Merge branch 'timer/cleanup' into late/mvebu2
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / f2fs / xattr.c
1 /*
2 * fs/f2fs/xattr.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * Portions of this code from linux/fs/ext2/xattr.c
8 *
9 * Copyright (C) 2001-2003 Andreas Gruenbacher <agruen@suse.de>
10 *
11 * Fix by Harrison Xing <harrison@mountainviewdata.com>.
12 * Extended attributes for symlinks and special files added per
13 * suggestion of Luka Renko <luka.renko@hermes.si>.
14 * xattr consolidation Copyright (c) 2004 James Morris <jmorris@redhat.com>,
15 * Red Hat Inc.
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License version 2 as
19 * published by the Free Software Foundation.
20 */
21 #include <linux/rwsem.h>
22 #include <linux/f2fs_fs.h>
23 #include "f2fs.h"
24 #include "xattr.h"
25
26 static size_t f2fs_xattr_generic_list(struct dentry *dentry, char *list,
27 size_t list_size, const char *name, size_t name_len, int type)
28 {
29 struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
30 int total_len, prefix_len = 0;
31 const char *prefix = NULL;
32
33 switch (type) {
34 case F2FS_XATTR_INDEX_USER:
35 if (!test_opt(sbi, XATTR_USER))
36 return -EOPNOTSUPP;
37 prefix = XATTR_USER_PREFIX;
38 prefix_len = XATTR_USER_PREFIX_LEN;
39 break;
40 case F2FS_XATTR_INDEX_TRUSTED:
41 if (!capable(CAP_SYS_ADMIN))
42 return -EPERM;
43 prefix = XATTR_TRUSTED_PREFIX;
44 prefix_len = XATTR_TRUSTED_PREFIX_LEN;
45 break;
46 default:
47 return -EINVAL;
48 }
49
50 total_len = prefix_len + name_len + 1;
51 if (list && total_len <= list_size) {
52 memcpy(list, prefix, prefix_len);
53 memcpy(list+prefix_len, name, name_len);
54 list[prefix_len + name_len] = '\0';
55 }
56 return total_len;
57 }
58
59 static int f2fs_xattr_generic_get(struct dentry *dentry, const char *name,
60 void *buffer, size_t size, int type)
61 {
62 struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
63
64 switch (type) {
65 case F2FS_XATTR_INDEX_USER:
66 if (!test_opt(sbi, XATTR_USER))
67 return -EOPNOTSUPP;
68 break;
69 case F2FS_XATTR_INDEX_TRUSTED:
70 if (!capable(CAP_SYS_ADMIN))
71 return -EPERM;
72 break;
73 default:
74 return -EINVAL;
75 }
76 if (strcmp(name, "") == 0)
77 return -EINVAL;
78 return f2fs_getxattr(dentry->d_inode, type, name,
79 buffer, size);
80 }
81
82 static int f2fs_xattr_generic_set(struct dentry *dentry, const char *name,
83 const void *value, size_t size, int flags, int type)
84 {
85 struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
86
87 switch (type) {
88 case F2FS_XATTR_INDEX_USER:
89 if (!test_opt(sbi, XATTR_USER))
90 return -EOPNOTSUPP;
91 break;
92 case F2FS_XATTR_INDEX_TRUSTED:
93 if (!capable(CAP_SYS_ADMIN))
94 return -EPERM;
95 break;
96 default:
97 return -EINVAL;
98 }
99 if (strcmp(name, "") == 0)
100 return -EINVAL;
101
102 return f2fs_setxattr(dentry->d_inode, type, name, value, size);
103 }
104
105 static size_t f2fs_xattr_advise_list(struct dentry *dentry, char *list,
106 size_t list_size, const char *name, size_t name_len, int type)
107 {
108 const char *xname = F2FS_SYSTEM_ADVISE_PREFIX;
109 size_t size;
110
111 if (type != F2FS_XATTR_INDEX_ADVISE)
112 return 0;
113
114 size = strlen(xname) + 1;
115 if (list && size <= list_size)
116 memcpy(list, xname, size);
117 return size;
118 }
119
120 static int f2fs_xattr_advise_get(struct dentry *dentry, const char *name,
121 void *buffer, size_t size, int type)
122 {
123 struct inode *inode = dentry->d_inode;
124
125 if (strcmp(name, "") != 0)
126 return -EINVAL;
127
128 *((char *)buffer) = F2FS_I(inode)->i_advise;
129 return sizeof(char);
130 }
131
132 static int f2fs_xattr_advise_set(struct dentry *dentry, const char *name,
133 const void *value, size_t size, int flags, int type)
134 {
135 struct inode *inode = dentry->d_inode;
136
137 if (strcmp(name, "") != 0)
138 return -EINVAL;
139 if (!inode_owner_or_capable(inode))
140 return -EPERM;
141 if (value == NULL)
142 return -EINVAL;
143
144 F2FS_I(inode)->i_advise |= *(char *)value;
145 return 0;
146 }
147
148 const struct xattr_handler f2fs_xattr_user_handler = {
149 .prefix = XATTR_USER_PREFIX,
150 .flags = F2FS_XATTR_INDEX_USER,
151 .list = f2fs_xattr_generic_list,
152 .get = f2fs_xattr_generic_get,
153 .set = f2fs_xattr_generic_set,
154 };
155
156 const struct xattr_handler f2fs_xattr_trusted_handler = {
157 .prefix = XATTR_TRUSTED_PREFIX,
158 .flags = F2FS_XATTR_INDEX_TRUSTED,
159 .list = f2fs_xattr_generic_list,
160 .get = f2fs_xattr_generic_get,
161 .set = f2fs_xattr_generic_set,
162 };
163
164 const struct xattr_handler f2fs_xattr_advise_handler = {
165 .prefix = F2FS_SYSTEM_ADVISE_PREFIX,
166 .flags = F2FS_XATTR_INDEX_ADVISE,
167 .list = f2fs_xattr_advise_list,
168 .get = f2fs_xattr_advise_get,
169 .set = f2fs_xattr_advise_set,
170 };
171
172 static const struct xattr_handler *f2fs_xattr_handler_map[] = {
173 [F2FS_XATTR_INDEX_USER] = &f2fs_xattr_user_handler,
174 #ifdef CONFIG_F2FS_FS_POSIX_ACL
175 [F2FS_XATTR_INDEX_POSIX_ACL_ACCESS] = &f2fs_xattr_acl_access_handler,
176 [F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT] = &f2fs_xattr_acl_default_handler,
177 #endif
178 [F2FS_XATTR_INDEX_TRUSTED] = &f2fs_xattr_trusted_handler,
179 [F2FS_XATTR_INDEX_ADVISE] = &f2fs_xattr_advise_handler,
180 };
181
182 const struct xattr_handler *f2fs_xattr_handlers[] = {
183 &f2fs_xattr_user_handler,
184 #ifdef CONFIG_F2FS_FS_POSIX_ACL
185 &f2fs_xattr_acl_access_handler,
186 &f2fs_xattr_acl_default_handler,
187 #endif
188 &f2fs_xattr_trusted_handler,
189 &f2fs_xattr_advise_handler,
190 NULL,
191 };
192
193 static inline const struct xattr_handler *f2fs_xattr_handler(int name_index)
194 {
195 const struct xattr_handler *handler = NULL;
196
197 if (name_index > 0 && name_index < ARRAY_SIZE(f2fs_xattr_handler_map))
198 handler = f2fs_xattr_handler_map[name_index];
199 return handler;
200 }
201
202 int f2fs_getxattr(struct inode *inode, int name_index, const char *name,
203 void *buffer, size_t buffer_size)
204 {
205 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
206 struct f2fs_inode_info *fi = F2FS_I(inode);
207 struct f2fs_xattr_entry *entry;
208 struct page *page;
209 void *base_addr;
210 int error = 0, found = 0;
211 size_t value_len, name_len;
212
213 if (name == NULL)
214 return -EINVAL;
215 name_len = strlen(name);
216
217 if (!fi->i_xattr_nid)
218 return -ENODATA;
219
220 page = get_node_page(sbi, fi->i_xattr_nid);
221 base_addr = page_address(page);
222
223 list_for_each_xattr(entry, base_addr) {
224 if (entry->e_name_index != name_index)
225 continue;
226 if (entry->e_name_len != name_len)
227 continue;
228 if (!memcmp(entry->e_name, name, name_len)) {
229 found = 1;
230 break;
231 }
232 }
233 if (!found) {
234 error = -ENODATA;
235 goto cleanup;
236 }
237
238 value_len = le16_to_cpu(entry->e_value_size);
239
240 if (buffer && value_len > buffer_size) {
241 error = -ERANGE;
242 goto cleanup;
243 }
244
245 if (buffer) {
246 char *pval = entry->e_name + entry->e_name_len;
247 memcpy(buffer, pval, value_len);
248 }
249 error = value_len;
250
251 cleanup:
252 f2fs_put_page(page, 1);
253 return error;
254 }
255
256 ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size)
257 {
258 struct inode *inode = dentry->d_inode;
259 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
260 struct f2fs_inode_info *fi = F2FS_I(inode);
261 struct f2fs_xattr_entry *entry;
262 struct page *page;
263 void *base_addr;
264 int error = 0;
265 size_t rest = buffer_size;
266
267 if (!fi->i_xattr_nid)
268 return 0;
269
270 page = get_node_page(sbi, fi->i_xattr_nid);
271 base_addr = page_address(page);
272
273 list_for_each_xattr(entry, base_addr) {
274 const struct xattr_handler *handler =
275 f2fs_xattr_handler(entry->e_name_index);
276 size_t size;
277
278 if (!handler)
279 continue;
280
281 size = handler->list(dentry, buffer, rest, entry->e_name,
282 entry->e_name_len, handler->flags);
283 if (buffer && size > rest) {
284 error = -ERANGE;
285 goto cleanup;
286 }
287
288 if (buffer)
289 buffer += size;
290 rest -= size;
291 }
292 error = buffer_size - rest;
293 cleanup:
294 f2fs_put_page(page, 1);
295 return error;
296 }
297
298 int f2fs_setxattr(struct inode *inode, int name_index, const char *name,
299 const void *value, size_t value_len)
300 {
301 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
302 struct f2fs_inode_info *fi = F2FS_I(inode);
303 struct f2fs_xattr_header *header = NULL;
304 struct f2fs_xattr_entry *here, *last;
305 struct page *page;
306 void *base_addr;
307 int error, found, free, newsize;
308 size_t name_len;
309 char *pval;
310
311 if (name == NULL)
312 return -EINVAL;
313 name_len = strlen(name);
314
315 if (value == NULL)
316 value_len = 0;
317
318 if (name_len > 255 || value_len > MAX_VALUE_LEN)
319 return -ERANGE;
320
321 f2fs_balance_fs(sbi);
322
323 mutex_lock_op(sbi, NODE_NEW);
324 if (!fi->i_xattr_nid) {
325 /* Allocate new attribute block */
326 struct dnode_of_data dn;
327
328 if (!alloc_nid(sbi, &fi->i_xattr_nid)) {
329 mutex_unlock_op(sbi, NODE_NEW);
330 return -ENOSPC;
331 }
332 set_new_dnode(&dn, inode, NULL, NULL, fi->i_xattr_nid);
333 mark_inode_dirty(inode);
334
335 page = new_node_page(&dn, XATTR_NODE_OFFSET);
336 if (IS_ERR(page)) {
337 alloc_nid_failed(sbi, fi->i_xattr_nid);
338 fi->i_xattr_nid = 0;
339 mutex_unlock_op(sbi, NODE_NEW);
340 return PTR_ERR(page);
341 }
342
343 alloc_nid_done(sbi, fi->i_xattr_nid);
344 base_addr = page_address(page);
345 header = XATTR_HDR(base_addr);
346 header->h_magic = cpu_to_le32(F2FS_XATTR_MAGIC);
347 header->h_refcount = cpu_to_le32(1);
348 } else {
349 /* The inode already has an extended attribute block. */
350 page = get_node_page(sbi, fi->i_xattr_nid);
351 if (IS_ERR(page)) {
352 mutex_unlock_op(sbi, NODE_NEW);
353 return PTR_ERR(page);
354 }
355
356 base_addr = page_address(page);
357 header = XATTR_HDR(base_addr);
358 }
359
360 if (le32_to_cpu(header->h_magic) != F2FS_XATTR_MAGIC) {
361 error = -EIO;
362 goto cleanup;
363 }
364
365 /* find entry with wanted name. */
366 found = 0;
367 list_for_each_xattr(here, base_addr) {
368 if (here->e_name_index != name_index)
369 continue;
370 if (here->e_name_len != name_len)
371 continue;
372 if (!memcmp(here->e_name, name, name_len)) {
373 found = 1;
374 break;
375 }
376 }
377
378 last = here;
379
380 while (!IS_XATTR_LAST_ENTRY(last))
381 last = XATTR_NEXT_ENTRY(last);
382
383 newsize = XATTR_ALIGN(sizeof(struct f2fs_xattr_entry) +
384 name_len + value_len);
385
386 /* 1. Check space */
387 if (value) {
388 /* If value is NULL, it is remove operation.
389 * In case of update operation, we caculate free.
390 */
391 free = MIN_OFFSET - ((char *)last - (char *)header);
392 if (found)
393 free = free - ENTRY_SIZE(here);
394
395 if (free < newsize) {
396 error = -ENOSPC;
397 goto cleanup;
398 }
399 }
400
401 /* 2. Remove old entry */
402 if (found) {
403 /* If entry is found, remove old entry.
404 * If not found, remove operation is not needed.
405 */
406 struct f2fs_xattr_entry *next = XATTR_NEXT_ENTRY(here);
407 int oldsize = ENTRY_SIZE(here);
408
409 memmove(here, next, (char *)last - (char *)next);
410 last = (struct f2fs_xattr_entry *)((char *)last - oldsize);
411 memset(last, 0, oldsize);
412 }
413
414 /* 3. Write new entry */
415 if (value) {
416 /* Before we come here, old entry is removed.
417 * We just write new entry. */
418 memset(last, 0, newsize);
419 last->e_name_index = name_index;
420 last->e_name_len = name_len;
421 memcpy(last->e_name, name, name_len);
422 pval = last->e_name + name_len;
423 memcpy(pval, value, value_len);
424 last->e_value_size = cpu_to_le16(value_len);
425 }
426
427 set_page_dirty(page);
428 f2fs_put_page(page, 1);
429
430 if (is_inode_flag_set(fi, FI_ACL_MODE)) {
431 inode->i_mode = fi->i_acl_mode;
432 inode->i_ctime = CURRENT_TIME;
433 clear_inode_flag(fi, FI_ACL_MODE);
434 }
435 f2fs_write_inode(inode, NULL);
436 mutex_unlock_op(sbi, NODE_NEW);
437
438 return 0;
439 cleanup:
440 f2fs_put_page(page, 1);
441 mutex_unlock_op(sbi, NODE_NEW);
442 return error;
443 }