NFS: make nfs_wb_page_priority() static
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / fs-writeback.c
1 /*
2 * fs/fs-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
10 *
11 * 10Apr2002 akpm@zip.com.au
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
14 */
15
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/sched.h>
20 #include <linux/fs.h>
21 #include <linux/mm.h>
22 #include <linux/writeback.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/buffer_head.h>
26 #include "internal.h"
27
28 /**
29 * __mark_inode_dirty - internal function
30 * @inode: inode to mark
31 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
32 * Mark an inode as dirty. Callers should use mark_inode_dirty or
33 * mark_inode_dirty_sync.
34 *
35 * Put the inode on the super block's dirty list.
36 *
37 * CAREFUL! We mark it dirty unconditionally, but move it onto the
38 * dirty list only if it is hashed or if it refers to a blockdev.
39 * If it was not hashed, it will never be added to the dirty list
40 * even if it is later hashed, as it will have been marked dirty already.
41 *
42 * In short, make sure you hash any inodes _before_ you start marking
43 * them dirty.
44 *
45 * This function *must* be atomic for the I_DIRTY_PAGES case -
46 * set_page_dirty() is called under spinlock in several places.
47 *
48 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
49 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
50 * the kernel-internal blockdev inode represents the dirtying time of the
51 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
52 * page->mapping->host, so the page-dirtying time is recorded in the internal
53 * blockdev inode.
54 */
55 void __mark_inode_dirty(struct inode *inode, int flags)
56 {
57 struct super_block *sb = inode->i_sb;
58
59 /*
60 * Don't do this for I_DIRTY_PAGES - that doesn't actually
61 * dirty the inode itself
62 */
63 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
64 if (sb->s_op->dirty_inode)
65 sb->s_op->dirty_inode(inode);
66 }
67
68 /*
69 * make sure that changes are seen by all cpus before we test i_state
70 * -- mikulas
71 */
72 smp_mb();
73
74 /* avoid the locking if we can */
75 if ((inode->i_state & flags) == flags)
76 return;
77
78 if (unlikely(block_dump)) {
79 struct dentry *dentry = NULL;
80 const char *name = "?";
81
82 if (!list_empty(&inode->i_dentry)) {
83 dentry = list_entry(inode->i_dentry.next,
84 struct dentry, d_alias);
85 if (dentry && dentry->d_name.name)
86 name = (const char *) dentry->d_name.name;
87 }
88
89 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev"))
90 printk(KERN_DEBUG
91 "%s(%d): dirtied inode %lu (%s) on %s\n",
92 current->comm, task_pid_nr(current), inode->i_ino,
93 name, inode->i_sb->s_id);
94 }
95
96 spin_lock(&inode_lock);
97 if ((inode->i_state & flags) != flags) {
98 const int was_dirty = inode->i_state & I_DIRTY;
99
100 inode->i_state |= flags;
101
102 /*
103 * If the inode is being synced, just update its dirty state.
104 * The unlocker will place the inode on the appropriate
105 * superblock list, based upon its state.
106 */
107 if (inode->i_state & I_SYNC)
108 goto out;
109
110 /*
111 * Only add valid (hashed) inodes to the superblock's
112 * dirty list. Add blockdev inodes as well.
113 */
114 if (!S_ISBLK(inode->i_mode)) {
115 if (hlist_unhashed(&inode->i_hash))
116 goto out;
117 }
118 if (inode->i_state & (I_FREEING|I_CLEAR))
119 goto out;
120
121 /*
122 * If the inode was already on s_dirty/s_io/s_more_io, don't
123 * reposition it (that would break s_dirty time-ordering).
124 */
125 if (!was_dirty) {
126 inode->dirtied_when = jiffies;
127 list_move(&inode->i_list, &sb->s_dirty);
128 }
129 }
130 out:
131 spin_unlock(&inode_lock);
132 }
133
134 EXPORT_SYMBOL(__mark_inode_dirty);
135
136 static int write_inode(struct inode *inode, int sync)
137 {
138 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
139 return inode->i_sb->s_op->write_inode(inode, sync);
140 return 0;
141 }
142
143 /*
144 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
145 * furthest end of its superblock's dirty-inode list.
146 *
147 * Before stamping the inode's ->dirtied_when, we check to see whether it is
148 * already the most-recently-dirtied inode on the s_dirty list. If that is
149 * the case then the inode must have been redirtied while it was being written
150 * out and we don't reset its dirtied_when.
151 */
152 static void redirty_tail(struct inode *inode)
153 {
154 struct super_block *sb = inode->i_sb;
155
156 if (!list_empty(&sb->s_dirty)) {
157 struct inode *tail_inode;
158
159 tail_inode = list_entry(sb->s_dirty.next, struct inode, i_list);
160 if (!time_after_eq(inode->dirtied_when,
161 tail_inode->dirtied_when))
162 inode->dirtied_when = jiffies;
163 }
164 list_move(&inode->i_list, &sb->s_dirty);
165 }
166
167 /*
168 * requeue inode for re-scanning after sb->s_io list is exhausted.
169 */
170 static void requeue_io(struct inode *inode)
171 {
172 list_move(&inode->i_list, &inode->i_sb->s_more_io);
173 }
174
175 static void inode_sync_complete(struct inode *inode)
176 {
177 /*
178 * Prevent speculative execution through spin_unlock(&inode_lock);
179 */
180 smp_mb();
181 wake_up_bit(&inode->i_state, __I_SYNC);
182 }
183
184 /*
185 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
186 */
187 static void move_expired_inodes(struct list_head *delaying_queue,
188 struct list_head *dispatch_queue,
189 unsigned long *older_than_this)
190 {
191 while (!list_empty(delaying_queue)) {
192 struct inode *inode = list_entry(delaying_queue->prev,
193 struct inode, i_list);
194 if (older_than_this &&
195 time_after(inode->dirtied_when, *older_than_this))
196 break;
197 list_move(&inode->i_list, dispatch_queue);
198 }
199 }
200
201 /*
202 * Queue all expired dirty inodes for io, eldest first.
203 */
204 static void queue_io(struct super_block *sb,
205 unsigned long *older_than_this)
206 {
207 list_splice_init(&sb->s_more_io, sb->s_io.prev);
208 move_expired_inodes(&sb->s_dirty, &sb->s_io, older_than_this);
209 }
210
211 int sb_has_dirty_inodes(struct super_block *sb)
212 {
213 return !list_empty(&sb->s_dirty) ||
214 !list_empty(&sb->s_io) ||
215 !list_empty(&sb->s_more_io);
216 }
217 EXPORT_SYMBOL(sb_has_dirty_inodes);
218
219 /*
220 * Write a single inode's dirty pages and inode data out to disk.
221 * If `wait' is set, wait on the writeout.
222 *
223 * The whole writeout design is quite complex and fragile. We want to avoid
224 * starvation of particular inodes when others are being redirtied, prevent
225 * livelocks, etc.
226 *
227 * Called under inode_lock.
228 */
229 static int
230 __sync_single_inode(struct inode *inode, struct writeback_control *wbc)
231 {
232 unsigned dirty;
233 struct address_space *mapping = inode->i_mapping;
234 int wait = wbc->sync_mode == WB_SYNC_ALL;
235 int ret;
236
237 BUG_ON(inode->i_state & I_SYNC);
238
239 /* Set I_SYNC, reset I_DIRTY */
240 dirty = inode->i_state & I_DIRTY;
241 inode->i_state |= I_SYNC;
242 inode->i_state &= ~I_DIRTY;
243
244 spin_unlock(&inode_lock);
245
246 ret = do_writepages(mapping, wbc);
247
248 /* Don't write the inode if only I_DIRTY_PAGES was set */
249 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
250 int err = write_inode(inode, wait);
251 if (ret == 0)
252 ret = err;
253 }
254
255 if (wait) {
256 int err = filemap_fdatawait(mapping);
257 if (ret == 0)
258 ret = err;
259 }
260
261 spin_lock(&inode_lock);
262 inode->i_state &= ~I_SYNC;
263 if (!(inode->i_state & I_FREEING)) {
264 if (!(inode->i_state & I_DIRTY) &&
265 mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
266 /*
267 * We didn't write back all the pages. nfs_writepages()
268 * sometimes bales out without doing anything. Redirty
269 * the inode; Move it from s_io onto s_more_io/s_dirty.
270 */
271 /*
272 * akpm: if the caller was the kupdate function we put
273 * this inode at the head of s_dirty so it gets first
274 * consideration. Otherwise, move it to the tail, for
275 * the reasons described there. I'm not really sure
276 * how much sense this makes. Presumably I had a good
277 * reasons for doing it this way, and I'd rather not
278 * muck with it at present.
279 */
280 if (wbc->for_kupdate) {
281 /*
282 * For the kupdate function we move the inode
283 * to s_more_io so it will get more writeout as
284 * soon as the queue becomes uncongested.
285 */
286 inode->i_state |= I_DIRTY_PAGES;
287 requeue_io(inode);
288 } else {
289 /*
290 * Otherwise fully redirty the inode so that
291 * other inodes on this superblock will get some
292 * writeout. Otherwise heavy writing to one
293 * file would indefinitely suspend writeout of
294 * all the other files.
295 */
296 inode->i_state |= I_DIRTY_PAGES;
297 redirty_tail(inode);
298 }
299 } else if (inode->i_state & I_DIRTY) {
300 /*
301 * Someone redirtied the inode while were writing back
302 * the pages.
303 */
304 redirty_tail(inode);
305 } else if (atomic_read(&inode->i_count)) {
306 /*
307 * The inode is clean, inuse
308 */
309 list_move(&inode->i_list, &inode_in_use);
310 } else {
311 /*
312 * The inode is clean, unused
313 */
314 list_move(&inode->i_list, &inode_unused);
315 }
316 }
317 inode_sync_complete(inode);
318 return ret;
319 }
320
321 /*
322 * Write out an inode's dirty pages. Called under inode_lock. Either the
323 * caller has ref on the inode (either via __iget or via syscall against an fd)
324 * or the inode has I_WILL_FREE set (via generic_forget_inode)
325 */
326 static int
327 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
328 {
329 wait_queue_head_t *wqh;
330
331 if (!atomic_read(&inode->i_count))
332 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
333 else
334 WARN_ON(inode->i_state & I_WILL_FREE);
335
336 if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_SYNC)) {
337 struct address_space *mapping = inode->i_mapping;
338 int ret;
339
340 /*
341 * We're skipping this inode because it's locked, and we're not
342 * doing writeback-for-data-integrity. Move it to s_more_io so
343 * that writeback can proceed with the other inodes on s_io.
344 * We'll have another go at writing back this inode when we
345 * completed a full scan of s_io.
346 */
347 requeue_io(inode);
348
349 /*
350 * Even if we don't actually write the inode itself here,
351 * we can at least start some of the data writeout..
352 */
353 spin_unlock(&inode_lock);
354 ret = do_writepages(mapping, wbc);
355 spin_lock(&inode_lock);
356 return ret;
357 }
358
359 /*
360 * It's a data-integrity sync. We must wait.
361 */
362 if (inode->i_state & I_SYNC) {
363 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
364
365 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
366 do {
367 spin_unlock(&inode_lock);
368 __wait_on_bit(wqh, &wq, inode_wait,
369 TASK_UNINTERRUPTIBLE);
370 spin_lock(&inode_lock);
371 } while (inode->i_state & I_SYNC);
372 }
373 return __sync_single_inode(inode, wbc);
374 }
375
376 /*
377 * Write out a superblock's list of dirty inodes. A wait will be performed
378 * upon no inodes, all inodes or the final one, depending upon sync_mode.
379 *
380 * If older_than_this is non-NULL, then only write out inodes which
381 * had their first dirtying at a time earlier than *older_than_this.
382 *
383 * If we're a pdlfush thread, then implement pdflush collision avoidance
384 * against the entire list.
385 *
386 * WB_SYNC_HOLD is a hack for sys_sync(): reattach the inode to sb->s_dirty so
387 * that it can be located for waiting on in __writeback_single_inode().
388 *
389 * Called under inode_lock.
390 *
391 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
392 * This function assumes that the blockdev superblock's inodes are backed by
393 * a variety of queues, so all inodes are searched. For other superblocks,
394 * assume that all inodes are backed by the same queue.
395 *
396 * FIXME: this linear search could get expensive with many fileystems. But
397 * how to fix? We need to go from an address_space to all inodes which share
398 * a queue with that address_space. (Easy: have a global "dirty superblocks"
399 * list).
400 *
401 * The inodes to be written are parked on sb->s_io. They are moved back onto
402 * sb->s_dirty as they are selected for writing. This way, none can be missed
403 * on the writer throttling path, and we get decent balancing between many
404 * throttled threads: we don't want them all piling up on inode_sync_wait.
405 */
406 static void
407 sync_sb_inodes(struct super_block *sb, struct writeback_control *wbc)
408 {
409 const unsigned long start = jiffies; /* livelock avoidance */
410
411 if (!wbc->for_kupdate || list_empty(&sb->s_io))
412 queue_io(sb, wbc->older_than_this);
413
414 while (!list_empty(&sb->s_io)) {
415 struct inode *inode = list_entry(sb->s_io.prev,
416 struct inode, i_list);
417 struct address_space *mapping = inode->i_mapping;
418 struct backing_dev_info *bdi = mapping->backing_dev_info;
419 long pages_skipped;
420
421 if (!bdi_cap_writeback_dirty(bdi)) {
422 redirty_tail(inode);
423 if (sb_is_blkdev_sb(sb)) {
424 /*
425 * Dirty memory-backed blockdev: the ramdisk
426 * driver does this. Skip just this inode
427 */
428 continue;
429 }
430 /*
431 * Dirty memory-backed inode against a filesystem other
432 * than the kernel-internal bdev filesystem. Skip the
433 * entire superblock.
434 */
435 break;
436 }
437
438 if (wbc->nonblocking && bdi_write_congested(bdi)) {
439 wbc->encountered_congestion = 1;
440 if (!sb_is_blkdev_sb(sb))
441 break; /* Skip a congested fs */
442 requeue_io(inode);
443 continue; /* Skip a congested blockdev */
444 }
445
446 if (wbc->bdi && bdi != wbc->bdi) {
447 if (!sb_is_blkdev_sb(sb))
448 break; /* fs has the wrong queue */
449 requeue_io(inode);
450 continue; /* blockdev has wrong queue */
451 }
452
453 /* Was this inode dirtied after sync_sb_inodes was called? */
454 if (time_after(inode->dirtied_when, start))
455 break;
456
457 /* Is another pdflush already flushing this queue? */
458 if (current_is_pdflush() && !writeback_acquire(bdi))
459 break;
460
461 BUG_ON(inode->i_state & I_FREEING);
462 __iget(inode);
463 pages_skipped = wbc->pages_skipped;
464 __writeback_single_inode(inode, wbc);
465 if (wbc->sync_mode == WB_SYNC_HOLD) {
466 inode->dirtied_when = jiffies;
467 list_move(&inode->i_list, &sb->s_dirty);
468 }
469 if (current_is_pdflush())
470 writeback_release(bdi);
471 if (wbc->pages_skipped != pages_skipped) {
472 /*
473 * writeback is not making progress due to locked
474 * buffers. Skip this inode for now.
475 */
476 redirty_tail(inode);
477 }
478 spin_unlock(&inode_lock);
479 iput(inode);
480 cond_resched();
481 spin_lock(&inode_lock);
482 if (wbc->nr_to_write <= 0)
483 break;
484 }
485 if (!list_empty(&sb->s_more_io))
486 wbc->more_io = 1;
487 return; /* Leave any unwritten inodes on s_io */
488 }
489
490 /*
491 * Start writeback of dirty pagecache data against all unlocked inodes.
492 *
493 * Note:
494 * We don't need to grab a reference to superblock here. If it has non-empty
495 * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed
496 * past sync_inodes_sb() until the ->s_dirty/s_io/s_more_io lists are all
497 * empty. Since __sync_single_inode() regains inode_lock before it finally moves
498 * inode from superblock lists we are OK.
499 *
500 * If `older_than_this' is non-zero then only flush inodes which have a
501 * flushtime older than *older_than_this.
502 *
503 * If `bdi' is non-zero then we will scan the first inode against each
504 * superblock until we find the matching ones. One group will be the dirty
505 * inodes against a filesystem. Then when we hit the dummy blockdev superblock,
506 * sync_sb_inodes will seekout the blockdev which matches `bdi'. Maybe not
507 * super-efficient but we're about to do a ton of I/O...
508 */
509 void
510 writeback_inodes(struct writeback_control *wbc)
511 {
512 struct super_block *sb;
513
514 might_sleep();
515 spin_lock(&sb_lock);
516 restart:
517 sb = sb_entry(super_blocks.prev);
518 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
519 if (sb_has_dirty_inodes(sb)) {
520 /* we're making our own get_super here */
521 sb->s_count++;
522 spin_unlock(&sb_lock);
523 /*
524 * If we can't get the readlock, there's no sense in
525 * waiting around, most of the time the FS is going to
526 * be unmounted by the time it is released.
527 */
528 if (down_read_trylock(&sb->s_umount)) {
529 if (sb->s_root) {
530 spin_lock(&inode_lock);
531 sync_sb_inodes(sb, wbc);
532 spin_unlock(&inode_lock);
533 }
534 up_read(&sb->s_umount);
535 }
536 spin_lock(&sb_lock);
537 if (__put_super_and_need_restart(sb))
538 goto restart;
539 }
540 if (wbc->nr_to_write <= 0)
541 break;
542 }
543 spin_unlock(&sb_lock);
544 }
545
546 /*
547 * writeback and wait upon the filesystem's dirty inodes. The caller will
548 * do this in two passes - one to write, and one to wait. WB_SYNC_HOLD is
549 * used to park the written inodes on sb->s_dirty for the wait pass.
550 *
551 * A finite limit is set on the number of pages which will be written.
552 * To prevent infinite livelock of sys_sync().
553 *
554 * We add in the number of potentially dirty inodes, because each inode write
555 * can dirty pagecache in the underlying blockdev.
556 */
557 void sync_inodes_sb(struct super_block *sb, int wait)
558 {
559 struct writeback_control wbc = {
560 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_HOLD,
561 .range_start = 0,
562 .range_end = LLONG_MAX,
563 };
564 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
565 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
566
567 wbc.nr_to_write = nr_dirty + nr_unstable +
568 (inodes_stat.nr_inodes - inodes_stat.nr_unused) +
569 nr_dirty + nr_unstable;
570 wbc.nr_to_write += wbc.nr_to_write / 2; /* Bit more for luck */
571 spin_lock(&inode_lock);
572 sync_sb_inodes(sb, &wbc);
573 spin_unlock(&inode_lock);
574 }
575
576 /*
577 * Rather lame livelock avoidance.
578 */
579 static void set_sb_syncing(int val)
580 {
581 struct super_block *sb;
582 spin_lock(&sb_lock);
583 sb = sb_entry(super_blocks.prev);
584 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
585 sb->s_syncing = val;
586 }
587 spin_unlock(&sb_lock);
588 }
589
590 /**
591 * sync_inodes - writes all inodes to disk
592 * @wait: wait for completion
593 *
594 * sync_inodes() goes through each super block's dirty inode list, writes the
595 * inodes out, waits on the writeout and puts the inodes back on the normal
596 * list.
597 *
598 * This is for sys_sync(). fsync_dev() uses the same algorithm. The subtle
599 * part of the sync functions is that the blockdev "superblock" is processed
600 * last. This is because the write_inode() function of a typical fs will
601 * perform no I/O, but will mark buffers in the blockdev mapping as dirty.
602 * What we want to do is to perform all that dirtying first, and then write
603 * back all those inode blocks via the blockdev mapping in one sweep. So the
604 * additional (somewhat redundant) sync_blockdev() calls here are to make
605 * sure that really happens. Because if we call sync_inodes_sb(wait=1) with
606 * outstanding dirty inodes, the writeback goes block-at-a-time within the
607 * filesystem's write_inode(). This is extremely slow.
608 */
609 static void __sync_inodes(int wait)
610 {
611 struct super_block *sb;
612
613 spin_lock(&sb_lock);
614 restart:
615 list_for_each_entry(sb, &super_blocks, s_list) {
616 if (sb->s_syncing)
617 continue;
618 sb->s_syncing = 1;
619 sb->s_count++;
620 spin_unlock(&sb_lock);
621 down_read(&sb->s_umount);
622 if (sb->s_root) {
623 sync_inodes_sb(sb, wait);
624 sync_blockdev(sb->s_bdev);
625 }
626 up_read(&sb->s_umount);
627 spin_lock(&sb_lock);
628 if (__put_super_and_need_restart(sb))
629 goto restart;
630 }
631 spin_unlock(&sb_lock);
632 }
633
634 void sync_inodes(int wait)
635 {
636 set_sb_syncing(0);
637 __sync_inodes(0);
638
639 if (wait) {
640 set_sb_syncing(0);
641 __sync_inodes(1);
642 }
643 }
644
645 /**
646 * write_inode_now - write an inode to disk
647 * @inode: inode to write to disk
648 * @sync: whether the write should be synchronous or not
649 *
650 * This function commits an inode to disk immediately if it is dirty. This is
651 * primarily needed by knfsd.
652 *
653 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
654 */
655 int write_inode_now(struct inode *inode, int sync)
656 {
657 int ret;
658 struct writeback_control wbc = {
659 .nr_to_write = LONG_MAX,
660 .sync_mode = WB_SYNC_ALL,
661 .range_start = 0,
662 .range_end = LLONG_MAX,
663 };
664
665 if (!mapping_cap_writeback_dirty(inode->i_mapping))
666 wbc.nr_to_write = 0;
667
668 might_sleep();
669 spin_lock(&inode_lock);
670 ret = __writeback_single_inode(inode, &wbc);
671 spin_unlock(&inode_lock);
672 if (sync)
673 inode_sync_wait(inode);
674 return ret;
675 }
676 EXPORT_SYMBOL(write_inode_now);
677
678 /**
679 * sync_inode - write an inode and its pages to disk.
680 * @inode: the inode to sync
681 * @wbc: controls the writeback mode
682 *
683 * sync_inode() will write an inode and its pages to disk. It will also
684 * correctly update the inode on its superblock's dirty inode lists and will
685 * update inode->i_state.
686 *
687 * The caller must have a ref on the inode.
688 */
689 int sync_inode(struct inode *inode, struct writeback_control *wbc)
690 {
691 int ret;
692
693 spin_lock(&inode_lock);
694 ret = __writeback_single_inode(inode, wbc);
695 spin_unlock(&inode_lock);
696 return ret;
697 }
698 EXPORT_SYMBOL(sync_inode);
699
700 /**
701 * generic_osync_inode - flush all dirty data for a given inode to disk
702 * @inode: inode to write
703 * @mapping: the address_space that should be flushed
704 * @what: what to write and wait upon
705 *
706 * This can be called by file_write functions for files which have the
707 * O_SYNC flag set, to flush dirty writes to disk.
708 *
709 * @what is a bitmask, specifying which part of the inode's data should be
710 * written and waited upon.
711 *
712 * OSYNC_DATA: i_mapping's dirty data
713 * OSYNC_METADATA: the buffers at i_mapping->private_list
714 * OSYNC_INODE: the inode itself
715 */
716
717 int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what)
718 {
719 int err = 0;
720 int need_write_inode_now = 0;
721 int err2;
722
723 if (what & OSYNC_DATA)
724 err = filemap_fdatawrite(mapping);
725 if (what & (OSYNC_METADATA|OSYNC_DATA)) {
726 err2 = sync_mapping_buffers(mapping);
727 if (!err)
728 err = err2;
729 }
730 if (what & OSYNC_DATA) {
731 err2 = filemap_fdatawait(mapping);
732 if (!err)
733 err = err2;
734 }
735
736 spin_lock(&inode_lock);
737 if ((inode->i_state & I_DIRTY) &&
738 ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC)))
739 need_write_inode_now = 1;
740 spin_unlock(&inode_lock);
741
742 if (need_write_inode_now) {
743 err2 = write_inode_now(inode, 1);
744 if (!err)
745 err = err2;
746 }
747 else
748 inode_sync_wait(inode);
749
750 return err;
751 }
752
753 EXPORT_SYMBOL(generic_osync_inode);
754
755 /**
756 * writeback_acquire: attempt to get exclusive writeback access to a device
757 * @bdi: the device's backing_dev_info structure
758 *
759 * It is a waste of resources to have more than one pdflush thread blocked on
760 * a single request queue. Exclusion at the request_queue level is obtained
761 * via a flag in the request_queue's backing_dev_info.state.
762 *
763 * Non-request_queue-backed address_spaces will share default_backing_dev_info,
764 * unless they implement their own. Which is somewhat inefficient, as this
765 * may prevent concurrent writeback against multiple devices.
766 */
767 int writeback_acquire(struct backing_dev_info *bdi)
768 {
769 return !test_and_set_bit(BDI_pdflush, &bdi->state);
770 }
771
772 /**
773 * writeback_in_progress: determine whether there is writeback in progress
774 * @bdi: the device's backing_dev_info structure.
775 *
776 * Determine whether there is writeback in progress against a backing device.
777 */
778 int writeback_in_progress(struct backing_dev_info *bdi)
779 {
780 return test_bit(BDI_pdflush, &bdi->state);
781 }
782
783 /**
784 * writeback_release: relinquish exclusive writeback access against a device.
785 * @bdi: the device's backing_dev_info structure
786 */
787 void writeback_release(struct backing_dev_info *bdi)
788 {
789 BUG_ON(!writeback_in_progress(bdi));
790 clear_bit(BDI_pdflush, &bdi->state);
791 }