f2fs: merge flags in struct f2fs_sb_info
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / fs / f2fs / segment.h
1 /*
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/blkdev.h>
12
13 /* constant macro */
14 #define NULL_SEGNO ((unsigned int)(~0))
15 #define NULL_SECNO ((unsigned int)(~0))
16
17 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */
18
19 /* L: Logical segment # in volume, R: Relative segment # in main area */
20 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno)
21 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno)
22
23 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA)
24 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE)
25
26 #define IS_CURSEG(sbi, seg) \
27 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \
28 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \
29 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \
30 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \
31 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \
32 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
33
34 #define IS_CURSEC(sbi, secno) \
35 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \
36 sbi->segs_per_sec) || \
37 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \
38 sbi->segs_per_sec) || \
39 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \
40 sbi->segs_per_sec) || \
41 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \
42 sbi->segs_per_sec) || \
43 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \
44 sbi->segs_per_sec) || \
45 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \
46 sbi->segs_per_sec)) \
47
48 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr)
49 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr)
50
51 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments)
52 #define MAIN_SECS(sbi) (sbi->total_sections)
53
54 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count)
55 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
56
57 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
58 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \
59 sbi->log_blocks_per_seg))
60
61 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \
62 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
63
64 #define NEXT_FREE_BLKADDR(sbi, curseg) \
65 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
66
67 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi))
68 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \
69 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
70 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \
71 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
72
73 #define GET_SEGNO(sbi, blk_addr) \
74 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \
75 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \
76 GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
77 #define GET_SECNO(sbi, segno) \
78 ((segno) / sbi->segs_per_sec)
79 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \
80 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
81
82 #define GET_SUM_BLOCK(sbi, segno) \
83 ((sbi->sm_info->ssa_blkaddr) + segno)
84
85 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
86 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
87
88 #define SIT_ENTRY_OFFSET(sit_i, segno) \
89 (segno % sit_i->sents_per_block)
90 #define SIT_BLOCK_OFFSET(segno) \
91 (segno / SIT_ENTRY_PER_BLOCK)
92 #define START_SEGNO(segno) \
93 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
94 #define SIT_BLK_CNT(sbi) \
95 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
96 #define f2fs_bitmap_size(nr) \
97 (BITS_TO_LONGS(nr) * sizeof(unsigned long))
98
99 #define SECTOR_FROM_BLOCK(blk_addr) \
100 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
101 #define SECTOR_TO_BLOCK(sectors) \
102 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
103 #define MAX_BIO_BLOCKS(sbi) \
104 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
105
106 /*
107 * indicate a block allocation direction: RIGHT and LEFT.
108 * RIGHT means allocating new sections towards the end of volume.
109 * LEFT means the opposite direction.
110 */
111 enum {
112 ALLOC_RIGHT = 0,
113 ALLOC_LEFT
114 };
115
116 /*
117 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
118 * LFS writes data sequentially with cleaning operations.
119 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
120 */
121 enum {
122 LFS = 0,
123 SSR
124 };
125
126 /*
127 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
128 * GC_CB is based on cost-benefit algorithm.
129 * GC_GREEDY is based on greedy algorithm.
130 */
131 enum {
132 GC_CB = 0,
133 GC_GREEDY
134 };
135
136 /*
137 * BG_GC means the background cleaning job.
138 * FG_GC means the on-demand cleaning job.
139 */
140 enum {
141 BG_GC = 0,
142 FG_GC
143 };
144
145 /* for a function parameter to select a victim segment */
146 struct victim_sel_policy {
147 int alloc_mode; /* LFS or SSR */
148 int gc_mode; /* GC_CB or GC_GREEDY */
149 unsigned long *dirty_segmap; /* dirty segment bitmap */
150 unsigned int max_search; /* maximum # of segments to search */
151 unsigned int offset; /* last scanned bitmap offset */
152 unsigned int ofs_unit; /* bitmap search unit */
153 unsigned int min_cost; /* minimum cost */
154 unsigned int min_segno; /* segment # having min. cost */
155 };
156
157 struct seg_entry {
158 unsigned short valid_blocks; /* # of valid blocks */
159 unsigned char *cur_valid_map; /* validity bitmap of blocks */
160 /*
161 * # of valid blocks and the validity bitmap stored in the the last
162 * checkpoint pack. This information is used by the SSR mode.
163 */
164 unsigned short ckpt_valid_blocks;
165 unsigned char *ckpt_valid_map;
166 unsigned char type; /* segment type like CURSEG_XXX_TYPE */
167 unsigned long long mtime; /* modification time of the segment */
168 };
169
170 struct sec_entry {
171 unsigned int valid_blocks; /* # of valid blocks in a section */
172 };
173
174 struct segment_allocation {
175 void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
176 };
177
178 struct inmem_pages {
179 struct list_head list;
180 struct page *page;
181 };
182
183 struct sit_info {
184 const struct segment_allocation *s_ops;
185
186 block_t sit_base_addr; /* start block address of SIT area */
187 block_t sit_blocks; /* # of blocks used by SIT area */
188 block_t written_valid_blocks; /* # of valid blocks in main area */
189 char *sit_bitmap; /* SIT bitmap pointer */
190 unsigned int bitmap_size; /* SIT bitmap size */
191
192 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */
193 unsigned int dirty_sentries; /* # of dirty sentries */
194 unsigned int sents_per_block; /* # of SIT entries per block */
195 struct mutex sentry_lock; /* to protect SIT cache */
196 struct seg_entry *sentries; /* SIT segment-level cache */
197 struct sec_entry *sec_entries; /* SIT section-level cache */
198
199 /* for cost-benefit algorithm in cleaning procedure */
200 unsigned long long elapsed_time; /* elapsed time after mount */
201 unsigned long long mounted_time; /* mount time */
202 unsigned long long min_mtime; /* min. modification time */
203 unsigned long long max_mtime; /* max. modification time */
204 };
205
206 struct free_segmap_info {
207 unsigned int start_segno; /* start segment number logically */
208 unsigned int free_segments; /* # of free segments */
209 unsigned int free_sections; /* # of free sections */
210 rwlock_t segmap_lock; /* free segmap lock */
211 unsigned long *free_segmap; /* free segment bitmap */
212 unsigned long *free_secmap; /* free section bitmap */
213 };
214
215 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
216 enum dirty_type {
217 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */
218 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */
219 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */
220 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */
221 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */
222 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */
223 DIRTY, /* to count # of dirty segments */
224 PRE, /* to count # of entirely obsolete segments */
225 NR_DIRTY_TYPE
226 };
227
228 struct dirty_seglist_info {
229 const struct victim_selection *v_ops; /* victim selction operation */
230 unsigned long *dirty_segmap[NR_DIRTY_TYPE];
231 struct mutex seglist_lock; /* lock for segment bitmaps */
232 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */
233 unsigned long *victim_secmap; /* background GC victims */
234 };
235
236 /* victim selection function for cleaning and SSR */
237 struct victim_selection {
238 int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
239 int, int, char);
240 };
241
242 /* for active log information */
243 struct curseg_info {
244 struct mutex curseg_mutex; /* lock for consistency */
245 struct f2fs_summary_block *sum_blk; /* cached summary block */
246 unsigned char alloc_type; /* current allocation type */
247 unsigned int segno; /* current segment number */
248 unsigned short next_blkoff; /* next block offset to write */
249 unsigned int zone; /* current zone number */
250 unsigned int next_segno; /* preallocated segment */
251 };
252
253 struct sit_entry_set {
254 struct list_head set_list; /* link with all sit sets */
255 unsigned int start_segno; /* start segno of sits in set */
256 unsigned int entry_cnt; /* the # of sit entries in set */
257 };
258
259 /*
260 * inline functions
261 */
262 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
263 {
264 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
265 }
266
267 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
268 unsigned int segno)
269 {
270 struct sit_info *sit_i = SIT_I(sbi);
271 return &sit_i->sentries[segno];
272 }
273
274 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
275 unsigned int segno)
276 {
277 struct sit_info *sit_i = SIT_I(sbi);
278 return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
279 }
280
281 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
282 unsigned int segno, int section)
283 {
284 /*
285 * In order to get # of valid blocks in a section instantly from many
286 * segments, f2fs manages two counting structures separately.
287 */
288 if (section > 1)
289 return get_sec_entry(sbi, segno)->valid_blocks;
290 else
291 return get_seg_entry(sbi, segno)->valid_blocks;
292 }
293
294 static inline void seg_info_from_raw_sit(struct seg_entry *se,
295 struct f2fs_sit_entry *rs)
296 {
297 se->valid_blocks = GET_SIT_VBLOCKS(rs);
298 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
299 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
300 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
301 se->type = GET_SIT_TYPE(rs);
302 se->mtime = le64_to_cpu(rs->mtime);
303 }
304
305 static inline void seg_info_to_raw_sit(struct seg_entry *se,
306 struct f2fs_sit_entry *rs)
307 {
308 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
309 se->valid_blocks;
310 rs->vblocks = cpu_to_le16(raw_vblocks);
311 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
312 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
313 se->ckpt_valid_blocks = se->valid_blocks;
314 rs->mtime = cpu_to_le64(se->mtime);
315 }
316
317 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
318 unsigned int max, unsigned int segno)
319 {
320 unsigned int ret;
321 read_lock(&free_i->segmap_lock);
322 ret = find_next_bit(free_i->free_segmap, max, segno);
323 read_unlock(&free_i->segmap_lock);
324 return ret;
325 }
326
327 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
328 {
329 struct free_segmap_info *free_i = FREE_I(sbi);
330 unsigned int secno = segno / sbi->segs_per_sec;
331 unsigned int start_segno = secno * sbi->segs_per_sec;
332 unsigned int next;
333
334 write_lock(&free_i->segmap_lock);
335 clear_bit(segno, free_i->free_segmap);
336 free_i->free_segments++;
337
338 next = find_next_bit(free_i->free_segmap, MAIN_SEGS(sbi), start_segno);
339 if (next >= start_segno + sbi->segs_per_sec) {
340 clear_bit(secno, free_i->free_secmap);
341 free_i->free_sections++;
342 }
343 write_unlock(&free_i->segmap_lock);
344 }
345
346 static inline void __set_inuse(struct f2fs_sb_info *sbi,
347 unsigned int segno)
348 {
349 struct free_segmap_info *free_i = FREE_I(sbi);
350 unsigned int secno = segno / sbi->segs_per_sec;
351 set_bit(segno, free_i->free_segmap);
352 free_i->free_segments--;
353 if (!test_and_set_bit(secno, free_i->free_secmap))
354 free_i->free_sections--;
355 }
356
357 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
358 unsigned int segno)
359 {
360 struct free_segmap_info *free_i = FREE_I(sbi);
361 unsigned int secno = segno / sbi->segs_per_sec;
362 unsigned int start_segno = secno * sbi->segs_per_sec;
363 unsigned int next;
364
365 write_lock(&free_i->segmap_lock);
366 if (test_and_clear_bit(segno, free_i->free_segmap)) {
367 free_i->free_segments++;
368
369 next = find_next_bit(free_i->free_segmap,
370 start_segno + sbi->segs_per_sec, start_segno);
371 if (next >= start_segno + sbi->segs_per_sec) {
372 if (test_and_clear_bit(secno, free_i->free_secmap))
373 free_i->free_sections++;
374 }
375 }
376 write_unlock(&free_i->segmap_lock);
377 }
378
379 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
380 unsigned int segno)
381 {
382 struct free_segmap_info *free_i = FREE_I(sbi);
383 unsigned int secno = segno / sbi->segs_per_sec;
384 write_lock(&free_i->segmap_lock);
385 if (!test_and_set_bit(segno, free_i->free_segmap)) {
386 free_i->free_segments--;
387 if (!test_and_set_bit(secno, free_i->free_secmap))
388 free_i->free_sections--;
389 }
390 write_unlock(&free_i->segmap_lock);
391 }
392
393 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
394 void *dst_addr)
395 {
396 struct sit_info *sit_i = SIT_I(sbi);
397 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
398 }
399
400 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
401 {
402 return SIT_I(sbi)->written_valid_blocks;
403 }
404
405 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
406 {
407 return FREE_I(sbi)->free_segments;
408 }
409
410 static inline int reserved_segments(struct f2fs_sb_info *sbi)
411 {
412 return SM_I(sbi)->reserved_segments;
413 }
414
415 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
416 {
417 return FREE_I(sbi)->free_sections;
418 }
419
420 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
421 {
422 return DIRTY_I(sbi)->nr_dirty[PRE];
423 }
424
425 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
426 {
427 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
428 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
429 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
430 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
431 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
432 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
433 }
434
435 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
436 {
437 return SM_I(sbi)->ovp_segments;
438 }
439
440 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
441 {
442 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
443 }
444
445 static inline int reserved_sections(struct f2fs_sb_info *sbi)
446 {
447 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
448 }
449
450 static inline bool need_SSR(struct f2fs_sb_info *sbi)
451 {
452 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
453 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
454 return free_sections(sbi) <= (node_secs + 2 * dent_secs +
455 reserved_sections(sbi) + 1);
456 }
457
458 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
459 {
460 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
461 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
462
463 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
464 return false;
465
466 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
467 reserved_sections(sbi));
468 }
469
470 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
471 {
472 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
473 }
474
475 static inline int utilization(struct f2fs_sb_info *sbi)
476 {
477 return div_u64((u64)valid_user_blocks(sbi) * 100,
478 sbi->user_block_count);
479 }
480
481 /*
482 * Sometimes f2fs may be better to drop out-of-place update policy.
483 * And, users can control the policy through sysfs entries.
484 * There are five policies with triggering conditions as follows.
485 * F2FS_IPU_FORCE - all the time,
486 * F2FS_IPU_SSR - if SSR mode is activated,
487 * F2FS_IPU_UTIL - if FS utilization is over threashold,
488 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
489 * threashold,
490 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
491 * storages. IPU will be triggered only if the # of dirty
492 * pages over min_fsync_blocks.
493 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
494 */
495 #define DEF_MIN_IPU_UTIL 70
496 #define DEF_MIN_FSYNC_BLOCKS 8
497
498 enum {
499 F2FS_IPU_FORCE,
500 F2FS_IPU_SSR,
501 F2FS_IPU_UTIL,
502 F2FS_IPU_SSR_UTIL,
503 F2FS_IPU_FSYNC,
504 };
505
506 static inline bool need_inplace_update(struct inode *inode)
507 {
508 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
509 unsigned int policy = SM_I(sbi)->ipu_policy;
510
511 /* IPU can be done only for the user data */
512 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
513 return false;
514
515 if (policy & (0x1 << F2FS_IPU_FORCE))
516 return true;
517 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
518 return true;
519 if (policy & (0x1 << F2FS_IPU_UTIL) &&
520 utilization(sbi) > SM_I(sbi)->min_ipu_util)
521 return true;
522 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
523 utilization(sbi) > SM_I(sbi)->min_ipu_util)
524 return true;
525
526 /* this is only set during fdatasync */
527 if (policy & (0x1 << F2FS_IPU_FSYNC) &&
528 is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
529 return true;
530
531 return false;
532 }
533
534 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
535 int type)
536 {
537 struct curseg_info *curseg = CURSEG_I(sbi, type);
538 return curseg->segno;
539 }
540
541 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
542 int type)
543 {
544 struct curseg_info *curseg = CURSEG_I(sbi, type);
545 return curseg->alloc_type;
546 }
547
548 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
549 {
550 struct curseg_info *curseg = CURSEG_I(sbi, type);
551 return curseg->next_blkoff;
552 }
553
554 #ifdef CONFIG_F2FS_CHECK_FS
555 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
556 {
557 BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
558 }
559
560 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
561 {
562 BUG_ON(blk_addr < SEG0_BLKADDR(sbi));
563 BUG_ON(blk_addr >= MAX_BLKADDR(sbi));
564 }
565
566 /*
567 * Summary block is always treated as an invalid block
568 */
569 static inline void check_block_count(struct f2fs_sb_info *sbi,
570 int segno, struct f2fs_sit_entry *raw_sit)
571 {
572 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false;
573 int valid_blocks = 0;
574 int cur_pos = 0, next_pos;
575
576 /* check segment usage */
577 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
578
579 /* check boundary of a given segment number */
580 BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
581
582 /* check bitmap with valid block count */
583 do {
584 if (is_valid) {
585 next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
586 sbi->blocks_per_seg,
587 cur_pos);
588 valid_blocks += next_pos - cur_pos;
589 } else
590 next_pos = find_next_bit_le(&raw_sit->valid_map,
591 sbi->blocks_per_seg,
592 cur_pos);
593 cur_pos = next_pos;
594 is_valid = !is_valid;
595 } while (cur_pos < sbi->blocks_per_seg);
596 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
597 }
598 #else
599 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
600 {
601 if (segno > TOTAL_SEGS(sbi) - 1)
602 set_sbi_flag(sbi, SBI_NEED_FSCK);
603 }
604
605 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
606 {
607 if (blk_addr < SEG0_BLKADDR(sbi) || blk_addr >= MAX_BLKADDR(sbi))
608 set_sbi_flag(sbi, SBI_NEED_FSCK);
609 }
610
611 /*
612 * Summary block is always treated as an invalid block
613 */
614 static inline void check_block_count(struct f2fs_sb_info *sbi,
615 int segno, struct f2fs_sit_entry *raw_sit)
616 {
617 /* check segment usage */
618 if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
619 set_sbi_flag(sbi, SBI_NEED_FSCK);
620
621 /* check boundary of a given segment number */
622 if (segno > TOTAL_SEGS(sbi) - 1)
623 set_sbi_flag(sbi, SBI_NEED_FSCK);
624 }
625 #endif
626
627 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
628 unsigned int start)
629 {
630 struct sit_info *sit_i = SIT_I(sbi);
631 unsigned int offset = SIT_BLOCK_OFFSET(start);
632 block_t blk_addr = sit_i->sit_base_addr + offset;
633
634 check_seg_range(sbi, start);
635
636 /* calculate sit block address */
637 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
638 blk_addr += sit_i->sit_blocks;
639
640 return blk_addr;
641 }
642
643 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
644 pgoff_t block_addr)
645 {
646 struct sit_info *sit_i = SIT_I(sbi);
647 block_addr -= sit_i->sit_base_addr;
648 if (block_addr < sit_i->sit_blocks)
649 block_addr += sit_i->sit_blocks;
650 else
651 block_addr -= sit_i->sit_blocks;
652
653 return block_addr + sit_i->sit_base_addr;
654 }
655
656 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
657 {
658 unsigned int block_off = SIT_BLOCK_OFFSET(start);
659
660 f2fs_change_bit(block_off, sit_i->sit_bitmap);
661 }
662
663 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
664 {
665 struct sit_info *sit_i = SIT_I(sbi);
666 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
667 sit_i->mounted_time;
668 }
669
670 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
671 unsigned int ofs_in_node, unsigned char version)
672 {
673 sum->nid = cpu_to_le32(nid);
674 sum->ofs_in_node = cpu_to_le16(ofs_in_node);
675 sum->version = version;
676 }
677
678 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
679 {
680 return __start_cp_addr(sbi) +
681 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
682 }
683
684 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
685 {
686 return __start_cp_addr(sbi) +
687 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
688 - (base + 1) + type;
689 }
690
691 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
692 {
693 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
694 return true;
695 return false;
696 }
697
698 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
699 {
700 struct block_device *bdev = sbi->sb->s_bdev;
701 struct request_queue *q = bdev_get_queue(bdev);
702 return SECTOR_TO_BLOCK(queue_max_sectors(q));
703 }
704
705 /*
706 * It is very important to gather dirty pages and write at once, so that we can
707 * submit a big bio without interfering other data writes.
708 * By default, 512 pages for directory data,
709 * 512 pages (2MB) * 3 for three types of nodes, and
710 * max_bio_blocks for meta are set.
711 */
712 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
713 {
714 if (sbi->sb->s_bdi->dirty_exceeded)
715 return 0;
716
717 if (type == DATA)
718 return sbi->blocks_per_seg;
719 else if (type == NODE)
720 return 3 * sbi->blocks_per_seg;
721 else if (type == META)
722 return MAX_BIO_BLOCKS(sbi);
723 else
724 return 0;
725 }
726
727 /*
728 * When writing pages, it'd better align nr_to_write for segment size.
729 */
730 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
731 struct writeback_control *wbc)
732 {
733 long nr_to_write, desired;
734
735 if (wbc->sync_mode != WB_SYNC_NONE)
736 return 0;
737
738 nr_to_write = wbc->nr_to_write;
739
740 if (type == DATA)
741 desired = 4096;
742 else if (type == NODE)
743 desired = 3 * max_hw_blocks(sbi);
744 else
745 desired = MAX_BIO_BLOCKS(sbi);
746
747 wbc->nr_to_write = desired;
748 return desired - nr_to_write;
749 }