode has I_WILL_FREE set.
492 *
493 * This function is designed to be called for writing back one inode which
494 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
495 * and does more profound writeback list handling in writeback_sb_inodes().
496 */
497 static int
498 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
499 struct writeback_control *wbc)
500 {
501 int ret = 0;
502
503 spin_lock(&inode->i_lock);
504 if (!atomic_read(&inode->i_count))
505 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
506 else
507 WARN_ON(inode->i_state & I_WILL_FREE);
508
509 if (inode->i_state & I_SYNC) {
510 if (wbc->sync_mode != WB_SYNC_ALL)
511 goto out;
512 /*
513 * It's a data-integrity sync. We must wait. Since callers hold
514 * inode reference or inode has I_WILL_FREE set, it cannot go
515 * away under us.
516 */
517 __inode_wait_for_writeback(inode);
518 }
519 WARN_ON(inode->i_state & I_SYNC);
520 /*
521 * Skip inode if it is clean and we have no outstanding writeback in
522 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
523 * function since flusher thread may be doing for example sync in
524 * parallel and if we move the inode, it could get skipped. So here we
525 * make sure inode is on some writeback list and leave it there unless
526 * we have completely cleaned the inode.
527 */
528 if (!(inode->i_state & I_DIRTY) &&
529 (wbc->sync_mode != WB_SYNC_ALL ||
530 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
531 goto out;
532 inode->i_state |= I_SYNC;
533 spin_unlock(&inode->i_lock);
534
535 ret = __writeback_single_inode(inode, wbc);
536
537 spin_lock(&wb->list_lock);
538 spin_lock(&inode->i_lock);
539 /*
540 * If inode is clean, remove it from writeback lists. Otherwise don't
541 * touch it. See comment above for explanation.
542 */
543 if (!(inode->i_state & I_DIRTY))
544 list_del_init(&inode->i_wb_list);
545 spin_unlock(&wb->list_lock);
546 inode_sync_complete(inode);
547 out:
548 spin_unlock(&inode->i_lock);
549 return ret;
550 }
551
552 static long writeback_chunk_size(struct backing_dev_info *bdi,
553 struct wb_writeback_work *work)
554 {
555 long pages;
556
557 /*
558 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
559 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
560 * here avoids calling into writeback_inodes_wb() more than once.
561 *
562 * The intended call sequence for WB_SYNC_ALL writeback is:
563 *
564 * wb_writeback()
565 * writeback_sb_inodes() <== called only once
566 * write_cache_pages() <== called once for each inode
567 * (quickly) tag currently dirty pages
568 * (maybe slowly) sync all tagged pages
569 */
570 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
571 pages = LONG_MAX;
572 else {
573 pages = min(bdi->avg_write_bandwidth / 2,
574 global_dirty_limit / DIRTY_SCOPE);
575 pages = min(pages, work->nr_pages);
576 pages = round_down(pages + MIN_WRITEBACK_PAGES,
577 MIN_WRITEBACK_PAGES);
578 }
579
580 return pages;
581 }
582
583 /*
584 * Write a portion of b_io inodes which belong to @sb.
585 *
586 * Return the number of pages and/or inodes written.
587 */
588 static long writeback_sb_inodes(struct super_block *sb,
589 struct bdi_writeback *wb,
590 struct wb_writeback_work *work)
591 {
592 struct writeback_control wbc = {
593 .sync_mode = work->sync_mode,
594 .tagged_writepages = work->tagged_writepages,
595 .for_kupdate = work->for_kupdate,
596 .for_background = work->for_background,
597 .range_cyclic = work->range_cyclic,
598 .range_start = 0,
599 .range_end = LLONG_MAX,
600 };
601 unsigned long start_time = jiffies;
602 long write_chunk;
603 long wrote = 0; /* count both pages and inodes */
604
605 while (!list_empty(&wb->b_io)) {
606 struct inode *inode = wb_inode(wb->b_io.prev);
607
608 if (inode->i_sb != sb) {
609 if (work->sb) {
610 /*
611 * We only want to write back data for this
612 * superblock, move all inodes not belonging
613 * to it back onto the dirty list.
614 */
615 redirty_tail(inode, wb);
616 continue;
617 }
618
619 /*
620 * The inode belongs to a different superblock.
621 * Bounce back to the caller to unpin this and
622 * pin the next superblock.
623 */
624 break;
625 }
626
627 /*
628 * Don't bother with new inodes or inodes being freed, first
629 * kind does not need periodic writeout yet, and for the latter
630 * kind writeout is handled by the freer.
631 */
632 spin_lock(&inode->i_lock);
633 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
634 spin_unlock(&inode->i_lock);
635 redirty_tail(inode, wb);
636 continue;
637 }
638 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
639 /*
640 * If this inode is locked for writeback and we are not
641 * doing writeback-for-data-integrity, move it to
642 * b_more_io so that writeback can proceed with the
643 * other inodes on s_io.
644 *
645 * We'll have another go at writing back this inode
646 * when we completed a full scan of b_io.
647 */
648 spin_unlock(&inode->i_lock);
649 requeue_io(inode, wb);
650 trace_writeback_sb_inodes_requeue(inode);
651 continue;
652 }
653 spin_unlock(&wb->list_lock);
654
655 /*
656 * We already requeued the inode if it had I_SYNC set and we
657 * are doing WB_SYNC_NONE writeback. So this catches only the
658 * WB_SYNC_ALL case.
659 */
660 if (inode->i_state & I_SYNC) {
661 /* Wait for I_SYNC. This function drops i_lock... */
662 inode_sleep_on_writeback(inode);
663 /* Inode may be gone, start again */
664 spin_lock(&wb->list_lock);
665 continue;
666 }
667 inode->i_state |= I_SYNC;
668 spin_unlock(&inode->i_lock);
669
670 write_chunk = writeback_chunk_size(wb->bdi, work);
671 wbc.nr_to_write = write_chunk;
672 wbc.pages_skipped = 0;
673
674 /*
675 * We use I_SYNC to pin the inode in memory. While it is set
676 * evict_inode() will wait so the inode cannot be freed.
677 */
678 __writeback_single_inode(inode, &wbc);
679
680 work->nr_pages -= write_chunk - wbc.nr_to_write;
681 wrote += write_chunk - wbc.nr_to_write;
682 spin_lock(&wb->list_lock);
683 spin_lock(&inode->i_lock);
684 if (!(inode->i_state & I_DIRTY))
685 wrote++;
686 requeue_inode(inode, wb, &wbc);
687 inode_sync_complete(inode);
688 spin_unlock(&inode->i_lock);
689 cond_resched_lock(&wb->list_lock);
690 /*
691 * bail out to wb_writeback() often enough to check
692 * background threshold and other termination conditions.
693 */
694 if (wrote) {
695 if (time_is_before_jiffies(start_time + HZ / 10UL))
696 break;
697 if (work->nr_pages <= 0)
698 break;
699 }
700 }
701 return wrote;
702 }
703
704 static long __writeback_inodes_wb(struct bdi_writeback *wb,
705 struct wb_writeback_work *work)
706 {
707 unsigned long start_time = jiffies;
708 long wrote = 0;
709
710 while (!list_empty(&wb->b_io)) {
711 struct inode *inode = wb_inode(wb->b_io.prev);
712 struct super_block *sb = inode->i_sb;
713
714 if (!grab_super_passive(sb)) {
715 /*
716 * grab_super_passive() may fail consistently due to
717 * s_umount being grabbed by someone else. Don't use
718 * requeue_io() to avoid busy retrying the inode/sb.
719 */
720 redirty_tail(inode, wb);
721 continue;
722 }
723 wrote += writeback_sb_inodes(sb, wb, work);
724 drop_super(sb);
725
726 /* refer to the same tests at the end of writeback_sb_inodes */
727 if (wrote) {
728 if (time_is_before_jiffies(start_time + HZ / 10UL))
729 break;
730 if (work->nr_pages <= 0)
731 break;
732 }
733 }
734 /* Leave any unwritten inodes on b_io */
735 return wrote;
736 }
737
738 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
739 enum wb_reason reason)
740 {
741 struct wb_writeback_work work = {
742 .nr_pages = nr_pages,
743 .sync_mode = WB_SYNC_NONE,
744 .range_cyclic = 1,
745 .reason = reason,
746 };
747
748 spin_lock(&wb->list_lock);
749 if (list_empty(&wb->b_io))
750 queue_io(wb, &work);
751 __writeback_inodes_wb(wb, &work);
752 spin_unlock(&wb->list_lock);
753
754 return nr_pages - work.nr_pages;
755 }
756
757 static bool over_bground_thresh(struct backing_dev_info *bdi)
758 {
759 unsigned long background_thresh, dirty_thresh;
760
761 global_dirty_limits(&background_thresh, &dirty_thresh);
762
763 if (global_page_state(NR_FILE_DIRTY) +
764 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
765 return true;
766
767 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
768 bdi_dirty_limit(bdi, background_thresh))
769 return true;
770
771 return false;
772 }
773
774 /*
775 * Called under wb->list_lock. If there are multiple wb per bdi,
776 * only the flusher working on the first wb should do it.
777 */
778 static void wb_update_bandwidth(struct bdi_writeback *wb,
779 unsigned long start_time)
780 {
781 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
782 }
783
784 /*
785 * Explicit flushing or periodic writeback of "old" data.
786 *
787 * Define "old": the first time one of an inode's pages is dirtied, we mark the
788 * dirtying-time in the inode's address_space. So this periodic writeback code
789 * just walks the superblock inode list, writing back any inodes which are
790 * older than a specific point in time.
791 *
792 * Try to run once per dirty_writeback_interval. But if a writeback event
793 * takes longer than a dirty_writeback_interval interval, then leave a
794 * one-second gap.
795 *
796 * older_than_this takes precedence over nr_to_write. So we'll only write back
797 * all dirty pages if they are all attached to "old" mappings.
798 */
799 static long wb_writeback(struct bdi_writeback *wb,
800 struct wb_writeback_work *work)
801 {
802 unsigned long wb_start = jiffies;
803 long nr_pages = work->nr_pages;
804 unsigned long oldest_jif;
805 struct inode *inode;
806 long progress;
807
808 oldest_jif = jiffies;
809 work->older_than_this = &oldest_jif;
810
811 spin_lock(&wb->list_lock);
812 for (;;) {
813 /*
814 * Stop writeback when nr_pages has been consumed
815 */
816 if (work->nr_pages <= 0)
817 break;
818
819 /*
820 * Background writeout and kupdate-style writeback may
821 * run forever. Stop them if there is other work to do
822 * so that e.g. sync can proceed. They'll be restarted
823 * after the other works are all done.
824 */
825 if ((work->for_background || work->for_kupdate) &&
826 !list_empty(&wb->bdi->work_list))
827 break;
828
829 /*
830 * For background writeout, stop when we are below the
831 * background dirty threshold
832 */
833 if (work->for_background && !over_bground_thresh(wb->bdi))
834 break;
835
836 /*
837 * Kupdate and background works are special and we want to
838 * include all inodes that need writing. Livelock avoidance is
839 * handled by these works yielding to any other work so we are
840 * safe.
841 */
842 if (work->for_kupdate) {
843 oldest_jif = jiffies -
844 msecs_to_jiffies(dirty_expire_interval * 10);
845 } else if (work->for_background)
846 oldest_jif = jiffies;
847
848 trace_writeback_start(wb->bdi, work);
849 if (list_empty(&wb->b_io))
850 queue_io(wb, work);
851 if (work->sb)
852 progress = writeback_sb_inodes(work->sb, wb, work);
853 else
854 progress = __writeback_inodes_wb(wb, work);
855 trace_writeback_written(wb->bdi, work);
856
857 wb_update_bandwidth(wb, wb_start);
858
859 /*
860 * Did we write something? Try for more
861 *
862 * Dirty inodes are moved to b_io for writeback in batches.
863 * The completion of the current batch does not necessarily
864 * mean the overall work is done. So we keep looping as long
865 * as made some progress on cleaning pages or inodes.
866 */
867 if (progress)
868 continue;
869 /*
870 * No more inodes for IO, bail
871 */
872 if (list_empty(&wb->b_more_io))
873 break;
874 /*
875 * Nothing written. Wait for some inode to
876 * become available for writeback. Otherwise
877 * we'll just busyloop.
878 */
879 if (!list_empty(&wb->b_more_io)) {
880 trace_writeback_wait(wb->bdi, work);
881 inode = wb_inode(wb->b_more_io.prev);
882 spin_lock(&inode->i_lock);
883 spin_unlock(&wb->list_lock);
884 /* This function drops i_lock... */
885 inode_sleep_on_writeback(inode);
886 spin_lock(&wb->list_lock);
887 }
888 }
889 spin_unlock(&wb->list_lock);
890
891 return nr_pages - work->nr_pages;
892 }
893
894 /*
895 * Return the next wb_writeback_work struct that hasn't been processed yet.
896 */
897 static struct wb_writeback_work *
898 get_next_work_item(struct backing_dev_info *bdi)
899 {
900 struct wb_writeback_work *work = NULL;
901
902 spin_lock_bh(&bdi->wb_lock);
903 if (!list_empty(&bdi->work_list)) {
904 work = list_entry(bdi->work_list.next,
905 struct wb_writeback_work, list);
906 list_del_init(&work->list);
907 }
908 spin_unlock_bh(&bdi->wb_lock);
909 return work;
910 }
911
912 /*
913 * Add in the number of potentially dirty inodes, because each inode
914 * write can dirty pagecache in the underlying blockdev.
915 */
916 static unsigned long get_nr_dirty_pages(void)
917 {
918 return global_page_state(NR_FILE_DIRTY) +
919 global_page_state(NR_UNSTABLE_NFS) +
920 get_nr_dirty_inodes();
921 }
922
923 static long wb_check_background_flush(struct bdi_writeback *wb)
924 {
925 if (over_bground_thresh(wb->bdi)) {
926
927 struct wb_writeback_work work = {
928 .nr_pages = LONG_MAX,
929 .sync_mode = WB_SYNC_NONE,
930 .for_background = 1,
931 .range_cyclic = 1,
932 .reason = WB_REASON_BACKGROUND,
933 };
934
935 return wb_writeback(wb, &work);
936 }
937
938 return 0;
939 }
940
941 static long wb_check_old_data_flush(struct bdi_writeback *wb)
942 {
943 unsigned long expired;
944 long nr_pages;
945
946 /*
947 * When set to zero, disable periodic writeback
948 */
949 if (!dirty_writeback_interval)
950 return 0;
951
952 expired = wb->last_old_flush +
953 msecs_to_jiffies(dirty_writeback_interval * 10);
954 if (time_before(jiffies, expired))
955 return 0;
956
957 wb->last_old_flush = jiffies;
958 nr_pages = get_nr_dirty_pages();
959
960 if (nr_pages) {
961 struct wb_writeback_work work = {
962 .nr_pages = nr_pages,
963 .sync_mode = WB_SYNC_NONE,
964 .for_kupdate = 1,
965 .range_cyclic = 1,
966 .reason = WB_REASON_PERIODIC,
967 };
968
969 return wb_writeback(wb, &work);
970 }
971
972 return 0;
973 }
974
975 /*
976 * Retrieve work items and do the writeback they describe
977 */
978 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
979 {
980 struct backing_dev_info *bdi = wb->bdi;
981 struct wb_writeback_work *work;
982 long wrote = 0;
983
984 set_bit(BDI_writeback_running, &wb->bdi->state);
985 while ((work = get_next_work_item(bdi)) != NULL) {
986 /*
987 * Override sync mode, in case we must wait for completion
988 * because this thread is exiting now.
989 */
990 if (force_wait)
991 work->sync_mode = WB_SYNC_ALL;
992
993 trace_writeback_exec(bdi, work);
994
995 wrote += wb_writeback(wb, work);
996
997 /*
998 * Notify the caller of completion if this is a synchronous
999 * work item, otherwise just free it.
1000 */
1001 if (work->done)
1002 complete(work->done);
1003 else
1004 kfree(work);
1005 }
1006
1007 /*
1008 * Check for periodic writeback, kupdated() style
1009 */
1010 wrote += wb_check_old_data_flush(wb);
1011 wrote += wb_check_background_flush(wb);
1012 clear_bit(BDI_writeback_running, &wb->bdi->state);
1013
1014 return wrote;
1015 }
1016
1017 /*
1018 * Handle writeback of dirty data for the device backed by this bdi. Also
1019 * reschedules periodically and does kupdated style flushing.
1020 */
1021 void bdi_writeback_workfn(struct work_struct *work)
1022 {
1023 struct bdi_writeback *wb = container_of(to_delayed_work(work),
1024 struct bdi_writeback, dwork);
1025 struct backing_dev_info *bdi = wb->bdi;
1026 long pages_written;
1027
1028 set_worker_desc("flush-%s", dev_name(bdi->dev));
1029 current->flags |= PF_SWAPWRITE;
1030
1031 if (likely(!current_is_workqueue_rescuer() ||
1032 !test_bit(BDI_registered, &bdi->state))) {
1033 /*
1034 * The normal path. Keep writing back @bdi until its
1035 * work_list is empty. Note that this path is also taken
1036 * if @bdi is shutting down even when we're running off the
1037 * rescuer as work_list needs to be drained.
1038 */
1039 do {
1040 pages_written = wb_do_writeback(wb, 0);
1041 trace_writeback_pages_written(pages_written);
1042 } while (!list_empty(&bdi->work_list));
1043 } else {
1044 /*
1045 * bdi_wq can't get enough workers and we're running off
1046 * the emergency worker. Don't hog it. Hopefully, 1024 is
1047 * enough for efficient IO.
1048 */
1049 pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1050 WB_REASON_FORKER_THREAD);
1051 trace_writeback_pages_written(pages_written);
1052 }
1053
1054 if (!list_empty(&bdi->work_list))
1055 mod_delayed_work(bdi_wq, &wb->dwork, 0);
1056 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1057 bdi_wakeup_thread_delayed(bdi);
1058
1059 current->flags &= ~PF_SWAPWRITE;
1060 }
1061
1062 /*
1063 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1064 * the whole world.
1065 */
1066 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1067 {
1068 struct backing_dev_info *bdi;
1069
1070 if (!nr_pages) {
1071 nr_pages = global_page_state(NR_FILE_DIRTY) +
1072 global_page_state(NR_UNSTABLE_NFS);
1073 }
1074
1075 rcu_read_lock();
1076 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1077 if (!bdi_has_dirty_io(bdi))
1078 continue;
1079 __bdi_start_writeback(bdi, nr_pages, false, reason);
1080 }
1081 rcu_read_unlock();
1082 }
1083
1084 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1085 {
1086 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1087 struct dentry *dentry;
1088 const char *name = "?";
1089
1090 dentry = d_find_alias(inode);
1091 if (dentry) {
1092 spin_lock(&dentry->d_lock);
1093 name = (const char *) dentry->d_name.name;
1094 }
1095 printk(KERN_DEBUG
1096 "%s(%d): dirtied inode %lu (%s) on %s\n",
1097 current->comm, task_pid_nr(current), inode->i_ino,
1098 name, inode->i_sb->s_id);
1099 if (dentry) {
1100 spin_unlock(&dentry->d_lock);
1101 dput(dentry);
1102 }
1103 }
1104 }
1105
1106 /**
1107 * __mark_inode_dirty - internal function
1108 * @inode: inode to mark
1109 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1110 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1111 * mark_inode_dirty_sync.
1112 *
1113 * Put the inode on the super block's dirty list.
1114 *
1115 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1116 * dirty list only if it is hashed or if it refers to a blockdev.
1117 * If it was not hashed, it will never be added to the dirty list
1118 * even if it is later hashed, as it will have been marked dirty already.
1119 *
1120 * In short, make sure you hash any inodes _before_ you start marking
1121 * them dirty.
1122 *
1123 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1124 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1125 * the kernel-internal blockdev inode represents the dirtying time of the
1126 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1127 * page->mapping->host, so the page-dirtying time is recorded in the internal
1128 * blockdev inode.
1129 */
1130 void __mark_inode_dirty(struct inode *inode, int flags)
1131 {
1132 struct super_block *sb = inode->i_sb;
1133 struct backing_dev_info *bdi = NULL;
1134
1135 /*
1136 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1137 * dirty the inode itself
1138 */
1139 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1140 trace_writeback_dirty_inode_start(inode, flags);
1141
1142 if (sb->s_op->dirty_inode)
1143 sb->s_op->dirty_inode(inode, flags);
1144
1145 trace_writeback_dirty_inode(inode, flags);
1146 }
1147
1148 /*
1149 * make sure that changes are seen by all cpus before we test i_state
1150 * -- mikulas
1151 */
1152 smp_mb();
1153
1154 /* avoid the locking if we can */
1155 if ((inode->i_state & flags) == flags)
1156 return;
1157
1158 if (unlikely(block_dump > 1))
1159 block_dump___mark_inode_dirty(inode);
1160
1161 spin_lock(&inode->i_lock);
1162 if ((inode->i_state & flags) != flags) {
1163 const int was_dirty = inode->i_state & I_DIRTY;
1164
1165 inode->i_state |= flags;
1166
1167 /*
1168 * If the inode is being synced, just update its dirty state.
1169 * The unlocker will place the inode on the appropriate
1170 * superblock list, based upon its state.
1171 */
1172 if (inode->i_state & I_SYNC)
1173 goto out_unlock_inode;
1174
1175 /*
1176 * Only add valid (hashed) inodes to the superblock's
1177 * dirty list. Add blockdev inodes as well.
1178 */
1179 if (!S_ISBLK(inode->i_mode)) {
1180 if (inode_unhashed(inode))
1181 goto out_unlock_inode;
1182 }
1183 if (inode->i_state & I_FREEING)
1184 goto out_unlock_inode;
1185
1186 /*
1187 * If the inode was already on b_dirty/b_io/b_more_io, don't
1188 * reposition it (that would break b_dirty time-ordering).
1189 */
1190 if (!was_dirty) {
1191 bool wakeup_bdi = false;
1192 bdi = inode_to_bdi(inode);
1193
1194 if (bdi_cap_writeback_dirty(bdi)) {
1195 WARN(!test_bit(BDI_registered, &bdi->state),
1196 "bdi-%s not registered\n", bdi->name);
1197
1198 /*
1199 * If this is the first dirty inode for this
1200 * bdi, we have to wake-up the corresponding
1201 * bdi thread to make sure background
1202 * write-back happens later.
1203 */
1204 if (!wb_has_dirty_io(&bdi->wb))
1205 wakeup_bdi = true;
1206 }
1207
1208 spin_unlock(&inode->i_lock);
1209 spin_lock(&bdi->wb.list_lock);
1210 inode->dirtied_when = jiffies;
1211 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1212 spin_unlock(&bdi->wb.list_lock);
1213
1214 if (wakeup_bdi)
1215 bdi_wakeup_thread_delayed(bdi);
1216 return;
1217 }
1218 }
1219 out_unlock_inode:
1220 spin_unlock(&inode->i_lock);
1221
1222 }
1223 EXPORT_SYMBOL(__mark_inode_dirty);
1224
1225 static void wait_sb_inodes(struct super_block *sb)
1226 {
1227 struct inode *inode, *old_inode = NULL;
1228
1229 /*
1230 * We need to be protected against the filesystem going from
1231 * r/o to r/w or vice versa.
1232 */
1233 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1234
1235 spin_lock(&inode_sb_list_lock);
1236
1237 /*
1238 * Data integrity sync. Must wait for all pages under writeback,
1239 * because there may have been pages dirtied before our sync
1240 * call, but which had writeout started before we write it out.
1241 * In which case, the inode may not be on the dirty list, but
1242 * we still have to wait for that writeout.
1243 */
1244 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1245 struct address_space *mapping = inode->i_mapping;
1246
1247 spin_lock(&inode->i_lock);
1248 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1249 (mapping->nrpages == 0)) {
1250 spin_unlock(&inode->i_lock);
1251 continue;
1252 }
1253 __iget(inode);
1254 spin_unlock(&inode->i_lock);
1255 spin_unlock(&inode_sb_list_lock);
1256
1257 /*
1258 * We hold a reference to 'inode' so it couldn't have been
1259 * removed from s_inodes list while we dropped the
1260 * inode_sb_list_lock. We cannot iput the inode now as we can
1261 * be holding the last reference and we cannot iput it under
1262 * inode_sb_list_lock. So we keep the reference and iput it
1263 * later.
1264 */
1265 iput(old_inode);
1266 old_inode = inode;
1267
1268 filemap_fdatawait(mapping);
1269
1270 cond_resched();
1271
1272 spin_lock(&inode_sb_list_lock);
1273 }
1274 spin_unlock(&inode_sb_list_lock);
1275 iput(old_inode);
1276 }
1277
1278 /**
1279 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1280 * @sb: the superblock
1281 * @nr: the number of pages to write
1282 * @reason: reason why some writeback work initiated
1283 *
1284 * Start writeback on some inodes on this super_block. No guarantees are made
1285 * on how many (if any) will be written, and this function does not wait
1286 * for IO completion of submitted IO.
1287 */
1288 void writeback_inodes_sb_nr(struct super_block *sb,
1289 unsigned long nr,
1290 enum wb_reason reason)
1291 {
1292 DECLARE_COMPLETION_ONSTACK(done);
1293 struct wb_writeback_work work = {
1294 .sb = sb,
1295 .sync_mode = WB_SYNC_NONE,
1296 .tagged_writepages = 1,
1297 .done = &done,
1298 .nr_pages = nr,
1299 .reason = reason,
1300 };
1301
1302 if (sb->s_bdi == &noop_backing_dev_info)
1303 return;
1304 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1305 bdi_queue_work(sb->s_bdi, &work);
1306 wait_for_completion(&done);
1307 }
1308 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1309
1310 /**
1311 * writeback_inodes_sb - writeback dirty inodes from given super_block
1312 * @sb: the superblock
1313 * @reason: reason why some writeback work was initiated
1314 *
1315 * Start writeback on some inodes on this super_block. No guarantees are made
1316 * on how many (if any) will be written, and this function does not wait
1317 * for IO completion of submitted IO.
1318 */
1319 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1320 {
1321 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1322 }
1323 EXPORT_SYMBOL(writeback_inodes_sb);
1324
1325 /**
1326 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1327 * @sb: the superblock
1328 * @nr: the number of pages to write
1329 * @reason: the reason of writeback
1330 *
1331 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1332 * Returns 1 if writeback was started, 0 if not.
1333 */
1334 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1335 unsigned long nr,
1336 enum wb_reason reason)
1337 {
1338 if (writeback_in_progress(sb->s_bdi))
1339 return 1;
1340
1341 if (!down_read_trylock(&sb->s_umount))
1342 return 0;
1343
1344 writeback_inodes_sb_nr(sb, nr, reason);
1345 up_read(&sb->s_umount);
1346 return 1;
1347 }
1348 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1349
1350 /**
1351 * try_to_writeback_inodes_sb - try to start writeback if none underway
1352 * @sb: the superblock
1353 * @reason: reason why some writeback work was initiated
1354 *
1355 * Implement by try_to_writeback_inodes_sb_nr()
1356 * Returns 1 if writeback was started, 0 if not.
1357 */
1358 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1359 {
1360 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1361 }
1362 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1363
1364 /**
1365 * sync_inodes_sb - sync sb inode pages
1366 * @sb: the superblock
1367 *
1368 * This function writes and waits on any dirty inode belonging to this
1369 * super_block.
1370 */
1371 void sync_inodes_sb(struct super_block *sb)
1372 {
1373 DECLARE_COMPLETION_ONSTACK(done);
1374 struct wb_writeback_work work = {
1375 .sb = sb,
1376 .sync_mode = WB_SYNC_ALL,
1377 .nr_pages = LONG_MAX,
1378 .range_cyclic = 0,
1379 .done = &done,
1380 .reason = WB_REASON_SYNC,
1381 };
1382
1383 /* Nothing to do? */
1384 if (sb->s_bdi == &noop_backing_dev_info)
1385 return;
1386 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1387
1388 bdi_queue_work(sb->s_bdi, &work);
1389 wait_for_completion(&done);
1390
1391 wait_sb_inodes(sb);
1392 }
1393 EXPORT_SYMBOL(sync_inodes_sb);
1394
1395 /**
1396 * write_inode_now - write an inode to disk
1397 * @inode: inode to write to disk
1398 * @sync: whether the write should be synchronous or not
1399 *
1400 * This function commits an inode to disk immediately if it is dirty. This is
1401 * primarily needed by knfsd.
1402 *
1403 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1404 */
1405 int write_inode_now(struct inode *inode, int sync)
1406 {
1407 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1408 struct writeback_control wbc = {
1409 .nr_to_write = LONG_MAX,
1410 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1411 .range_start = 0,
1412 .range_end = LLONG_MAX,
1413 };
1414
1415 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1416 wbc.nr_to_write = 0;
1417
1418 might_sleep();
1419 return writeback_single_inode(inode, wb, &wbc);
1420 }
1421 EXPORT_SYMBOL(write_inode_now);
1422
1423 /**
1424 * sync_inode - write an inode and its pages to disk.
1425 * @inode: the inode to sync
1426 * @wbc: controls the writeback mode
1427 *
1428 * sync_inode() will write an inode and its pages to disk. It will also
1429 * correctly update the inode on its superblock's dirty inode lists and will
1430 * update inode->i_state.
1431 *
1432 * The caller must have a ref on the inode.
1433 */
1434 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1435 {
1436 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1437 }
1438 EXPORT_SYMBOL(sync_inode);
1439
1440 /**
1441 * sync_inode_metadata - write an inode to disk
1442 * @inode: the inode to sync
1443 * @wait: wait for I/O to complete.
1444 *
1445 * Write an inode to disk and adjust its dirty state after completion.
1446 *
1447 * Note: only writes the actual inode, no associated data or other metadata.
1448 */
1449 int sync_inode_metadata(struct inode *inode, int wait)
1450 {
1451 struct writeback_control wbc = {
1452 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1453 .nr_to_write = 0, /* metadata-only */
1454 };
1455
1456 return sync_inode(inode, &wbc);
1457 }
1458 EXPORT_SYMBOL(sync_inode_metadata);