c117e0913f2a3b4a7c2573fc4fd2ece85f31f075
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / f2fs / segment.c
1 /*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 #include <linux/freezer.h>
20 #include <linux/sched/signal.h>
21
22 #include "f2fs.h"
23 #include "segment.h"
24 #include "node.h"
25 #include "gc.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28
29 #define __reverse_ffz(x) __reverse_ffs(~(x))
30
31 static struct kmem_cache *discard_entry_slab;
32 static struct kmem_cache *discard_cmd_slab;
33 static struct kmem_cache *sit_entry_set_slab;
34 static struct kmem_cache *inmem_entry_slab;
35
36 static unsigned long __reverse_ulong(unsigned char *str)
37 {
38 unsigned long tmp = 0;
39 int shift = 24, idx = 0;
40
41 #if BITS_PER_LONG == 64
42 shift = 56;
43 #endif
44 while (shift >= 0) {
45 tmp |= (unsigned long)str[idx++] << shift;
46 shift -= BITS_PER_BYTE;
47 }
48 return tmp;
49 }
50
51 /*
52 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
53 * MSB and LSB are reversed in a byte by f2fs_set_bit.
54 */
55 static inline unsigned long __reverse_ffs(unsigned long word)
56 {
57 int num = 0;
58
59 #if BITS_PER_LONG == 64
60 if ((word & 0xffffffff00000000UL) == 0)
61 num += 32;
62 else
63 word >>= 32;
64 #endif
65 if ((word & 0xffff0000) == 0)
66 num += 16;
67 else
68 word >>= 16;
69
70 if ((word & 0xff00) == 0)
71 num += 8;
72 else
73 word >>= 8;
74
75 if ((word & 0xf0) == 0)
76 num += 4;
77 else
78 word >>= 4;
79
80 if ((word & 0xc) == 0)
81 num += 2;
82 else
83 word >>= 2;
84
85 if ((word & 0x2) == 0)
86 num += 1;
87 return num;
88 }
89
90 /*
91 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
92 * f2fs_set_bit makes MSB and LSB reversed in a byte.
93 * @size must be integral times of unsigned long.
94 * Example:
95 * MSB <--> LSB
96 * f2fs_set_bit(0, bitmap) => 1000 0000
97 * f2fs_set_bit(7, bitmap) => 0000 0001
98 */
99 static unsigned long __find_rev_next_bit(const unsigned long *addr,
100 unsigned long size, unsigned long offset)
101 {
102 const unsigned long *p = addr + BIT_WORD(offset);
103 unsigned long result = size;
104 unsigned long tmp;
105
106 if (offset >= size)
107 return size;
108
109 size -= (offset & ~(BITS_PER_LONG - 1));
110 offset %= BITS_PER_LONG;
111
112 while (1) {
113 if (*p == 0)
114 goto pass;
115
116 tmp = __reverse_ulong((unsigned char *)p);
117
118 tmp &= ~0UL >> offset;
119 if (size < BITS_PER_LONG)
120 tmp &= (~0UL << (BITS_PER_LONG - size));
121 if (tmp)
122 goto found;
123 pass:
124 if (size <= BITS_PER_LONG)
125 break;
126 size -= BITS_PER_LONG;
127 offset = 0;
128 p++;
129 }
130 return result;
131 found:
132 return result - size + __reverse_ffs(tmp);
133 }
134
135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
136 unsigned long size, unsigned long offset)
137 {
138 const unsigned long *p = addr + BIT_WORD(offset);
139 unsigned long result = size;
140 unsigned long tmp;
141
142 if (offset >= size)
143 return size;
144
145 size -= (offset & ~(BITS_PER_LONG - 1));
146 offset %= BITS_PER_LONG;
147
148 while (1) {
149 if (*p == ~0UL)
150 goto pass;
151
152 tmp = __reverse_ulong((unsigned char *)p);
153
154 if (offset)
155 tmp |= ~0UL << (BITS_PER_LONG - offset);
156 if (size < BITS_PER_LONG)
157 tmp |= ~0UL >> size;
158 if (tmp != ~0UL)
159 goto found;
160 pass:
161 if (size <= BITS_PER_LONG)
162 break;
163 size -= BITS_PER_LONG;
164 offset = 0;
165 p++;
166 }
167 return result;
168 found:
169 return result - size + __reverse_ffz(tmp);
170 }
171
172 bool need_SSR(struct f2fs_sb_info *sbi)
173 {
174 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
175 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
176 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177
178 if (test_opt(sbi, LFS))
179 return false;
180 if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
181 return true;
182
183 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
184 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
185 }
186
187 void register_inmem_page(struct inode *inode, struct page *page)
188 {
189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191 struct inmem_pages *new;
192
193 f2fs_trace_pid(page);
194
195 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
196 SetPagePrivate(page);
197
198 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
199
200 /* add atomic page indices to the list */
201 new->page = page;
202 INIT_LIST_HEAD(&new->list);
203
204 /* increase reference count with clean state */
205 mutex_lock(&fi->inmem_lock);
206 get_page(page);
207 list_add_tail(&new->list, &fi->inmem_pages);
208 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
209 if (list_empty(&fi->inmem_ilist))
210 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
211 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
212 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
213 mutex_unlock(&fi->inmem_lock);
214
215 trace_f2fs_register_inmem_page(page, INMEM);
216 }
217
218 static int __revoke_inmem_pages(struct inode *inode,
219 struct list_head *head, bool drop, bool recover)
220 {
221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222 struct inmem_pages *cur, *tmp;
223 int err = 0;
224
225 list_for_each_entry_safe(cur, tmp, head, list) {
226 struct page *page = cur->page;
227
228 if (drop)
229 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
230
231 lock_page(page);
232
233 if (recover) {
234 struct dnode_of_data dn;
235 struct node_info ni;
236
237 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
238 retry:
239 set_new_dnode(&dn, inode, NULL, NULL, 0);
240 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
241 if (err) {
242 if (err == -ENOMEM) {
243 congestion_wait(BLK_RW_ASYNC, HZ/50);
244 cond_resched();
245 goto retry;
246 }
247 err = -EAGAIN;
248 goto next;
249 }
250 get_node_info(sbi, dn.nid, &ni);
251 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
252 cur->old_addr, ni.version, true, true);
253 f2fs_put_dnode(&dn);
254 }
255 next:
256 /* we don't need to invalidate this in the sccessful status */
257 if (drop || recover)
258 ClearPageUptodate(page);
259 set_page_private(page, 0);
260 ClearPagePrivate(page);
261 f2fs_put_page(page, 1);
262
263 list_del(&cur->list);
264 kmem_cache_free(inmem_entry_slab, cur);
265 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
266 }
267 return err;
268 }
269
270 void drop_inmem_pages_all(struct f2fs_sb_info *sbi)
271 {
272 struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
273 struct inode *inode;
274 struct f2fs_inode_info *fi;
275 next:
276 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
277 if (list_empty(head)) {
278 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
279 return;
280 }
281 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
282 inode = igrab(&fi->vfs_inode);
283 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
284
285 if (inode) {
286 drop_inmem_pages(inode);
287 iput(inode);
288 }
289 congestion_wait(BLK_RW_ASYNC, HZ/50);
290 cond_resched();
291 goto next;
292 }
293
294 void drop_inmem_pages(struct inode *inode)
295 {
296 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
297 struct f2fs_inode_info *fi = F2FS_I(inode);
298
299 mutex_lock(&fi->inmem_lock);
300 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
301 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
302 if (!list_empty(&fi->inmem_ilist))
303 list_del_init(&fi->inmem_ilist);
304 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
305 mutex_unlock(&fi->inmem_lock);
306
307 clear_inode_flag(inode, FI_ATOMIC_FILE);
308 clear_inode_flag(inode, FI_HOT_DATA);
309 stat_dec_atomic_write(inode);
310 }
311
312 void drop_inmem_page(struct inode *inode, struct page *page)
313 {
314 struct f2fs_inode_info *fi = F2FS_I(inode);
315 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
316 struct list_head *head = &fi->inmem_pages;
317 struct inmem_pages *cur = NULL;
318
319 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
320
321 mutex_lock(&fi->inmem_lock);
322 list_for_each_entry(cur, head, list) {
323 if (cur->page == page)
324 break;
325 }
326
327 f2fs_bug_on(sbi, !cur || cur->page != page);
328 list_del(&cur->list);
329 mutex_unlock(&fi->inmem_lock);
330
331 dec_page_count(sbi, F2FS_INMEM_PAGES);
332 kmem_cache_free(inmem_entry_slab, cur);
333
334 ClearPageUptodate(page);
335 set_page_private(page, 0);
336 ClearPagePrivate(page);
337 f2fs_put_page(page, 0);
338
339 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
340 }
341
342 static int __commit_inmem_pages(struct inode *inode,
343 struct list_head *revoke_list)
344 {
345 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
346 struct f2fs_inode_info *fi = F2FS_I(inode);
347 struct inmem_pages *cur, *tmp;
348 struct f2fs_io_info fio = {
349 .sbi = sbi,
350 .ino = inode->i_ino,
351 .type = DATA,
352 .op = REQ_OP_WRITE,
353 .op_flags = REQ_SYNC | REQ_PRIO,
354 .io_type = FS_DATA_IO,
355 };
356 pgoff_t last_idx = ULONG_MAX;
357 int err = 0;
358
359 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
360 struct page *page = cur->page;
361
362 lock_page(page);
363 if (page->mapping == inode->i_mapping) {
364 trace_f2fs_commit_inmem_page(page, INMEM);
365
366 set_page_dirty(page);
367 f2fs_wait_on_page_writeback(page, DATA, true);
368 if (clear_page_dirty_for_io(page)) {
369 inode_dec_dirty_pages(inode);
370 remove_dirty_inode(inode);
371 }
372 retry:
373 fio.page = page;
374 fio.old_blkaddr = NULL_ADDR;
375 fio.encrypted_page = NULL;
376 fio.need_lock = LOCK_DONE;
377 err = do_write_data_page(&fio);
378 if (err) {
379 if (err == -ENOMEM) {
380 congestion_wait(BLK_RW_ASYNC, HZ/50);
381 cond_resched();
382 goto retry;
383 }
384 unlock_page(page);
385 break;
386 }
387 /* record old blkaddr for revoking */
388 cur->old_addr = fio.old_blkaddr;
389 last_idx = page->index;
390 }
391 unlock_page(page);
392 list_move_tail(&cur->list, revoke_list);
393 }
394
395 if (last_idx != ULONG_MAX)
396 f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
397
398 if (!err)
399 __revoke_inmem_pages(inode, revoke_list, false, false);
400
401 return err;
402 }
403
404 int commit_inmem_pages(struct inode *inode)
405 {
406 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
407 struct f2fs_inode_info *fi = F2FS_I(inode);
408 struct list_head revoke_list;
409 int err;
410
411 INIT_LIST_HEAD(&revoke_list);
412 f2fs_balance_fs(sbi, true);
413 f2fs_lock_op(sbi);
414
415 set_inode_flag(inode, FI_ATOMIC_COMMIT);
416
417 mutex_lock(&fi->inmem_lock);
418 err = __commit_inmem_pages(inode, &revoke_list);
419 if (err) {
420 int ret;
421 /*
422 * try to revoke all committed pages, but still we could fail
423 * due to no memory or other reason, if that happened, EAGAIN
424 * will be returned, which means in such case, transaction is
425 * already not integrity, caller should use journal to do the
426 * recovery or rewrite & commit last transaction. For other
427 * error number, revoking was done by filesystem itself.
428 */
429 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
430 if (ret)
431 err = ret;
432
433 /* drop all uncommitted pages */
434 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
435 }
436 spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
437 if (!list_empty(&fi->inmem_ilist))
438 list_del_init(&fi->inmem_ilist);
439 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
440 mutex_unlock(&fi->inmem_lock);
441
442 clear_inode_flag(inode, FI_ATOMIC_COMMIT);
443
444 f2fs_unlock_op(sbi);
445 return err;
446 }
447
448 /*
449 * This function balances dirty node and dentry pages.
450 * In addition, it controls garbage collection.
451 */
452 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
453 {
454 #ifdef CONFIG_F2FS_FAULT_INJECTION
455 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
456 f2fs_show_injection_info(FAULT_CHECKPOINT);
457 f2fs_stop_checkpoint(sbi, false);
458 }
459 #endif
460
461 /* balance_fs_bg is able to be pending */
462 if (need && excess_cached_nats(sbi))
463 f2fs_balance_fs_bg(sbi);
464
465 /*
466 * We should do GC or end up with checkpoint, if there are so many dirty
467 * dir/node pages without enough free segments.
468 */
469 if (has_not_enough_free_secs(sbi, 0, 0)) {
470 mutex_lock(&sbi->gc_mutex);
471 f2fs_gc(sbi, false, false, NULL_SEGNO);
472 }
473 }
474
475 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
476 {
477 /* try to shrink extent cache when there is no enough memory */
478 if (!available_free_memory(sbi, EXTENT_CACHE))
479 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
480
481 /* check the # of cached NAT entries */
482 if (!available_free_memory(sbi, NAT_ENTRIES))
483 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
484
485 if (!available_free_memory(sbi, FREE_NIDS))
486 try_to_free_nids(sbi, MAX_FREE_NIDS);
487 else
488 build_free_nids(sbi, false, false);
489
490 if (!is_idle(sbi) && !excess_dirty_nats(sbi))
491 return;
492
493 /* checkpoint is the only way to shrink partial cached entries */
494 if (!available_free_memory(sbi, NAT_ENTRIES) ||
495 !available_free_memory(sbi, INO_ENTRIES) ||
496 excess_prefree_segs(sbi) ||
497 excess_dirty_nats(sbi) ||
498 f2fs_time_over(sbi, CP_TIME)) {
499 if (test_opt(sbi, DATA_FLUSH)) {
500 struct blk_plug plug;
501
502 blk_start_plug(&plug);
503 sync_dirty_inodes(sbi, FILE_INODE);
504 blk_finish_plug(&plug);
505 }
506 f2fs_sync_fs(sbi->sb, true);
507 stat_inc_bg_cp_count(sbi->stat_info);
508 }
509 }
510
511 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
512 struct block_device *bdev)
513 {
514 struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
515 int ret;
516
517 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
518 bio_set_dev(bio, bdev);
519 ret = submit_bio_wait(bio);
520 bio_put(bio);
521
522 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
523 test_opt(sbi, FLUSH_MERGE), ret);
524 return ret;
525 }
526
527 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
528 {
529 int ret = 0;
530 int i;
531
532 if (!sbi->s_ndevs)
533 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
534
535 for (i = 0; i < sbi->s_ndevs; i++) {
536 if (!is_dirty_device(sbi, ino, i, FLUSH_INO))
537 continue;
538 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
539 if (ret)
540 break;
541 }
542 return ret;
543 }
544
545 static int issue_flush_thread(void *data)
546 {
547 struct f2fs_sb_info *sbi = data;
548 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
549 wait_queue_head_t *q = &fcc->flush_wait_queue;
550 repeat:
551 if (kthread_should_stop())
552 return 0;
553
554 sb_start_intwrite(sbi->sb);
555
556 if (!llist_empty(&fcc->issue_list)) {
557 struct flush_cmd *cmd, *next;
558 int ret;
559
560 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
561 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
562
563 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
564
565 ret = submit_flush_wait(sbi, cmd->ino);
566 atomic_inc(&fcc->issued_flush);
567
568 llist_for_each_entry_safe(cmd, next,
569 fcc->dispatch_list, llnode) {
570 cmd->ret = ret;
571 complete(&cmd->wait);
572 }
573 fcc->dispatch_list = NULL;
574 }
575
576 sb_end_intwrite(sbi->sb);
577
578 wait_event_interruptible(*q,
579 kthread_should_stop() || !llist_empty(&fcc->issue_list));
580 goto repeat;
581 }
582
583 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
584 {
585 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
586 struct flush_cmd cmd;
587 int ret;
588
589 if (test_opt(sbi, NOBARRIER))
590 return 0;
591
592 if (!test_opt(sbi, FLUSH_MERGE)) {
593 ret = submit_flush_wait(sbi, ino);
594 atomic_inc(&fcc->issued_flush);
595 return ret;
596 }
597
598 if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
599 ret = submit_flush_wait(sbi, ino);
600 atomic_dec(&fcc->issing_flush);
601
602 atomic_inc(&fcc->issued_flush);
603 return ret;
604 }
605
606 cmd.ino = ino;
607 init_completion(&cmd.wait);
608
609 llist_add(&cmd.llnode, &fcc->issue_list);
610
611 /* update issue_list before we wake up issue_flush thread */
612 smp_mb();
613
614 if (waitqueue_active(&fcc->flush_wait_queue))
615 wake_up(&fcc->flush_wait_queue);
616
617 if (fcc->f2fs_issue_flush) {
618 wait_for_completion(&cmd.wait);
619 atomic_dec(&fcc->issing_flush);
620 } else {
621 struct llist_node *list;
622
623 list = llist_del_all(&fcc->issue_list);
624 if (!list) {
625 wait_for_completion(&cmd.wait);
626 atomic_dec(&fcc->issing_flush);
627 } else {
628 struct flush_cmd *tmp, *next;
629
630 ret = submit_flush_wait(sbi, ino);
631
632 llist_for_each_entry_safe(tmp, next, list, llnode) {
633 if (tmp == &cmd) {
634 cmd.ret = ret;
635 atomic_dec(&fcc->issing_flush);
636 continue;
637 }
638 tmp->ret = ret;
639 complete(&tmp->wait);
640 }
641 }
642 }
643
644 return cmd.ret;
645 }
646
647 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
648 {
649 dev_t dev = sbi->sb->s_bdev->bd_dev;
650 struct flush_cmd_control *fcc;
651 int err = 0;
652
653 if (SM_I(sbi)->fcc_info) {
654 fcc = SM_I(sbi)->fcc_info;
655 if (fcc->f2fs_issue_flush)
656 return err;
657 goto init_thread;
658 }
659
660 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
661 if (!fcc)
662 return -ENOMEM;
663 atomic_set(&fcc->issued_flush, 0);
664 atomic_set(&fcc->issing_flush, 0);
665 init_waitqueue_head(&fcc->flush_wait_queue);
666 init_llist_head(&fcc->issue_list);
667 SM_I(sbi)->fcc_info = fcc;
668 if (!test_opt(sbi, FLUSH_MERGE))
669 return err;
670
671 init_thread:
672 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
673 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
674 if (IS_ERR(fcc->f2fs_issue_flush)) {
675 err = PTR_ERR(fcc->f2fs_issue_flush);
676 kfree(fcc);
677 SM_I(sbi)->fcc_info = NULL;
678 return err;
679 }
680
681 return err;
682 }
683
684 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
685 {
686 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
687
688 if (fcc && fcc->f2fs_issue_flush) {
689 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
690
691 fcc->f2fs_issue_flush = NULL;
692 kthread_stop(flush_thread);
693 }
694 if (free) {
695 kfree(fcc);
696 SM_I(sbi)->fcc_info = NULL;
697 }
698 }
699
700 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
701 {
702 int ret = 0, i;
703
704 if (!sbi->s_ndevs)
705 return 0;
706
707 for (i = 1; i < sbi->s_ndevs; i++) {
708 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
709 continue;
710 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
711 if (ret)
712 break;
713
714 spin_lock(&sbi->dev_lock);
715 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
716 spin_unlock(&sbi->dev_lock);
717 }
718
719 return ret;
720 }
721
722 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
723 enum dirty_type dirty_type)
724 {
725 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
726
727 /* need not be added */
728 if (IS_CURSEG(sbi, segno))
729 return;
730
731 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
732 dirty_i->nr_dirty[dirty_type]++;
733
734 if (dirty_type == DIRTY) {
735 struct seg_entry *sentry = get_seg_entry(sbi, segno);
736 enum dirty_type t = sentry->type;
737
738 if (unlikely(t >= DIRTY)) {
739 f2fs_bug_on(sbi, 1);
740 return;
741 }
742 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
743 dirty_i->nr_dirty[t]++;
744 }
745 }
746
747 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
748 enum dirty_type dirty_type)
749 {
750 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
751
752 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
753 dirty_i->nr_dirty[dirty_type]--;
754
755 if (dirty_type == DIRTY) {
756 struct seg_entry *sentry = get_seg_entry(sbi, segno);
757 enum dirty_type t = sentry->type;
758
759 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
760 dirty_i->nr_dirty[t]--;
761
762 if (get_valid_blocks(sbi, segno, true) == 0)
763 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
764 dirty_i->victim_secmap);
765 }
766 }
767
768 /*
769 * Should not occur error such as -ENOMEM.
770 * Adding dirty entry into seglist is not critical operation.
771 * If a given segment is one of current working segments, it won't be added.
772 */
773 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
774 {
775 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
776 unsigned short valid_blocks;
777
778 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
779 return;
780
781 mutex_lock(&dirty_i->seglist_lock);
782
783 valid_blocks = get_valid_blocks(sbi, segno, false);
784
785 if (valid_blocks == 0) {
786 __locate_dirty_segment(sbi, segno, PRE);
787 __remove_dirty_segment(sbi, segno, DIRTY);
788 } else if (valid_blocks < sbi->blocks_per_seg) {
789 __locate_dirty_segment(sbi, segno, DIRTY);
790 } else {
791 /* Recovery routine with SSR needs this */
792 __remove_dirty_segment(sbi, segno, DIRTY);
793 }
794
795 mutex_unlock(&dirty_i->seglist_lock);
796 }
797
798 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
799 struct block_device *bdev, block_t lstart,
800 block_t start, block_t len)
801 {
802 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
803 struct list_head *pend_list;
804 struct discard_cmd *dc;
805
806 f2fs_bug_on(sbi, !len);
807
808 pend_list = &dcc->pend_list[plist_idx(len)];
809
810 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
811 INIT_LIST_HEAD(&dc->list);
812 dc->bdev = bdev;
813 dc->lstart = lstart;
814 dc->start = start;
815 dc->len = len;
816 dc->ref = 0;
817 dc->state = D_PREP;
818 dc->error = 0;
819 init_completion(&dc->wait);
820 list_add_tail(&dc->list, pend_list);
821 atomic_inc(&dcc->discard_cmd_cnt);
822 dcc->undiscard_blks += len;
823
824 return dc;
825 }
826
827 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
828 struct block_device *bdev, block_t lstart,
829 block_t start, block_t len,
830 struct rb_node *parent, struct rb_node **p)
831 {
832 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
833 struct discard_cmd *dc;
834
835 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
836
837 rb_link_node(&dc->rb_node, parent, p);
838 rb_insert_color(&dc->rb_node, &dcc->root);
839
840 return dc;
841 }
842
843 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
844 struct discard_cmd *dc)
845 {
846 if (dc->state == D_DONE)
847 atomic_dec(&dcc->issing_discard);
848
849 list_del(&dc->list);
850 rb_erase(&dc->rb_node, &dcc->root);
851 dcc->undiscard_blks -= dc->len;
852
853 kmem_cache_free(discard_cmd_slab, dc);
854
855 atomic_dec(&dcc->discard_cmd_cnt);
856 }
857
858 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
859 struct discard_cmd *dc)
860 {
861 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
862
863 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
864
865 f2fs_bug_on(sbi, dc->ref);
866
867 if (dc->error == -EOPNOTSUPP)
868 dc->error = 0;
869
870 if (dc->error)
871 f2fs_msg(sbi->sb, KERN_INFO,
872 "Issue discard(%u, %u, %u) failed, ret: %d",
873 dc->lstart, dc->start, dc->len, dc->error);
874 __detach_discard_cmd(dcc, dc);
875 }
876
877 static void f2fs_submit_discard_endio(struct bio *bio)
878 {
879 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
880
881 dc->error = blk_status_to_errno(bio->bi_status);
882 dc->state = D_DONE;
883 complete_all(&dc->wait);
884 bio_put(bio);
885 }
886
887 void __check_sit_bitmap(struct f2fs_sb_info *sbi,
888 block_t start, block_t end)
889 {
890 #ifdef CONFIG_F2FS_CHECK_FS
891 struct seg_entry *sentry;
892 unsigned int segno;
893 block_t blk = start;
894 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
895 unsigned long *map;
896
897 while (blk < end) {
898 segno = GET_SEGNO(sbi, blk);
899 sentry = get_seg_entry(sbi, segno);
900 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
901
902 if (end < START_BLOCK(sbi, segno + 1))
903 size = GET_BLKOFF_FROM_SEG0(sbi, end);
904 else
905 size = max_blocks;
906 map = (unsigned long *)(sentry->cur_valid_map);
907 offset = __find_rev_next_bit(map, size, offset);
908 f2fs_bug_on(sbi, offset != size);
909 blk = START_BLOCK(sbi, segno + 1);
910 }
911 #endif
912 }
913
914 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
915 static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
916 struct discard_policy *dpolicy,
917 struct discard_cmd *dc)
918 {
919 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
920 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
921 &(dcc->fstrim_list) : &(dcc->wait_list);
922 struct bio *bio = NULL;
923 int flag = dpolicy->sync ? REQ_SYNC : 0;
924
925 if (dc->state != D_PREP)
926 return;
927
928 trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
929
930 dc->error = __blkdev_issue_discard(dc->bdev,
931 SECTOR_FROM_BLOCK(dc->start),
932 SECTOR_FROM_BLOCK(dc->len),
933 GFP_NOFS, 0, &bio);
934 if (!dc->error) {
935 /* should keep before submission to avoid D_DONE right away */
936 dc->state = D_SUBMIT;
937 atomic_inc(&dcc->issued_discard);
938 atomic_inc(&dcc->issing_discard);
939 if (bio) {
940 bio->bi_private = dc;
941 bio->bi_end_io = f2fs_submit_discard_endio;
942 bio->bi_opf |= flag;
943 submit_bio(bio);
944 list_move_tail(&dc->list, wait_list);
945 __check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
946
947 f2fs_update_iostat(sbi, FS_DISCARD, 1);
948 }
949 } else {
950 __remove_discard_cmd(sbi, dc);
951 }
952 }
953
954 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
955 struct block_device *bdev, block_t lstart,
956 block_t start, block_t len,
957 struct rb_node **insert_p,
958 struct rb_node *insert_parent)
959 {
960 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
961 struct rb_node **p;
962 struct rb_node *parent = NULL;
963 struct discard_cmd *dc = NULL;
964
965 if (insert_p && insert_parent) {
966 parent = insert_parent;
967 p = insert_p;
968 goto do_insert;
969 }
970
971 p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
972 do_insert:
973 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
974 if (!dc)
975 return NULL;
976
977 return dc;
978 }
979
980 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
981 struct discard_cmd *dc)
982 {
983 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
984 }
985
986 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
987 struct discard_cmd *dc, block_t blkaddr)
988 {
989 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
990 struct discard_info di = dc->di;
991 bool modified = false;
992
993 if (dc->state == D_DONE || dc->len == 1) {
994 __remove_discard_cmd(sbi, dc);
995 return;
996 }
997
998 dcc->undiscard_blks -= di.len;
999
1000 if (blkaddr > di.lstart) {
1001 dc->len = blkaddr - dc->lstart;
1002 dcc->undiscard_blks += dc->len;
1003 __relocate_discard_cmd(dcc, dc);
1004 modified = true;
1005 }
1006
1007 if (blkaddr < di.lstart + di.len - 1) {
1008 if (modified) {
1009 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1010 di.start + blkaddr + 1 - di.lstart,
1011 di.lstart + di.len - 1 - blkaddr,
1012 NULL, NULL);
1013 } else {
1014 dc->lstart++;
1015 dc->len--;
1016 dc->start++;
1017 dcc->undiscard_blks += dc->len;
1018 __relocate_discard_cmd(dcc, dc);
1019 }
1020 }
1021 }
1022
1023 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1024 struct block_device *bdev, block_t lstart,
1025 block_t start, block_t len)
1026 {
1027 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1028 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1029 struct discard_cmd *dc;
1030 struct discard_info di = {0};
1031 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1032 block_t end = lstart + len;
1033
1034 mutex_lock(&dcc->cmd_lock);
1035
1036 dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
1037 NULL, lstart,
1038 (struct rb_entry **)&prev_dc,
1039 (struct rb_entry **)&next_dc,
1040 &insert_p, &insert_parent, true);
1041 if (dc)
1042 prev_dc = dc;
1043
1044 if (!prev_dc) {
1045 di.lstart = lstart;
1046 di.len = next_dc ? next_dc->lstart - lstart : len;
1047 di.len = min(di.len, len);
1048 di.start = start;
1049 }
1050
1051 while (1) {
1052 struct rb_node *node;
1053 bool merged = false;
1054 struct discard_cmd *tdc = NULL;
1055
1056 if (prev_dc) {
1057 di.lstart = prev_dc->lstart + prev_dc->len;
1058 if (di.lstart < lstart)
1059 di.lstart = lstart;
1060 if (di.lstart >= end)
1061 break;
1062
1063 if (!next_dc || next_dc->lstart > end)
1064 di.len = end - di.lstart;
1065 else
1066 di.len = next_dc->lstart - di.lstart;
1067 di.start = start + di.lstart - lstart;
1068 }
1069
1070 if (!di.len)
1071 goto next;
1072
1073 if (prev_dc && prev_dc->state == D_PREP &&
1074 prev_dc->bdev == bdev &&
1075 __is_discard_back_mergeable(&di, &prev_dc->di)) {
1076 prev_dc->di.len += di.len;
1077 dcc->undiscard_blks += di.len;
1078 __relocate_discard_cmd(dcc, prev_dc);
1079 di = prev_dc->di;
1080 tdc = prev_dc;
1081 merged = true;
1082 }
1083
1084 if (next_dc && next_dc->state == D_PREP &&
1085 next_dc->bdev == bdev &&
1086 __is_discard_front_mergeable(&di, &next_dc->di)) {
1087 next_dc->di.lstart = di.lstart;
1088 next_dc->di.len += di.len;
1089 next_dc->di.start = di.start;
1090 dcc->undiscard_blks += di.len;
1091 __relocate_discard_cmd(dcc, next_dc);
1092 if (tdc)
1093 __remove_discard_cmd(sbi, tdc);
1094 merged = true;
1095 }
1096
1097 if (!merged) {
1098 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1099 di.len, NULL, NULL);
1100 }
1101 next:
1102 prev_dc = next_dc;
1103 if (!prev_dc)
1104 break;
1105
1106 node = rb_next(&prev_dc->rb_node);
1107 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1108 }
1109
1110 mutex_unlock(&dcc->cmd_lock);
1111 }
1112
1113 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1114 struct block_device *bdev, block_t blkstart, block_t blklen)
1115 {
1116 block_t lblkstart = blkstart;
1117
1118 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1119
1120 if (sbi->s_ndevs) {
1121 int devi = f2fs_target_device_index(sbi, blkstart);
1122
1123 blkstart -= FDEV(devi).start_blk;
1124 }
1125 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1126 return 0;
1127 }
1128
1129 static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
1130 struct discard_policy *dpolicy,
1131 unsigned int start, unsigned int end)
1132 {
1133 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1134 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1135 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1136 struct discard_cmd *dc;
1137 struct blk_plug plug;
1138 int issued;
1139
1140 next:
1141 issued = 0;
1142
1143 mutex_lock(&dcc->cmd_lock);
1144 f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
1145
1146 dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
1147 NULL, start,
1148 (struct rb_entry **)&prev_dc,
1149 (struct rb_entry **)&next_dc,
1150 &insert_p, &insert_parent, true);
1151 if (!dc)
1152 dc = next_dc;
1153
1154 blk_start_plug(&plug);
1155
1156 while (dc && dc->lstart <= end) {
1157 struct rb_node *node;
1158
1159 if (dc->len < dpolicy->granularity)
1160 goto skip;
1161
1162 if (dc->state != D_PREP) {
1163 list_move_tail(&dc->list, &dcc->fstrim_list);
1164 goto skip;
1165 }
1166
1167 __submit_discard_cmd(sbi, dpolicy, dc);
1168
1169 if (++issued >= dpolicy->max_requests) {
1170 start = dc->lstart + dc->len;
1171
1172 blk_finish_plug(&plug);
1173 mutex_unlock(&dcc->cmd_lock);
1174
1175 schedule();
1176
1177 goto next;
1178 }
1179 skip:
1180 node = rb_next(&dc->rb_node);
1181 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1182
1183 if (fatal_signal_pending(current))
1184 break;
1185 }
1186
1187 blk_finish_plug(&plug);
1188 mutex_unlock(&dcc->cmd_lock);
1189 }
1190
1191 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1192 struct discard_policy *dpolicy)
1193 {
1194 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1195 struct list_head *pend_list;
1196 struct discard_cmd *dc, *tmp;
1197 struct blk_plug plug;
1198 int i, iter = 0, issued = 0;
1199 bool io_interrupted = false;
1200
1201 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1202 if (i + 1 < dpolicy->granularity)
1203 break;
1204 pend_list = &dcc->pend_list[i];
1205
1206 mutex_lock(&dcc->cmd_lock);
1207 f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
1208 blk_start_plug(&plug);
1209 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1210 f2fs_bug_on(sbi, dc->state != D_PREP);
1211
1212 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1213 !is_idle(sbi)) {
1214 io_interrupted = true;
1215 goto skip;
1216 }
1217
1218 __submit_discard_cmd(sbi, dpolicy, dc);
1219 issued++;
1220 skip:
1221 if (++iter >= dpolicy->max_requests)
1222 break;
1223 }
1224 blk_finish_plug(&plug);
1225 mutex_unlock(&dcc->cmd_lock);
1226
1227 if (iter >= dpolicy->max_requests)
1228 break;
1229 }
1230
1231 if (!issued && io_interrupted)
1232 issued = -1;
1233
1234 return issued;
1235 }
1236
1237 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1238 {
1239 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1240 struct list_head *pend_list;
1241 struct discard_cmd *dc, *tmp;
1242 int i;
1243 bool dropped = false;
1244
1245 mutex_lock(&dcc->cmd_lock);
1246 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1247 pend_list = &dcc->pend_list[i];
1248 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1249 f2fs_bug_on(sbi, dc->state != D_PREP);
1250 __remove_discard_cmd(sbi, dc);
1251 dropped = true;
1252 }
1253 }
1254 mutex_unlock(&dcc->cmd_lock);
1255
1256 return dropped;
1257 }
1258
1259 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1260 struct discard_cmd *dc)
1261 {
1262 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1263 unsigned int len = 0;
1264
1265 wait_for_completion_io(&dc->wait);
1266 mutex_lock(&dcc->cmd_lock);
1267 f2fs_bug_on(sbi, dc->state != D_DONE);
1268 dc->ref--;
1269 if (!dc->ref) {
1270 if (!dc->error)
1271 len = dc->len;
1272 __remove_discard_cmd(sbi, dc);
1273 }
1274 mutex_unlock(&dcc->cmd_lock);
1275
1276 return len;
1277 }
1278
1279 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1280 struct discard_policy *dpolicy,
1281 block_t start, block_t end)
1282 {
1283 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1284 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1285 &(dcc->fstrim_list) : &(dcc->wait_list);
1286 struct discard_cmd *dc, *tmp;
1287 bool need_wait;
1288 unsigned int trimmed = 0;
1289
1290 next:
1291 need_wait = false;
1292
1293 mutex_lock(&dcc->cmd_lock);
1294 list_for_each_entry_safe(dc, tmp, wait_list, list) {
1295 if (dc->lstart + dc->len <= start || end <= dc->lstart)
1296 continue;
1297 if (dc->len < dpolicy->granularity)
1298 continue;
1299 if (dc->state == D_DONE && !dc->ref) {
1300 wait_for_completion_io(&dc->wait);
1301 if (!dc->error)
1302 trimmed += dc->len;
1303 __remove_discard_cmd(sbi, dc);
1304 } else {
1305 dc->ref++;
1306 need_wait = true;
1307 break;
1308 }
1309 }
1310 mutex_unlock(&dcc->cmd_lock);
1311
1312 if (need_wait) {
1313 trimmed += __wait_one_discard_bio(sbi, dc);
1314 goto next;
1315 }
1316
1317 return trimmed;
1318 }
1319
1320 static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1321 struct discard_policy *dpolicy)
1322 {
1323 __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1324 }
1325
1326 /* This should be covered by global mutex, &sit_i->sentry_lock */
1327 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1328 {
1329 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1330 struct discard_cmd *dc;
1331 bool need_wait = false;
1332
1333 mutex_lock(&dcc->cmd_lock);
1334 dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
1335 if (dc) {
1336 if (dc->state == D_PREP) {
1337 __punch_discard_cmd(sbi, dc, blkaddr);
1338 } else {
1339 dc->ref++;
1340 need_wait = true;
1341 }
1342 }
1343 mutex_unlock(&dcc->cmd_lock);
1344
1345 if (need_wait)
1346 __wait_one_discard_bio(sbi, dc);
1347 }
1348
1349 void stop_discard_thread(struct f2fs_sb_info *sbi)
1350 {
1351 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1352
1353 if (dcc && dcc->f2fs_issue_discard) {
1354 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1355
1356 dcc->f2fs_issue_discard = NULL;
1357 kthread_stop(discard_thread);
1358 }
1359 }
1360
1361 /* This comes from f2fs_put_super */
1362 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1363 {
1364 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1365 struct discard_policy dpolicy;
1366 bool dropped;
1367
1368 init_discard_policy(&dpolicy, DPOLICY_UMOUNT, dcc->discard_granularity);
1369 __issue_discard_cmd(sbi, &dpolicy);
1370 dropped = __drop_discard_cmd(sbi);
1371 __wait_all_discard_cmd(sbi, &dpolicy);
1372
1373 return dropped;
1374 }
1375
1376 static int issue_discard_thread(void *data)
1377 {
1378 struct f2fs_sb_info *sbi = data;
1379 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1380 wait_queue_head_t *q = &dcc->discard_wait_queue;
1381 struct discard_policy dpolicy;
1382 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1383 int issued;
1384
1385 set_freezable();
1386
1387 do {
1388 init_discard_policy(&dpolicy, DPOLICY_BG,
1389 dcc->discard_granularity);
1390
1391 wait_event_interruptible_timeout(*q,
1392 kthread_should_stop() || freezing(current) ||
1393 dcc->discard_wake,
1394 msecs_to_jiffies(wait_ms));
1395 if (try_to_freeze())
1396 continue;
1397 if (kthread_should_stop())
1398 return 0;
1399
1400 if (dcc->discard_wake) {
1401 dcc->discard_wake = 0;
1402 if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
1403 init_discard_policy(&dpolicy,
1404 DPOLICY_FORCE, 1);
1405 }
1406
1407 sb_start_intwrite(sbi->sb);
1408
1409 issued = __issue_discard_cmd(sbi, &dpolicy);
1410 if (issued) {
1411 __wait_all_discard_cmd(sbi, &dpolicy);
1412 wait_ms = dpolicy.min_interval;
1413 } else {
1414 wait_ms = dpolicy.max_interval;
1415 }
1416
1417 sb_end_intwrite(sbi->sb);
1418
1419 } while (!kthread_should_stop());
1420 return 0;
1421 }
1422
1423 #ifdef CONFIG_BLK_DEV_ZONED
1424 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1425 struct block_device *bdev, block_t blkstart, block_t blklen)
1426 {
1427 sector_t sector, nr_sects;
1428 block_t lblkstart = blkstart;
1429 int devi = 0;
1430
1431 if (sbi->s_ndevs) {
1432 devi = f2fs_target_device_index(sbi, blkstart);
1433 blkstart -= FDEV(devi).start_blk;
1434 }
1435
1436 /*
1437 * We need to know the type of the zone: for conventional zones,
1438 * use regular discard if the drive supports it. For sequential
1439 * zones, reset the zone write pointer.
1440 */
1441 switch (get_blkz_type(sbi, bdev, blkstart)) {
1442
1443 case BLK_ZONE_TYPE_CONVENTIONAL:
1444 if (!blk_queue_discard(bdev_get_queue(bdev)))
1445 return 0;
1446 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1447 case BLK_ZONE_TYPE_SEQWRITE_REQ:
1448 case BLK_ZONE_TYPE_SEQWRITE_PREF:
1449 sector = SECTOR_FROM_BLOCK(blkstart);
1450 nr_sects = SECTOR_FROM_BLOCK(blklen);
1451
1452 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1453 nr_sects != bdev_zone_sectors(bdev)) {
1454 f2fs_msg(sbi->sb, KERN_INFO,
1455 "(%d) %s: Unaligned discard attempted (block %x + %x)",
1456 devi, sbi->s_ndevs ? FDEV(devi).path: "",
1457 blkstart, blklen);
1458 return -EIO;
1459 }
1460 trace_f2fs_issue_reset_zone(bdev, blkstart);
1461 return blkdev_reset_zones(bdev, sector,
1462 nr_sects, GFP_NOFS);
1463 default:
1464 /* Unknown zone type: broken device ? */
1465 return -EIO;
1466 }
1467 }
1468 #endif
1469
1470 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1471 struct block_device *bdev, block_t blkstart, block_t blklen)
1472 {
1473 #ifdef CONFIG_BLK_DEV_ZONED
1474 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
1475 bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1476 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1477 #endif
1478 return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1479 }
1480
1481 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1482 block_t blkstart, block_t blklen)
1483 {
1484 sector_t start = blkstart, len = 0;
1485 struct block_device *bdev;
1486 struct seg_entry *se;
1487 unsigned int offset;
1488 block_t i;
1489 int err = 0;
1490
1491 bdev = f2fs_target_device(sbi, blkstart, NULL);
1492
1493 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1494 if (i != start) {
1495 struct block_device *bdev2 =
1496 f2fs_target_device(sbi, i, NULL);
1497
1498 if (bdev2 != bdev) {
1499 err = __issue_discard_async(sbi, bdev,
1500 start, len);
1501 if (err)
1502 return err;
1503 bdev = bdev2;
1504 start = i;
1505 len = 0;
1506 }
1507 }
1508
1509 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1510 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1511
1512 if (!f2fs_test_and_set_bit(offset, se->discard_map))
1513 sbi->discard_blks--;
1514 }
1515
1516 if (len)
1517 err = __issue_discard_async(sbi, bdev, start, len);
1518 return err;
1519 }
1520
1521 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1522 bool check_only)
1523 {
1524 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1525 int max_blocks = sbi->blocks_per_seg;
1526 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1527 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1528 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1529 unsigned long *discard_map = (unsigned long *)se->discard_map;
1530 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1531 unsigned int start = 0, end = -1;
1532 bool force = (cpc->reason & CP_DISCARD);
1533 struct discard_entry *de = NULL;
1534 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1535 int i;
1536
1537 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1538 return false;
1539
1540 if (!force) {
1541 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1542 SM_I(sbi)->dcc_info->nr_discards >=
1543 SM_I(sbi)->dcc_info->max_discards)
1544 return false;
1545 }
1546
1547 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1548 for (i = 0; i < entries; i++)
1549 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1550 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1551
1552 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1553 SM_I(sbi)->dcc_info->max_discards) {
1554 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1555 if (start >= max_blocks)
1556 break;
1557
1558 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1559 if (force && start && end != max_blocks
1560 && (end - start) < cpc->trim_minlen)
1561 continue;
1562
1563 if (check_only)
1564 return true;
1565
1566 if (!de) {
1567 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1568 GFP_F2FS_ZERO);
1569 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1570 list_add_tail(&de->list, head);
1571 }
1572
1573 for (i = start; i < end; i++)
1574 __set_bit_le(i, (void *)de->discard_map);
1575
1576 SM_I(sbi)->dcc_info->nr_discards += end - start;
1577 }
1578 return false;
1579 }
1580
1581 void release_discard_addrs(struct f2fs_sb_info *sbi)
1582 {
1583 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1584 struct discard_entry *entry, *this;
1585
1586 /* drop caches */
1587 list_for_each_entry_safe(entry, this, head, list) {
1588 list_del(&entry->list);
1589 kmem_cache_free(discard_entry_slab, entry);
1590 }
1591 }
1592
1593 /*
1594 * Should call clear_prefree_segments after checkpoint is done.
1595 */
1596 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1597 {
1598 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1599 unsigned int segno;
1600
1601 mutex_lock(&dirty_i->seglist_lock);
1602 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1603 __set_test_and_free(sbi, segno);
1604 mutex_unlock(&dirty_i->seglist_lock);
1605 }
1606
1607 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1608 {
1609 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1610 struct list_head *head = &dcc->entry_list;
1611 struct discard_entry *entry, *this;
1612 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1613 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1614 unsigned int start = 0, end = -1;
1615 unsigned int secno, start_segno;
1616 bool force = (cpc->reason & CP_DISCARD);
1617
1618 mutex_lock(&dirty_i->seglist_lock);
1619
1620 while (1) {
1621 int i;
1622 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1623 if (start >= MAIN_SEGS(sbi))
1624 break;
1625 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1626 start + 1);
1627
1628 for (i = start; i < end; i++)
1629 clear_bit(i, prefree_map);
1630
1631 dirty_i->nr_dirty[PRE] -= end - start;
1632
1633 if (!test_opt(sbi, DISCARD))
1634 continue;
1635
1636 if (force && start >= cpc->trim_start &&
1637 (end - 1) <= cpc->trim_end)
1638 continue;
1639
1640 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1641 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1642 (end - start) << sbi->log_blocks_per_seg);
1643 continue;
1644 }
1645 next:
1646 secno = GET_SEC_FROM_SEG(sbi, start);
1647 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1648 if (!IS_CURSEC(sbi, secno) &&
1649 !get_valid_blocks(sbi, start, true))
1650 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1651 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1652
1653 start = start_segno + sbi->segs_per_sec;
1654 if (start < end)
1655 goto next;
1656 else
1657 end = start - 1;
1658 }
1659 mutex_unlock(&dirty_i->seglist_lock);
1660
1661 /* send small discards */
1662 list_for_each_entry_safe(entry, this, head, list) {
1663 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1664 bool is_valid = test_bit_le(0, entry->discard_map);
1665
1666 find_next:
1667 if (is_valid) {
1668 next_pos = find_next_zero_bit_le(entry->discard_map,
1669 sbi->blocks_per_seg, cur_pos);
1670 len = next_pos - cur_pos;
1671
1672 if (f2fs_sb_mounted_blkzoned(sbi->sb) ||
1673 (force && len < cpc->trim_minlen))
1674 goto skip;
1675
1676 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1677 len);
1678 total_len += len;
1679 } else {
1680 next_pos = find_next_bit_le(entry->discard_map,
1681 sbi->blocks_per_seg, cur_pos);
1682 }
1683 skip:
1684 cur_pos = next_pos;
1685 is_valid = !is_valid;
1686
1687 if (cur_pos < sbi->blocks_per_seg)
1688 goto find_next;
1689
1690 list_del(&entry->list);
1691 dcc->nr_discards -= total_len;
1692 kmem_cache_free(discard_entry_slab, entry);
1693 }
1694
1695 wake_up_discard_thread(sbi, false);
1696 }
1697
1698 void init_discard_policy(struct discard_policy *dpolicy,
1699 int discard_type, unsigned int granularity)
1700 {
1701 /* common policy */
1702 dpolicy->type = discard_type;
1703 dpolicy->sync = true;
1704 dpolicy->granularity = granularity;
1705
1706 if (discard_type == DPOLICY_BG) {
1707 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1708 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1709 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1710 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1711 dpolicy->io_aware = true;
1712 } else if (discard_type == DPOLICY_FORCE) {
1713 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1714 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1715 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1716 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1717 dpolicy->io_aware = true;
1718 } else if (discard_type == DPOLICY_FSTRIM) {
1719 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1720 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1721 dpolicy->io_aware = false;
1722 } else if (discard_type == DPOLICY_UMOUNT) {
1723 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1724 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1725 dpolicy->io_aware = false;
1726 }
1727 }
1728
1729 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1730 {
1731 dev_t dev = sbi->sb->s_bdev->bd_dev;
1732 struct discard_cmd_control *dcc;
1733 int err = 0, i;
1734
1735 if (SM_I(sbi)->dcc_info) {
1736 dcc = SM_I(sbi)->dcc_info;
1737 goto init_thread;
1738 }
1739
1740 dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
1741 if (!dcc)
1742 return -ENOMEM;
1743
1744 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1745 INIT_LIST_HEAD(&dcc->entry_list);
1746 for (i = 0; i < MAX_PLIST_NUM; i++)
1747 INIT_LIST_HEAD(&dcc->pend_list[i]);
1748 INIT_LIST_HEAD(&dcc->wait_list);
1749 INIT_LIST_HEAD(&dcc->fstrim_list);
1750 mutex_init(&dcc->cmd_lock);
1751 atomic_set(&dcc->issued_discard, 0);
1752 atomic_set(&dcc->issing_discard, 0);
1753 atomic_set(&dcc->discard_cmd_cnt, 0);
1754 dcc->nr_discards = 0;
1755 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1756 dcc->undiscard_blks = 0;
1757 dcc->root = RB_ROOT;
1758
1759 init_waitqueue_head(&dcc->discard_wait_queue);
1760 SM_I(sbi)->dcc_info = dcc;
1761 init_thread:
1762 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1763 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1764 if (IS_ERR(dcc->f2fs_issue_discard)) {
1765 err = PTR_ERR(dcc->f2fs_issue_discard);
1766 kfree(dcc);
1767 SM_I(sbi)->dcc_info = NULL;
1768 return err;
1769 }
1770
1771 return err;
1772 }
1773
1774 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1775 {
1776 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1777
1778 if (!dcc)
1779 return;
1780
1781 stop_discard_thread(sbi);
1782
1783 kfree(dcc);
1784 SM_I(sbi)->dcc_info = NULL;
1785 }
1786
1787 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1788 {
1789 struct sit_info *sit_i = SIT_I(sbi);
1790
1791 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1792 sit_i->dirty_sentries++;
1793 return false;
1794 }
1795
1796 return true;
1797 }
1798
1799 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1800 unsigned int segno, int modified)
1801 {
1802 struct seg_entry *se = get_seg_entry(sbi, segno);
1803 se->type = type;
1804 if (modified)
1805 __mark_sit_entry_dirty(sbi, segno);
1806 }
1807
1808 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1809 {
1810 struct seg_entry *se;
1811 unsigned int segno, offset;
1812 long int new_vblocks;
1813 bool exist;
1814 #ifdef CONFIG_F2FS_CHECK_FS
1815 bool mir_exist;
1816 #endif
1817
1818 segno = GET_SEGNO(sbi, blkaddr);
1819
1820 se = get_seg_entry(sbi, segno);
1821 new_vblocks = se->valid_blocks + del;
1822 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1823
1824 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1825 (new_vblocks > sbi->blocks_per_seg)));
1826
1827 se->valid_blocks = new_vblocks;
1828 se->mtime = get_mtime(sbi);
1829 SIT_I(sbi)->max_mtime = se->mtime;
1830
1831 /* Update valid block bitmap */
1832 if (del > 0) {
1833 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
1834 #ifdef CONFIG_F2FS_CHECK_FS
1835 mir_exist = f2fs_test_and_set_bit(offset,
1836 se->cur_valid_map_mir);
1837 if (unlikely(exist != mir_exist)) {
1838 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1839 "when setting bitmap, blk:%u, old bit:%d",
1840 blkaddr, exist);
1841 f2fs_bug_on(sbi, 1);
1842 }
1843 #endif
1844 if (unlikely(exist)) {
1845 f2fs_msg(sbi->sb, KERN_ERR,
1846 "Bitmap was wrongly set, blk:%u", blkaddr);
1847 f2fs_bug_on(sbi, 1);
1848 se->valid_blocks--;
1849 del = 0;
1850 }
1851
1852 if (f2fs_discard_en(sbi) &&
1853 !f2fs_test_and_set_bit(offset, se->discard_map))
1854 sbi->discard_blks--;
1855
1856 /* don't overwrite by SSR to keep node chain */
1857 if (se->type == CURSEG_WARM_NODE) {
1858 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
1859 se->ckpt_valid_blocks++;
1860 }
1861 } else {
1862 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
1863 #ifdef CONFIG_F2FS_CHECK_FS
1864 mir_exist = f2fs_test_and_clear_bit(offset,
1865 se->cur_valid_map_mir);
1866 if (unlikely(exist != mir_exist)) {
1867 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1868 "when clearing bitmap, blk:%u, old bit:%d",
1869 blkaddr, exist);
1870 f2fs_bug_on(sbi, 1);
1871 }
1872 #endif
1873 if (unlikely(!exist)) {
1874 f2fs_msg(sbi->sb, KERN_ERR,
1875 "Bitmap was wrongly cleared, blk:%u", blkaddr);
1876 f2fs_bug_on(sbi, 1);
1877 se->valid_blocks++;
1878 del = 0;
1879 }
1880
1881 if (f2fs_discard_en(sbi) &&
1882 f2fs_test_and_clear_bit(offset, se->discard_map))
1883 sbi->discard_blks++;
1884 }
1885 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1886 se->ckpt_valid_blocks += del;
1887
1888 __mark_sit_entry_dirty(sbi, segno);
1889
1890 /* update total number of valid blocks to be written in ckpt area */
1891 SIT_I(sbi)->written_valid_blocks += del;
1892
1893 if (sbi->segs_per_sec > 1)
1894 get_sec_entry(sbi, segno)->valid_blocks += del;
1895 }
1896
1897 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1898 {
1899 unsigned int segno = GET_SEGNO(sbi, addr);
1900 struct sit_info *sit_i = SIT_I(sbi);
1901
1902 f2fs_bug_on(sbi, addr == NULL_ADDR);
1903 if (addr == NEW_ADDR)
1904 return;
1905
1906 /* add it into sit main buffer */
1907 down_write(&sit_i->sentry_lock);
1908
1909 update_sit_entry(sbi, addr, -1);
1910
1911 /* add it into dirty seglist */
1912 locate_dirty_segment(sbi, segno);
1913
1914 up_write(&sit_i->sentry_lock);
1915 }
1916
1917 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1918 {
1919 struct sit_info *sit_i = SIT_I(sbi);
1920 unsigned int segno, offset;
1921 struct seg_entry *se;
1922 bool is_cp = false;
1923
1924 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1925 return true;
1926
1927 down_read(&sit_i->sentry_lock);
1928
1929 segno = GET_SEGNO(sbi, blkaddr);
1930 se = get_seg_entry(sbi, segno);
1931 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1932
1933 if (f2fs_test_bit(offset, se->ckpt_valid_map))
1934 is_cp = true;
1935
1936 up_read(&sit_i->sentry_lock);
1937
1938 return is_cp;
1939 }
1940
1941 /*
1942 * This function should be resided under the curseg_mutex lock
1943 */
1944 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1945 struct f2fs_summary *sum)
1946 {
1947 struct curseg_info *curseg = CURSEG_I(sbi, type);
1948 void *addr = curseg->sum_blk;
1949 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1950 memcpy(addr, sum, sizeof(struct f2fs_summary));
1951 }
1952
1953 /*
1954 * Calculate the number of current summary pages for writing
1955 */
1956 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1957 {
1958 int valid_sum_count = 0;
1959 int i, sum_in_page;
1960
1961 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1962 if (sbi->ckpt->alloc_type[i] == SSR)
1963 valid_sum_count += sbi->blocks_per_seg;
1964 else {
1965 if (for_ra)
1966 valid_sum_count += le16_to_cpu(
1967 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1968 else
1969 valid_sum_count += curseg_blkoff(sbi, i);
1970 }
1971 }
1972
1973 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1974 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1975 if (valid_sum_count <= sum_in_page)
1976 return 1;
1977 else if ((valid_sum_count - sum_in_page) <=
1978 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1979 return 2;
1980 return 3;
1981 }
1982
1983 /*
1984 * Caller should put this summary page
1985 */
1986 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1987 {
1988 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1989 }
1990
1991 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1992 {
1993 struct page *page = grab_meta_page(sbi, blk_addr);
1994
1995 memcpy(page_address(page), src, PAGE_SIZE);
1996 set_page_dirty(page);
1997 f2fs_put_page(page, 1);
1998 }
1999
2000 static void write_sum_page(struct f2fs_sb_info *sbi,
2001 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2002 {
2003 update_meta_page(sbi, (void *)sum_blk, blk_addr);
2004 }
2005
2006 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2007 int type, block_t blk_addr)
2008 {
2009 struct curseg_info *curseg = CURSEG_I(sbi, type);
2010 struct page *page = grab_meta_page(sbi, blk_addr);
2011 struct f2fs_summary_block *src = curseg->sum_blk;
2012 struct f2fs_summary_block *dst;
2013
2014 dst = (struct f2fs_summary_block *)page_address(page);
2015
2016 mutex_lock(&curseg->curseg_mutex);
2017
2018 down_read(&curseg->journal_rwsem);
2019 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2020 up_read(&curseg->journal_rwsem);
2021
2022 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2023 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2024
2025 mutex_unlock(&curseg->curseg_mutex);
2026
2027 set_page_dirty(page);
2028 f2fs_put_page(page, 1);
2029 }
2030
2031 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2032 {
2033 struct curseg_info *curseg = CURSEG_I(sbi, type);
2034 unsigned int segno = curseg->segno + 1;
2035 struct free_segmap_info *free_i = FREE_I(sbi);
2036
2037 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2038 return !test_bit(segno, free_i->free_segmap);
2039 return 0;
2040 }
2041
2042 /*
2043 * Find a new segment from the free segments bitmap to right order
2044 * This function should be returned with success, otherwise BUG
2045 */
2046 static void get_new_segment(struct f2fs_sb_info *sbi,
2047 unsigned int *newseg, bool new_sec, int dir)
2048 {
2049 struct free_segmap_info *free_i = FREE_I(sbi);
2050 unsigned int segno, secno, zoneno;
2051 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2052 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2053 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2054 unsigned int left_start = hint;
2055 bool init = true;
2056 int go_left = 0;
2057 int i;
2058
2059 spin_lock(&free_i->segmap_lock);
2060
2061 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2062 segno = find_next_zero_bit(free_i->free_segmap,
2063 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2064 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2065 goto got_it;
2066 }
2067 find_other_zone:
2068 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2069 if (secno >= MAIN_SECS(sbi)) {
2070 if (dir == ALLOC_RIGHT) {
2071 secno = find_next_zero_bit(free_i->free_secmap,
2072 MAIN_SECS(sbi), 0);
2073 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2074 } else {
2075 go_left = 1;
2076 left_start = hint - 1;
2077 }
2078 }
2079 if (go_left == 0)
2080 goto skip_left;
2081
2082 while (test_bit(left_start, free_i->free_secmap)) {
2083 if (left_start > 0) {
2084 left_start--;
2085 continue;
2086 }
2087 left_start = find_next_zero_bit(free_i->free_secmap,
2088 MAIN_SECS(sbi), 0);
2089 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2090 break;
2091 }
2092 secno = left_start;
2093 skip_left:
2094 segno = GET_SEG_FROM_SEC(sbi, secno);
2095 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2096
2097 /* give up on finding another zone */
2098 if (!init)
2099 goto got_it;
2100 if (sbi->secs_per_zone == 1)
2101 goto got_it;
2102 if (zoneno == old_zoneno)
2103 goto got_it;
2104 if (dir == ALLOC_LEFT) {
2105 if (!go_left && zoneno + 1 >= total_zones)
2106 goto got_it;
2107 if (go_left && zoneno == 0)
2108 goto got_it;
2109 }
2110 for (i = 0; i < NR_CURSEG_TYPE; i++)
2111 if (CURSEG_I(sbi, i)->zone == zoneno)
2112 break;
2113
2114 if (i < NR_CURSEG_TYPE) {
2115 /* zone is in user, try another */
2116 if (go_left)
2117 hint = zoneno * sbi->secs_per_zone - 1;
2118 else if (zoneno + 1 >= total_zones)
2119 hint = 0;
2120 else
2121 hint = (zoneno + 1) * sbi->secs_per_zone;
2122 init = false;
2123 goto find_other_zone;
2124 }
2125 got_it:
2126 /* set it as dirty segment in free segmap */
2127 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2128 __set_inuse(sbi, segno);
2129 *newseg = segno;
2130 spin_unlock(&free_i->segmap_lock);
2131 }
2132
2133 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2134 {
2135 struct curseg_info *curseg = CURSEG_I(sbi, type);
2136 struct summary_footer *sum_footer;
2137
2138 curseg->segno = curseg->next_segno;
2139 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2140 curseg->next_blkoff = 0;
2141 curseg->next_segno = NULL_SEGNO;
2142
2143 sum_footer = &(curseg->sum_blk->footer);
2144 memset(sum_footer, 0, sizeof(struct summary_footer));
2145 if (IS_DATASEG(type))
2146 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2147 if (IS_NODESEG(type))
2148 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2149 __set_sit_entry_type(sbi, type, curseg->segno, modified);
2150 }
2151
2152 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2153 {
2154 /* if segs_per_sec is large than 1, we need to keep original policy. */
2155 if (sbi->segs_per_sec != 1)
2156 return CURSEG_I(sbi, type)->segno;
2157
2158 if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
2159 return 0;
2160
2161 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2162 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2163 return CURSEG_I(sbi, type)->segno;
2164 }
2165
2166 /*
2167 * Allocate a current working segment.
2168 * This function always allocates a free segment in LFS manner.
2169 */
2170 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2171 {
2172 struct curseg_info *curseg = CURSEG_I(sbi, type);
2173 unsigned int segno = curseg->segno;
2174 int dir = ALLOC_LEFT;
2175
2176 write_sum_page(sbi, curseg->sum_blk,
2177 GET_SUM_BLOCK(sbi, segno));
2178 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2179 dir = ALLOC_RIGHT;
2180
2181 if (test_opt(sbi, NOHEAP))
2182 dir = ALLOC_RIGHT;
2183
2184 segno = __get_next_segno(sbi, type);
2185 get_new_segment(sbi, &segno, new_sec, dir);
2186 curseg->next_segno = segno;
2187 reset_curseg(sbi, type, 1);
2188 curseg->alloc_type = LFS;
2189 }
2190
2191 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2192 struct curseg_info *seg, block_t start)
2193 {
2194 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2195 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2196 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2197 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2198 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2199 int i, pos;
2200
2201 for (i = 0; i < entries; i++)
2202 target_map[i] = ckpt_map[i] | cur_map[i];
2203
2204 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2205
2206 seg->next_blkoff = pos;
2207 }
2208
2209 /*
2210 * If a segment is written by LFS manner, next block offset is just obtained
2211 * by increasing the current block offset. However, if a segment is written by
2212 * SSR manner, next block offset obtained by calling __next_free_blkoff
2213 */
2214 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2215 struct curseg_info *seg)
2216 {
2217 if (seg->alloc_type == SSR)
2218 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2219 else
2220 seg->next_blkoff++;
2221 }
2222
2223 /*
2224 * This function always allocates a used segment(from dirty seglist) by SSR
2225 * manner, so it should recover the existing segment information of valid blocks
2226 */
2227 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2228 {
2229 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2230 struct curseg_info *curseg = CURSEG_I(sbi, type);
2231 unsigned int new_segno = curseg->next_segno;
2232 struct f2fs_summary_block *sum_node;
2233 struct page *sum_page;
2234
2235 write_sum_page(sbi, curseg->sum_blk,
2236 GET_SUM_BLOCK(sbi, curseg->segno));
2237 __set_test_and_inuse(sbi, new_segno);
2238
2239 mutex_lock(&dirty_i->seglist_lock);
2240 __remove_dirty_segment(sbi, new_segno, PRE);
2241 __remove_dirty_segment(sbi, new_segno, DIRTY);
2242 mutex_unlock(&dirty_i->seglist_lock);
2243
2244 reset_curseg(sbi, type, 1);
2245 curseg->alloc_type = SSR;
2246 __next_free_blkoff(sbi, curseg, 0);
2247
2248 sum_page = get_sum_page(sbi, new_segno);
2249 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2250 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2251 f2fs_put_page(sum_page, 1);
2252 }
2253
2254 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2255 {
2256 struct curseg_info *curseg = CURSEG_I(sbi, type);
2257 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2258 unsigned segno = NULL_SEGNO;
2259 int i, cnt;
2260 bool reversed = false;
2261
2262 /* need_SSR() already forces to do this */
2263 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2264 curseg->next_segno = segno;
2265 return 1;
2266 }
2267
2268 /* For node segments, let's do SSR more intensively */
2269 if (IS_NODESEG(type)) {
2270 if (type >= CURSEG_WARM_NODE) {
2271 reversed = true;
2272 i = CURSEG_COLD_NODE;
2273 } else {
2274 i = CURSEG_HOT_NODE;
2275 }
2276 cnt = NR_CURSEG_NODE_TYPE;
2277 } else {
2278 if (type >= CURSEG_WARM_DATA) {
2279 reversed = true;
2280 i = CURSEG_COLD_DATA;
2281 } else {
2282 i = CURSEG_HOT_DATA;
2283 }
2284 cnt = NR_CURSEG_DATA_TYPE;
2285 }
2286
2287 for (; cnt-- > 0; reversed ? i-- : i++) {
2288 if (i == type)
2289 continue;
2290 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2291 curseg->next_segno = segno;
2292 return 1;
2293 }
2294 }
2295 return 0;
2296 }
2297
2298 /*
2299 * flush out current segment and replace it with new segment
2300 * This function should be returned with success, otherwise BUG
2301 */
2302 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2303 int type, bool force)
2304 {
2305 struct curseg_info *curseg = CURSEG_I(sbi, type);
2306
2307 if (force)
2308 new_curseg(sbi, type, true);
2309 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2310 type == CURSEG_WARM_NODE)
2311 new_curseg(sbi, type, false);
2312 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
2313 new_curseg(sbi, type, false);
2314 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
2315 change_curseg(sbi, type);
2316 else
2317 new_curseg(sbi, type, false);
2318
2319 stat_inc_seg_type(sbi, curseg);
2320 }
2321
2322 void allocate_new_segments(struct f2fs_sb_info *sbi)
2323 {
2324 struct curseg_info *curseg;
2325 unsigned int old_segno;
2326 int i;
2327
2328 down_write(&SIT_I(sbi)->sentry_lock);
2329
2330 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2331 curseg = CURSEG_I(sbi, i);
2332 old_segno = curseg->segno;
2333 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2334 locate_dirty_segment(sbi, old_segno);
2335 }
2336
2337 up_write(&SIT_I(sbi)->sentry_lock);
2338 }
2339
2340 static const struct segment_allocation default_salloc_ops = {
2341 .allocate_segment = allocate_segment_by_default,
2342 };
2343
2344 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2345 {
2346 __u64 trim_start = cpc->trim_start;
2347 bool has_candidate = false;
2348
2349 down_write(&SIT_I(sbi)->sentry_lock);
2350 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2351 if (add_discard_addrs(sbi, cpc, true)) {
2352 has_candidate = true;
2353 break;
2354 }
2355 }
2356 up_write(&SIT_I(sbi)->sentry_lock);
2357
2358 cpc->trim_start = trim_start;
2359 return has_candidate;
2360 }
2361
2362 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2363 {
2364 __u64 start = F2FS_BYTES_TO_BLK(range->start);
2365 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2366 unsigned int start_segno, end_segno, cur_segno;
2367 block_t start_block, end_block;
2368 struct cp_control cpc;
2369 struct discard_policy dpolicy;
2370 unsigned long long trimmed = 0;
2371 int err = 0;
2372
2373 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2374 return -EINVAL;
2375
2376 if (end <= MAIN_BLKADDR(sbi))
2377 goto out;
2378
2379 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2380 f2fs_msg(sbi->sb, KERN_WARNING,
2381 "Found FS corruption, run fsck to fix.");
2382 goto out;
2383 }
2384
2385 /* start/end segment number in main_area */
2386 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2387 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2388 GET_SEGNO(sbi, end);
2389
2390 cpc.reason = CP_DISCARD;
2391 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2392
2393 /* do checkpoint to issue discard commands safely */
2394 for (cur_segno = start_segno; cur_segno <= end_segno;
2395 cur_segno = cpc.trim_end + 1) {
2396 cpc.trim_start = cur_segno;
2397
2398 if (sbi->discard_blks == 0)
2399 break;
2400 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
2401 cpc.trim_end = end_segno;
2402 else
2403 cpc.trim_end = min_t(unsigned int,
2404 rounddown(cur_segno +
2405 BATCHED_TRIM_SEGMENTS(sbi),
2406 sbi->segs_per_sec) - 1, end_segno);
2407
2408 mutex_lock(&sbi->gc_mutex);
2409 err = write_checkpoint(sbi, &cpc);
2410 mutex_unlock(&sbi->gc_mutex);
2411 if (err)
2412 break;
2413
2414 schedule();
2415 }
2416
2417 start_block = START_BLOCK(sbi, start_segno);
2418 end_block = START_BLOCK(sbi, min(cur_segno, end_segno) + 1);
2419
2420 init_discard_policy(&dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2421 __issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block);
2422 trimmed = __wait_discard_cmd_range(sbi, &dpolicy,
2423 start_block, end_block);
2424 out:
2425 range->len = F2FS_BLK_TO_BYTES(trimmed);
2426 return err;
2427 }
2428
2429 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2430 {
2431 struct curseg_info *curseg = CURSEG_I(sbi, type);
2432 if (curseg->next_blkoff < sbi->blocks_per_seg)
2433 return true;
2434 return false;
2435 }
2436
2437 int rw_hint_to_seg_type(enum rw_hint hint)
2438 {
2439 switch (hint) {
2440 case WRITE_LIFE_SHORT:
2441 return CURSEG_HOT_DATA;
2442 case WRITE_LIFE_EXTREME:
2443 return CURSEG_COLD_DATA;
2444 default:
2445 return CURSEG_WARM_DATA;
2446 }
2447 }
2448
2449 static int __get_segment_type_2(struct f2fs_io_info *fio)
2450 {
2451 if (fio->type == DATA)
2452 return CURSEG_HOT_DATA;
2453 else
2454 return CURSEG_HOT_NODE;
2455 }
2456
2457 static int __get_segment_type_4(struct f2fs_io_info *fio)
2458 {
2459 if (fio->type == DATA) {
2460 struct inode *inode = fio->page->mapping->host;
2461
2462 if (S_ISDIR(inode->i_mode))
2463 return CURSEG_HOT_DATA;
2464 else
2465 return CURSEG_COLD_DATA;
2466 } else {
2467 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2468 return CURSEG_WARM_NODE;
2469 else
2470 return CURSEG_COLD_NODE;
2471 }
2472 }
2473
2474 static int __get_segment_type_6(struct f2fs_io_info *fio)
2475 {
2476 if (fio->type == DATA) {
2477 struct inode *inode = fio->page->mapping->host;
2478
2479 if (is_cold_data(fio->page) || file_is_cold(inode))
2480 return CURSEG_COLD_DATA;
2481 if (is_inode_flag_set(inode, FI_HOT_DATA))
2482 return CURSEG_HOT_DATA;
2483 return rw_hint_to_seg_type(inode->i_write_hint);
2484 } else {
2485 if (IS_DNODE(fio->page))
2486 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2487 CURSEG_HOT_NODE;
2488 return CURSEG_COLD_NODE;
2489 }
2490 }
2491
2492 static int __get_segment_type(struct f2fs_io_info *fio)
2493 {
2494 int type = 0;
2495
2496 switch (fio->sbi->active_logs) {
2497 case 2:
2498 type = __get_segment_type_2(fio);
2499 break;
2500 case 4:
2501 type = __get_segment_type_4(fio);
2502 break;
2503 case 6:
2504 type = __get_segment_type_6(fio);
2505 break;
2506 default:
2507 f2fs_bug_on(fio->sbi, true);
2508 }
2509
2510 if (IS_HOT(type))
2511 fio->temp = HOT;
2512 else if (IS_WARM(type))
2513 fio->temp = WARM;
2514 else
2515 fio->temp = COLD;
2516 return type;
2517 }
2518
2519 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2520 block_t old_blkaddr, block_t *new_blkaddr,
2521 struct f2fs_summary *sum, int type,
2522 struct f2fs_io_info *fio, bool add_list)
2523 {
2524 struct sit_info *sit_i = SIT_I(sbi);
2525 struct curseg_info *curseg = CURSEG_I(sbi, type);
2526
2527 down_read(&SM_I(sbi)->curseg_lock);
2528
2529 mutex_lock(&curseg->curseg_mutex);
2530 down_write(&sit_i->sentry_lock);
2531
2532 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2533
2534 f2fs_wait_discard_bio(sbi, *new_blkaddr);
2535
2536 /*
2537 * __add_sum_entry should be resided under the curseg_mutex
2538 * because, this function updates a summary entry in the
2539 * current summary block.
2540 */
2541 __add_sum_entry(sbi, type, sum);
2542
2543 __refresh_next_blkoff(sbi, curseg);
2544
2545 stat_inc_block_count(sbi, curseg);
2546
2547 /*
2548 * SIT information should be updated before segment allocation,
2549 * since SSR needs latest valid block information.
2550 */
2551 update_sit_entry(sbi, *new_blkaddr, 1);
2552 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2553 update_sit_entry(sbi, old_blkaddr, -1);
2554
2555 if (!__has_curseg_space(sbi, type))
2556 sit_i->s_ops->allocate_segment(sbi, type, false);
2557
2558 /*
2559 * segment dirty status should be updated after segment allocation,
2560 * so we just need to update status only one time after previous
2561 * segment being closed.
2562 */
2563 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2564 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
2565
2566 up_write(&sit_i->sentry_lock);
2567
2568 if (page && IS_NODESEG(type)) {
2569 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2570
2571 f2fs_inode_chksum_set(sbi, page);
2572 }
2573
2574 if (add_list) {
2575 struct f2fs_bio_info *io;
2576
2577 INIT_LIST_HEAD(&fio->list);
2578 fio->in_list = true;
2579 io = sbi->write_io[fio->type] + fio->temp;
2580 spin_lock(&io->io_lock);
2581 list_add_tail(&fio->list, &io->io_list);
2582 spin_unlock(&io->io_lock);
2583 }
2584
2585 mutex_unlock(&curseg->curseg_mutex);
2586
2587 up_read(&SM_I(sbi)->curseg_lock);
2588 }
2589
2590 static void update_device_state(struct f2fs_io_info *fio)
2591 {
2592 struct f2fs_sb_info *sbi = fio->sbi;
2593 unsigned int devidx;
2594
2595 if (!sbi->s_ndevs)
2596 return;
2597
2598 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
2599
2600 /* update device state for fsync */
2601 set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
2602
2603 /* update device state for checkpoint */
2604 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
2605 spin_lock(&sbi->dev_lock);
2606 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
2607 spin_unlock(&sbi->dev_lock);
2608 }
2609 }
2610
2611 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2612 {
2613 int type = __get_segment_type(fio);
2614 int err;
2615
2616 reallocate:
2617 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2618 &fio->new_blkaddr, sum, type, fio, true);
2619
2620 /* writeout dirty page into bdev */
2621 err = f2fs_submit_page_write(fio);
2622 if (err == -EAGAIN) {
2623 fio->old_blkaddr = fio->new_blkaddr;
2624 goto reallocate;
2625 } else if (!err) {
2626 update_device_state(fio);
2627 }
2628 }
2629
2630 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2631 enum iostat_type io_type)
2632 {
2633 struct f2fs_io_info fio = {
2634 .sbi = sbi,
2635 .type = META,
2636 .op = REQ_OP_WRITE,
2637 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
2638 .old_blkaddr = page->index,
2639 .new_blkaddr = page->index,
2640 .page = page,
2641 .encrypted_page = NULL,
2642 .in_list = false,
2643 };
2644
2645 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
2646 fio.op_flags &= ~REQ_META;
2647
2648 set_page_writeback(page);
2649 f2fs_submit_page_write(&fio);
2650
2651 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
2652 }
2653
2654 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
2655 {
2656 struct f2fs_summary sum;
2657
2658 set_summary(&sum, nid, 0, 0);
2659 do_write_page(&sum, fio);
2660
2661 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2662 }
2663
2664 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
2665 {
2666 struct f2fs_sb_info *sbi = fio->sbi;
2667 struct f2fs_summary sum;
2668 struct node_info ni;
2669
2670 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
2671 get_node_info(sbi, dn->nid, &ni);
2672 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
2673 do_write_page(&sum, fio);
2674 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
2675
2676 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
2677 }
2678
2679 int rewrite_data_page(struct f2fs_io_info *fio)
2680 {
2681 int err;
2682
2683 fio->new_blkaddr = fio->old_blkaddr;
2684 stat_inc_inplace_blocks(fio->sbi);
2685
2686 err = f2fs_submit_page_bio(fio);
2687 if (!err)
2688 update_device_state(fio);
2689
2690 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2691
2692 return err;
2693 }
2694
2695 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
2696 unsigned int segno)
2697 {
2698 int i;
2699
2700 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
2701 if (CURSEG_I(sbi, i)->segno == segno)
2702 break;
2703 }
2704 return i;
2705 }
2706
2707 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2708 block_t old_blkaddr, block_t new_blkaddr,
2709 bool recover_curseg, bool recover_newaddr)
2710 {
2711 struct sit_info *sit_i = SIT_I(sbi);
2712 struct curseg_info *curseg;
2713 unsigned int segno, old_cursegno;
2714 struct seg_entry *se;
2715 int type;
2716 unsigned short old_blkoff;
2717
2718 segno = GET_SEGNO(sbi, new_blkaddr);
2719 se = get_seg_entry(sbi, segno);
2720 type = se->type;
2721
2722 down_write(&SM_I(sbi)->curseg_lock);
2723
2724 if (!recover_curseg) {
2725 /* for recovery flow */
2726 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
2727 if (old_blkaddr == NULL_ADDR)
2728 type = CURSEG_COLD_DATA;
2729 else
2730 type = CURSEG_WARM_DATA;
2731 }
2732 } else {
2733 if (IS_CURSEG(sbi, segno)) {
2734 /* se->type is volatile as SSR allocation */
2735 type = __f2fs_get_curseg(sbi, segno);
2736 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
2737 } else {
2738 type = CURSEG_WARM_DATA;
2739 }
2740 }
2741
2742 curseg = CURSEG_I(sbi, type);
2743
2744 mutex_lock(&curseg->curseg_mutex);
2745 down_write(&sit_i->sentry_lock);
2746
2747 old_cursegno = curseg->segno;
2748 old_blkoff = curseg->next_blkoff;
2749
2750 /* change the current segment */
2751 if (segno != curseg->segno) {
2752 curseg->next_segno = segno;
2753 change_curseg(sbi, type);
2754 }
2755
2756 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
2757 __add_sum_entry(sbi, type, sum);
2758
2759 if (!recover_curseg || recover_newaddr)
2760 update_sit_entry(sbi, new_blkaddr, 1);
2761 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2762 update_sit_entry(sbi, old_blkaddr, -1);
2763
2764 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2765 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
2766
2767 locate_dirty_segment(sbi, old_cursegno);
2768
2769 if (recover_curseg) {
2770 if (old_cursegno != curseg->segno) {
2771 curseg->next_segno = old_cursegno;
2772 change_curseg(sbi, type);
2773 }
2774 curseg->next_blkoff = old_blkoff;
2775 }
2776
2777 up_write(&sit_i->sentry_lock);
2778 mutex_unlock(&curseg->curseg_mutex);
2779 up_write(&SM_I(sbi)->curseg_lock);
2780 }
2781
2782 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2783 block_t old_addr, block_t new_addr,
2784 unsigned char version, bool recover_curseg,
2785 bool recover_newaddr)
2786 {
2787 struct f2fs_summary sum;
2788
2789 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
2790
2791 __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
2792 recover_curseg, recover_newaddr);
2793
2794 f2fs_update_data_blkaddr(dn, new_addr);
2795 }
2796
2797 void f2fs_wait_on_page_writeback(struct page *page,
2798 enum page_type type, bool ordered)
2799 {
2800 if (PageWriteback(page)) {
2801 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
2802
2803 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
2804 0, page->index, type);
2805 if (ordered)
2806 wait_on_page_writeback(page);
2807 else
2808 wait_for_stable_page(page);
2809 }
2810 }
2811
2812 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
2813 {
2814 struct page *cpage;
2815
2816 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2817 return;
2818
2819 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
2820 if (cpage) {
2821 f2fs_wait_on_page_writeback(cpage, DATA, true);
2822 f2fs_put_page(cpage, 1);
2823 }
2824 }
2825
2826 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
2827 {
2828 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2829 struct curseg_info *seg_i;
2830 unsigned char *kaddr;
2831 struct page *page;
2832 block_t start;
2833 int i, j, offset;
2834
2835 start = start_sum_block(sbi);
2836
2837 page = get_meta_page(sbi, start++);
2838 kaddr = (unsigned char *)page_address(page);
2839
2840 /* Step 1: restore nat cache */
2841 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2842 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
2843
2844 /* Step 2: restore sit cache */
2845 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2846 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
2847 offset = 2 * SUM_JOURNAL_SIZE;
2848
2849 /* Step 3: restore summary entries */
2850 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2851 unsigned short blk_off;
2852 unsigned int segno;
2853
2854 seg_i = CURSEG_I(sbi, i);
2855 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
2856 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
2857 seg_i->next_segno = segno;
2858 reset_curseg(sbi, i, 0);
2859 seg_i->alloc_type = ckpt->alloc_type[i];
2860 seg_i->next_blkoff = blk_off;
2861
2862 if (seg_i->alloc_type == SSR)
2863 blk_off = sbi->blocks_per_seg;
2864
2865 for (j = 0; j < blk_off; j++) {
2866 struct f2fs_summary *s;
2867 s = (struct f2fs_summary *)(kaddr + offset);
2868 seg_i->sum_blk->entries[j] = *s;
2869 offset += SUMMARY_SIZE;
2870 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
2871 SUM_FOOTER_SIZE)
2872 continue;
2873
2874 f2fs_put_page(page, 1);
2875 page = NULL;
2876
2877 page = get_meta_page(sbi, start++);
2878 kaddr = (unsigned char *)page_address(page);
2879 offset = 0;
2880 }
2881 }
2882 f2fs_put_page(page, 1);
2883 return 0;
2884 }
2885
2886 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
2887 {
2888 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2889 struct f2fs_summary_block *sum;
2890 struct curseg_info *curseg;
2891 struct page *new;
2892 unsigned short blk_off;
2893 unsigned int segno = 0;
2894 block_t blk_addr = 0;
2895
2896 /* get segment number and block addr */
2897 if (IS_DATASEG(type)) {
2898 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
2899 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
2900 CURSEG_HOT_DATA]);
2901 if (__exist_node_summaries(sbi))
2902 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
2903 else
2904 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
2905 } else {
2906 segno = le32_to_cpu(ckpt->cur_node_segno[type -
2907 CURSEG_HOT_NODE]);
2908 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
2909 CURSEG_HOT_NODE]);
2910 if (__exist_node_summaries(sbi))
2911 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
2912 type - CURSEG_HOT_NODE);
2913 else
2914 blk_addr = GET_SUM_BLOCK(sbi, segno);
2915 }
2916
2917 new = get_meta_page(sbi, blk_addr);
2918 sum = (struct f2fs_summary_block *)page_address(new);
2919
2920 if (IS_NODESEG(type)) {
2921 if (__exist_node_summaries(sbi)) {
2922 struct f2fs_summary *ns = &sum->entries[0];
2923 int i;
2924 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
2925 ns->version = 0;
2926 ns->ofs_in_node = 0;
2927 }
2928 } else {
2929 int err;
2930
2931 err = restore_node_summary(sbi, segno, sum);
2932 if (err) {
2933 f2fs_put_page(new, 1);
2934 return err;
2935 }
2936 }
2937 }
2938
2939 /* set uncompleted segment to curseg */
2940 curseg = CURSEG_I(sbi, type);
2941 mutex_lock(&curseg->curseg_mutex);
2942
2943 /* update journal info */
2944 down_write(&curseg->journal_rwsem);
2945 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
2946 up_write(&curseg->journal_rwsem);
2947
2948 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
2949 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
2950 curseg->next_segno = segno;
2951 reset_curseg(sbi, type, 0);
2952 curseg->alloc_type = ckpt->alloc_type[type];
2953 curseg->next_blkoff = blk_off;
2954 mutex_unlock(&curseg->curseg_mutex);
2955 f2fs_put_page(new, 1);
2956 return 0;
2957 }
2958
2959 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
2960 {
2961 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
2962 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
2963 int type = CURSEG_HOT_DATA;
2964 int err;
2965
2966 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
2967 int npages = npages_for_summary_flush(sbi, true);
2968
2969 if (npages >= 2)
2970 ra_meta_pages(sbi, start_sum_block(sbi), npages,
2971 META_CP, true);
2972
2973 /* restore for compacted data summary */
2974 if (read_compacted_summaries(sbi))
2975 return -EINVAL;
2976 type = CURSEG_HOT_NODE;
2977 }
2978
2979 if (__exist_node_summaries(sbi))
2980 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
2981 NR_CURSEG_TYPE - type, META_CP, true);
2982
2983 for (; type <= CURSEG_COLD_NODE; type++) {
2984 err = read_normal_summaries(sbi, type);
2985 if (err)
2986 return err;
2987 }
2988
2989 /* sanity check for summary blocks */
2990 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
2991 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
2992 return -EINVAL;
2993
2994 return 0;
2995 }
2996
2997 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
2998 {
2999 struct page *page;
3000 unsigned char *kaddr;
3001 struct f2fs_summary *summary;
3002 struct curseg_info *seg_i;
3003 int written_size = 0;
3004 int i, j;
3005
3006 page = grab_meta_page(sbi, blkaddr++);
3007 kaddr = (unsigned char *)page_address(page);
3008
3009 /* Step 1: write nat cache */
3010 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3011 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3012 written_size += SUM_JOURNAL_SIZE;
3013
3014 /* Step 2: write sit cache */
3015 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3016 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3017 written_size += SUM_JOURNAL_SIZE;
3018
3019 /* Step 3: write summary entries */
3020 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3021 unsigned short blkoff;
3022 seg_i = CURSEG_I(sbi, i);
3023 if (sbi->ckpt->alloc_type[i] == SSR)
3024 blkoff = sbi->blocks_per_seg;
3025 else
3026 blkoff = curseg_blkoff(sbi, i);
3027
3028 for (j = 0; j < blkoff; j++) {
3029 if (!page) {
3030 page = grab_meta_page(sbi, blkaddr++);
3031 kaddr = (unsigned char *)page_address(page);
3032 written_size = 0;
3033 }
3034 summary = (struct f2fs_summary *)(kaddr + written_size);
3035 *summary = seg_i->sum_blk->entries[j];
3036 written_size += SUMMARY_SIZE;
3037
3038 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3039 SUM_FOOTER_SIZE)
3040 continue;
3041
3042 set_page_dirty(page);
3043 f2fs_put_page(page, 1);
3044 page = NULL;
3045 }
3046 }
3047 if (page) {
3048 set_page_dirty(page);
3049 f2fs_put_page(page, 1);
3050 }
3051 }
3052
3053 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3054 block_t blkaddr, int type)
3055 {
3056 int i, end;
3057 if (IS_DATASEG(type))
3058 end = type + NR_CURSEG_DATA_TYPE;
3059 else
3060 end = type + NR_CURSEG_NODE_TYPE;
3061
3062 for (i = type; i < end; i++)
3063 write_current_sum_page(sbi, i, blkaddr + (i - type));
3064 }
3065
3066 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3067 {
3068 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3069 write_compacted_summaries(sbi, start_blk);
3070 else
3071 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3072 }
3073
3074 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3075 {
3076 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3077 }
3078
3079 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3080 unsigned int val, int alloc)
3081 {
3082 int i;
3083
3084 if (type == NAT_JOURNAL) {
3085 for (i = 0; i < nats_in_cursum(journal); i++) {
3086 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3087 return i;
3088 }
3089 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3090 return update_nats_in_cursum(journal, 1);
3091 } else if (type == SIT_JOURNAL) {
3092 for (i = 0; i < sits_in_cursum(journal); i++)
3093 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3094 return i;
3095 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3096 return update_sits_in_cursum(journal, 1);
3097 }
3098 return -1;
3099 }
3100
3101 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3102 unsigned int segno)
3103 {
3104 return get_meta_page(sbi, current_sit_addr(sbi, segno));
3105 }
3106
3107 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3108 unsigned int start)
3109 {
3110 struct sit_info *sit_i = SIT_I(sbi);
3111 struct page *src_page, *dst_page;
3112 pgoff_t src_off, dst_off;
3113 void *src_addr, *dst_addr;
3114
3115 src_off = current_sit_addr(sbi, start);
3116 dst_off = next_sit_addr(sbi, src_off);
3117
3118 /* get current sit block page without lock */
3119 src_page = get_meta_page(sbi, src_off);
3120 dst_page = grab_meta_page(sbi, dst_off);
3121 f2fs_bug_on(sbi, PageDirty(src_page));
3122
3123 src_addr = page_address(src_page);
3124 dst_addr = page_address(dst_page);
3125 memcpy(dst_addr, src_addr, PAGE_SIZE);
3126
3127 set_page_dirty(dst_page);
3128 f2fs_put_page(src_page, 1);
3129
3130 set_to_next_sit(sit_i, start);
3131
3132 return dst_page;
3133 }
3134
3135 static struct sit_entry_set *grab_sit_entry_set(void)
3136 {
3137 struct sit_entry_set *ses =
3138 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3139
3140 ses->entry_cnt = 0;
3141 INIT_LIST_HEAD(&ses->set_list);
3142 return ses;
3143 }
3144
3145 static void release_sit_entry_set(struct sit_entry_set *ses)
3146 {
3147 list_del(&ses->set_list);
3148 kmem_cache_free(sit_entry_set_slab, ses);
3149 }
3150
3151 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3152 struct list_head *head)
3153 {
3154 struct sit_entry_set *next = ses;
3155
3156 if (list_is_last(&ses->set_list, head))
3157 return;
3158
3159 list_for_each_entry_continue(next, head, set_list)
3160 if (ses->entry_cnt <= next->entry_cnt)
3161 break;
3162
3163 list_move_tail(&ses->set_list, &next->set_list);
3164 }
3165
3166 static void add_sit_entry(unsigned int segno, struct list_head *head)
3167 {
3168 struct sit_entry_set *ses;
3169 unsigned int start_segno = START_SEGNO(segno);
3170
3171 list_for_each_entry(ses, head, set_list) {
3172 if (ses->start_segno == start_segno) {
3173 ses->entry_cnt++;
3174 adjust_sit_entry_set(ses, head);
3175 return;
3176 }
3177 }
3178
3179 ses = grab_sit_entry_set();
3180
3181 ses->start_segno = start_segno;
3182 ses->entry_cnt++;
3183 list_add(&ses->set_list, head);
3184 }
3185
3186 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3187 {
3188 struct f2fs_sm_info *sm_info = SM_I(sbi);
3189 struct list_head *set_list = &sm_info->sit_entry_set;
3190 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3191 unsigned int segno;
3192
3193 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3194 add_sit_entry(segno, set_list);
3195 }
3196
3197 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3198 {
3199 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3200 struct f2fs_journal *journal = curseg->journal;
3201 int i;
3202
3203 down_write(&curseg->journal_rwsem);
3204 for (i = 0; i < sits_in_cursum(journal); i++) {
3205 unsigned int segno;
3206 bool dirtied;
3207
3208 segno = le32_to_cpu(segno_in_journal(journal, i));
3209 dirtied = __mark_sit_entry_dirty(sbi, segno);
3210
3211 if (!dirtied)
3212 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3213 }
3214 update_sits_in_cursum(journal, -i);
3215 up_write(&curseg->journal_rwsem);
3216 }
3217
3218 /*
3219 * CP calls this function, which flushes SIT entries including sit_journal,
3220 * and moves prefree segs to free segs.
3221 */
3222 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3223 {
3224 struct sit_info *sit_i = SIT_I(sbi);
3225 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3226 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3227 struct f2fs_journal *journal = curseg->journal;
3228 struct sit_entry_set *ses, *tmp;
3229 struct list_head *head = &SM_I(sbi)->sit_entry_set;
3230 bool to_journal = true;
3231 struct seg_entry *se;
3232
3233 down_write(&sit_i->sentry_lock);
3234
3235 if (!sit_i->dirty_sentries)
3236 goto out;
3237
3238 /*
3239 * add and account sit entries of dirty bitmap in sit entry
3240 * set temporarily
3241 */
3242 add_sits_in_set(sbi);
3243
3244 /*
3245 * if there are no enough space in journal to store dirty sit
3246 * entries, remove all entries from journal and add and account
3247 * them in sit entry set.
3248 */
3249 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3250 remove_sits_in_journal(sbi);
3251
3252 /*
3253 * there are two steps to flush sit entries:
3254 * #1, flush sit entries to journal in current cold data summary block.
3255 * #2, flush sit entries to sit page.
3256 */
3257 list_for_each_entry_safe(ses, tmp, head, set_list) {
3258 struct page *page = NULL;
3259 struct f2fs_sit_block *raw_sit = NULL;
3260 unsigned int start_segno = ses->start_segno;
3261 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3262 (unsigned long)MAIN_SEGS(sbi));
3263 unsigned int segno = start_segno;
3264
3265 if (to_journal &&
3266 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3267 to_journal = false;
3268
3269 if (to_journal) {
3270 down_write(&curseg->journal_rwsem);
3271 } else {
3272 page = get_next_sit_page(sbi, start_segno);
3273 raw_sit = page_address(page);
3274 }
3275
3276 /* flush dirty sit entries in region of current sit set */
3277 for_each_set_bit_from(segno, bitmap, end) {
3278 int offset, sit_offset;
3279
3280 se = get_seg_entry(sbi, segno);
3281
3282 /* add discard candidates */
3283 if (!(cpc->reason & CP_DISCARD)) {
3284 cpc->trim_start = segno;
3285 add_discard_addrs(sbi, cpc, false);
3286 }
3287
3288 if (to_journal) {
3289 offset = lookup_journal_in_cursum(journal,
3290 SIT_JOURNAL, segno, 1);
3291 f2fs_bug_on(sbi, offset < 0);
3292 segno_in_journal(journal, offset) =
3293 cpu_to_le32(segno);
3294 seg_info_to_raw_sit(se,
3295 &sit_in_journal(journal, offset));
3296 } else {
3297 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3298 seg_info_to_raw_sit(se,
3299 &raw_sit->entries[sit_offset]);
3300 }
3301
3302 __clear_bit(segno, bitmap);
3303 sit_i->dirty_sentries--;
3304 ses->entry_cnt--;
3305 }
3306
3307 if (to_journal)
3308 up_write(&curseg->journal_rwsem);
3309 else
3310 f2fs_put_page(page, 1);
3311
3312 f2fs_bug_on(sbi, ses->entry_cnt);
3313 release_sit_entry_set(ses);
3314 }
3315
3316 f2fs_bug_on(sbi, !list_empty(head));
3317 f2fs_bug_on(sbi, sit_i->dirty_sentries);
3318 out:
3319 if (cpc->reason & CP_DISCARD) {
3320 __u64 trim_start = cpc->trim_start;
3321
3322 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3323 add_discard_addrs(sbi, cpc, false);
3324
3325 cpc->trim_start = trim_start;
3326 }
3327 up_write(&sit_i->sentry_lock);
3328
3329 set_prefree_as_free_segments(sbi);
3330 }
3331
3332 static int build_sit_info(struct f2fs_sb_info *sbi)
3333 {
3334 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3335 struct sit_info *sit_i;
3336 unsigned int sit_segs, start;
3337 char *src_bitmap;
3338 unsigned int bitmap_size;
3339
3340 /* allocate memory for SIT information */
3341 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
3342 if (!sit_i)
3343 return -ENOMEM;
3344
3345 SM_I(sbi)->sit_info = sit_i;
3346
3347 sit_i->sentries = kvzalloc(MAIN_SEGS(sbi) *
3348 sizeof(struct seg_entry), GFP_KERNEL);
3349 if (!sit_i->sentries)
3350 return -ENOMEM;
3351
3352 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3353 sit_i->dirty_sentries_bitmap = kvzalloc(bitmap_size, GFP_KERNEL);
3354 if (!sit_i->dirty_sentries_bitmap)
3355 return -ENOMEM;
3356
3357 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3358 sit_i->sentries[start].cur_valid_map
3359 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3360 sit_i->sentries[start].ckpt_valid_map
3361 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3362 if (!sit_i->sentries[start].cur_valid_map ||
3363 !sit_i->sentries[start].ckpt_valid_map)
3364 return -ENOMEM;
3365
3366 #ifdef CONFIG_F2FS_CHECK_FS
3367 sit_i->sentries[start].cur_valid_map_mir
3368 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3369 if (!sit_i->sentries[start].cur_valid_map_mir)
3370 return -ENOMEM;
3371 #endif
3372
3373 if (f2fs_discard_en(sbi)) {
3374 sit_i->sentries[start].discard_map
3375 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3376 if (!sit_i->sentries[start].discard_map)
3377 return -ENOMEM;
3378 }
3379 }
3380
3381 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3382 if (!sit_i->tmp_map)
3383 return -ENOMEM;
3384
3385 if (sbi->segs_per_sec > 1) {
3386 sit_i->sec_entries = kvzalloc(MAIN_SECS(sbi) *
3387 sizeof(struct sec_entry), GFP_KERNEL);
3388 if (!sit_i->sec_entries)
3389 return -ENOMEM;
3390 }
3391
3392 /* get information related with SIT */
3393 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3394
3395 /* setup SIT bitmap from ckeckpoint pack */
3396 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3397 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3398
3399 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3400 if (!sit_i->sit_bitmap)
3401 return -ENOMEM;
3402
3403 #ifdef CONFIG_F2FS_CHECK_FS
3404 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3405 if (!sit_i->sit_bitmap_mir)
3406 return -ENOMEM;
3407 #endif
3408
3409 /* init SIT information */
3410 sit_i->s_ops = &default_salloc_ops;
3411
3412 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3413 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3414 sit_i->written_valid_blocks = 0;
3415 sit_i->bitmap_size = bitmap_size;
3416 sit_i->dirty_sentries = 0;
3417 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3418 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3419 sit_i->mounted_time = ktime_get_real_seconds();
3420 init_rwsem(&sit_i->sentry_lock);
3421 return 0;
3422 }
3423
3424 static int build_free_segmap(struct f2fs_sb_info *sbi)
3425 {
3426 struct free_segmap_info *free_i;
3427 unsigned int bitmap_size, sec_bitmap_size;
3428
3429 /* allocate memory for free segmap information */
3430 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
3431 if (!free_i)
3432 return -ENOMEM;
3433
3434 SM_I(sbi)->free_info = free_i;
3435
3436 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3437 free_i->free_segmap = kvmalloc(bitmap_size, GFP_KERNEL);
3438 if (!free_i->free_segmap)
3439 return -ENOMEM;
3440
3441 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3442 free_i->free_secmap = kvmalloc(sec_bitmap_size, GFP_KERNEL);
3443 if (!free_i->free_secmap)
3444 return -ENOMEM;
3445
3446 /* set all segments as dirty temporarily */
3447 memset(free_i->free_segmap, 0xff, bitmap_size);
3448 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3449
3450 /* init free segmap information */
3451 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3452 free_i->free_segments = 0;
3453 free_i->free_sections = 0;
3454 spin_lock_init(&free_i->segmap_lock);
3455 return 0;
3456 }
3457
3458 static int build_curseg(struct f2fs_sb_info *sbi)
3459 {
3460 struct curseg_info *array;
3461 int i;
3462
3463 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
3464 if (!array)
3465 return -ENOMEM;
3466
3467 SM_I(sbi)->curseg_array = array;
3468
3469 for (i = 0; i < NR_CURSEG_TYPE; i++) {
3470 mutex_init(&array[i].curseg_mutex);
3471 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
3472 if (!array[i].sum_blk)
3473 return -ENOMEM;
3474 init_rwsem(&array[i].journal_rwsem);
3475 array[i].journal = kzalloc(sizeof(struct f2fs_journal),
3476 GFP_KERNEL);
3477 if (!array[i].journal)
3478 return -ENOMEM;
3479 array[i].segno = NULL_SEGNO;
3480 array[i].next_blkoff = 0;
3481 }
3482 return restore_curseg_summaries(sbi);
3483 }
3484
3485 static void build_sit_entries(struct f2fs_sb_info *sbi)
3486 {
3487 struct sit_info *sit_i = SIT_I(sbi);
3488 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3489 struct f2fs_journal *journal = curseg->journal;
3490 struct seg_entry *se;
3491 struct f2fs_sit_entry sit;
3492 int sit_blk_cnt = SIT_BLK_CNT(sbi);
3493 unsigned int i, start, end;
3494 unsigned int readed, start_blk = 0;
3495
3496 do {
3497 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
3498 META_SIT, true);
3499
3500 start = start_blk * sit_i->sents_per_block;
3501 end = (start_blk + readed) * sit_i->sents_per_block;
3502
3503 for (; start < end && start < MAIN_SEGS(sbi); start++) {
3504 struct f2fs_sit_block *sit_blk;
3505 struct page *page;
3506
3507 se = &sit_i->sentries[start];
3508 page = get_current_sit_page(sbi, start);
3509 sit_blk = (struct f2fs_sit_block *)page_address(page);
3510 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3511 f2fs_put_page(page, 1);
3512
3513 check_block_count(sbi, start, &sit);
3514 seg_info_from_raw_sit(se, &sit);
3515
3516 /* build discard map only one time */
3517 if (f2fs_discard_en(sbi)) {
3518 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3519 memset(se->discard_map, 0xff,
3520 SIT_VBLOCK_MAP_SIZE);
3521 } else {
3522 memcpy(se->discard_map,
3523 se->cur_valid_map,
3524 SIT_VBLOCK_MAP_SIZE);
3525 sbi->discard_blks +=
3526 sbi->blocks_per_seg -
3527 se->valid_blocks;
3528 }
3529 }
3530
3531 if (sbi->segs_per_sec > 1)
3532 get_sec_entry(sbi, start)->valid_blocks +=
3533 se->valid_blocks;
3534 }
3535 start_blk += readed;
3536 } while (start_blk < sit_blk_cnt);
3537
3538 down_read(&curseg->journal_rwsem);
3539 for (i = 0; i < sits_in_cursum(journal); i++) {
3540 unsigned int old_valid_blocks;
3541
3542 start = le32_to_cpu(segno_in_journal(journal, i));
3543 se = &sit_i->sentries[start];
3544 sit = sit_in_journal(journal, i);
3545
3546 old_valid_blocks = se->valid_blocks;
3547
3548 check_block_count(sbi, start, &sit);
3549 seg_info_from_raw_sit(se, &sit);
3550
3551 if (f2fs_discard_en(sbi)) {
3552 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3553 memset(se->discard_map, 0xff,
3554 SIT_VBLOCK_MAP_SIZE);
3555 } else {
3556 memcpy(se->discard_map, se->cur_valid_map,
3557 SIT_VBLOCK_MAP_SIZE);
3558 sbi->discard_blks += old_valid_blocks -
3559 se->valid_blocks;
3560 }
3561 }
3562
3563 if (sbi->segs_per_sec > 1)
3564 get_sec_entry(sbi, start)->valid_blocks +=
3565 se->valid_blocks - old_valid_blocks;
3566 }
3567 up_read(&curseg->journal_rwsem);
3568 }
3569
3570 static void init_free_segmap(struct f2fs_sb_info *sbi)
3571 {
3572 unsigned int start;
3573 int type;
3574
3575 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3576 struct seg_entry *sentry = get_seg_entry(sbi, start);
3577 if (!sentry->valid_blocks)
3578 __set_free(sbi, start);
3579 else
3580 SIT_I(sbi)->written_valid_blocks +=
3581 sentry->valid_blocks;
3582 }
3583
3584 /* set use the current segments */
3585 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
3586 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
3587 __set_test_and_inuse(sbi, curseg_t->segno);
3588 }
3589 }
3590
3591 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
3592 {
3593 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3594 struct free_segmap_info *free_i = FREE_I(sbi);
3595 unsigned int segno = 0, offset = 0;
3596 unsigned short valid_blocks;
3597
3598 while (1) {
3599 /* find dirty segment based on free segmap */
3600 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
3601 if (segno >= MAIN_SEGS(sbi))
3602 break;
3603 offset = segno + 1;
3604 valid_blocks = get_valid_blocks(sbi, segno, false);
3605 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
3606 continue;
3607 if (valid_blocks > sbi->blocks_per_seg) {
3608 f2fs_bug_on(sbi, 1);
3609 continue;
3610 }
3611 mutex_lock(&dirty_i->seglist_lock);
3612 __locate_dirty_segment(sbi, segno, DIRTY);
3613 mutex_unlock(&dirty_i->seglist_lock);
3614 }
3615 }
3616
3617 static int init_victim_secmap(struct f2fs_sb_info *sbi)
3618 {
3619 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3620 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3621
3622 dirty_i->victim_secmap = kvzalloc(bitmap_size, GFP_KERNEL);
3623 if (!dirty_i->victim_secmap)
3624 return -ENOMEM;
3625 return 0;
3626 }
3627
3628 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
3629 {
3630 struct dirty_seglist_info *dirty_i;
3631 unsigned int bitmap_size, i;
3632
3633 /* allocate memory for dirty segments list information */
3634 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
3635 if (!dirty_i)
3636 return -ENOMEM;
3637
3638 SM_I(sbi)->dirty_info = dirty_i;
3639 mutex_init(&dirty_i->seglist_lock);
3640
3641 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3642
3643 for (i = 0; i < NR_DIRTY_TYPE; i++) {
3644 dirty_i->dirty_segmap[i] = kvzalloc(bitmap_size, GFP_KERNEL);
3645 if (!dirty_i->dirty_segmap[i])
3646 return -ENOMEM;
3647 }
3648
3649 init_dirty_segmap(sbi);
3650 return init_victim_secmap(sbi);
3651 }
3652
3653 /*
3654 * Update min, max modified time for cost-benefit GC algorithm
3655 */
3656 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
3657 {
3658 struct sit_info *sit_i = SIT_I(sbi);
3659 unsigned int segno;
3660
3661 down_write(&sit_i->sentry_lock);
3662
3663 sit_i->min_mtime = LLONG_MAX;
3664
3665 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
3666 unsigned int i;
3667 unsigned long long mtime = 0;
3668
3669 for (i = 0; i < sbi->segs_per_sec; i++)
3670 mtime += get_seg_entry(sbi, segno + i)->mtime;
3671
3672 mtime = div_u64(mtime, sbi->segs_per_sec);
3673
3674 if (sit_i->min_mtime > mtime)
3675 sit_i->min_mtime = mtime;
3676 }
3677 sit_i->max_mtime = get_mtime(sbi);
3678 up_write(&sit_i->sentry_lock);
3679 }
3680
3681 int build_segment_manager(struct f2fs_sb_info *sbi)
3682 {
3683 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3684 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3685 struct f2fs_sm_info *sm_info;
3686 int err;
3687
3688 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
3689 if (!sm_info)
3690 return -ENOMEM;
3691
3692 /* init sm info */
3693 sbi->sm_info = sm_info;
3694 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3695 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3696 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
3697 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3698 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3699 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
3700 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3701 sm_info->rec_prefree_segments = sm_info->main_segments *
3702 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
3703 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
3704 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
3705
3706 if (!test_opt(sbi, LFS))
3707 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
3708 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
3709 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
3710 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
3711 sm_info->min_ssr_sections = reserved_sections(sbi);
3712
3713 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
3714
3715 INIT_LIST_HEAD(&sm_info->sit_entry_set);
3716
3717 init_rwsem(&sm_info->curseg_lock);
3718
3719 if (!f2fs_readonly(sbi->sb)) {
3720 err = create_flush_cmd_control(sbi);
3721 if (err)
3722 return err;
3723 }
3724
3725 err = create_discard_cmd_control(sbi);
3726 if (err)
3727 return err;
3728
3729 err = build_sit_info(sbi);
3730 if (err)
3731 return err;
3732 err = build_free_segmap(sbi);
3733 if (err)
3734 return err;
3735 err = build_curseg(sbi);
3736 if (err)
3737 return err;
3738
3739 /* reinit free segmap based on SIT */
3740 build_sit_entries(sbi);
3741
3742 init_free_segmap(sbi);
3743 err = build_dirty_segmap(sbi);
3744 if (err)
3745 return err;
3746
3747 init_min_max_mtime(sbi);
3748 return 0;
3749 }
3750
3751 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
3752 enum dirty_type dirty_type)
3753 {
3754 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3755
3756 mutex_lock(&dirty_i->seglist_lock);
3757 kvfree(dirty_i->dirty_segmap[dirty_type]);
3758 dirty_i->nr_dirty[dirty_type] = 0;
3759 mutex_unlock(&dirty_i->seglist_lock);
3760 }
3761
3762 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
3763 {
3764 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3765 kvfree(dirty_i->victim_secmap);
3766 }
3767
3768 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
3769 {
3770 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3771 int i;
3772
3773 if (!dirty_i)
3774 return;
3775
3776 /* discard pre-free/dirty segments list */
3777 for (i = 0; i < NR_DIRTY_TYPE; i++)
3778 discard_dirty_segmap(sbi, i);
3779
3780 destroy_victim_secmap(sbi);
3781 SM_I(sbi)->dirty_info = NULL;
3782 kfree(dirty_i);
3783 }
3784
3785 static void destroy_curseg(struct f2fs_sb_info *sbi)
3786 {
3787 struct curseg_info *array = SM_I(sbi)->curseg_array;
3788 int i;
3789
3790 if (!array)
3791 return;
3792 SM_I(sbi)->curseg_array = NULL;
3793 for (i = 0; i < NR_CURSEG_TYPE; i++) {
3794 kfree(array[i].sum_blk);
3795 kfree(array[i].journal);
3796 }
3797 kfree(array);
3798 }
3799
3800 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
3801 {
3802 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
3803 if (!free_i)
3804 return;
3805 SM_I(sbi)->free_info = NULL;
3806 kvfree(free_i->free_segmap);
3807 kvfree(free_i->free_secmap);
3808 kfree(free_i);
3809 }
3810
3811 static void destroy_sit_info(struct f2fs_sb_info *sbi)
3812 {
3813 struct sit_info *sit_i = SIT_I(sbi);
3814 unsigned int start;
3815
3816 if (!sit_i)
3817 return;
3818
3819 if (sit_i->sentries) {
3820 for (start = 0; start < MAIN_SEGS(sbi); start++) {
3821 kfree(sit_i->sentries[start].cur_valid_map);
3822 #ifdef CONFIG_F2FS_CHECK_FS
3823 kfree(sit_i->sentries[start].cur_valid_map_mir);
3824 #endif
3825 kfree(sit_i->sentries[start].ckpt_valid_map);
3826 kfree(sit_i->sentries[start].discard_map);
3827 }
3828 }
3829 kfree(sit_i->tmp_map);
3830
3831 kvfree(sit_i->sentries);
3832 kvfree(sit_i->sec_entries);
3833 kvfree(sit_i->dirty_sentries_bitmap);
3834
3835 SM_I(sbi)->sit_info = NULL;
3836 kfree(sit_i->sit_bitmap);
3837 #ifdef CONFIG_F2FS_CHECK_FS
3838 kfree(sit_i->sit_bitmap_mir);
3839 #endif
3840 kfree(sit_i);
3841 }
3842
3843 void destroy_segment_manager(struct f2fs_sb_info *sbi)
3844 {
3845 struct f2fs_sm_info *sm_info = SM_I(sbi);
3846
3847 if (!sm_info)
3848 return;
3849 destroy_flush_cmd_control(sbi, true);
3850 destroy_discard_cmd_control(sbi);
3851 destroy_dirty_segmap(sbi);
3852 destroy_curseg(sbi);
3853 destroy_free_segmap(sbi);
3854 destroy_sit_info(sbi);
3855 sbi->sm_info = NULL;
3856 kfree(sm_info);
3857 }
3858
3859 int __init create_segment_manager_caches(void)
3860 {
3861 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
3862 sizeof(struct discard_entry));
3863 if (!discard_entry_slab)
3864 goto fail;
3865
3866 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
3867 sizeof(struct discard_cmd));
3868 if (!discard_cmd_slab)
3869 goto destroy_discard_entry;
3870
3871 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
3872 sizeof(struct sit_entry_set));
3873 if (!sit_entry_set_slab)
3874 goto destroy_discard_cmd;
3875
3876 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
3877 sizeof(struct inmem_pages));
3878 if (!inmem_entry_slab)
3879 goto destroy_sit_entry_set;
3880 return 0;
3881
3882 destroy_sit_entry_set:
3883 kmem_cache_destroy(sit_entry_set_slab);
3884 destroy_discard_cmd:
3885 kmem_cache_destroy(discard_cmd_slab);
3886 destroy_discard_entry:
3887 kmem_cache_destroy(discard_entry_slab);
3888 fail:
3889 return -ENOMEM;
3890 }
3891
3892 void destroy_segment_manager_caches(void)
3893 {
3894 kmem_cache_destroy(sit_entry_set_slab);
3895 kmem_cache_destroy(discard_cmd_slab);
3896 kmem_cache_destroy(discard_entry_slab);
3897 kmem_cache_destroy(inmem_entry_slab);
3898 }