usb: gadget: f_mtp: Avoid race between mtp_read and mtp_function_disable
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / super.c
1 /*
2 * fs/f2fs/super.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
29
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "gc.h"
35 #include "trace.h"
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39
40 static struct kmem_cache *f2fs_inode_cachep;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43
44 char *fault_name[FAULT_MAX] = {
45 [FAULT_KMALLOC] = "kmalloc",
46 [FAULT_PAGE_ALLOC] = "page alloc",
47 [FAULT_PAGE_GET] = "page get",
48 [FAULT_ALLOC_BIO] = "alloc bio",
49 [FAULT_ALLOC_NID] = "alloc nid",
50 [FAULT_ORPHAN] = "orphan",
51 [FAULT_BLOCK] = "no more block",
52 [FAULT_DIR_DEPTH] = "too big dir depth",
53 [FAULT_EVICT_INODE] = "evict_inode fail",
54 [FAULT_TRUNCATE] = "truncate fail",
55 [FAULT_IO] = "IO error",
56 [FAULT_CHECKPOINT] = "checkpoint error",
57 };
58
59 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
60 unsigned int rate)
61 {
62 struct f2fs_fault_info *ffi = &sbi->fault_info;
63
64 if (rate) {
65 atomic_set(&ffi->inject_ops, 0);
66 ffi->inject_rate = rate;
67 ffi->inject_type = (1 << FAULT_MAX) - 1;
68 } else {
69 memset(ffi, 0, sizeof(struct f2fs_fault_info));
70 }
71 }
72 #endif
73
74 /* f2fs-wide shrinker description */
75 static struct shrinker f2fs_shrinker_info = {
76 .scan_objects = f2fs_shrink_scan,
77 .count_objects = f2fs_shrink_count,
78 .seeks = DEFAULT_SEEKS,
79 };
80
81 enum {
82 Opt_gc_background,
83 Opt_disable_roll_forward,
84 Opt_norecovery,
85 Opt_discard,
86 Opt_nodiscard,
87 Opt_noheap,
88 Opt_heap,
89 Opt_user_xattr,
90 Opt_nouser_xattr,
91 Opt_acl,
92 Opt_noacl,
93 Opt_active_logs,
94 Opt_disable_ext_identify,
95 Opt_inline_xattr,
96 Opt_noinline_xattr,
97 Opt_inline_xattr_size,
98 Opt_inline_data,
99 Opt_inline_dentry,
100 Opt_noinline_dentry,
101 Opt_flush_merge,
102 Opt_noflush_merge,
103 Opt_nobarrier,
104 Opt_fastboot,
105 Opt_extent_cache,
106 Opt_noextent_cache,
107 Opt_noinline_data,
108 Opt_data_flush,
109 Opt_mode,
110 Opt_io_size_bits,
111 Opt_fault_injection,
112 Opt_lazytime,
113 Opt_nolazytime,
114 Opt_quota,
115 Opt_noquota,
116 Opt_usrquota,
117 Opt_grpquota,
118 Opt_prjquota,
119 Opt_usrjquota,
120 Opt_grpjquota,
121 Opt_prjjquota,
122 Opt_offusrjquota,
123 Opt_offgrpjquota,
124 Opt_offprjjquota,
125 Opt_jqfmt_vfsold,
126 Opt_jqfmt_vfsv0,
127 Opt_jqfmt_vfsv1,
128 Opt_err,
129 };
130
131 static match_table_t f2fs_tokens = {
132 {Opt_gc_background, "background_gc=%s"},
133 {Opt_disable_roll_forward, "disable_roll_forward"},
134 {Opt_norecovery, "norecovery"},
135 {Opt_discard, "discard"},
136 {Opt_nodiscard, "nodiscard"},
137 {Opt_noheap, "no_heap"},
138 {Opt_heap, "heap"},
139 {Opt_user_xattr, "user_xattr"},
140 {Opt_nouser_xattr, "nouser_xattr"},
141 {Opt_acl, "acl"},
142 {Opt_noacl, "noacl"},
143 {Opt_active_logs, "active_logs=%u"},
144 {Opt_disable_ext_identify, "disable_ext_identify"},
145 {Opt_inline_xattr, "inline_xattr"},
146 {Opt_noinline_xattr, "noinline_xattr"},
147 {Opt_inline_xattr_size, "inline_xattr_size=%u"},
148 {Opt_inline_data, "inline_data"},
149 {Opt_inline_dentry, "inline_dentry"},
150 {Opt_noinline_dentry, "noinline_dentry"},
151 {Opt_flush_merge, "flush_merge"},
152 {Opt_noflush_merge, "noflush_merge"},
153 {Opt_nobarrier, "nobarrier"},
154 {Opt_fastboot, "fastboot"},
155 {Opt_extent_cache, "extent_cache"},
156 {Opt_noextent_cache, "noextent_cache"},
157 {Opt_noinline_data, "noinline_data"},
158 {Opt_data_flush, "data_flush"},
159 {Opt_mode, "mode=%s"},
160 {Opt_io_size_bits, "io_bits=%u"},
161 {Opt_fault_injection, "fault_injection=%u"},
162 {Opt_lazytime, "lazytime"},
163 {Opt_nolazytime, "nolazytime"},
164 {Opt_quota, "quota"},
165 {Opt_noquota, "noquota"},
166 {Opt_usrquota, "usrquota"},
167 {Opt_grpquota, "grpquota"},
168 {Opt_prjquota, "prjquota"},
169 {Opt_usrjquota, "usrjquota=%s"},
170 {Opt_grpjquota, "grpjquota=%s"},
171 {Opt_prjjquota, "prjjquota=%s"},
172 {Opt_offusrjquota, "usrjquota="},
173 {Opt_offgrpjquota, "grpjquota="},
174 {Opt_offprjjquota, "prjjquota="},
175 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
176 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
177 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
178 {Opt_err, NULL},
179 };
180
181 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
182 {
183 struct va_format vaf;
184 va_list args;
185
186 va_start(args, fmt);
187 vaf.fmt = fmt;
188 vaf.va = &args;
189 printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
190 va_end(args);
191 }
192
193 static void init_once(void *foo)
194 {
195 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
196
197 inode_init_once(&fi->vfs_inode);
198 }
199
200 #ifdef CONFIG_QUOTA
201 static const char * const quotatypes[] = INITQFNAMES;
202 #define QTYPE2NAME(t) (quotatypes[t])
203 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
204 substring_t *args)
205 {
206 struct f2fs_sb_info *sbi = F2FS_SB(sb);
207 char *qname;
208 int ret = -EINVAL;
209
210 if (sb_any_quota_loaded(sb) && !sbi->s_qf_names[qtype]) {
211 f2fs_msg(sb, KERN_ERR,
212 "Cannot change journaled "
213 "quota options when quota turned on");
214 return -EINVAL;
215 }
216 if (f2fs_sb_has_quota_ino(sb)) {
217 f2fs_msg(sb, KERN_INFO,
218 "QUOTA feature is enabled, so ignore qf_name");
219 return 0;
220 }
221
222 qname = match_strdup(args);
223 if (!qname) {
224 f2fs_msg(sb, KERN_ERR,
225 "Not enough memory for storing quotafile name");
226 return -EINVAL;
227 }
228 if (sbi->s_qf_names[qtype]) {
229 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
230 ret = 0;
231 else
232 f2fs_msg(sb, KERN_ERR,
233 "%s quota file already specified",
234 QTYPE2NAME(qtype));
235 goto errout;
236 }
237 if (strchr(qname, '/')) {
238 f2fs_msg(sb, KERN_ERR,
239 "quotafile must be on filesystem root");
240 goto errout;
241 }
242 sbi->s_qf_names[qtype] = qname;
243 set_opt(sbi, QUOTA);
244 return 0;
245 errout:
246 kfree(qname);
247 return ret;
248 }
249
250 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
251 {
252 struct f2fs_sb_info *sbi = F2FS_SB(sb);
253
254 if (sb_any_quota_loaded(sb) && sbi->s_qf_names[qtype]) {
255 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
256 " when quota turned on");
257 return -EINVAL;
258 }
259 kfree(sbi->s_qf_names[qtype]);
260 sbi->s_qf_names[qtype] = NULL;
261 return 0;
262 }
263
264 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
265 {
266 /*
267 * We do the test below only for project quotas. 'usrquota' and
268 * 'grpquota' mount options are allowed even without quota feature
269 * to support legacy quotas in quota files.
270 */
271 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
272 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
273 "Cannot enable project quota enforcement.");
274 return -1;
275 }
276 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA] ||
277 sbi->s_qf_names[PRJQUOTA]) {
278 if (test_opt(sbi, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
279 clear_opt(sbi, USRQUOTA);
280
281 if (test_opt(sbi, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
282 clear_opt(sbi, GRPQUOTA);
283
284 if (test_opt(sbi, PRJQUOTA) && sbi->s_qf_names[PRJQUOTA])
285 clear_opt(sbi, PRJQUOTA);
286
287 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
288 test_opt(sbi, PRJQUOTA)) {
289 f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
290 "format mixing");
291 return -1;
292 }
293
294 if (!sbi->s_jquota_fmt) {
295 f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
296 "not specified");
297 return -1;
298 }
299 }
300
301 if (f2fs_sb_has_quota_ino(sbi->sb) && sbi->s_jquota_fmt) {
302 f2fs_msg(sbi->sb, KERN_INFO,
303 "QUOTA feature is enabled, so ignore jquota_fmt");
304 sbi->s_jquota_fmt = 0;
305 }
306 if (f2fs_sb_has_quota_ino(sbi->sb) && sb_rdonly(sbi->sb)) {
307 f2fs_msg(sbi->sb, KERN_INFO,
308 "Filesystem with quota feature cannot be mounted RDWR "
309 "without CONFIG_QUOTA");
310 return -1;
311 }
312 return 0;
313 }
314 #endif
315
316 static int parse_options(struct super_block *sb, char *options)
317 {
318 struct f2fs_sb_info *sbi = F2FS_SB(sb);
319 struct request_queue *q;
320 substring_t args[MAX_OPT_ARGS];
321 char *p, *name;
322 int arg = 0;
323 #ifdef CONFIG_QUOTA
324 int ret;
325 #endif
326
327 if (!options)
328 return 0;
329
330 while ((p = strsep(&options, ",")) != NULL) {
331 int token;
332 if (!*p)
333 continue;
334 /*
335 * Initialize args struct so we know whether arg was
336 * found; some options take optional arguments.
337 */
338 args[0].to = args[0].from = NULL;
339 token = match_token(p, f2fs_tokens, args);
340
341 switch (token) {
342 case Opt_gc_background:
343 name = match_strdup(&args[0]);
344
345 if (!name)
346 return -ENOMEM;
347 if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
348 set_opt(sbi, BG_GC);
349 clear_opt(sbi, FORCE_FG_GC);
350 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
351 clear_opt(sbi, BG_GC);
352 clear_opt(sbi, FORCE_FG_GC);
353 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
354 set_opt(sbi, BG_GC);
355 set_opt(sbi, FORCE_FG_GC);
356 } else {
357 kfree(name);
358 return -EINVAL;
359 }
360 kfree(name);
361 break;
362 case Opt_disable_roll_forward:
363 set_opt(sbi, DISABLE_ROLL_FORWARD);
364 break;
365 case Opt_norecovery:
366 /* this option mounts f2fs with ro */
367 set_opt(sbi, DISABLE_ROLL_FORWARD);
368 if (!f2fs_readonly(sb))
369 return -EINVAL;
370 break;
371 case Opt_discard:
372 q = bdev_get_queue(sb->s_bdev);
373 if (blk_queue_discard(q)) {
374 set_opt(sbi, DISCARD);
375 } else if (!f2fs_sb_mounted_blkzoned(sb)) {
376 f2fs_msg(sb, KERN_WARNING,
377 "mounting with \"discard\" option, but "
378 "the device does not support discard");
379 }
380 break;
381 case Opt_nodiscard:
382 if (f2fs_sb_mounted_blkzoned(sb)) {
383 f2fs_msg(sb, KERN_WARNING,
384 "discard is required for zoned block devices");
385 return -EINVAL;
386 }
387 clear_opt(sbi, DISCARD);
388 break;
389 case Opt_noheap:
390 set_opt(sbi, NOHEAP);
391 break;
392 case Opt_heap:
393 clear_opt(sbi, NOHEAP);
394 break;
395 #ifdef CONFIG_F2FS_FS_XATTR
396 case Opt_user_xattr:
397 set_opt(sbi, XATTR_USER);
398 break;
399 case Opt_nouser_xattr:
400 clear_opt(sbi, XATTR_USER);
401 break;
402 case Opt_inline_xattr:
403 set_opt(sbi, INLINE_XATTR);
404 break;
405 case Opt_noinline_xattr:
406 clear_opt(sbi, INLINE_XATTR);
407 break;
408 case Opt_inline_xattr_size:
409 if (args->from && match_int(args, &arg))
410 return -EINVAL;
411 set_opt(sbi, INLINE_XATTR_SIZE);
412 sbi->inline_xattr_size = arg;
413 break;
414 #else
415 case Opt_user_xattr:
416 f2fs_msg(sb, KERN_INFO,
417 "user_xattr options not supported");
418 break;
419 case Opt_nouser_xattr:
420 f2fs_msg(sb, KERN_INFO,
421 "nouser_xattr options not supported");
422 break;
423 case Opt_inline_xattr:
424 f2fs_msg(sb, KERN_INFO,
425 "inline_xattr options not supported");
426 break;
427 case Opt_noinline_xattr:
428 f2fs_msg(sb, KERN_INFO,
429 "noinline_xattr options not supported");
430 break;
431 #endif
432 #ifdef CONFIG_F2FS_FS_POSIX_ACL
433 case Opt_acl:
434 set_opt(sbi, POSIX_ACL);
435 break;
436 case Opt_noacl:
437 clear_opt(sbi, POSIX_ACL);
438 break;
439 #else
440 case Opt_acl:
441 f2fs_msg(sb, KERN_INFO, "acl options not supported");
442 break;
443 case Opt_noacl:
444 f2fs_msg(sb, KERN_INFO, "noacl options not supported");
445 break;
446 #endif
447 case Opt_active_logs:
448 if (args->from && match_int(args, &arg))
449 return -EINVAL;
450 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
451 return -EINVAL;
452 sbi->active_logs = arg;
453 break;
454 case Opt_disable_ext_identify:
455 set_opt(sbi, DISABLE_EXT_IDENTIFY);
456 break;
457 case Opt_inline_data:
458 set_opt(sbi, INLINE_DATA);
459 break;
460 case Opt_inline_dentry:
461 set_opt(sbi, INLINE_DENTRY);
462 break;
463 case Opt_noinline_dentry:
464 clear_opt(sbi, INLINE_DENTRY);
465 break;
466 case Opt_flush_merge:
467 set_opt(sbi, FLUSH_MERGE);
468 break;
469 case Opt_noflush_merge:
470 clear_opt(sbi, FLUSH_MERGE);
471 break;
472 case Opt_nobarrier:
473 set_opt(sbi, NOBARRIER);
474 break;
475 case Opt_fastboot:
476 set_opt(sbi, FASTBOOT);
477 break;
478 case Opt_extent_cache:
479 set_opt(sbi, EXTENT_CACHE);
480 break;
481 case Opt_noextent_cache:
482 clear_opt(sbi, EXTENT_CACHE);
483 break;
484 case Opt_noinline_data:
485 clear_opt(sbi, INLINE_DATA);
486 break;
487 case Opt_data_flush:
488 set_opt(sbi, DATA_FLUSH);
489 break;
490 case Opt_mode:
491 name = match_strdup(&args[0]);
492
493 if (!name)
494 return -ENOMEM;
495 if (strlen(name) == 8 &&
496 !strncmp(name, "adaptive", 8)) {
497 if (f2fs_sb_mounted_blkzoned(sb)) {
498 f2fs_msg(sb, KERN_WARNING,
499 "adaptive mode is not allowed with "
500 "zoned block device feature");
501 kfree(name);
502 return -EINVAL;
503 }
504 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
505 } else if (strlen(name) == 3 &&
506 !strncmp(name, "lfs", 3)) {
507 set_opt_mode(sbi, F2FS_MOUNT_LFS);
508 } else {
509 kfree(name);
510 return -EINVAL;
511 }
512 kfree(name);
513 break;
514 case Opt_io_size_bits:
515 if (args->from && match_int(args, &arg))
516 return -EINVAL;
517 if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
518 f2fs_msg(sb, KERN_WARNING,
519 "Not support %d, larger than %d",
520 1 << arg, BIO_MAX_PAGES);
521 return -EINVAL;
522 }
523 sbi->write_io_size_bits = arg;
524 break;
525 case Opt_fault_injection:
526 if (args->from && match_int(args, &arg))
527 return -EINVAL;
528 #ifdef CONFIG_F2FS_FAULT_INJECTION
529 f2fs_build_fault_attr(sbi, arg);
530 set_opt(sbi, FAULT_INJECTION);
531 #else
532 f2fs_msg(sb, KERN_INFO,
533 "FAULT_INJECTION was not selected");
534 #endif
535 break;
536 case Opt_lazytime:
537 sb->s_flags |= MS_LAZYTIME;
538 break;
539 case Opt_nolazytime:
540 sb->s_flags &= ~MS_LAZYTIME;
541 break;
542 #ifdef CONFIG_QUOTA
543 case Opt_quota:
544 case Opt_usrquota:
545 set_opt(sbi, USRQUOTA);
546 break;
547 case Opt_grpquota:
548 set_opt(sbi, GRPQUOTA);
549 break;
550 case Opt_prjquota:
551 set_opt(sbi, PRJQUOTA);
552 break;
553 case Opt_usrjquota:
554 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
555 if (ret)
556 return ret;
557 break;
558 case Opt_grpjquota:
559 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
560 if (ret)
561 return ret;
562 break;
563 case Opt_prjjquota:
564 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
565 if (ret)
566 return ret;
567 break;
568 case Opt_offusrjquota:
569 ret = f2fs_clear_qf_name(sb, USRQUOTA);
570 if (ret)
571 return ret;
572 break;
573 case Opt_offgrpjquota:
574 ret = f2fs_clear_qf_name(sb, GRPQUOTA);
575 if (ret)
576 return ret;
577 break;
578 case Opt_offprjjquota:
579 ret = f2fs_clear_qf_name(sb, PRJQUOTA);
580 if (ret)
581 return ret;
582 break;
583 case Opt_jqfmt_vfsold:
584 sbi->s_jquota_fmt = QFMT_VFS_OLD;
585 break;
586 case Opt_jqfmt_vfsv0:
587 sbi->s_jquota_fmt = QFMT_VFS_V0;
588 break;
589 case Opt_jqfmt_vfsv1:
590 sbi->s_jquota_fmt = QFMT_VFS_V1;
591 break;
592 case Opt_noquota:
593 clear_opt(sbi, QUOTA);
594 clear_opt(sbi, USRQUOTA);
595 clear_opt(sbi, GRPQUOTA);
596 clear_opt(sbi, PRJQUOTA);
597 break;
598 #else
599 case Opt_quota:
600 case Opt_usrquota:
601 case Opt_grpquota:
602 case Opt_prjquota:
603 case Opt_usrjquota:
604 case Opt_grpjquota:
605 case Opt_prjjquota:
606 case Opt_offusrjquota:
607 case Opt_offgrpjquota:
608 case Opt_offprjjquota:
609 case Opt_jqfmt_vfsold:
610 case Opt_jqfmt_vfsv0:
611 case Opt_jqfmt_vfsv1:
612 case Opt_noquota:
613 f2fs_msg(sb, KERN_INFO,
614 "quota operations not supported");
615 break;
616 #endif
617 default:
618 f2fs_msg(sb, KERN_ERR,
619 "Unrecognized mount option \"%s\" or missing value",
620 p);
621 return -EINVAL;
622 }
623 }
624 #ifdef CONFIG_QUOTA
625 if (f2fs_check_quota_options(sbi))
626 return -EINVAL;
627 #endif
628
629 if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
630 f2fs_msg(sb, KERN_ERR,
631 "Should set mode=lfs with %uKB-sized IO",
632 F2FS_IO_SIZE_KB(sbi));
633 return -EINVAL;
634 }
635
636 if (test_opt(sbi, INLINE_XATTR_SIZE)) {
637 if (!test_opt(sbi, INLINE_XATTR)) {
638 f2fs_msg(sb, KERN_ERR,
639 "inline_xattr_size option should be "
640 "set with inline_xattr option");
641 return -EINVAL;
642 }
643 if (!sbi->inline_xattr_size ||
644 sbi->inline_xattr_size >= DEF_ADDRS_PER_INODE -
645 F2FS_TOTAL_EXTRA_ATTR_SIZE -
646 DEF_INLINE_RESERVED_SIZE -
647 DEF_MIN_INLINE_SIZE) {
648 f2fs_msg(sb, KERN_ERR,
649 "inline xattr size is out of range");
650 return -EINVAL;
651 }
652 }
653 return 0;
654 }
655
656 static struct inode *f2fs_alloc_inode(struct super_block *sb)
657 {
658 struct f2fs_inode_info *fi;
659
660 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
661 if (!fi)
662 return NULL;
663
664 init_once((void *) fi);
665
666 /* Initialize f2fs-specific inode info */
667 atomic_set(&fi->dirty_pages, 0);
668 fi->i_current_depth = 1;
669 fi->i_advise = 0;
670 init_rwsem(&fi->i_sem);
671 INIT_LIST_HEAD(&fi->dirty_list);
672 INIT_LIST_HEAD(&fi->gdirty_list);
673 INIT_LIST_HEAD(&fi->inmem_ilist);
674 INIT_LIST_HEAD(&fi->inmem_pages);
675 mutex_init(&fi->inmem_lock);
676 init_rwsem(&fi->dio_rwsem[READ]);
677 init_rwsem(&fi->dio_rwsem[WRITE]);
678 init_rwsem(&fi->i_mmap_sem);
679 init_rwsem(&fi->i_xattr_sem);
680
681 #ifdef CONFIG_QUOTA
682 memset(&fi->i_dquot, 0, sizeof(fi->i_dquot));
683 fi->i_reserved_quota = 0;
684 #endif
685 /* Will be used by directory only */
686 fi->i_dir_level = F2FS_SB(sb)->dir_level;
687
688 return &fi->vfs_inode;
689 }
690
691 static int f2fs_drop_inode(struct inode *inode)
692 {
693 int ret;
694 /*
695 * This is to avoid a deadlock condition like below.
696 * writeback_single_inode(inode)
697 * - f2fs_write_data_page
698 * - f2fs_gc -> iput -> evict
699 * - inode_wait_for_writeback(inode)
700 */
701 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
702 if (!inode->i_nlink && !is_bad_inode(inode)) {
703 /* to avoid evict_inode call simultaneously */
704 atomic_inc(&inode->i_count);
705 spin_unlock(&inode->i_lock);
706
707 /* some remained atomic pages should discarded */
708 if (f2fs_is_atomic_file(inode))
709 drop_inmem_pages(inode);
710
711 /* should remain fi->extent_tree for writepage */
712 f2fs_destroy_extent_node(inode);
713
714 sb_start_intwrite(inode->i_sb);
715 f2fs_i_size_write(inode, 0);
716
717 if (F2FS_HAS_BLOCKS(inode))
718 f2fs_truncate(inode);
719
720 sb_end_intwrite(inode->i_sb);
721
722 spin_lock(&inode->i_lock);
723 atomic_dec(&inode->i_count);
724 }
725 trace_f2fs_drop_inode(inode, 0);
726 return 0;
727 }
728 ret = generic_drop_inode(inode);
729 trace_f2fs_drop_inode(inode, ret);
730 return ret;
731 }
732
733 int f2fs_inode_dirtied(struct inode *inode, bool sync)
734 {
735 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
736 int ret = 0;
737
738 spin_lock(&sbi->inode_lock[DIRTY_META]);
739 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
740 ret = 1;
741 } else {
742 set_inode_flag(inode, FI_DIRTY_INODE);
743 stat_inc_dirty_inode(sbi, DIRTY_META);
744 }
745 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
746 list_add_tail(&F2FS_I(inode)->gdirty_list,
747 &sbi->inode_list[DIRTY_META]);
748 inc_page_count(sbi, F2FS_DIRTY_IMETA);
749 }
750 spin_unlock(&sbi->inode_lock[DIRTY_META]);
751 return ret;
752 }
753
754 void f2fs_inode_synced(struct inode *inode)
755 {
756 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
757
758 spin_lock(&sbi->inode_lock[DIRTY_META]);
759 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
760 spin_unlock(&sbi->inode_lock[DIRTY_META]);
761 return;
762 }
763 if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
764 list_del_init(&F2FS_I(inode)->gdirty_list);
765 dec_page_count(sbi, F2FS_DIRTY_IMETA);
766 }
767 clear_inode_flag(inode, FI_DIRTY_INODE);
768 clear_inode_flag(inode, FI_AUTO_RECOVER);
769 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
770 spin_unlock(&sbi->inode_lock[DIRTY_META]);
771 }
772
773 /*
774 * f2fs_dirty_inode() is called from __mark_inode_dirty()
775 *
776 * We should call set_dirty_inode to write the dirty inode through write_inode.
777 */
778 static void f2fs_dirty_inode(struct inode *inode, int flags)
779 {
780 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
781
782 if (inode->i_ino == F2FS_NODE_INO(sbi) ||
783 inode->i_ino == F2FS_META_INO(sbi))
784 return;
785
786 if (flags == I_DIRTY_TIME)
787 return;
788
789 if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
790 clear_inode_flag(inode, FI_AUTO_RECOVER);
791
792 f2fs_inode_dirtied(inode, false);
793 }
794
795 static void f2fs_i_callback(struct rcu_head *head)
796 {
797 struct inode *inode = container_of(head, struct inode, i_rcu);
798 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
799 }
800
801 static void f2fs_destroy_inode(struct inode *inode)
802 {
803 call_rcu(&inode->i_rcu, f2fs_i_callback);
804 }
805
806 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
807 {
808 percpu_counter_destroy(&sbi->alloc_valid_block_count);
809 percpu_counter_destroy(&sbi->total_valid_inode_count);
810 }
811
812 static void destroy_device_list(struct f2fs_sb_info *sbi)
813 {
814 int i;
815
816 for (i = 0; i < sbi->s_ndevs; i++) {
817 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
818 #ifdef CONFIG_BLK_DEV_ZONED
819 kfree(FDEV(i).blkz_type);
820 #endif
821 }
822 kfree(sbi->devs);
823 }
824
825 static void f2fs_put_super(struct super_block *sb)
826 {
827 struct f2fs_sb_info *sbi = F2FS_SB(sb);
828 int i;
829 bool dropped;
830
831 f2fs_quota_off_umount(sb);
832
833 /* prevent remaining shrinker jobs */
834 mutex_lock(&sbi->umount_mutex);
835
836 /*
837 * We don't need to do checkpoint when superblock is clean.
838 * But, the previous checkpoint was not done by umount, it needs to do
839 * clean checkpoint again.
840 */
841 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
842 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
843 struct cp_control cpc = {
844 .reason = CP_UMOUNT,
845 };
846 write_checkpoint(sbi, &cpc);
847 }
848
849 /* be sure to wait for any on-going discard commands */
850 dropped = f2fs_wait_discard_bios(sbi);
851
852 if (f2fs_discard_en(sbi) && !sbi->discard_blks && !dropped) {
853 struct cp_control cpc = {
854 .reason = CP_UMOUNT | CP_TRIMMED,
855 };
856 write_checkpoint(sbi, &cpc);
857 }
858
859 /* write_checkpoint can update stat informaion */
860 f2fs_destroy_stats(sbi);
861
862 /*
863 * normally superblock is clean, so we need to release this.
864 * In addition, EIO will skip do checkpoint, we need this as well.
865 */
866 release_ino_entry(sbi, true);
867
868 f2fs_leave_shrinker(sbi);
869 mutex_unlock(&sbi->umount_mutex);
870
871 /* our cp_error case, we can wait for any writeback page */
872 f2fs_flush_merged_writes(sbi);
873
874 iput(sbi->node_inode);
875 iput(sbi->meta_inode);
876
877 /* destroy f2fs internal modules */
878 destroy_node_manager(sbi);
879 destroy_segment_manager(sbi);
880
881 kfree(sbi->ckpt);
882
883 f2fs_unregister_sysfs(sbi);
884
885 sb->s_fs_info = NULL;
886 if (sbi->s_chksum_driver)
887 crypto_free_shash(sbi->s_chksum_driver);
888 kfree(sbi->raw_super);
889
890 destroy_device_list(sbi);
891 if (sbi->write_io_dummy)
892 mempool_destroy(sbi->write_io_dummy);
893 #ifdef CONFIG_QUOTA
894 for (i = 0; i < MAXQUOTAS; i++)
895 kfree(sbi->s_qf_names[i]);
896 #endif
897 destroy_percpu_info(sbi);
898 for (i = 0; i < NR_PAGE_TYPE; i++)
899 kfree(sbi->write_io[i]);
900 kfree(sbi);
901 }
902
903 int f2fs_sync_fs(struct super_block *sb, int sync)
904 {
905 struct f2fs_sb_info *sbi = F2FS_SB(sb);
906 int err = 0;
907
908 if (unlikely(f2fs_cp_error(sbi)))
909 return 0;
910
911 trace_f2fs_sync_fs(sb, sync);
912
913 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
914 return -EAGAIN;
915
916 if (sync) {
917 struct cp_control cpc;
918
919 cpc.reason = __get_cp_reason(sbi);
920
921 mutex_lock(&sbi->gc_mutex);
922 err = write_checkpoint(sbi, &cpc);
923 mutex_unlock(&sbi->gc_mutex);
924 }
925 f2fs_trace_ios(NULL, 1);
926
927 return err;
928 }
929
930 static int f2fs_freeze(struct super_block *sb)
931 {
932 if (f2fs_readonly(sb))
933 return 0;
934
935 /* IO error happened before */
936 if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
937 return -EIO;
938
939 /* must be clean, since sync_filesystem() was already called */
940 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
941 return -EINVAL;
942 return 0;
943 }
944
945 static int f2fs_unfreeze(struct super_block *sb)
946 {
947 return 0;
948 }
949
950 #ifdef CONFIG_QUOTA
951 static int f2fs_statfs_project(struct super_block *sb,
952 kprojid_t projid, struct kstatfs *buf)
953 {
954 struct kqid qid;
955 struct dquot *dquot;
956 u64 limit;
957 u64 curblock;
958
959 qid = make_kqid_projid(projid);
960 dquot = dqget(sb, qid);
961 if (IS_ERR(dquot))
962 return PTR_ERR(dquot);
963 spin_lock(&dq_data_lock);
964
965 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
966 dquot->dq_dqb.dqb_bsoftlimit :
967 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
968 if (limit && buf->f_blocks > limit) {
969 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
970 buf->f_blocks = limit;
971 buf->f_bfree = buf->f_bavail =
972 (buf->f_blocks > curblock) ?
973 (buf->f_blocks - curblock) : 0;
974 }
975
976 limit = dquot->dq_dqb.dqb_isoftlimit ?
977 dquot->dq_dqb.dqb_isoftlimit :
978 dquot->dq_dqb.dqb_ihardlimit;
979 if (limit && buf->f_files > limit) {
980 buf->f_files = limit;
981 buf->f_ffree =
982 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
983 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
984 }
985
986 spin_unlock(&dq_data_lock);
987 dqput(dquot);
988 return 0;
989 }
990 #endif
991
992 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
993 {
994 struct super_block *sb = dentry->d_sb;
995 struct f2fs_sb_info *sbi = F2FS_SB(sb);
996 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
997 block_t total_count, user_block_count, start_count, ovp_count;
998 u64 avail_node_count;
999
1000 total_count = le64_to_cpu(sbi->raw_super->block_count);
1001 user_block_count = sbi->user_block_count;
1002 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1003 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
1004 buf->f_type = F2FS_SUPER_MAGIC;
1005 buf->f_bsize = sbi->blocksize;
1006
1007 buf->f_blocks = total_count - start_count;
1008 buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
1009 buf->f_bavail = user_block_count - valid_user_blocks(sbi) -
1010 sbi->current_reserved_blocks;
1011
1012 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1013
1014 if (avail_node_count > user_block_count) {
1015 buf->f_files = user_block_count;
1016 buf->f_ffree = buf->f_bavail;
1017 } else {
1018 buf->f_files = avail_node_count;
1019 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1020 buf->f_bavail);
1021 }
1022
1023 buf->f_namelen = F2FS_NAME_LEN;
1024 buf->f_fsid.val[0] = (u32)id;
1025 buf->f_fsid.val[1] = (u32)(id >> 32);
1026
1027 #ifdef CONFIG_QUOTA
1028 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1029 sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1030 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1031 }
1032 #endif
1033 return 0;
1034 }
1035
1036 static inline void f2fs_show_quota_options(struct seq_file *seq,
1037 struct super_block *sb)
1038 {
1039 #ifdef CONFIG_QUOTA
1040 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1041
1042 if (sbi->s_jquota_fmt) {
1043 char *fmtname = "";
1044
1045 switch (sbi->s_jquota_fmt) {
1046 case QFMT_VFS_OLD:
1047 fmtname = "vfsold";
1048 break;
1049 case QFMT_VFS_V0:
1050 fmtname = "vfsv0";
1051 break;
1052 case QFMT_VFS_V1:
1053 fmtname = "vfsv1";
1054 break;
1055 }
1056 seq_printf(seq, ",jqfmt=%s", fmtname);
1057 }
1058
1059 if (sbi->s_qf_names[USRQUOTA])
1060 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1061
1062 if (sbi->s_qf_names[GRPQUOTA])
1063 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1064
1065 if (sbi->s_qf_names[PRJQUOTA])
1066 seq_show_option(seq, "prjjquota", sbi->s_qf_names[PRJQUOTA]);
1067 #endif
1068 }
1069
1070 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1071 {
1072 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1073
1074 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1075 if (test_opt(sbi, FORCE_FG_GC))
1076 seq_printf(seq, ",background_gc=%s", "sync");
1077 else
1078 seq_printf(seq, ",background_gc=%s", "on");
1079 } else {
1080 seq_printf(seq, ",background_gc=%s", "off");
1081 }
1082 if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1083 seq_puts(seq, ",disable_roll_forward");
1084 if (test_opt(sbi, DISCARD))
1085 seq_puts(seq, ",discard");
1086 if (test_opt(sbi, NOHEAP))
1087 seq_puts(seq, ",no_heap");
1088 else
1089 seq_puts(seq, ",heap");
1090 #ifdef CONFIG_F2FS_FS_XATTR
1091 if (test_opt(sbi, XATTR_USER))
1092 seq_puts(seq, ",user_xattr");
1093 else
1094 seq_puts(seq, ",nouser_xattr");
1095 if (test_opt(sbi, INLINE_XATTR))
1096 seq_puts(seq, ",inline_xattr");
1097 else
1098 seq_puts(seq, ",noinline_xattr");
1099 if (test_opt(sbi, INLINE_XATTR_SIZE))
1100 seq_printf(seq, ",inline_xattr_size=%u",
1101 sbi->inline_xattr_size);
1102 #endif
1103 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1104 if (test_opt(sbi, POSIX_ACL))
1105 seq_puts(seq, ",acl");
1106 else
1107 seq_puts(seq, ",noacl");
1108 #endif
1109 if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1110 seq_puts(seq, ",disable_ext_identify");
1111 if (test_opt(sbi, INLINE_DATA))
1112 seq_puts(seq, ",inline_data");
1113 else
1114 seq_puts(seq, ",noinline_data");
1115 if (test_opt(sbi, INLINE_DENTRY))
1116 seq_puts(seq, ",inline_dentry");
1117 else
1118 seq_puts(seq, ",noinline_dentry");
1119 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1120 seq_puts(seq, ",flush_merge");
1121 if (test_opt(sbi, NOBARRIER))
1122 seq_puts(seq, ",nobarrier");
1123 if (test_opt(sbi, FASTBOOT))
1124 seq_puts(seq, ",fastboot");
1125 if (test_opt(sbi, EXTENT_CACHE))
1126 seq_puts(seq, ",extent_cache");
1127 else
1128 seq_puts(seq, ",noextent_cache");
1129 if (test_opt(sbi, DATA_FLUSH))
1130 seq_puts(seq, ",data_flush");
1131
1132 seq_puts(seq, ",mode=");
1133 if (test_opt(sbi, ADAPTIVE))
1134 seq_puts(seq, "adaptive");
1135 else if (test_opt(sbi, LFS))
1136 seq_puts(seq, "lfs");
1137 seq_printf(seq, ",active_logs=%u", sbi->active_logs);
1138 if (F2FS_IO_SIZE_BITS(sbi))
1139 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
1140 #ifdef CONFIG_F2FS_FAULT_INJECTION
1141 if (test_opt(sbi, FAULT_INJECTION))
1142 seq_printf(seq, ",fault_injection=%u",
1143 sbi->fault_info.inject_rate);
1144 #endif
1145 #ifdef CONFIG_QUOTA
1146 if (test_opt(sbi, QUOTA))
1147 seq_puts(seq, ",quota");
1148 if (test_opt(sbi, USRQUOTA))
1149 seq_puts(seq, ",usrquota");
1150 if (test_opt(sbi, GRPQUOTA))
1151 seq_puts(seq, ",grpquota");
1152 if (test_opt(sbi, PRJQUOTA))
1153 seq_puts(seq, ",prjquota");
1154 #endif
1155 f2fs_show_quota_options(seq, sbi->sb);
1156
1157 return 0;
1158 }
1159
1160 static void default_options(struct f2fs_sb_info *sbi)
1161 {
1162 /* init some FS parameters */
1163 sbi->active_logs = NR_CURSEG_TYPE;
1164 sbi->inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1165
1166 set_opt(sbi, BG_GC);
1167 set_opt(sbi, INLINE_XATTR);
1168 set_opt(sbi, INLINE_DATA);
1169 set_opt(sbi, INLINE_DENTRY);
1170 set_opt(sbi, EXTENT_CACHE);
1171 set_opt(sbi, NOHEAP);
1172 sbi->sb->s_flags |= MS_LAZYTIME;
1173 set_opt(sbi, FLUSH_MERGE);
1174 if (f2fs_sb_mounted_blkzoned(sbi->sb)) {
1175 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1176 set_opt(sbi, DISCARD);
1177 } else {
1178 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1179 }
1180
1181 #ifdef CONFIG_F2FS_FS_XATTR
1182 set_opt(sbi, XATTR_USER);
1183 #endif
1184 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1185 set_opt(sbi, POSIX_ACL);
1186 #endif
1187
1188 #ifdef CONFIG_F2FS_FAULT_INJECTION
1189 f2fs_build_fault_attr(sbi, 0);
1190 #endif
1191 }
1192
1193 #ifdef CONFIG_QUOTA
1194 static int f2fs_enable_quotas(struct super_block *sb);
1195 #endif
1196 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1197 {
1198 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1199 struct f2fs_mount_info org_mount_opt;
1200 unsigned long old_sb_flags;
1201 int err, active_logs;
1202 bool need_restart_gc = false;
1203 bool need_stop_gc = false;
1204 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1205 #ifdef CONFIG_F2FS_FAULT_INJECTION
1206 struct f2fs_fault_info ffi = sbi->fault_info;
1207 #endif
1208 #ifdef CONFIG_QUOTA
1209 int s_jquota_fmt;
1210 char *s_qf_names[MAXQUOTAS];
1211 int i, j;
1212 #endif
1213
1214 /*
1215 * Save the old mount options in case we
1216 * need to restore them.
1217 */
1218 org_mount_opt = sbi->mount_opt;
1219 old_sb_flags = sb->s_flags;
1220 active_logs = sbi->active_logs;
1221
1222 #ifdef CONFIG_QUOTA
1223 s_jquota_fmt = sbi->s_jquota_fmt;
1224 for (i = 0; i < MAXQUOTAS; i++) {
1225 if (sbi->s_qf_names[i]) {
1226 s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
1227 GFP_KERNEL);
1228 if (!s_qf_names[i]) {
1229 for (j = 0; j < i; j++)
1230 kfree(s_qf_names[j]);
1231 return -ENOMEM;
1232 }
1233 } else {
1234 s_qf_names[i] = NULL;
1235 }
1236 }
1237 #endif
1238
1239 /* recover superblocks we couldn't write due to previous RO mount */
1240 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1241 err = f2fs_commit_super(sbi, false);
1242 f2fs_msg(sb, KERN_INFO,
1243 "Try to recover all the superblocks, ret: %d", err);
1244 if (!err)
1245 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1246 }
1247
1248 default_options(sbi);
1249
1250 /* parse mount options */
1251 err = parse_options(sb, data);
1252 if (err)
1253 goto restore_opts;
1254
1255 /*
1256 * Previous and new state of filesystem is RO,
1257 * so skip checking GC and FLUSH_MERGE conditions.
1258 */
1259 if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1260 goto skip;
1261
1262 #ifdef CONFIG_QUOTA
1263 if (!f2fs_readonly(sb) && (*flags & MS_RDONLY)) {
1264 err = dquot_suspend(sb, -1);
1265 if (err < 0)
1266 goto restore_opts;
1267 } else {
1268 /* dquot_resume needs RW */
1269 sb->s_flags &= ~MS_RDONLY;
1270 if (sb_any_quota_suspended(sb)) {
1271 dquot_resume(sb, -1);
1272 } else if (f2fs_sb_has_quota_ino(sb)) {
1273 err = f2fs_enable_quotas(sb);
1274 if (err)
1275 goto restore_opts;
1276 }
1277 }
1278 #endif
1279 /* disallow enable/disable extent_cache dynamically */
1280 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1281 err = -EINVAL;
1282 f2fs_msg(sbi->sb, KERN_WARNING,
1283 "switch extent_cache option is not allowed");
1284 goto restore_opts;
1285 }
1286
1287 /*
1288 * We stop the GC thread if FS is mounted as RO
1289 * or if background_gc = off is passed in mount
1290 * option. Also sync the filesystem.
1291 */
1292 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1293 if (sbi->gc_thread) {
1294 stop_gc_thread(sbi);
1295 need_restart_gc = true;
1296 }
1297 } else if (!sbi->gc_thread) {
1298 err = start_gc_thread(sbi);
1299 if (err)
1300 goto restore_opts;
1301 need_stop_gc = true;
1302 }
1303
1304 if (*flags & MS_RDONLY) {
1305 writeback_inodes_sb(sb, WB_REASON_SYNC);
1306 sync_inodes_sb(sb);
1307
1308 set_sbi_flag(sbi, SBI_IS_DIRTY);
1309 set_sbi_flag(sbi, SBI_IS_CLOSE);
1310 f2fs_sync_fs(sb, 1);
1311 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1312 }
1313
1314 /*
1315 * We stop issue flush thread if FS is mounted as RO
1316 * or if flush_merge is not passed in mount option.
1317 */
1318 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1319 clear_opt(sbi, FLUSH_MERGE);
1320 destroy_flush_cmd_control(sbi, false);
1321 } else {
1322 err = create_flush_cmd_control(sbi);
1323 if (err)
1324 goto restore_gc;
1325 }
1326 skip:
1327 #ifdef CONFIG_QUOTA
1328 /* Release old quota file names */
1329 for (i = 0; i < MAXQUOTAS; i++)
1330 kfree(s_qf_names[i]);
1331 #endif
1332 /* Update the POSIXACL Flag */
1333 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1334 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1335
1336 return 0;
1337 restore_gc:
1338 if (need_restart_gc) {
1339 if (start_gc_thread(sbi))
1340 f2fs_msg(sbi->sb, KERN_WARNING,
1341 "background gc thread has stopped");
1342 } else if (need_stop_gc) {
1343 stop_gc_thread(sbi);
1344 }
1345 restore_opts:
1346 #ifdef CONFIG_QUOTA
1347 sbi->s_jquota_fmt = s_jquota_fmt;
1348 for (i = 0; i < MAXQUOTAS; i++) {
1349 kfree(sbi->s_qf_names[i]);
1350 sbi->s_qf_names[i] = s_qf_names[i];
1351 }
1352 #endif
1353 sbi->mount_opt = org_mount_opt;
1354 sbi->active_logs = active_logs;
1355 sb->s_flags = old_sb_flags;
1356 #ifdef CONFIG_F2FS_FAULT_INJECTION
1357 sbi->fault_info = ffi;
1358 #endif
1359 return err;
1360 }
1361
1362 #ifdef CONFIG_QUOTA
1363 /* Read data from quotafile */
1364 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1365 size_t len, loff_t off)
1366 {
1367 struct inode *inode = sb_dqopt(sb)->files[type];
1368 struct address_space *mapping = inode->i_mapping;
1369 block_t blkidx = F2FS_BYTES_TO_BLK(off);
1370 int offset = off & (sb->s_blocksize - 1);
1371 int tocopy;
1372 size_t toread;
1373 loff_t i_size = i_size_read(inode);
1374 struct page *page;
1375 char *kaddr;
1376
1377 if (off > i_size)
1378 return 0;
1379
1380 if (off + len > i_size)
1381 len = i_size - off;
1382 toread = len;
1383 while (toread > 0) {
1384 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1385 repeat:
1386 page = read_mapping_page(mapping, blkidx, NULL);
1387 if (IS_ERR(page)) {
1388 if (PTR_ERR(page) == -ENOMEM) {
1389 congestion_wait(BLK_RW_ASYNC, HZ/50);
1390 goto repeat;
1391 }
1392 return PTR_ERR(page);
1393 }
1394
1395 lock_page(page);
1396
1397 if (unlikely(page->mapping != mapping)) {
1398 f2fs_put_page(page, 1);
1399 goto repeat;
1400 }
1401 if (unlikely(!PageUptodate(page))) {
1402 f2fs_put_page(page, 1);
1403 return -EIO;
1404 }
1405
1406 kaddr = kmap_atomic(page);
1407 memcpy(data, kaddr + offset, tocopy);
1408 kunmap_atomic(kaddr);
1409 f2fs_put_page(page, 1);
1410
1411 offset = 0;
1412 toread -= tocopy;
1413 data += tocopy;
1414 blkidx++;
1415 }
1416 return len;
1417 }
1418
1419 /* Write to quotafile */
1420 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1421 const char *data, size_t len, loff_t off)
1422 {
1423 struct inode *inode = sb_dqopt(sb)->files[type];
1424 struct address_space *mapping = inode->i_mapping;
1425 const struct address_space_operations *a_ops = mapping->a_ops;
1426 int offset = off & (sb->s_blocksize - 1);
1427 size_t towrite = len;
1428 struct page *page;
1429 char *kaddr;
1430 int err = 0;
1431 int tocopy;
1432
1433 while (towrite > 0) {
1434 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1435 towrite);
1436 retry:
1437 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1438 &page, NULL);
1439 if (unlikely(err)) {
1440 if (err == -ENOMEM) {
1441 congestion_wait(BLK_RW_ASYNC, HZ/50);
1442 goto retry;
1443 }
1444 break;
1445 }
1446
1447 kaddr = kmap_atomic(page);
1448 memcpy(kaddr + offset, data, tocopy);
1449 kunmap_atomic(kaddr);
1450 flush_dcache_page(page);
1451
1452 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1453 page, NULL);
1454 offset = 0;
1455 towrite -= tocopy;
1456 off += tocopy;
1457 data += tocopy;
1458 cond_resched();
1459 }
1460
1461 if (len == towrite)
1462 return err;
1463 inode->i_mtime = inode->i_ctime = current_time(inode);
1464 f2fs_mark_inode_dirty_sync(inode, false);
1465 return len - towrite;
1466 }
1467
1468 static struct dquot **f2fs_get_dquots(struct inode *inode)
1469 {
1470 return F2FS_I(inode)->i_dquot;
1471 }
1472
1473 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1474 {
1475 return &F2FS_I(inode)->i_reserved_quota;
1476 }
1477
1478 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1479 {
1480 return dquot_quota_on_mount(sbi->sb, sbi->s_qf_names[type],
1481 sbi->s_jquota_fmt, type);
1482 }
1483
1484 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1485 {
1486 int enabled = 0;
1487 int i, err;
1488
1489 if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) {
1490 err = f2fs_enable_quotas(sbi->sb);
1491 if (err) {
1492 f2fs_msg(sbi->sb, KERN_ERR,
1493 "Cannot turn on quota_ino: %d", err);
1494 return 0;
1495 }
1496 return 1;
1497 }
1498
1499 for (i = 0; i < MAXQUOTAS; i++) {
1500 if (sbi->s_qf_names[i]) {
1501 err = f2fs_quota_on_mount(sbi, i);
1502 if (!err) {
1503 enabled = 1;
1504 continue;
1505 }
1506 f2fs_msg(sbi->sb, KERN_ERR,
1507 "Cannot turn on quotas: %d on %d", err, i);
1508 }
1509 }
1510 return enabled;
1511 }
1512
1513 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1514 unsigned int flags)
1515 {
1516 struct inode *qf_inode;
1517 unsigned long qf_inum;
1518 int err;
1519
1520 BUG_ON(!f2fs_sb_has_quota_ino(sb));
1521
1522 qf_inum = f2fs_qf_ino(sb, type);
1523 if (!qf_inum)
1524 return -EPERM;
1525
1526 qf_inode = f2fs_iget(sb, qf_inum);
1527 if (IS_ERR(qf_inode)) {
1528 f2fs_msg(sb, KERN_ERR,
1529 "Bad quota inode %u:%lu", type, qf_inum);
1530 return PTR_ERR(qf_inode);
1531 }
1532
1533 /* Don't account quota for quota files to avoid recursion */
1534 qf_inode->i_flags |= S_NOQUOTA;
1535 err = dquot_enable(qf_inode, type, format_id, flags);
1536 iput(qf_inode);
1537 return err;
1538 }
1539
1540 static int f2fs_enable_quotas(struct super_block *sb)
1541 {
1542 int type, err = 0;
1543 unsigned long qf_inum;
1544 bool quota_mopt[MAXQUOTAS] = {
1545 test_opt(F2FS_SB(sb), USRQUOTA),
1546 test_opt(F2FS_SB(sb), GRPQUOTA),
1547 test_opt(F2FS_SB(sb), PRJQUOTA),
1548 };
1549
1550 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
1551 for (type = 0; type < MAXQUOTAS; type++) {
1552 qf_inum = f2fs_qf_ino(sb, type);
1553 if (qf_inum) {
1554 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1555 DQUOT_USAGE_ENABLED |
1556 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1557 if (err) {
1558 f2fs_msg(sb, KERN_ERR,
1559 "Failed to enable quota tracking "
1560 "(type=%d, err=%d). Please run "
1561 "fsck to fix.", type, err);
1562 for (type--; type >= 0; type--)
1563 dquot_quota_off(sb, type);
1564 return err;
1565 }
1566 }
1567 }
1568 return 0;
1569 }
1570
1571 static int f2fs_quota_sync(struct super_block *sb, int type)
1572 {
1573 struct quota_info *dqopt = sb_dqopt(sb);
1574 int cnt;
1575 int ret;
1576
1577 ret = dquot_writeback_dquots(sb, type);
1578 if (ret)
1579 return ret;
1580
1581 /*
1582 * Now when everything is written we can discard the pagecache so
1583 * that userspace sees the changes.
1584 */
1585 for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1586 if (type != -1 && cnt != type)
1587 continue;
1588 if (!sb_has_quota_active(sb, cnt))
1589 continue;
1590
1591 ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1592 if (ret)
1593 return ret;
1594
1595 inode_lock(dqopt->files[cnt]);
1596 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1597 inode_unlock(dqopt->files[cnt]);
1598 }
1599 return 0;
1600 }
1601
1602 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1603 struct path *path)
1604 {
1605 struct inode *inode;
1606 int err;
1607
1608 err = f2fs_quota_sync(sb, type);
1609 if (err)
1610 return err;
1611
1612 err = dquot_quota_on(sb, type, format_id, path);
1613 if (err)
1614 return err;
1615
1616 inode = d_inode(path->dentry);
1617
1618 inode_lock(inode);
1619 F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL;
1620 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1621 S_NOATIME | S_IMMUTABLE);
1622 inode_unlock(inode);
1623 f2fs_mark_inode_dirty_sync(inode, false);
1624
1625 return 0;
1626 }
1627
1628 static int f2fs_quota_off(struct super_block *sb, int type)
1629 {
1630 struct inode *inode = sb_dqopt(sb)->files[type];
1631 int err;
1632
1633 if (!inode || !igrab(inode))
1634 return dquot_quota_off(sb, type);
1635
1636 f2fs_quota_sync(sb, type);
1637
1638 err = dquot_quota_off(sb, type);
1639 if (err || f2fs_sb_has_quota_ino(sb))
1640 goto out_put;
1641
1642 inode_lock(inode);
1643 F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL);
1644 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1645 inode_unlock(inode);
1646 f2fs_mark_inode_dirty_sync(inode, false);
1647 out_put:
1648 iput(inode);
1649 return err;
1650 }
1651
1652 void f2fs_quota_off_umount(struct super_block *sb)
1653 {
1654 int type;
1655
1656 for (type = 0; type < MAXQUOTAS; type++)
1657 f2fs_quota_off(sb, type);
1658 }
1659
1660 #if 0
1661 int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1662 {
1663 *projid = F2FS_I(inode)->i_projid;
1664 return 0;
1665 }
1666 #endif
1667
1668 static const struct dquot_operations f2fs_quota_operations = {
1669 .get_reserved_space = f2fs_get_reserved_space,
1670 .write_dquot = dquot_commit,
1671 .acquire_dquot = dquot_acquire,
1672 .release_dquot = dquot_release,
1673 .mark_dirty = dquot_mark_dquot_dirty,
1674 .write_info = dquot_commit_info,
1675 .alloc_dquot = dquot_alloc,
1676 .destroy_dquot = dquot_destroy,
1677 #if 0
1678 .get_projid = f2fs_get_projid,
1679 .get_next_id = dquot_get_next_id,
1680 #endif
1681 };
1682
1683 static const struct quotactl_ops f2fs_quotactl_ops = {
1684 .quota_on = f2fs_quota_on,
1685 .quota_off = f2fs_quota_off,
1686 .quota_sync = f2fs_quota_sync,
1687 .get_state = dquot_get_state,
1688 .set_info = dquot_set_dqinfo,
1689 .get_dqblk = dquot_get_dqblk,
1690 .set_dqblk = dquot_set_dqblk,
1691 };
1692 #else
1693 void f2fs_quota_off_umount(struct super_block *sb)
1694 {
1695 }
1696 #endif
1697
1698 static const struct super_operations f2fs_sops = {
1699 .alloc_inode = f2fs_alloc_inode,
1700 .drop_inode = f2fs_drop_inode,
1701 .destroy_inode = f2fs_destroy_inode,
1702 .write_inode = f2fs_write_inode,
1703 .dirty_inode = f2fs_dirty_inode,
1704 .show_options = f2fs_show_options,
1705 #ifdef CONFIG_QUOTA
1706 .quota_read = f2fs_quota_read,
1707 .quota_write = f2fs_quota_write,
1708 .get_dquots = f2fs_get_dquots,
1709 #endif
1710 .evict_inode = f2fs_evict_inode,
1711 .put_super = f2fs_put_super,
1712 .sync_fs = f2fs_sync_fs,
1713 .freeze_fs = f2fs_freeze,
1714 .unfreeze_fs = f2fs_unfreeze,
1715 .statfs = f2fs_statfs,
1716 .remount_fs = f2fs_remount,
1717 };
1718
1719 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1720 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1721 {
1722 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1723 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1724 ctx, len, NULL);
1725 }
1726
1727 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1728 void *fs_data)
1729 {
1730 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1731 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1732 ctx, len, fs_data, XATTR_CREATE);
1733 }
1734
1735 static unsigned f2fs_max_namelen(struct inode *inode)
1736 {
1737 return S_ISLNK(inode->i_mode) ?
1738 inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1739 }
1740
1741 static const struct fscrypt_operations f2fs_cryptops = {
1742 .key_prefix = "f2fs:",
1743 .get_context = f2fs_get_context,
1744 .set_context = f2fs_set_context,
1745 .is_encrypted = f2fs_encrypted_inode,
1746 .empty_dir = f2fs_empty_dir,
1747 .max_namelen = f2fs_max_namelen,
1748 };
1749 #else
1750 static const struct fscrypt_operations f2fs_cryptops = {
1751 .is_encrypted = f2fs_encrypted_inode,
1752 };
1753 #endif
1754
1755 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1756 u64 ino, u32 generation)
1757 {
1758 struct f2fs_sb_info *sbi = F2FS_SB(sb);
1759 struct inode *inode;
1760
1761 if (check_nid_range(sbi, ino))
1762 return ERR_PTR(-ESTALE);
1763
1764 /*
1765 * f2fs_iget isn't quite right if the inode is currently unallocated!
1766 * However f2fs_iget currently does appropriate checks to handle stale
1767 * inodes so everything is OK.
1768 */
1769 inode = f2fs_iget(sb, ino);
1770 if (IS_ERR(inode))
1771 return ERR_CAST(inode);
1772 if (unlikely(generation && inode->i_generation != generation)) {
1773 /* we didn't find the right inode.. */
1774 iput(inode);
1775 return ERR_PTR(-ESTALE);
1776 }
1777 return inode;
1778 }
1779
1780 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1781 int fh_len, int fh_type)
1782 {
1783 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1784 f2fs_nfs_get_inode);
1785 }
1786
1787 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1788 int fh_len, int fh_type)
1789 {
1790 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1791 f2fs_nfs_get_inode);
1792 }
1793
1794 static const struct export_operations f2fs_export_ops = {
1795 .fh_to_dentry = f2fs_fh_to_dentry,
1796 .fh_to_parent = f2fs_fh_to_parent,
1797 .get_parent = f2fs_get_parent,
1798 };
1799
1800 static loff_t max_file_blocks(void)
1801 {
1802 loff_t result = 0;
1803 loff_t leaf_count = ADDRS_PER_BLOCK;
1804
1805 /*
1806 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
1807 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
1808 * space in inode.i_addr, it will be more safe to reassign
1809 * result as zero.
1810 */
1811
1812 /* two direct node blocks */
1813 result += (leaf_count * 2);
1814
1815 /* two indirect node blocks */
1816 leaf_count *= NIDS_PER_BLOCK;
1817 result += (leaf_count * 2);
1818
1819 /* one double indirect node block */
1820 leaf_count *= NIDS_PER_BLOCK;
1821 result += leaf_count;
1822
1823 return result;
1824 }
1825
1826 static int __f2fs_commit_super(struct buffer_head *bh,
1827 struct f2fs_super_block *super)
1828 {
1829 lock_buffer(bh);
1830 if (super)
1831 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1832 set_buffer_uptodate(bh);
1833 set_buffer_dirty(bh);
1834 unlock_buffer(bh);
1835
1836 /* it's rare case, we can do fua all the time */
1837 return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1838 }
1839
1840 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1841 struct buffer_head *bh)
1842 {
1843 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1844 (bh->b_data + F2FS_SUPER_OFFSET);
1845 struct super_block *sb = sbi->sb;
1846 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1847 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1848 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1849 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1850 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1851 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1852 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1853 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1854 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1855 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1856 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1857 u32 segment_count = le32_to_cpu(raw_super->segment_count);
1858 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1859 u64 main_end_blkaddr = main_blkaddr +
1860 (segment_count_main << log_blocks_per_seg);
1861 u64 seg_end_blkaddr = segment0_blkaddr +
1862 (segment_count << log_blocks_per_seg);
1863
1864 if (segment0_blkaddr != cp_blkaddr) {
1865 f2fs_msg(sb, KERN_INFO,
1866 "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1867 segment0_blkaddr, cp_blkaddr);
1868 return true;
1869 }
1870
1871 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1872 sit_blkaddr) {
1873 f2fs_msg(sb, KERN_INFO,
1874 "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1875 cp_blkaddr, sit_blkaddr,
1876 segment_count_ckpt << log_blocks_per_seg);
1877 return true;
1878 }
1879
1880 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1881 nat_blkaddr) {
1882 f2fs_msg(sb, KERN_INFO,
1883 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1884 sit_blkaddr, nat_blkaddr,
1885 segment_count_sit << log_blocks_per_seg);
1886 return true;
1887 }
1888
1889 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1890 ssa_blkaddr) {
1891 f2fs_msg(sb, KERN_INFO,
1892 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1893 nat_blkaddr, ssa_blkaddr,
1894 segment_count_nat << log_blocks_per_seg);
1895 return true;
1896 }
1897
1898 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1899 main_blkaddr) {
1900 f2fs_msg(sb, KERN_INFO,
1901 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1902 ssa_blkaddr, main_blkaddr,
1903 segment_count_ssa << log_blocks_per_seg);
1904 return true;
1905 }
1906
1907 if (main_end_blkaddr > seg_end_blkaddr) {
1908 f2fs_msg(sb, KERN_INFO,
1909 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1910 main_blkaddr,
1911 segment0_blkaddr +
1912 (segment_count << log_blocks_per_seg),
1913 segment_count_main << log_blocks_per_seg);
1914 return true;
1915 } else if (main_end_blkaddr < seg_end_blkaddr) {
1916 int err = 0;
1917 char *res;
1918
1919 /* fix in-memory information all the time */
1920 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1921 segment0_blkaddr) >> log_blocks_per_seg);
1922
1923 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1924 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1925 res = "internally";
1926 } else {
1927 err = __f2fs_commit_super(bh, NULL);
1928 res = err ? "failed" : "done";
1929 }
1930 f2fs_msg(sb, KERN_INFO,
1931 "Fix alignment : %s, start(%u) end(%u) block(%u)",
1932 res, main_blkaddr,
1933 segment0_blkaddr +
1934 (segment_count << log_blocks_per_seg),
1935 segment_count_main << log_blocks_per_seg);
1936 if (err)
1937 return true;
1938 }
1939 return false;
1940 }
1941
1942 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1943 struct buffer_head *bh)
1944 {
1945 struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1946 (bh->b_data + F2FS_SUPER_OFFSET);
1947 struct super_block *sb = sbi->sb;
1948 unsigned int blocksize;
1949
1950 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1951 f2fs_msg(sb, KERN_INFO,
1952 "Magic Mismatch, valid(0x%x) - read(0x%x)",
1953 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1954 return 1;
1955 }
1956
1957 /* Currently, support only 4KB page cache size */
1958 if (F2FS_BLKSIZE != PAGE_SIZE) {
1959 f2fs_msg(sb, KERN_INFO,
1960 "Invalid page_cache_size (%lu), supports only 4KB\n",
1961 PAGE_SIZE);
1962 return 1;
1963 }
1964
1965 /* Currently, support only 4KB block size */
1966 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1967 if (blocksize != F2FS_BLKSIZE) {
1968 f2fs_msg(sb, KERN_INFO,
1969 "Invalid blocksize (%u), supports only 4KB\n",
1970 blocksize);
1971 return 1;
1972 }
1973
1974 /* check log blocks per segment */
1975 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1976 f2fs_msg(sb, KERN_INFO,
1977 "Invalid log blocks per segment (%u)\n",
1978 le32_to_cpu(raw_super->log_blocks_per_seg));
1979 return 1;
1980 }
1981
1982 /* Currently, support 512/1024/2048/4096 bytes sector size */
1983 if (le32_to_cpu(raw_super->log_sectorsize) >
1984 F2FS_MAX_LOG_SECTOR_SIZE ||
1985 le32_to_cpu(raw_super->log_sectorsize) <
1986 F2FS_MIN_LOG_SECTOR_SIZE) {
1987 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1988 le32_to_cpu(raw_super->log_sectorsize));
1989 return 1;
1990 }
1991 if (le32_to_cpu(raw_super->log_sectors_per_block) +
1992 le32_to_cpu(raw_super->log_sectorsize) !=
1993 F2FS_MAX_LOG_SECTOR_SIZE) {
1994 f2fs_msg(sb, KERN_INFO,
1995 "Invalid log sectors per block(%u) log sectorsize(%u)",
1996 le32_to_cpu(raw_super->log_sectors_per_block),
1997 le32_to_cpu(raw_super->log_sectorsize));
1998 return 1;
1999 }
2000
2001 /* check reserved ino info */
2002 if (le32_to_cpu(raw_super->node_ino) != 1 ||
2003 le32_to_cpu(raw_super->meta_ino) != 2 ||
2004 le32_to_cpu(raw_super->root_ino) != 3) {
2005 f2fs_msg(sb, KERN_INFO,
2006 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2007 le32_to_cpu(raw_super->node_ino),
2008 le32_to_cpu(raw_super->meta_ino),
2009 le32_to_cpu(raw_super->root_ino));
2010 return 1;
2011 }
2012
2013 if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
2014 f2fs_msg(sb, KERN_INFO,
2015 "Invalid segment count (%u)",
2016 le32_to_cpu(raw_super->segment_count));
2017 return 1;
2018 }
2019
2020 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2021 if (sanity_check_area_boundary(sbi, bh))
2022 return 1;
2023
2024 return 0;
2025 }
2026
2027 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
2028 {
2029 unsigned int total, fsmeta;
2030 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2031 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2032 unsigned int ovp_segments, reserved_segments;
2033 unsigned int main_segs, blocks_per_seg;
2034 int i;
2035
2036 total = le32_to_cpu(raw_super->segment_count);
2037 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2038 fsmeta += le32_to_cpu(raw_super->segment_count_sit);
2039 fsmeta += le32_to_cpu(raw_super->segment_count_nat);
2040 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2041 fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2042
2043 if (unlikely(fsmeta >= total))
2044 return 1;
2045
2046 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2047 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2048
2049 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2050 ovp_segments == 0 || reserved_segments == 0)) {
2051 f2fs_msg(sbi->sb, KERN_ERR,
2052 "Wrong layout: check mkfs.f2fs version");
2053 return 1;
2054 }
2055
2056 main_segs = le32_to_cpu(raw_super->segment_count_main);
2057 blocks_per_seg = sbi->blocks_per_seg;
2058
2059 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2060 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2061 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2062 return 1;
2063 }
2064 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2065 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2066 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2067 return 1;
2068 }
2069
2070 if (unlikely(f2fs_cp_error(sbi))) {
2071 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2072 return 1;
2073 }
2074 return 0;
2075 }
2076
2077 static void init_sb_info(struct f2fs_sb_info *sbi)
2078 {
2079 struct f2fs_super_block *raw_super = sbi->raw_super;
2080 int i, j;
2081
2082 sbi->log_sectors_per_block =
2083 le32_to_cpu(raw_super->log_sectors_per_block);
2084 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2085 sbi->blocksize = 1 << sbi->log_blocksize;
2086 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2087 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2088 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2089 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2090 sbi->total_sections = le32_to_cpu(raw_super->section_count);
2091 sbi->total_node_count =
2092 (le32_to_cpu(raw_super->segment_count_nat) / 2)
2093 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2094 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2095 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2096 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2097 sbi->cur_victim_sec = NULL_SECNO;
2098 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2099
2100 sbi->dir_level = DEF_DIR_LEVEL;
2101 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2102 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2103 clear_sbi_flag(sbi, SBI_NEED_FSCK);
2104
2105 for (i = 0; i < NR_COUNT_TYPE; i++)
2106 atomic_set(&sbi->nr_pages[i], 0);
2107
2108 atomic_set(&sbi->wb_sync_req, 0);
2109
2110 INIT_LIST_HEAD(&sbi->s_list);
2111 mutex_init(&sbi->umount_mutex);
2112 for (i = 0; i < NR_PAGE_TYPE - 1; i++)
2113 for (j = HOT; j < NR_TEMP_TYPE; j++)
2114 mutex_init(&sbi->wio_mutex[i][j]);
2115 spin_lock_init(&sbi->cp_lock);
2116
2117 sbi->dirty_device = 0;
2118 spin_lock_init(&sbi->dev_lock);
2119 }
2120
2121 static int init_percpu_info(struct f2fs_sb_info *sbi)
2122 {
2123 int err;
2124
2125 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2126 if (err)
2127 return err;
2128
2129 return percpu_counter_init(&sbi->total_valid_inode_count, 0,
2130 GFP_KERNEL);
2131 }
2132
2133 #ifdef CONFIG_BLK_DEV_ZONED
2134 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2135 {
2136 struct block_device *bdev = FDEV(devi).bdev;
2137 sector_t nr_sectors = bdev->bd_part->nr_sects;
2138 sector_t sector = 0;
2139 struct blk_zone *zones;
2140 unsigned int i, nr_zones;
2141 unsigned int n = 0;
2142 int err = -EIO;
2143
2144 if (!f2fs_sb_mounted_blkzoned(sbi->sb))
2145 return 0;
2146
2147 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2148 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2149 return -EINVAL;
2150 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2151 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2152 __ilog2_u32(sbi->blocks_per_blkz))
2153 return -EINVAL;
2154 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2155 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2156 sbi->log_blocks_per_blkz;
2157 if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2158 FDEV(devi).nr_blkz++;
2159
2160 FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL);
2161 if (!FDEV(devi).blkz_type)
2162 return -ENOMEM;
2163
2164 #define F2FS_REPORT_NR_ZONES 4096
2165
2166 zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone),
2167 GFP_KERNEL);
2168 if (!zones)
2169 return -ENOMEM;
2170
2171 /* Get block zones type */
2172 while (zones && sector < nr_sectors) {
2173
2174 nr_zones = F2FS_REPORT_NR_ZONES;
2175 err = blkdev_report_zones(bdev, sector,
2176 zones, &nr_zones,
2177 GFP_KERNEL);
2178 if (err)
2179 break;
2180 if (!nr_zones) {
2181 err = -EIO;
2182 break;
2183 }
2184
2185 for (i = 0; i < nr_zones; i++) {
2186 FDEV(devi).blkz_type[n] = zones[i].type;
2187 sector += zones[i].len;
2188 n++;
2189 }
2190 }
2191
2192 kfree(zones);
2193
2194 return err;
2195 }
2196 #endif
2197
2198 /*
2199 * Read f2fs raw super block.
2200 * Because we have two copies of super block, so read both of them
2201 * to get the first valid one. If any one of them is broken, we pass
2202 * them recovery flag back to the caller.
2203 */
2204 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2205 struct f2fs_super_block **raw_super,
2206 int *valid_super_block, int *recovery)
2207 {
2208 struct super_block *sb = sbi->sb;
2209 int block;
2210 struct buffer_head *bh;
2211 struct f2fs_super_block *super;
2212 int err = 0;
2213
2214 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2215 if (!super)
2216 return -ENOMEM;
2217
2218 for (block = 0; block < 2; block++) {
2219 bh = sb_bread(sb, block);
2220 if (!bh) {
2221 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2222 block + 1);
2223 err = -EIO;
2224 continue;
2225 }
2226
2227 /* sanity checking of raw super */
2228 if (sanity_check_raw_super(sbi, bh)) {
2229 f2fs_msg(sb, KERN_ERR,
2230 "Can't find valid F2FS filesystem in %dth superblock",
2231 block + 1);
2232 err = -EINVAL;
2233 brelse(bh);
2234 continue;
2235 }
2236
2237 if (!*raw_super) {
2238 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2239 sizeof(*super));
2240 *valid_super_block = block;
2241 *raw_super = super;
2242 }
2243 brelse(bh);
2244 }
2245
2246 /* Fail to read any one of the superblocks*/
2247 if (err < 0)
2248 *recovery = 1;
2249
2250 /* No valid superblock */
2251 if (!*raw_super)
2252 kfree(super);
2253 else
2254 err = 0;
2255
2256 return err;
2257 }
2258
2259 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2260 {
2261 struct buffer_head *bh;
2262 int err;
2263
2264 if ((recover && f2fs_readonly(sbi->sb)) ||
2265 bdev_read_only(sbi->sb->s_bdev)) {
2266 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2267 return -EROFS;
2268 }
2269
2270 /* write back-up superblock first */
2271 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
2272 if (!bh)
2273 return -EIO;
2274 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2275 brelse(bh);
2276
2277 /* if we are in recovery path, skip writing valid superblock */
2278 if (recover || err)
2279 return err;
2280
2281 /* write current valid superblock */
2282 bh = sb_getblk(sbi->sb, sbi->valid_super_block);
2283 if (!bh)
2284 return -EIO;
2285 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2286 brelse(bh);
2287 return err;
2288 }
2289
2290 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2291 {
2292 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2293 unsigned int max_devices = MAX_DEVICES;
2294 int i;
2295
2296 /* Initialize single device information */
2297 if (!RDEV(0).path[0]) {
2298 #ifdef CONFIG_BLK_DEV_ZONED
2299 if (!bdev_is_zoned(sbi->sb->s_bdev))
2300 return 0;
2301 max_devices = 1;
2302 #else
2303 return 0;
2304 #endif
2305 }
2306
2307 /*
2308 * Initialize multiple devices information, or single
2309 * zoned block device information.
2310 */
2311 sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info),
2312 GFP_KERNEL);
2313 if (!sbi->devs)
2314 return -ENOMEM;
2315
2316 for (i = 0; i < max_devices; i++) {
2317
2318 if (i > 0 && !RDEV(i).path[0])
2319 break;
2320
2321 if (max_devices == 1) {
2322 /* Single zoned block device mount */
2323 FDEV(0).bdev =
2324 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2325 sbi->sb->s_mode, sbi->sb->s_type);
2326 } else {
2327 /* Multi-device mount */
2328 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2329 FDEV(i).total_segments =
2330 le32_to_cpu(RDEV(i).total_segments);
2331 if (i == 0) {
2332 FDEV(i).start_blk = 0;
2333 FDEV(i).end_blk = FDEV(i).start_blk +
2334 (FDEV(i).total_segments <<
2335 sbi->log_blocks_per_seg) - 1 +
2336 le32_to_cpu(raw_super->segment0_blkaddr);
2337 } else {
2338 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2339 FDEV(i).end_blk = FDEV(i).start_blk +
2340 (FDEV(i).total_segments <<
2341 sbi->log_blocks_per_seg) - 1;
2342 }
2343 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2344 sbi->sb->s_mode, sbi->sb->s_type);
2345 }
2346 if (IS_ERR(FDEV(i).bdev))
2347 return PTR_ERR(FDEV(i).bdev);
2348
2349 /* to release errored devices */
2350 sbi->s_ndevs = i + 1;
2351
2352 #ifdef CONFIG_BLK_DEV_ZONED
2353 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2354 !f2fs_sb_mounted_blkzoned(sbi->sb)) {
2355 f2fs_msg(sbi->sb, KERN_ERR,
2356 "Zoned block device feature not enabled\n");
2357 return -EINVAL;
2358 }
2359 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2360 if (init_blkz_info(sbi, i)) {
2361 f2fs_msg(sbi->sb, KERN_ERR,
2362 "Failed to initialize F2FS blkzone information");
2363 return -EINVAL;
2364 }
2365 if (max_devices == 1)
2366 break;
2367 f2fs_msg(sbi->sb, KERN_INFO,
2368 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2369 i, FDEV(i).path,
2370 FDEV(i).total_segments,
2371 FDEV(i).start_blk, FDEV(i).end_blk,
2372 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2373 "Host-aware" : "Host-managed");
2374 continue;
2375 }
2376 #endif
2377 f2fs_msg(sbi->sb, KERN_INFO,
2378 "Mount Device [%2d]: %20s, %8u, %8x - %8x",
2379 i, FDEV(i).path,
2380 FDEV(i).total_segments,
2381 FDEV(i).start_blk, FDEV(i).end_blk);
2382 }
2383 f2fs_msg(sbi->sb, KERN_INFO,
2384 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2385 return 0;
2386 }
2387
2388 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2389 {
2390 struct f2fs_sb_info *sbi;
2391 struct f2fs_super_block *raw_super;
2392 struct inode *root;
2393 int err;
2394 bool retry = true, need_fsck = false;
2395 char *options = NULL;
2396 int recovery, i, valid_super_block;
2397 struct curseg_info *seg_i;
2398
2399 try_onemore:
2400 err = -EINVAL;
2401 raw_super = NULL;
2402 valid_super_block = -1;
2403 recovery = 0;
2404
2405 /* allocate memory for f2fs-specific super block info */
2406 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2407 if (!sbi)
2408 return -ENOMEM;
2409
2410 sbi->sb = sb;
2411
2412 /* Load the checksum driver */
2413 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2414 if (IS_ERR(sbi->s_chksum_driver)) {
2415 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2416 err = PTR_ERR(sbi->s_chksum_driver);
2417 sbi->s_chksum_driver = NULL;
2418 goto free_sbi;
2419 }
2420
2421 /* set a block size */
2422 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2423 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2424 goto free_sbi;
2425 }
2426
2427 err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2428 &recovery);
2429 if (err)
2430 goto free_sbi;
2431
2432 sb->s_fs_info = sbi;
2433 sbi->raw_super = raw_super;
2434
2435 /* precompute checksum seed for metadata */
2436 if (f2fs_sb_has_inode_chksum(sb))
2437 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2438 sizeof(raw_super->uuid));
2439
2440 /*
2441 * The BLKZONED feature indicates that the drive was formatted with
2442 * zone alignment optimization. This is optional for host-aware
2443 * devices, but mandatory for host-managed zoned block devices.
2444 */
2445 #ifndef CONFIG_BLK_DEV_ZONED
2446 if (f2fs_sb_mounted_blkzoned(sb)) {
2447 f2fs_msg(sb, KERN_ERR,
2448 "Zoned block device support is not enabled\n");
2449 err = -EOPNOTSUPP;
2450 goto free_sb_buf;
2451 }
2452 #endif
2453 default_options(sbi);
2454 /* parse mount options */
2455 options = kstrdup((const char *)data, GFP_KERNEL);
2456 if (data && !options) {
2457 err = -ENOMEM;
2458 goto free_sb_buf;
2459 }
2460
2461 err = parse_options(sb, options);
2462 if (err)
2463 goto free_options;
2464
2465 sbi->max_file_blocks = max_file_blocks();
2466 sb->s_maxbytes = sbi->max_file_blocks <<
2467 le32_to_cpu(raw_super->log_blocksize);
2468 sb->s_max_links = F2FS_LINK_MAX;
2469 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2470
2471 #ifdef CONFIG_QUOTA
2472 sb->dq_op = &f2fs_quota_operations;
2473 if (f2fs_sb_has_quota_ino(sb))
2474 sb->s_qcop = &dquot_quotactl_sysfile_ops;
2475 else
2476 sb->s_qcop = &f2fs_quotactl_ops;
2477 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2478 #endif
2479
2480 sb->s_op = &f2fs_sops;
2481 sb->s_cop = &f2fs_cryptops;
2482 sb->s_xattr = f2fs_xattr_handlers;
2483 sb->s_export_op = &f2fs_export_ops;
2484 sb->s_magic = F2FS_SUPER_MAGIC;
2485 sb->s_time_gran = 1;
2486 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
2487 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
2488 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2489
2490 /* init f2fs-specific super block info */
2491 sbi->valid_super_block = valid_super_block;
2492 mutex_init(&sbi->gc_mutex);
2493 mutex_init(&sbi->cp_mutex);
2494 init_rwsem(&sbi->node_write);
2495 init_rwsem(&sbi->node_change);
2496
2497 /* disallow all the data/node/meta page writes */
2498 set_sbi_flag(sbi, SBI_POR_DOING);
2499 spin_lock_init(&sbi->stat_lock);
2500
2501 /* init iostat info */
2502 spin_lock_init(&sbi->iostat_lock);
2503 sbi->iostat_enable = false;
2504
2505 for (i = 0; i < NR_PAGE_TYPE; i++) {
2506 int n = (i == META) ? 1: NR_TEMP_TYPE;
2507 int j;
2508
2509 sbi->write_io[i] = kmalloc(n * sizeof(struct f2fs_bio_info),
2510 GFP_KERNEL);
2511 if (!sbi->write_io[i]) {
2512 err = -ENOMEM;
2513 goto free_options;
2514 }
2515
2516 for (j = HOT; j < n; j++) {
2517 init_rwsem(&sbi->write_io[i][j].io_rwsem);
2518 sbi->write_io[i][j].sbi = sbi;
2519 sbi->write_io[i][j].bio = NULL;
2520 spin_lock_init(&sbi->write_io[i][j].io_lock);
2521 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2522 }
2523 }
2524
2525 init_rwsem(&sbi->cp_rwsem);
2526 init_waitqueue_head(&sbi->cp_wait);
2527 init_sb_info(sbi);
2528
2529 err = init_percpu_info(sbi);
2530 if (err)
2531 goto free_options;
2532
2533 if (F2FS_IO_SIZE(sbi) > 1) {
2534 sbi->write_io_dummy =
2535 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2536 if (!sbi->write_io_dummy) {
2537 err = -ENOMEM;
2538 goto free_options;
2539 }
2540 }
2541
2542 /* get an inode for meta space */
2543 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2544 if (IS_ERR(sbi->meta_inode)) {
2545 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2546 err = PTR_ERR(sbi->meta_inode);
2547 goto free_io_dummy;
2548 }
2549
2550 err = get_valid_checkpoint(sbi);
2551 if (err) {
2552 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2553 goto free_meta_inode;
2554 }
2555
2556 /* Initialize device list */
2557 err = f2fs_scan_devices(sbi);
2558 if (err) {
2559 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2560 goto free_devices;
2561 }
2562
2563 sbi->total_valid_node_count =
2564 le32_to_cpu(sbi->ckpt->valid_node_count);
2565 percpu_counter_set(&sbi->total_valid_inode_count,
2566 le32_to_cpu(sbi->ckpt->valid_inode_count));
2567 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2568 sbi->total_valid_block_count =
2569 le64_to_cpu(sbi->ckpt->valid_block_count);
2570 sbi->last_valid_block_count = sbi->total_valid_block_count;
2571 sbi->reserved_blocks = 0;
2572 sbi->current_reserved_blocks = 0;
2573
2574 for (i = 0; i < NR_INODE_TYPE; i++) {
2575 INIT_LIST_HEAD(&sbi->inode_list[i]);
2576 spin_lock_init(&sbi->inode_lock[i]);
2577 }
2578
2579 init_extent_cache_info(sbi);
2580
2581 init_ino_entry_info(sbi);
2582
2583 /* setup f2fs internal modules */
2584 err = build_segment_manager(sbi);
2585 if (err) {
2586 f2fs_msg(sb, KERN_ERR,
2587 "Failed to initialize F2FS segment manager");
2588 goto free_sm;
2589 }
2590 err = build_node_manager(sbi);
2591 if (err) {
2592 f2fs_msg(sb, KERN_ERR,
2593 "Failed to initialize F2FS node manager");
2594 goto free_nm;
2595 }
2596
2597 /* For write statistics */
2598 if (sb->s_bdev->bd_part)
2599 sbi->sectors_written_start =
2600 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2601
2602 /* Read accumulated write IO statistics if exists */
2603 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2604 if (__exist_node_summaries(sbi))
2605 sbi->kbytes_written =
2606 le64_to_cpu(seg_i->journal->info.kbytes_written);
2607
2608 build_gc_manager(sbi);
2609
2610 /* get an inode for node space */
2611 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2612 if (IS_ERR(sbi->node_inode)) {
2613 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2614 err = PTR_ERR(sbi->node_inode);
2615 goto free_nm;
2616 }
2617
2618 f2fs_join_shrinker(sbi);
2619
2620 err = f2fs_build_stats(sbi);
2621 if (err)
2622 goto free_nm;
2623
2624 /* read root inode and dentry */
2625 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2626 if (IS_ERR(root)) {
2627 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2628 err = PTR_ERR(root);
2629 goto free_node_inode;
2630 }
2631 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2632 iput(root);
2633 err = -EINVAL;
2634 goto free_node_inode;
2635 }
2636
2637 sb->s_root = d_make_root(root); /* allocate root dentry */
2638 if (!sb->s_root) {
2639 err = -ENOMEM;
2640 goto free_root_inode;
2641 }
2642
2643 err = f2fs_register_sysfs(sbi);
2644 if (err)
2645 goto free_root_inode;
2646
2647 #ifdef CONFIG_QUOTA
2648 /*
2649 * Turn on quotas which were not enabled for read-only mounts if
2650 * filesystem has quota feature, so that they are updated correctly.
2651 */
2652 if (f2fs_sb_has_quota_ino(sb) && !sb_rdonly(sb)) {
2653 err = f2fs_enable_quotas(sb);
2654 if (err) {
2655 f2fs_msg(sb, KERN_ERR,
2656 "Cannot turn on quotas: error %d", err);
2657 goto free_sysfs;
2658 }
2659 }
2660 #endif
2661 /* if there are nt orphan nodes free them */
2662 err = recover_orphan_inodes(sbi);
2663 if (err)
2664 goto free_meta;
2665
2666 /* recover fsynced data */
2667 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2668 /*
2669 * mount should be failed, when device has readonly mode, and
2670 * previous checkpoint was not done by clean system shutdown.
2671 */
2672 if (bdev_read_only(sb->s_bdev) &&
2673 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2674 err = -EROFS;
2675 goto free_meta;
2676 }
2677
2678 if (need_fsck)
2679 set_sbi_flag(sbi, SBI_NEED_FSCK);
2680
2681 if (!retry)
2682 goto skip_recovery;
2683
2684 err = recover_fsync_data(sbi, false);
2685 if (err < 0) {
2686 need_fsck = true;
2687 f2fs_msg(sb, KERN_ERR,
2688 "Cannot recover all fsync data errno=%d", err);
2689 goto free_meta;
2690 }
2691 } else {
2692 err = recover_fsync_data(sbi, true);
2693
2694 if (!f2fs_readonly(sb) && err > 0) {
2695 err = -EINVAL;
2696 f2fs_msg(sb, KERN_ERR,
2697 "Need to recover fsync data");
2698 goto free_meta;
2699 }
2700 }
2701 skip_recovery:
2702 /* recover_fsync_data() cleared this already */
2703 clear_sbi_flag(sbi, SBI_POR_DOING);
2704
2705 /*
2706 * If filesystem is not mounted as read-only then
2707 * do start the gc_thread.
2708 */
2709 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2710 /* After POR, we can run background GC thread.*/
2711 err = start_gc_thread(sbi);
2712 if (err)
2713 goto free_meta;
2714 }
2715 kfree(options);
2716
2717 /* recover broken superblock */
2718 if (recovery) {
2719 err = f2fs_commit_super(sbi, true);
2720 f2fs_msg(sb, KERN_INFO,
2721 "Try to recover %dth superblock, ret: %d",
2722 sbi->valid_super_block ? 1 : 2, err);
2723 }
2724
2725 f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
2726 cur_cp_version(F2FS_CKPT(sbi)));
2727 f2fs_update_time(sbi, CP_TIME);
2728 f2fs_update_time(sbi, REQ_TIME);
2729 return 0;
2730
2731 free_meta:
2732 #ifdef CONFIG_QUOTA
2733 if (f2fs_sb_has_quota_ino(sb) && !sb_rdonly(sb))
2734 f2fs_quota_off_umount(sbi->sb);
2735 #endif
2736 f2fs_sync_inode_meta(sbi);
2737 /*
2738 * Some dirty meta pages can be produced by recover_orphan_inodes()
2739 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2740 * followed by write_checkpoint() through f2fs_write_node_pages(), which
2741 * falls into an infinite loop in sync_meta_pages().
2742 */
2743 truncate_inode_pages_final(META_MAPPING(sbi));
2744 #ifdef CONFIG_QUOTA
2745 free_sysfs:
2746 #endif
2747 f2fs_unregister_sysfs(sbi);
2748 free_root_inode:
2749 dput(sb->s_root);
2750 sb->s_root = NULL;
2751 free_node_inode:
2752 truncate_inode_pages_final(NODE_MAPPING(sbi));
2753 mutex_lock(&sbi->umount_mutex);
2754 release_ino_entry(sbi, true);
2755 f2fs_leave_shrinker(sbi);
2756 iput(sbi->node_inode);
2757 mutex_unlock(&sbi->umount_mutex);
2758 f2fs_destroy_stats(sbi);
2759 free_nm:
2760 destroy_node_manager(sbi);
2761 free_sm:
2762 destroy_segment_manager(sbi);
2763 free_devices:
2764 destroy_device_list(sbi);
2765 kfree(sbi->ckpt);
2766 free_meta_inode:
2767 make_bad_inode(sbi->meta_inode);
2768 iput(sbi->meta_inode);
2769 free_io_dummy:
2770 mempool_destroy(sbi->write_io_dummy);
2771 free_options:
2772 for (i = 0; i < NR_PAGE_TYPE; i++)
2773 kfree(sbi->write_io[i]);
2774 destroy_percpu_info(sbi);
2775 #ifdef CONFIG_QUOTA
2776 for (i = 0; i < MAXQUOTAS; i++)
2777 kfree(sbi->s_qf_names[i]);
2778 #endif
2779 kfree(options);
2780 free_sb_buf:
2781 kfree(raw_super);
2782 free_sbi:
2783 if (sbi->s_chksum_driver)
2784 crypto_free_shash(sbi->s_chksum_driver);
2785 kfree(sbi);
2786
2787 /* give only one another chance */
2788 if (retry) {
2789 retry = false;
2790 shrink_dcache_sb(sb);
2791 goto try_onemore;
2792 }
2793 return err;
2794 }
2795
2796 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
2797 const char *dev_name, void *data)
2798 {
2799 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
2800 }
2801
2802 static void kill_f2fs_super(struct super_block *sb)
2803 {
2804 if (sb->s_root) {
2805 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
2806 stop_gc_thread(F2FS_SB(sb));
2807 stop_discard_thread(F2FS_SB(sb));
2808 }
2809 kill_block_super(sb);
2810 }
2811
2812 static struct file_system_type f2fs_fs_type = {
2813 .owner = THIS_MODULE,
2814 .name = "f2fs",
2815 .mount = f2fs_mount,
2816 .kill_sb = kill_f2fs_super,
2817 .fs_flags = FS_REQUIRES_DEV,
2818 };
2819 MODULE_ALIAS_FS("f2fs");
2820
2821 static int __init init_inodecache(void)
2822 {
2823 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
2824 sizeof(struct f2fs_inode_info), 0,
2825 SLAB_RECLAIM_ACCOUNT, NULL);
2826 if (!f2fs_inode_cachep)
2827 return -ENOMEM;
2828 return 0;
2829 }
2830
2831 static void destroy_inodecache(void)
2832 {
2833 /*
2834 * Make sure all delayed rcu free inodes are flushed before we
2835 * destroy cache.
2836 */
2837 rcu_barrier();
2838 kmem_cache_destroy(f2fs_inode_cachep);
2839 }
2840
2841 static int __init init_f2fs_fs(void)
2842 {
2843 int err;
2844
2845 f2fs_build_trace_ios();
2846
2847 err = init_inodecache();
2848 if (err)
2849 goto fail;
2850 err = create_node_manager_caches();
2851 if (err)
2852 goto free_inodecache;
2853 err = create_segment_manager_caches();
2854 if (err)
2855 goto free_node_manager_caches;
2856 err = create_checkpoint_caches();
2857 if (err)
2858 goto free_segment_manager_caches;
2859 err = create_extent_cache();
2860 if (err)
2861 goto free_checkpoint_caches;
2862 err = f2fs_init_sysfs();
2863 if (err)
2864 goto free_extent_cache;
2865 err = register_shrinker(&f2fs_shrinker_info);
2866 if (err)
2867 goto free_sysfs;
2868 err = register_filesystem(&f2fs_fs_type);
2869 if (err)
2870 goto free_shrinker;
2871 err = f2fs_create_root_stats();
2872 if (err)
2873 goto free_filesystem;
2874 return 0;
2875
2876 free_filesystem:
2877 unregister_filesystem(&f2fs_fs_type);
2878 free_shrinker:
2879 unregister_shrinker(&f2fs_shrinker_info);
2880 free_sysfs:
2881 f2fs_exit_sysfs();
2882 free_extent_cache:
2883 destroy_extent_cache();
2884 free_checkpoint_caches:
2885 destroy_checkpoint_caches();
2886 free_segment_manager_caches:
2887 destroy_segment_manager_caches();
2888 free_node_manager_caches:
2889 destroy_node_manager_caches();
2890 free_inodecache:
2891 destroy_inodecache();
2892 fail:
2893 return err;
2894 }
2895
2896 static void __exit exit_f2fs_fs(void)
2897 {
2898 f2fs_destroy_root_stats();
2899 unregister_filesystem(&f2fs_fs_type);
2900 unregister_shrinker(&f2fs_shrinker_info);
2901 f2fs_exit_sysfs();
2902 destroy_extent_cache();
2903 destroy_checkpoint_caches();
2904 destroy_segment_manager_caches();
2905 destroy_node_manager_caches();
2906 destroy_inodecache();
2907 f2fs_destroy_trace_ios();
2908 }
2909
2910 module_init(init_f2fs_fs)
2911 module_exit(exit_f2fs_fs)
2912
2913 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2914 MODULE_DESCRIPTION("Flash Friendly File System");
2915 MODULE_LICENSE("GPL");
2916