Merge branch 'next' into for-linus
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / node.c
1 /*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
18
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include <trace/events/f2fs.h>
23
24 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
25
26 static struct kmem_cache *nat_entry_slab;
27 static struct kmem_cache *free_nid_slab;
28 static struct kmem_cache *nat_entry_set_slab;
29
30 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
31 {
32 struct f2fs_nm_info *nm_i = NM_I(sbi);
33 struct sysinfo val;
34 unsigned long avail_ram;
35 unsigned long mem_size = 0;
36 bool res = false;
37
38 si_meminfo(&val);
39
40 /* only uses low memory */
41 avail_ram = val.totalram - val.totalhigh;
42
43 /* give 25%, 25%, 50%, 50% memory for each components respectively */
44 if (type == FREE_NIDS) {
45 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
46 PAGE_CACHE_SHIFT;
47 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
48 } else if (type == NAT_ENTRIES) {
49 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
50 PAGE_CACHE_SHIFT;
51 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
52 } else if (type == DIRTY_DENTS) {
53 if (sbi->sb->s_bdi->dirty_exceeded)
54 return false;
55 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
56 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
57 } else if (type == INO_ENTRIES) {
58 int i;
59
60 if (sbi->sb->s_bdi->dirty_exceeded)
61 return false;
62 for (i = 0; i <= UPDATE_INO; i++)
63 mem_size += (sbi->im[i].ino_num *
64 sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
65 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
66 }
67 return res;
68 }
69
70 static void clear_node_page_dirty(struct page *page)
71 {
72 struct address_space *mapping = page->mapping;
73 unsigned int long flags;
74
75 if (PageDirty(page)) {
76 spin_lock_irqsave(&mapping->tree_lock, flags);
77 radix_tree_tag_clear(&mapping->page_tree,
78 page_index(page),
79 PAGECACHE_TAG_DIRTY);
80 spin_unlock_irqrestore(&mapping->tree_lock, flags);
81
82 clear_page_dirty_for_io(page);
83 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
84 }
85 ClearPageUptodate(page);
86 }
87
88 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
89 {
90 pgoff_t index = current_nat_addr(sbi, nid);
91 return get_meta_page(sbi, index);
92 }
93
94 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
95 {
96 struct page *src_page;
97 struct page *dst_page;
98 pgoff_t src_off;
99 pgoff_t dst_off;
100 void *src_addr;
101 void *dst_addr;
102 struct f2fs_nm_info *nm_i = NM_I(sbi);
103
104 src_off = current_nat_addr(sbi, nid);
105 dst_off = next_nat_addr(sbi, src_off);
106
107 /* get current nat block page with lock */
108 src_page = get_meta_page(sbi, src_off);
109 dst_page = grab_meta_page(sbi, dst_off);
110 f2fs_bug_on(sbi, PageDirty(src_page));
111
112 src_addr = page_address(src_page);
113 dst_addr = page_address(dst_page);
114 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
115 set_page_dirty(dst_page);
116 f2fs_put_page(src_page, 1);
117
118 set_to_next_nat(nm_i, nid);
119
120 return dst_page;
121 }
122
123 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
124 {
125 return radix_tree_lookup(&nm_i->nat_root, n);
126 }
127
128 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
129 nid_t start, unsigned int nr, struct nat_entry **ep)
130 {
131 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
132 }
133
134 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
135 {
136 list_del(&e->list);
137 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
138 nm_i->nat_cnt--;
139 kmem_cache_free(nat_entry_slab, e);
140 }
141
142 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
143 struct nat_entry *ne)
144 {
145 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
146 struct nat_entry_set *head;
147
148 if (get_nat_flag(ne, IS_DIRTY))
149 return;
150
151 head = radix_tree_lookup(&nm_i->nat_set_root, set);
152 if (!head) {
153 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_ATOMIC);
154
155 INIT_LIST_HEAD(&head->entry_list);
156 INIT_LIST_HEAD(&head->set_list);
157 head->set = set;
158 head->entry_cnt = 0;
159 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
160 }
161 list_move_tail(&ne->list, &head->entry_list);
162 nm_i->dirty_nat_cnt++;
163 head->entry_cnt++;
164 set_nat_flag(ne, IS_DIRTY, true);
165 }
166
167 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
168 struct nat_entry *ne)
169 {
170 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
171 struct nat_entry_set *head;
172
173 head = radix_tree_lookup(&nm_i->nat_set_root, set);
174 if (head) {
175 list_move_tail(&ne->list, &nm_i->nat_entries);
176 set_nat_flag(ne, IS_DIRTY, false);
177 head->entry_cnt--;
178 nm_i->dirty_nat_cnt--;
179 }
180 }
181
182 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
183 nid_t start, unsigned int nr, struct nat_entry_set **ep)
184 {
185 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
186 start, nr);
187 }
188
189 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
190 {
191 struct f2fs_nm_info *nm_i = NM_I(sbi);
192 struct nat_entry *e;
193 bool is_cp = true;
194
195 down_read(&nm_i->nat_tree_lock);
196 e = __lookup_nat_cache(nm_i, nid);
197 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
198 is_cp = false;
199 up_read(&nm_i->nat_tree_lock);
200 return is_cp;
201 }
202
203 bool has_fsynced_inode(struct f2fs_sb_info *sbi, nid_t ino)
204 {
205 struct f2fs_nm_info *nm_i = NM_I(sbi);
206 struct nat_entry *e;
207 bool fsynced = false;
208
209 down_read(&nm_i->nat_tree_lock);
210 e = __lookup_nat_cache(nm_i, ino);
211 if (e && get_nat_flag(e, HAS_FSYNCED_INODE))
212 fsynced = true;
213 up_read(&nm_i->nat_tree_lock);
214 return fsynced;
215 }
216
217 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
218 {
219 struct f2fs_nm_info *nm_i = NM_I(sbi);
220 struct nat_entry *e;
221 bool need_update = true;
222
223 down_read(&nm_i->nat_tree_lock);
224 e = __lookup_nat_cache(nm_i, ino);
225 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
226 (get_nat_flag(e, IS_CHECKPOINTED) ||
227 get_nat_flag(e, HAS_FSYNCED_INODE)))
228 need_update = false;
229 up_read(&nm_i->nat_tree_lock);
230 return need_update;
231 }
232
233 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
234 {
235 struct nat_entry *new;
236
237 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
238 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
239 memset(new, 0, sizeof(struct nat_entry));
240 nat_set_nid(new, nid);
241 nat_reset_flag(new);
242 list_add_tail(&new->list, &nm_i->nat_entries);
243 nm_i->nat_cnt++;
244 return new;
245 }
246
247 static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
248 struct f2fs_nat_entry *ne)
249 {
250 struct nat_entry *e;
251
252 down_write(&nm_i->nat_tree_lock);
253 e = __lookup_nat_cache(nm_i, nid);
254 if (!e) {
255 e = grab_nat_entry(nm_i, nid);
256 node_info_from_raw_nat(&e->ni, ne);
257 }
258 up_write(&nm_i->nat_tree_lock);
259 }
260
261 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
262 block_t new_blkaddr, bool fsync_done)
263 {
264 struct f2fs_nm_info *nm_i = NM_I(sbi);
265 struct nat_entry *e;
266
267 down_write(&nm_i->nat_tree_lock);
268 e = __lookup_nat_cache(nm_i, ni->nid);
269 if (!e) {
270 e = grab_nat_entry(nm_i, ni->nid);
271 e->ni = *ni;
272 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
273 } else if (new_blkaddr == NEW_ADDR) {
274 /*
275 * when nid is reallocated,
276 * previous nat entry can be remained in nat cache.
277 * So, reinitialize it with new information.
278 */
279 e->ni = *ni;
280 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
281 }
282
283 /* sanity check */
284 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
285 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
286 new_blkaddr == NULL_ADDR);
287 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
288 new_blkaddr == NEW_ADDR);
289 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
290 nat_get_blkaddr(e) != NULL_ADDR &&
291 new_blkaddr == NEW_ADDR);
292
293 /* increment version no as node is removed */
294 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
295 unsigned char version = nat_get_version(e);
296 nat_set_version(e, inc_node_version(version));
297 }
298
299 /* change address */
300 nat_set_blkaddr(e, new_blkaddr);
301 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
302 set_nat_flag(e, IS_CHECKPOINTED, false);
303 __set_nat_cache_dirty(nm_i, e);
304
305 /* update fsync_mark if its inode nat entry is still alive */
306 e = __lookup_nat_cache(nm_i, ni->ino);
307 if (e) {
308 if (fsync_done && ni->nid == ni->ino)
309 set_nat_flag(e, HAS_FSYNCED_INODE, true);
310 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
311 }
312 up_write(&nm_i->nat_tree_lock);
313 }
314
315 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
316 {
317 struct f2fs_nm_info *nm_i = NM_I(sbi);
318
319 if (available_free_memory(sbi, NAT_ENTRIES))
320 return 0;
321
322 down_write(&nm_i->nat_tree_lock);
323 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
324 struct nat_entry *ne;
325 ne = list_first_entry(&nm_i->nat_entries,
326 struct nat_entry, list);
327 __del_from_nat_cache(nm_i, ne);
328 nr_shrink--;
329 }
330 up_write(&nm_i->nat_tree_lock);
331 return nr_shrink;
332 }
333
334 /*
335 * This function always returns success
336 */
337 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
338 {
339 struct f2fs_nm_info *nm_i = NM_I(sbi);
340 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
341 struct f2fs_summary_block *sum = curseg->sum_blk;
342 nid_t start_nid = START_NID(nid);
343 struct f2fs_nat_block *nat_blk;
344 struct page *page = NULL;
345 struct f2fs_nat_entry ne;
346 struct nat_entry *e;
347 int i;
348
349 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
350 ni->nid = nid;
351
352 /* Check nat cache */
353 down_read(&nm_i->nat_tree_lock);
354 e = __lookup_nat_cache(nm_i, nid);
355 if (e) {
356 ni->ino = nat_get_ino(e);
357 ni->blk_addr = nat_get_blkaddr(e);
358 ni->version = nat_get_version(e);
359 }
360 up_read(&nm_i->nat_tree_lock);
361 if (e)
362 return;
363
364 /* Check current segment summary */
365 mutex_lock(&curseg->curseg_mutex);
366 i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
367 if (i >= 0) {
368 ne = nat_in_journal(sum, i);
369 node_info_from_raw_nat(ni, &ne);
370 }
371 mutex_unlock(&curseg->curseg_mutex);
372 if (i >= 0)
373 goto cache;
374
375 /* Fill node_info from nat page */
376 page = get_current_nat_page(sbi, start_nid);
377 nat_blk = (struct f2fs_nat_block *)page_address(page);
378 ne = nat_blk->entries[nid - start_nid];
379 node_info_from_raw_nat(ni, &ne);
380 f2fs_put_page(page, 1);
381 cache:
382 /* cache nat entry */
383 cache_nat_entry(NM_I(sbi), nid, &ne);
384 }
385
386 /*
387 * The maximum depth is four.
388 * Offset[0] will have raw inode offset.
389 */
390 static int get_node_path(struct f2fs_inode_info *fi, long block,
391 int offset[4], unsigned int noffset[4])
392 {
393 const long direct_index = ADDRS_PER_INODE(fi);
394 const long direct_blks = ADDRS_PER_BLOCK;
395 const long dptrs_per_blk = NIDS_PER_BLOCK;
396 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
397 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
398 int n = 0;
399 int level = 0;
400
401 noffset[0] = 0;
402
403 if (block < direct_index) {
404 offset[n] = block;
405 goto got;
406 }
407 block -= direct_index;
408 if (block < direct_blks) {
409 offset[n++] = NODE_DIR1_BLOCK;
410 noffset[n] = 1;
411 offset[n] = block;
412 level = 1;
413 goto got;
414 }
415 block -= direct_blks;
416 if (block < direct_blks) {
417 offset[n++] = NODE_DIR2_BLOCK;
418 noffset[n] = 2;
419 offset[n] = block;
420 level = 1;
421 goto got;
422 }
423 block -= direct_blks;
424 if (block < indirect_blks) {
425 offset[n++] = NODE_IND1_BLOCK;
426 noffset[n] = 3;
427 offset[n++] = block / direct_blks;
428 noffset[n] = 4 + offset[n - 1];
429 offset[n] = block % direct_blks;
430 level = 2;
431 goto got;
432 }
433 block -= indirect_blks;
434 if (block < indirect_blks) {
435 offset[n++] = NODE_IND2_BLOCK;
436 noffset[n] = 4 + dptrs_per_blk;
437 offset[n++] = block / direct_blks;
438 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
439 offset[n] = block % direct_blks;
440 level = 2;
441 goto got;
442 }
443 block -= indirect_blks;
444 if (block < dindirect_blks) {
445 offset[n++] = NODE_DIND_BLOCK;
446 noffset[n] = 5 + (dptrs_per_blk * 2);
447 offset[n++] = block / indirect_blks;
448 noffset[n] = 6 + (dptrs_per_blk * 2) +
449 offset[n - 1] * (dptrs_per_blk + 1);
450 offset[n++] = (block / direct_blks) % dptrs_per_blk;
451 noffset[n] = 7 + (dptrs_per_blk * 2) +
452 offset[n - 2] * (dptrs_per_blk + 1) +
453 offset[n - 1];
454 offset[n] = block % direct_blks;
455 level = 3;
456 goto got;
457 } else {
458 BUG();
459 }
460 got:
461 return level;
462 }
463
464 /*
465 * Caller should call f2fs_put_dnode(dn).
466 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
467 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
468 * In the case of RDONLY_NODE, we don't need to care about mutex.
469 */
470 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
471 {
472 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
473 struct page *npage[4];
474 struct page *parent;
475 int offset[4];
476 unsigned int noffset[4];
477 nid_t nids[4];
478 int level, i;
479 int err = 0;
480
481 level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
482
483 nids[0] = dn->inode->i_ino;
484 npage[0] = dn->inode_page;
485
486 if (!npage[0]) {
487 npage[0] = get_node_page(sbi, nids[0]);
488 if (IS_ERR(npage[0]))
489 return PTR_ERR(npage[0]);
490 }
491 parent = npage[0];
492 if (level != 0)
493 nids[1] = get_nid(parent, offset[0], true);
494 dn->inode_page = npage[0];
495 dn->inode_page_locked = true;
496
497 /* get indirect or direct nodes */
498 for (i = 1; i <= level; i++) {
499 bool done = false;
500
501 if (!nids[i] && mode == ALLOC_NODE) {
502 /* alloc new node */
503 if (!alloc_nid(sbi, &(nids[i]))) {
504 err = -ENOSPC;
505 goto release_pages;
506 }
507
508 dn->nid = nids[i];
509 npage[i] = new_node_page(dn, noffset[i], NULL);
510 if (IS_ERR(npage[i])) {
511 alloc_nid_failed(sbi, nids[i]);
512 err = PTR_ERR(npage[i]);
513 goto release_pages;
514 }
515
516 set_nid(parent, offset[i - 1], nids[i], i == 1);
517 alloc_nid_done(sbi, nids[i]);
518 done = true;
519 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
520 npage[i] = get_node_page_ra(parent, offset[i - 1]);
521 if (IS_ERR(npage[i])) {
522 err = PTR_ERR(npage[i]);
523 goto release_pages;
524 }
525 done = true;
526 }
527 if (i == 1) {
528 dn->inode_page_locked = false;
529 unlock_page(parent);
530 } else {
531 f2fs_put_page(parent, 1);
532 }
533
534 if (!done) {
535 npage[i] = get_node_page(sbi, nids[i]);
536 if (IS_ERR(npage[i])) {
537 err = PTR_ERR(npage[i]);
538 f2fs_put_page(npage[0], 0);
539 goto release_out;
540 }
541 }
542 if (i < level) {
543 parent = npage[i];
544 nids[i + 1] = get_nid(parent, offset[i], false);
545 }
546 }
547 dn->nid = nids[level];
548 dn->ofs_in_node = offset[level];
549 dn->node_page = npage[level];
550 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
551 return 0;
552
553 release_pages:
554 f2fs_put_page(parent, 1);
555 if (i > 1)
556 f2fs_put_page(npage[0], 0);
557 release_out:
558 dn->inode_page = NULL;
559 dn->node_page = NULL;
560 return err;
561 }
562
563 static void truncate_node(struct dnode_of_data *dn)
564 {
565 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
566 struct node_info ni;
567
568 get_node_info(sbi, dn->nid, &ni);
569 if (dn->inode->i_blocks == 0) {
570 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
571 goto invalidate;
572 }
573 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
574
575 /* Deallocate node address */
576 invalidate_blocks(sbi, ni.blk_addr);
577 dec_valid_node_count(sbi, dn->inode);
578 set_node_addr(sbi, &ni, NULL_ADDR, false);
579
580 if (dn->nid == dn->inode->i_ino) {
581 remove_orphan_inode(sbi, dn->nid);
582 dec_valid_inode_count(sbi);
583 } else {
584 sync_inode_page(dn);
585 }
586 invalidate:
587 clear_node_page_dirty(dn->node_page);
588 F2FS_SET_SB_DIRT(sbi);
589
590 f2fs_put_page(dn->node_page, 1);
591
592 invalidate_mapping_pages(NODE_MAPPING(sbi),
593 dn->node_page->index, dn->node_page->index);
594
595 dn->node_page = NULL;
596 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
597 }
598
599 static int truncate_dnode(struct dnode_of_data *dn)
600 {
601 struct page *page;
602
603 if (dn->nid == 0)
604 return 1;
605
606 /* get direct node */
607 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
608 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
609 return 1;
610 else if (IS_ERR(page))
611 return PTR_ERR(page);
612
613 /* Make dnode_of_data for parameter */
614 dn->node_page = page;
615 dn->ofs_in_node = 0;
616 truncate_data_blocks(dn);
617 truncate_node(dn);
618 return 1;
619 }
620
621 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
622 int ofs, int depth)
623 {
624 struct dnode_of_data rdn = *dn;
625 struct page *page;
626 struct f2fs_node *rn;
627 nid_t child_nid;
628 unsigned int child_nofs;
629 int freed = 0;
630 int i, ret;
631
632 if (dn->nid == 0)
633 return NIDS_PER_BLOCK + 1;
634
635 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
636
637 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
638 if (IS_ERR(page)) {
639 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
640 return PTR_ERR(page);
641 }
642
643 rn = F2FS_NODE(page);
644 if (depth < 3) {
645 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
646 child_nid = le32_to_cpu(rn->in.nid[i]);
647 if (child_nid == 0)
648 continue;
649 rdn.nid = child_nid;
650 ret = truncate_dnode(&rdn);
651 if (ret < 0)
652 goto out_err;
653 set_nid(page, i, 0, false);
654 }
655 } else {
656 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
657 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
658 child_nid = le32_to_cpu(rn->in.nid[i]);
659 if (child_nid == 0) {
660 child_nofs += NIDS_PER_BLOCK + 1;
661 continue;
662 }
663 rdn.nid = child_nid;
664 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
665 if (ret == (NIDS_PER_BLOCK + 1)) {
666 set_nid(page, i, 0, false);
667 child_nofs += ret;
668 } else if (ret < 0 && ret != -ENOENT) {
669 goto out_err;
670 }
671 }
672 freed = child_nofs;
673 }
674
675 if (!ofs) {
676 /* remove current indirect node */
677 dn->node_page = page;
678 truncate_node(dn);
679 freed++;
680 } else {
681 f2fs_put_page(page, 1);
682 }
683 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
684 return freed;
685
686 out_err:
687 f2fs_put_page(page, 1);
688 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
689 return ret;
690 }
691
692 static int truncate_partial_nodes(struct dnode_of_data *dn,
693 struct f2fs_inode *ri, int *offset, int depth)
694 {
695 struct page *pages[2];
696 nid_t nid[3];
697 nid_t child_nid;
698 int err = 0;
699 int i;
700 int idx = depth - 2;
701
702 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
703 if (!nid[0])
704 return 0;
705
706 /* get indirect nodes in the path */
707 for (i = 0; i < idx + 1; i++) {
708 /* reference count'll be increased */
709 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
710 if (IS_ERR(pages[i])) {
711 err = PTR_ERR(pages[i]);
712 idx = i - 1;
713 goto fail;
714 }
715 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
716 }
717
718 /* free direct nodes linked to a partial indirect node */
719 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
720 child_nid = get_nid(pages[idx], i, false);
721 if (!child_nid)
722 continue;
723 dn->nid = child_nid;
724 err = truncate_dnode(dn);
725 if (err < 0)
726 goto fail;
727 set_nid(pages[idx], i, 0, false);
728 }
729
730 if (offset[idx + 1] == 0) {
731 dn->node_page = pages[idx];
732 dn->nid = nid[idx];
733 truncate_node(dn);
734 } else {
735 f2fs_put_page(pages[idx], 1);
736 }
737 offset[idx]++;
738 offset[idx + 1] = 0;
739 idx--;
740 fail:
741 for (i = idx; i >= 0; i--)
742 f2fs_put_page(pages[i], 1);
743
744 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
745
746 return err;
747 }
748
749 /*
750 * All the block addresses of data and nodes should be nullified.
751 */
752 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
753 {
754 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
755 int err = 0, cont = 1;
756 int level, offset[4], noffset[4];
757 unsigned int nofs = 0;
758 struct f2fs_inode *ri;
759 struct dnode_of_data dn;
760 struct page *page;
761
762 trace_f2fs_truncate_inode_blocks_enter(inode, from);
763
764 level = get_node_path(F2FS_I(inode), from, offset, noffset);
765 restart:
766 page = get_node_page(sbi, inode->i_ino);
767 if (IS_ERR(page)) {
768 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
769 return PTR_ERR(page);
770 }
771
772 set_new_dnode(&dn, inode, page, NULL, 0);
773 unlock_page(page);
774
775 ri = F2FS_INODE(page);
776 switch (level) {
777 case 0:
778 case 1:
779 nofs = noffset[1];
780 break;
781 case 2:
782 nofs = noffset[1];
783 if (!offset[level - 1])
784 goto skip_partial;
785 err = truncate_partial_nodes(&dn, ri, offset, level);
786 if (err < 0 && err != -ENOENT)
787 goto fail;
788 nofs += 1 + NIDS_PER_BLOCK;
789 break;
790 case 3:
791 nofs = 5 + 2 * NIDS_PER_BLOCK;
792 if (!offset[level - 1])
793 goto skip_partial;
794 err = truncate_partial_nodes(&dn, ri, offset, level);
795 if (err < 0 && err != -ENOENT)
796 goto fail;
797 break;
798 default:
799 BUG();
800 }
801
802 skip_partial:
803 while (cont) {
804 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
805 switch (offset[0]) {
806 case NODE_DIR1_BLOCK:
807 case NODE_DIR2_BLOCK:
808 err = truncate_dnode(&dn);
809 break;
810
811 case NODE_IND1_BLOCK:
812 case NODE_IND2_BLOCK:
813 err = truncate_nodes(&dn, nofs, offset[1], 2);
814 break;
815
816 case NODE_DIND_BLOCK:
817 err = truncate_nodes(&dn, nofs, offset[1], 3);
818 cont = 0;
819 break;
820
821 default:
822 BUG();
823 }
824 if (err < 0 && err != -ENOENT)
825 goto fail;
826 if (offset[1] == 0 &&
827 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
828 lock_page(page);
829 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
830 f2fs_put_page(page, 1);
831 goto restart;
832 }
833 f2fs_wait_on_page_writeback(page, NODE);
834 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
835 set_page_dirty(page);
836 unlock_page(page);
837 }
838 offset[1] = 0;
839 offset[0]++;
840 nofs += err;
841 }
842 fail:
843 f2fs_put_page(page, 0);
844 trace_f2fs_truncate_inode_blocks_exit(inode, err);
845 return err > 0 ? 0 : err;
846 }
847
848 int truncate_xattr_node(struct inode *inode, struct page *page)
849 {
850 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
851 nid_t nid = F2FS_I(inode)->i_xattr_nid;
852 struct dnode_of_data dn;
853 struct page *npage;
854
855 if (!nid)
856 return 0;
857
858 npage = get_node_page(sbi, nid);
859 if (IS_ERR(npage))
860 return PTR_ERR(npage);
861
862 F2FS_I(inode)->i_xattr_nid = 0;
863
864 /* need to do checkpoint during fsync */
865 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
866
867 set_new_dnode(&dn, inode, page, npage, nid);
868
869 if (page)
870 dn.inode_page_locked = true;
871 truncate_node(&dn);
872 return 0;
873 }
874
875 /*
876 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
877 * f2fs_unlock_op().
878 */
879 void remove_inode_page(struct inode *inode)
880 {
881 struct dnode_of_data dn;
882
883 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
884 if (get_dnode_of_data(&dn, 0, LOOKUP_NODE))
885 return;
886
887 if (truncate_xattr_node(inode, dn.inode_page)) {
888 f2fs_put_dnode(&dn);
889 return;
890 }
891
892 /* remove potential inline_data blocks */
893 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
894 S_ISLNK(inode->i_mode))
895 truncate_data_blocks_range(&dn, 1);
896
897 /* 0 is possible, after f2fs_new_inode() has failed */
898 f2fs_bug_on(F2FS_I_SB(inode),
899 inode->i_blocks != 0 && inode->i_blocks != 1);
900
901 /* will put inode & node pages */
902 truncate_node(&dn);
903 }
904
905 struct page *new_inode_page(struct inode *inode)
906 {
907 struct dnode_of_data dn;
908
909 /* allocate inode page for new inode */
910 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
911
912 /* caller should f2fs_put_page(page, 1); */
913 return new_node_page(&dn, 0, NULL);
914 }
915
916 struct page *new_node_page(struct dnode_of_data *dn,
917 unsigned int ofs, struct page *ipage)
918 {
919 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
920 struct node_info old_ni, new_ni;
921 struct page *page;
922 int err;
923
924 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
925 return ERR_PTR(-EPERM);
926
927 page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
928 if (!page)
929 return ERR_PTR(-ENOMEM);
930
931 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
932 err = -ENOSPC;
933 goto fail;
934 }
935
936 get_node_info(sbi, dn->nid, &old_ni);
937
938 /* Reinitialize old_ni with new node page */
939 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
940 new_ni = old_ni;
941 new_ni.ino = dn->inode->i_ino;
942 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
943
944 f2fs_wait_on_page_writeback(page, NODE);
945 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
946 set_cold_node(dn->inode, page);
947 SetPageUptodate(page);
948 set_page_dirty(page);
949
950 if (f2fs_has_xattr_block(ofs))
951 F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
952
953 dn->node_page = page;
954 if (ipage)
955 update_inode(dn->inode, ipage);
956 else
957 sync_inode_page(dn);
958 if (ofs == 0)
959 inc_valid_inode_count(sbi);
960
961 return page;
962
963 fail:
964 clear_node_page_dirty(page);
965 f2fs_put_page(page, 1);
966 return ERR_PTR(err);
967 }
968
969 /*
970 * Caller should do after getting the following values.
971 * 0: f2fs_put_page(page, 0)
972 * LOCKED_PAGE: f2fs_put_page(page, 1)
973 * error: nothing
974 */
975 static int read_node_page(struct page *page, int rw)
976 {
977 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
978 struct node_info ni;
979
980 get_node_info(sbi, page->index, &ni);
981
982 if (unlikely(ni.blk_addr == NULL_ADDR)) {
983 f2fs_put_page(page, 1);
984 return -ENOENT;
985 }
986
987 if (PageUptodate(page))
988 return LOCKED_PAGE;
989
990 return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
991 }
992
993 /*
994 * Readahead a node page
995 */
996 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
997 {
998 struct page *apage;
999 int err;
1000
1001 apage = find_get_page(NODE_MAPPING(sbi), nid);
1002 if (apage && PageUptodate(apage)) {
1003 f2fs_put_page(apage, 0);
1004 return;
1005 }
1006 f2fs_put_page(apage, 0);
1007
1008 apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1009 if (!apage)
1010 return;
1011
1012 err = read_node_page(apage, READA);
1013 if (err == 0)
1014 f2fs_put_page(apage, 0);
1015 else if (err == LOCKED_PAGE)
1016 f2fs_put_page(apage, 1);
1017 }
1018
1019 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1020 {
1021 struct page *page;
1022 int err;
1023 repeat:
1024 page = grab_cache_page(NODE_MAPPING(sbi), nid);
1025 if (!page)
1026 return ERR_PTR(-ENOMEM);
1027
1028 err = read_node_page(page, READ_SYNC);
1029 if (err < 0)
1030 return ERR_PTR(err);
1031 else if (err == LOCKED_PAGE)
1032 goto got_it;
1033
1034 lock_page(page);
1035 if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
1036 f2fs_put_page(page, 1);
1037 return ERR_PTR(-EIO);
1038 }
1039 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1040 f2fs_put_page(page, 1);
1041 goto repeat;
1042 }
1043 got_it:
1044 return page;
1045 }
1046
1047 /*
1048 * Return a locked page for the desired node page.
1049 * And, readahead MAX_RA_NODE number of node pages.
1050 */
1051 struct page *get_node_page_ra(struct page *parent, int start)
1052 {
1053 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1054 struct blk_plug plug;
1055 struct page *page;
1056 int err, i, end;
1057 nid_t nid;
1058
1059 /* First, try getting the desired direct node. */
1060 nid = get_nid(parent, start, false);
1061 if (!nid)
1062 return ERR_PTR(-ENOENT);
1063 repeat:
1064 page = grab_cache_page(NODE_MAPPING(sbi), nid);
1065 if (!page)
1066 return ERR_PTR(-ENOMEM);
1067
1068 err = read_node_page(page, READ_SYNC);
1069 if (err < 0)
1070 return ERR_PTR(err);
1071 else if (err == LOCKED_PAGE)
1072 goto page_hit;
1073
1074 blk_start_plug(&plug);
1075
1076 /* Then, try readahead for siblings of the desired node */
1077 end = start + MAX_RA_NODE;
1078 end = min(end, NIDS_PER_BLOCK);
1079 for (i = start + 1; i < end; i++) {
1080 nid = get_nid(parent, i, false);
1081 if (!nid)
1082 continue;
1083 ra_node_page(sbi, nid);
1084 }
1085
1086 blk_finish_plug(&plug);
1087
1088 lock_page(page);
1089 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1090 f2fs_put_page(page, 1);
1091 goto repeat;
1092 }
1093 page_hit:
1094 if (unlikely(!PageUptodate(page))) {
1095 f2fs_put_page(page, 1);
1096 return ERR_PTR(-EIO);
1097 }
1098 return page;
1099 }
1100
1101 void sync_inode_page(struct dnode_of_data *dn)
1102 {
1103 if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1104 update_inode(dn->inode, dn->node_page);
1105 } else if (dn->inode_page) {
1106 if (!dn->inode_page_locked)
1107 lock_page(dn->inode_page);
1108 update_inode(dn->inode, dn->inode_page);
1109 if (!dn->inode_page_locked)
1110 unlock_page(dn->inode_page);
1111 } else {
1112 update_inode_page(dn->inode);
1113 }
1114 }
1115
1116 int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1117 struct writeback_control *wbc)
1118 {
1119 pgoff_t index, end;
1120 struct pagevec pvec;
1121 int step = ino ? 2 : 0;
1122 int nwritten = 0, wrote = 0;
1123
1124 pagevec_init(&pvec, 0);
1125
1126 next_step:
1127 index = 0;
1128 end = LONG_MAX;
1129
1130 while (index <= end) {
1131 int i, nr_pages;
1132 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1133 PAGECACHE_TAG_DIRTY,
1134 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1135 if (nr_pages == 0)
1136 break;
1137
1138 for (i = 0; i < nr_pages; i++) {
1139 struct page *page = pvec.pages[i];
1140
1141 /*
1142 * flushing sequence with step:
1143 * 0. indirect nodes
1144 * 1. dentry dnodes
1145 * 2. file dnodes
1146 */
1147 if (step == 0 && IS_DNODE(page))
1148 continue;
1149 if (step == 1 && (!IS_DNODE(page) ||
1150 is_cold_node(page)))
1151 continue;
1152 if (step == 2 && (!IS_DNODE(page) ||
1153 !is_cold_node(page)))
1154 continue;
1155
1156 /*
1157 * If an fsync mode,
1158 * we should not skip writing node pages.
1159 */
1160 if (ino && ino_of_node(page) == ino)
1161 lock_page(page);
1162 else if (!trylock_page(page))
1163 continue;
1164
1165 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1166 continue_unlock:
1167 unlock_page(page);
1168 continue;
1169 }
1170 if (ino && ino_of_node(page) != ino)
1171 goto continue_unlock;
1172
1173 if (!PageDirty(page)) {
1174 /* someone wrote it for us */
1175 goto continue_unlock;
1176 }
1177
1178 if (!clear_page_dirty_for_io(page))
1179 goto continue_unlock;
1180
1181 /* called by fsync() */
1182 if (ino && IS_DNODE(page)) {
1183 set_fsync_mark(page, 1);
1184 if (IS_INODE(page)) {
1185 if (!is_checkpointed_node(sbi, ino) &&
1186 !has_fsynced_inode(sbi, ino))
1187 set_dentry_mark(page, 1);
1188 else
1189 set_dentry_mark(page, 0);
1190 }
1191 nwritten++;
1192 } else {
1193 set_fsync_mark(page, 0);
1194 set_dentry_mark(page, 0);
1195 }
1196
1197 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1198 unlock_page(page);
1199 else
1200 wrote++;
1201
1202 if (--wbc->nr_to_write == 0)
1203 break;
1204 }
1205 pagevec_release(&pvec);
1206 cond_resched();
1207
1208 if (wbc->nr_to_write == 0) {
1209 step = 2;
1210 break;
1211 }
1212 }
1213
1214 if (step < 2) {
1215 step++;
1216 goto next_step;
1217 }
1218
1219 if (wrote)
1220 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1221 return nwritten;
1222 }
1223
1224 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1225 {
1226 pgoff_t index = 0, end = LONG_MAX;
1227 struct pagevec pvec;
1228 int ret2 = 0, ret = 0;
1229
1230 pagevec_init(&pvec, 0);
1231
1232 while (index <= end) {
1233 int i, nr_pages;
1234 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1235 PAGECACHE_TAG_WRITEBACK,
1236 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1237 if (nr_pages == 0)
1238 break;
1239
1240 for (i = 0; i < nr_pages; i++) {
1241 struct page *page = pvec.pages[i];
1242
1243 /* until radix tree lookup accepts end_index */
1244 if (unlikely(page->index > end))
1245 continue;
1246
1247 if (ino && ino_of_node(page) == ino) {
1248 f2fs_wait_on_page_writeback(page, NODE);
1249 if (TestClearPageError(page))
1250 ret = -EIO;
1251 }
1252 }
1253 pagevec_release(&pvec);
1254 cond_resched();
1255 }
1256
1257 if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1258 ret2 = -ENOSPC;
1259 if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1260 ret2 = -EIO;
1261 if (!ret)
1262 ret = ret2;
1263 return ret;
1264 }
1265
1266 static int f2fs_write_node_page(struct page *page,
1267 struct writeback_control *wbc)
1268 {
1269 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1270 nid_t nid;
1271 block_t new_addr;
1272 struct node_info ni;
1273 struct f2fs_io_info fio = {
1274 .type = NODE,
1275 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1276 };
1277
1278 trace_f2fs_writepage(page, NODE);
1279
1280 if (unlikely(sbi->por_doing))
1281 goto redirty_out;
1282 if (unlikely(f2fs_cp_error(sbi)))
1283 goto redirty_out;
1284
1285 f2fs_wait_on_page_writeback(page, NODE);
1286
1287 /* get old block addr of this node page */
1288 nid = nid_of_node(page);
1289 f2fs_bug_on(sbi, page->index != nid);
1290
1291 get_node_info(sbi, nid, &ni);
1292
1293 /* This page is already truncated */
1294 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1295 dec_page_count(sbi, F2FS_DIRTY_NODES);
1296 unlock_page(page);
1297 return 0;
1298 }
1299
1300 if (wbc->for_reclaim) {
1301 if (!down_read_trylock(&sbi->node_write))
1302 goto redirty_out;
1303 } else {
1304 down_read(&sbi->node_write);
1305 }
1306 set_page_writeback(page);
1307 write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1308 set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
1309 dec_page_count(sbi, F2FS_DIRTY_NODES);
1310 up_read(&sbi->node_write);
1311 unlock_page(page);
1312
1313 if (wbc->for_reclaim)
1314 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1315
1316 return 0;
1317
1318 redirty_out:
1319 redirty_page_for_writepage(wbc, page);
1320 return AOP_WRITEPAGE_ACTIVATE;
1321 }
1322
1323 static int f2fs_write_node_pages(struct address_space *mapping,
1324 struct writeback_control *wbc)
1325 {
1326 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1327 long diff;
1328
1329 trace_f2fs_writepages(mapping->host, wbc, NODE);
1330
1331 /* balancing f2fs's metadata in background */
1332 f2fs_balance_fs_bg(sbi);
1333
1334 /* collect a number of dirty node pages and write together */
1335 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1336 goto skip_write;
1337
1338 diff = nr_pages_to_write(sbi, NODE, wbc);
1339 wbc->sync_mode = WB_SYNC_NONE;
1340 sync_node_pages(sbi, 0, wbc);
1341 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1342 return 0;
1343
1344 skip_write:
1345 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1346 return 0;
1347 }
1348
1349 static int f2fs_set_node_page_dirty(struct page *page)
1350 {
1351 trace_f2fs_set_page_dirty(page, NODE);
1352
1353 SetPageUptodate(page);
1354 if (!PageDirty(page)) {
1355 __set_page_dirty_nobuffers(page);
1356 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1357 SetPagePrivate(page);
1358 return 1;
1359 }
1360 return 0;
1361 }
1362
1363 static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1364 unsigned int length)
1365 {
1366 struct inode *inode = page->mapping->host;
1367 if (PageDirty(page))
1368 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_NODES);
1369 ClearPagePrivate(page);
1370 }
1371
1372 static int f2fs_release_node_page(struct page *page, gfp_t wait)
1373 {
1374 ClearPagePrivate(page);
1375 return 1;
1376 }
1377
1378 /*
1379 * Structure of the f2fs node operations
1380 */
1381 const struct address_space_operations f2fs_node_aops = {
1382 .writepage = f2fs_write_node_page,
1383 .writepages = f2fs_write_node_pages,
1384 .set_page_dirty = f2fs_set_node_page_dirty,
1385 .invalidatepage = f2fs_invalidate_node_page,
1386 .releasepage = f2fs_release_node_page,
1387 };
1388
1389 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1390 nid_t n)
1391 {
1392 return radix_tree_lookup(&nm_i->free_nid_root, n);
1393 }
1394
1395 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1396 struct free_nid *i)
1397 {
1398 list_del(&i->list);
1399 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1400 }
1401
1402 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1403 {
1404 struct f2fs_nm_info *nm_i = NM_I(sbi);
1405 struct free_nid *i;
1406 struct nat_entry *ne;
1407 bool allocated = false;
1408
1409 if (!available_free_memory(sbi, FREE_NIDS))
1410 return -1;
1411
1412 /* 0 nid should not be used */
1413 if (unlikely(nid == 0))
1414 return 0;
1415
1416 if (build) {
1417 /* do not add allocated nids */
1418 down_read(&nm_i->nat_tree_lock);
1419 ne = __lookup_nat_cache(nm_i, nid);
1420 if (ne &&
1421 (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1422 nat_get_blkaddr(ne) != NULL_ADDR))
1423 allocated = true;
1424 up_read(&nm_i->nat_tree_lock);
1425 if (allocated)
1426 return 0;
1427 }
1428
1429 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1430 i->nid = nid;
1431 i->state = NID_NEW;
1432
1433 if (radix_tree_preload(GFP_NOFS)) {
1434 kmem_cache_free(free_nid_slab, i);
1435 return 0;
1436 }
1437
1438 spin_lock(&nm_i->free_nid_list_lock);
1439 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1440 spin_unlock(&nm_i->free_nid_list_lock);
1441 radix_tree_preload_end();
1442 kmem_cache_free(free_nid_slab, i);
1443 return 0;
1444 }
1445 list_add_tail(&i->list, &nm_i->free_nid_list);
1446 nm_i->fcnt++;
1447 spin_unlock(&nm_i->free_nid_list_lock);
1448 radix_tree_preload_end();
1449 return 1;
1450 }
1451
1452 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1453 {
1454 struct free_nid *i;
1455 bool need_free = false;
1456
1457 spin_lock(&nm_i->free_nid_list_lock);
1458 i = __lookup_free_nid_list(nm_i, nid);
1459 if (i && i->state == NID_NEW) {
1460 __del_from_free_nid_list(nm_i, i);
1461 nm_i->fcnt--;
1462 need_free = true;
1463 }
1464 spin_unlock(&nm_i->free_nid_list_lock);
1465
1466 if (need_free)
1467 kmem_cache_free(free_nid_slab, i);
1468 }
1469
1470 static void scan_nat_page(struct f2fs_sb_info *sbi,
1471 struct page *nat_page, nid_t start_nid)
1472 {
1473 struct f2fs_nm_info *nm_i = NM_I(sbi);
1474 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1475 block_t blk_addr;
1476 int i;
1477
1478 i = start_nid % NAT_ENTRY_PER_BLOCK;
1479
1480 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1481
1482 if (unlikely(start_nid >= nm_i->max_nid))
1483 break;
1484
1485 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1486 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1487 if (blk_addr == NULL_ADDR) {
1488 if (add_free_nid(sbi, start_nid, true) < 0)
1489 break;
1490 }
1491 }
1492 }
1493
1494 static void build_free_nids(struct f2fs_sb_info *sbi)
1495 {
1496 struct f2fs_nm_info *nm_i = NM_I(sbi);
1497 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1498 struct f2fs_summary_block *sum = curseg->sum_blk;
1499 int i = 0;
1500 nid_t nid = nm_i->next_scan_nid;
1501
1502 /* Enough entries */
1503 if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1504 return;
1505
1506 /* readahead nat pages to be scanned */
1507 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
1508
1509 while (1) {
1510 struct page *page = get_current_nat_page(sbi, nid);
1511
1512 scan_nat_page(sbi, page, nid);
1513 f2fs_put_page(page, 1);
1514
1515 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1516 if (unlikely(nid >= nm_i->max_nid))
1517 nid = 0;
1518
1519 if (i++ == FREE_NID_PAGES)
1520 break;
1521 }
1522
1523 /* go to the next free nat pages to find free nids abundantly */
1524 nm_i->next_scan_nid = nid;
1525
1526 /* find free nids from current sum_pages */
1527 mutex_lock(&curseg->curseg_mutex);
1528 for (i = 0; i < nats_in_cursum(sum); i++) {
1529 block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1530 nid = le32_to_cpu(nid_in_journal(sum, i));
1531 if (addr == NULL_ADDR)
1532 add_free_nid(sbi, nid, true);
1533 else
1534 remove_free_nid(nm_i, nid);
1535 }
1536 mutex_unlock(&curseg->curseg_mutex);
1537 }
1538
1539 /*
1540 * If this function returns success, caller can obtain a new nid
1541 * from second parameter of this function.
1542 * The returned nid could be used ino as well as nid when inode is created.
1543 */
1544 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1545 {
1546 struct f2fs_nm_info *nm_i = NM_I(sbi);
1547 struct free_nid *i = NULL;
1548 retry:
1549 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1550 return false;
1551
1552 spin_lock(&nm_i->free_nid_list_lock);
1553
1554 /* We should not use stale free nids created by build_free_nids */
1555 if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1556 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1557 list_for_each_entry(i, &nm_i->free_nid_list, list)
1558 if (i->state == NID_NEW)
1559 break;
1560
1561 f2fs_bug_on(sbi, i->state != NID_NEW);
1562 *nid = i->nid;
1563 i->state = NID_ALLOC;
1564 nm_i->fcnt--;
1565 spin_unlock(&nm_i->free_nid_list_lock);
1566 return true;
1567 }
1568 spin_unlock(&nm_i->free_nid_list_lock);
1569
1570 /* Let's scan nat pages and its caches to get free nids */
1571 mutex_lock(&nm_i->build_lock);
1572 build_free_nids(sbi);
1573 mutex_unlock(&nm_i->build_lock);
1574 goto retry;
1575 }
1576
1577 /*
1578 * alloc_nid() should be called prior to this function.
1579 */
1580 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1581 {
1582 struct f2fs_nm_info *nm_i = NM_I(sbi);
1583 struct free_nid *i;
1584
1585 spin_lock(&nm_i->free_nid_list_lock);
1586 i = __lookup_free_nid_list(nm_i, nid);
1587 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1588 __del_from_free_nid_list(nm_i, i);
1589 spin_unlock(&nm_i->free_nid_list_lock);
1590
1591 kmem_cache_free(free_nid_slab, i);
1592 }
1593
1594 /*
1595 * alloc_nid() should be called prior to this function.
1596 */
1597 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1598 {
1599 struct f2fs_nm_info *nm_i = NM_I(sbi);
1600 struct free_nid *i;
1601 bool need_free = false;
1602
1603 if (!nid)
1604 return;
1605
1606 spin_lock(&nm_i->free_nid_list_lock);
1607 i = __lookup_free_nid_list(nm_i, nid);
1608 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1609 if (!available_free_memory(sbi, FREE_NIDS)) {
1610 __del_from_free_nid_list(nm_i, i);
1611 need_free = true;
1612 } else {
1613 i->state = NID_NEW;
1614 nm_i->fcnt++;
1615 }
1616 spin_unlock(&nm_i->free_nid_list_lock);
1617
1618 if (need_free)
1619 kmem_cache_free(free_nid_slab, i);
1620 }
1621
1622 void recover_inline_xattr(struct inode *inode, struct page *page)
1623 {
1624 void *src_addr, *dst_addr;
1625 size_t inline_size;
1626 struct page *ipage;
1627 struct f2fs_inode *ri;
1628
1629 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1630 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
1631
1632 ri = F2FS_INODE(page);
1633 if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1634 clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
1635 goto update_inode;
1636 }
1637
1638 dst_addr = inline_xattr_addr(ipage);
1639 src_addr = inline_xattr_addr(page);
1640 inline_size = inline_xattr_size(inode);
1641
1642 f2fs_wait_on_page_writeback(ipage, NODE);
1643 memcpy(dst_addr, src_addr, inline_size);
1644 update_inode:
1645 update_inode(inode, ipage);
1646 f2fs_put_page(ipage, 1);
1647 }
1648
1649 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1650 {
1651 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1652 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1653 nid_t new_xnid = nid_of_node(page);
1654 struct node_info ni;
1655
1656 /* 1: invalidate the previous xattr nid */
1657 if (!prev_xnid)
1658 goto recover_xnid;
1659
1660 /* Deallocate node address */
1661 get_node_info(sbi, prev_xnid, &ni);
1662 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1663 invalidate_blocks(sbi, ni.blk_addr);
1664 dec_valid_node_count(sbi, inode);
1665 set_node_addr(sbi, &ni, NULL_ADDR, false);
1666
1667 recover_xnid:
1668 /* 2: allocate new xattr nid */
1669 if (unlikely(!inc_valid_node_count(sbi, inode)))
1670 f2fs_bug_on(sbi, 1);
1671
1672 remove_free_nid(NM_I(sbi), new_xnid);
1673 get_node_info(sbi, new_xnid, &ni);
1674 ni.ino = inode->i_ino;
1675 set_node_addr(sbi, &ni, NEW_ADDR, false);
1676 F2FS_I(inode)->i_xattr_nid = new_xnid;
1677
1678 /* 3: update xattr blkaddr */
1679 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1680 set_node_addr(sbi, &ni, blkaddr, false);
1681
1682 update_inode_page(inode);
1683 }
1684
1685 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1686 {
1687 struct f2fs_inode *src, *dst;
1688 nid_t ino = ino_of_node(page);
1689 struct node_info old_ni, new_ni;
1690 struct page *ipage;
1691
1692 get_node_info(sbi, ino, &old_ni);
1693
1694 if (unlikely(old_ni.blk_addr != NULL_ADDR))
1695 return -EINVAL;
1696
1697 ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1698 if (!ipage)
1699 return -ENOMEM;
1700
1701 /* Should not use this inode from free nid list */
1702 remove_free_nid(NM_I(sbi), ino);
1703
1704 SetPageUptodate(ipage);
1705 fill_node_footer(ipage, ino, ino, 0, true);
1706
1707 src = F2FS_INODE(page);
1708 dst = F2FS_INODE(ipage);
1709
1710 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1711 dst->i_size = 0;
1712 dst->i_blocks = cpu_to_le64(1);
1713 dst->i_links = cpu_to_le32(1);
1714 dst->i_xattr_nid = 0;
1715 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
1716
1717 new_ni = old_ni;
1718 new_ni.ino = ino;
1719
1720 if (unlikely(!inc_valid_node_count(sbi, NULL)))
1721 WARN_ON(1);
1722 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1723 inc_valid_inode_count(sbi);
1724 set_page_dirty(ipage);
1725 f2fs_put_page(ipage, 1);
1726 return 0;
1727 }
1728
1729 /*
1730 * ra_sum_pages() merge contiguous pages into one bio and submit.
1731 * these pre-read pages are allocated in bd_inode's mapping tree.
1732 */
1733 static int ra_sum_pages(struct f2fs_sb_info *sbi, struct page **pages,
1734 int start, int nrpages)
1735 {
1736 struct inode *inode = sbi->sb->s_bdev->bd_inode;
1737 struct address_space *mapping = inode->i_mapping;
1738 int i, page_idx = start;
1739 struct f2fs_io_info fio = {
1740 .type = META,
1741 .rw = READ_SYNC | REQ_META | REQ_PRIO
1742 };
1743
1744 for (i = 0; page_idx < start + nrpages; page_idx++, i++) {
1745 /* alloc page in bd_inode for reading node summary info */
1746 pages[i] = grab_cache_page(mapping, page_idx);
1747 if (!pages[i])
1748 break;
1749 f2fs_submit_page_mbio(sbi, pages[i], page_idx, &fio);
1750 }
1751
1752 f2fs_submit_merged_bio(sbi, META, READ);
1753 return i;
1754 }
1755
1756 int restore_node_summary(struct f2fs_sb_info *sbi,
1757 unsigned int segno, struct f2fs_summary_block *sum)
1758 {
1759 struct f2fs_node *rn;
1760 struct f2fs_summary *sum_entry;
1761 struct inode *inode = sbi->sb->s_bdev->bd_inode;
1762 block_t addr;
1763 int bio_blocks = MAX_BIO_BLOCKS(sbi);
1764 struct page *pages[bio_blocks];
1765 int i, idx, last_offset, nrpages, err = 0;
1766
1767 /* scan the node segment */
1768 last_offset = sbi->blocks_per_seg;
1769 addr = START_BLOCK(sbi, segno);
1770 sum_entry = &sum->entries[0];
1771
1772 for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
1773 nrpages = min(last_offset - i, bio_blocks);
1774
1775 /* readahead node pages */
1776 nrpages = ra_sum_pages(sbi, pages, addr, nrpages);
1777 if (!nrpages)
1778 return -ENOMEM;
1779
1780 for (idx = 0; idx < nrpages; idx++) {
1781 if (err)
1782 goto skip;
1783
1784 lock_page(pages[idx]);
1785 if (unlikely(!PageUptodate(pages[idx]))) {
1786 err = -EIO;
1787 } else {
1788 rn = F2FS_NODE(pages[idx]);
1789 sum_entry->nid = rn->footer.nid;
1790 sum_entry->version = 0;
1791 sum_entry->ofs_in_node = 0;
1792 sum_entry++;
1793 }
1794 unlock_page(pages[idx]);
1795 skip:
1796 page_cache_release(pages[idx]);
1797 }
1798
1799 invalidate_mapping_pages(inode->i_mapping, addr,
1800 addr + nrpages);
1801 }
1802 return err;
1803 }
1804
1805 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1806 {
1807 struct f2fs_nm_info *nm_i = NM_I(sbi);
1808 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1809 struct f2fs_summary_block *sum = curseg->sum_blk;
1810 int i;
1811
1812 mutex_lock(&curseg->curseg_mutex);
1813 for (i = 0; i < nats_in_cursum(sum); i++) {
1814 struct nat_entry *ne;
1815 struct f2fs_nat_entry raw_ne;
1816 nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1817
1818 raw_ne = nat_in_journal(sum, i);
1819
1820 down_write(&nm_i->nat_tree_lock);
1821 ne = __lookup_nat_cache(nm_i, nid);
1822 if (!ne) {
1823 ne = grab_nat_entry(nm_i, nid);
1824 node_info_from_raw_nat(&ne->ni, &raw_ne);
1825 }
1826 __set_nat_cache_dirty(nm_i, ne);
1827 up_write(&nm_i->nat_tree_lock);
1828 }
1829 update_nats_in_cursum(sum, -i);
1830 mutex_unlock(&curseg->curseg_mutex);
1831 }
1832
1833 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1834 struct list_head *head, int max)
1835 {
1836 struct nat_entry_set *cur;
1837
1838 if (nes->entry_cnt >= max)
1839 goto add_out;
1840
1841 list_for_each_entry(cur, head, set_list) {
1842 if (cur->entry_cnt >= nes->entry_cnt) {
1843 list_add(&nes->set_list, cur->set_list.prev);
1844 return;
1845 }
1846 }
1847 add_out:
1848 list_add_tail(&nes->set_list, head);
1849 }
1850
1851 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1852 struct nat_entry_set *set)
1853 {
1854 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1855 struct f2fs_summary_block *sum = curseg->sum_blk;
1856 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1857 bool to_journal = true;
1858 struct f2fs_nat_block *nat_blk;
1859 struct nat_entry *ne, *cur;
1860 struct page *page = NULL;
1861
1862 /*
1863 * there are two steps to flush nat entries:
1864 * #1, flush nat entries to journal in current hot data summary block.
1865 * #2, flush nat entries to nat page.
1866 */
1867 if (!__has_cursum_space(sum, set->entry_cnt, NAT_JOURNAL))
1868 to_journal = false;
1869
1870 if (to_journal) {
1871 mutex_lock(&curseg->curseg_mutex);
1872 } else {
1873 page = get_next_nat_page(sbi, start_nid);
1874 nat_blk = page_address(page);
1875 f2fs_bug_on(sbi, !nat_blk);
1876 }
1877
1878 /* flush dirty nats in nat entry set */
1879 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1880 struct f2fs_nat_entry *raw_ne;
1881 nid_t nid = nat_get_nid(ne);
1882 int offset;
1883
1884 if (nat_get_blkaddr(ne) == NEW_ADDR)
1885 continue;
1886
1887 if (to_journal) {
1888 offset = lookup_journal_in_cursum(sum,
1889 NAT_JOURNAL, nid, 1);
1890 f2fs_bug_on(sbi, offset < 0);
1891 raw_ne = &nat_in_journal(sum, offset);
1892 nid_in_journal(sum, offset) = cpu_to_le32(nid);
1893 } else {
1894 raw_ne = &nat_blk->entries[nid - start_nid];
1895 }
1896 raw_nat_from_node_info(raw_ne, &ne->ni);
1897
1898 down_write(&NM_I(sbi)->nat_tree_lock);
1899 nat_reset_flag(ne);
1900 __clear_nat_cache_dirty(NM_I(sbi), ne);
1901 up_write(&NM_I(sbi)->nat_tree_lock);
1902
1903 if (nat_get_blkaddr(ne) == NULL_ADDR)
1904 add_free_nid(sbi, nid, false);
1905 }
1906
1907 if (to_journal)
1908 mutex_unlock(&curseg->curseg_mutex);
1909 else
1910 f2fs_put_page(page, 1);
1911
1912 f2fs_bug_on(sbi, set->entry_cnt);
1913
1914 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
1915 kmem_cache_free(nat_entry_set_slab, set);
1916 }
1917
1918 /*
1919 * This function is called during the checkpointing process.
1920 */
1921 void flush_nat_entries(struct f2fs_sb_info *sbi)
1922 {
1923 struct f2fs_nm_info *nm_i = NM_I(sbi);
1924 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1925 struct f2fs_summary_block *sum = curseg->sum_blk;
1926 struct nat_entry_set *setvec[NATVEC_SIZE];
1927 struct nat_entry_set *set, *tmp;
1928 unsigned int found;
1929 nid_t set_idx = 0;
1930 LIST_HEAD(sets);
1931
1932 if (!nm_i->dirty_nat_cnt)
1933 return;
1934 /*
1935 * if there are no enough space in journal to store dirty nat
1936 * entries, remove all entries from journal and merge them
1937 * into nat entry set.
1938 */
1939 if (!__has_cursum_space(sum, nm_i->dirty_nat_cnt, NAT_JOURNAL))
1940 remove_nats_in_journal(sbi);
1941
1942 while ((found = __gang_lookup_nat_set(nm_i,
1943 set_idx, NATVEC_SIZE, setvec))) {
1944 unsigned idx;
1945 set_idx = setvec[found - 1]->set + 1;
1946 for (idx = 0; idx < found; idx++)
1947 __adjust_nat_entry_set(setvec[idx], &sets,
1948 MAX_NAT_JENTRIES(sum));
1949 }
1950
1951 /* flush dirty nats in nat entry set */
1952 list_for_each_entry_safe(set, tmp, &sets, set_list)
1953 __flush_nat_entry_set(sbi, set);
1954
1955 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
1956 }
1957
1958 static int init_node_manager(struct f2fs_sb_info *sbi)
1959 {
1960 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1961 struct f2fs_nm_info *nm_i = NM_I(sbi);
1962 unsigned char *version_bitmap;
1963 unsigned int nat_segs, nat_blocks;
1964
1965 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1966
1967 /* segment_count_nat includes pair segment so divide to 2. */
1968 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1969 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
1970
1971 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
1972
1973 /* not used nids: 0, node, meta, (and root counted as valid node) */
1974 nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
1975 nm_i->fcnt = 0;
1976 nm_i->nat_cnt = 0;
1977 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
1978
1979 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1980 INIT_LIST_HEAD(&nm_i->free_nid_list);
1981 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
1982 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
1983 INIT_LIST_HEAD(&nm_i->nat_entries);
1984
1985 mutex_init(&nm_i->build_lock);
1986 spin_lock_init(&nm_i->free_nid_list_lock);
1987 init_rwsem(&nm_i->nat_tree_lock);
1988
1989 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1990 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1991 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1992 if (!version_bitmap)
1993 return -EFAULT;
1994
1995 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1996 GFP_KERNEL);
1997 if (!nm_i->nat_bitmap)
1998 return -ENOMEM;
1999 return 0;
2000 }
2001
2002 int build_node_manager(struct f2fs_sb_info *sbi)
2003 {
2004 int err;
2005
2006 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2007 if (!sbi->nm_info)
2008 return -ENOMEM;
2009
2010 err = init_node_manager(sbi);
2011 if (err)
2012 return err;
2013
2014 build_free_nids(sbi);
2015 return 0;
2016 }
2017
2018 void destroy_node_manager(struct f2fs_sb_info *sbi)
2019 {
2020 struct f2fs_nm_info *nm_i = NM_I(sbi);
2021 struct free_nid *i, *next_i;
2022 struct nat_entry *natvec[NATVEC_SIZE];
2023 nid_t nid = 0;
2024 unsigned int found;
2025
2026 if (!nm_i)
2027 return;
2028
2029 /* destroy free nid list */
2030 spin_lock(&nm_i->free_nid_list_lock);
2031 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2032 f2fs_bug_on(sbi, i->state == NID_ALLOC);
2033 __del_from_free_nid_list(nm_i, i);
2034 nm_i->fcnt--;
2035 spin_unlock(&nm_i->free_nid_list_lock);
2036 kmem_cache_free(free_nid_slab, i);
2037 spin_lock(&nm_i->free_nid_list_lock);
2038 }
2039 f2fs_bug_on(sbi, nm_i->fcnt);
2040 spin_unlock(&nm_i->free_nid_list_lock);
2041
2042 /* destroy nat cache */
2043 down_write(&nm_i->nat_tree_lock);
2044 while ((found = __gang_lookup_nat_cache(nm_i,
2045 nid, NATVEC_SIZE, natvec))) {
2046 unsigned idx;
2047 nid = nat_get_nid(natvec[found - 1]) + 1;
2048 for (idx = 0; idx < found; idx++)
2049 __del_from_nat_cache(nm_i, natvec[idx]);
2050 }
2051 f2fs_bug_on(sbi, nm_i->nat_cnt);
2052 up_write(&nm_i->nat_tree_lock);
2053
2054 kfree(nm_i->nat_bitmap);
2055 sbi->nm_info = NULL;
2056 kfree(nm_i);
2057 }
2058
2059 int __init create_node_manager_caches(void)
2060 {
2061 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2062 sizeof(struct nat_entry));
2063 if (!nat_entry_slab)
2064 goto fail;
2065
2066 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2067 sizeof(struct free_nid));
2068 if (!free_nid_slab)
2069 goto destroy_nat_entry;
2070
2071 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2072 sizeof(struct nat_entry_set));
2073 if (!nat_entry_set_slab)
2074 goto destroy_free_nid;
2075 return 0;
2076
2077 destroy_free_nid:
2078 kmem_cache_destroy(free_nid_slab);
2079 destroy_nat_entry:
2080 kmem_cache_destroy(nat_entry_slab);
2081 fail:
2082 return -ENOMEM;
2083 }
2084
2085 void destroy_node_manager_caches(void)
2086 {
2087 kmem_cache_destroy(nat_entry_set_slab);
2088 kmem_cache_destroy(free_nid_slab);
2089 kmem_cache_destroy(nat_entry_slab);
2090 }