f2fs: clean up to remove parameter
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / inline.c
1 /*
2 * fs/f2fs/inline.c
3 * Copyright (c) 2013, Intel Corporation
4 * Authors: Huajun Li <huajun.li@intel.com>
5 * Haicheng Li <haicheng.li@intel.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13
14 #include "f2fs.h"
15
16 bool f2fs_may_inline(struct inode *inode)
17 {
18 if (!test_opt(F2FS_I_SB(inode), INLINE_DATA))
19 return false;
20
21 if (f2fs_is_atomic_file(inode))
22 return false;
23
24 if (!S_ISREG(inode->i_mode))
25 return false;
26
27 if (i_size_read(inode) > MAX_INLINE_DATA)
28 return false;
29
30 return true;
31 }
32
33 void read_inline_data(struct page *page, struct page *ipage)
34 {
35 void *src_addr, *dst_addr;
36
37 if (PageUptodate(page))
38 return;
39
40 f2fs_bug_on(F2FS_P_SB(page), page->index);
41
42 zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
43
44 /* Copy the whole inline data block */
45 src_addr = inline_data_addr(ipage);
46 dst_addr = kmap_atomic(page);
47 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
48 flush_dcache_page(page);
49 kunmap_atomic(dst_addr);
50 SetPageUptodate(page);
51 }
52
53 int f2fs_read_inline_data(struct inode *inode, struct page *page)
54 {
55 struct page *ipage;
56
57 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
58 if (IS_ERR(ipage)) {
59 unlock_page(page);
60 return PTR_ERR(ipage);
61 }
62
63 if (!f2fs_has_inline_data(inode)) {
64 f2fs_put_page(ipage, 1);
65 return -EAGAIN;
66 }
67
68 if (page->index)
69 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
70 else
71 read_inline_data(page, ipage);
72
73 SetPageUptodate(page);
74 f2fs_put_page(ipage, 1);
75 unlock_page(page);
76 return 0;
77 }
78
79 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
80 {
81 void *src_addr, *dst_addr;
82 struct f2fs_io_info fio = {
83 .type = DATA,
84 .rw = WRITE_SYNC | REQ_PRIO,
85 };
86 int dirty, err;
87
88 f2fs_bug_on(F2FS_I_SB(dn->inode), page->index);
89
90 if (!f2fs_exist_data(dn->inode))
91 goto clear_out;
92
93 err = f2fs_reserve_block(dn, 0);
94 if (err)
95 return err;
96
97 f2fs_wait_on_page_writeback(page, DATA);
98
99 if (PageUptodate(page))
100 goto no_update;
101
102 zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
103
104 /* Copy the whole inline data block */
105 src_addr = inline_data_addr(dn->inode_page);
106 dst_addr = kmap_atomic(page);
107 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
108 flush_dcache_page(page);
109 kunmap_atomic(dst_addr);
110 SetPageUptodate(page);
111 no_update:
112 /* clear dirty state */
113 dirty = clear_page_dirty_for_io(page);
114
115 /* write data page to try to make data consistent */
116 set_page_writeback(page);
117 fio.blk_addr = dn->data_blkaddr;
118 write_data_page(page, dn, &fio);
119 update_extent_cache(dn);
120 f2fs_wait_on_page_writeback(page, DATA);
121 if (dirty)
122 inode_dec_dirty_pages(dn->inode);
123
124 /* this converted inline_data should be recovered. */
125 set_inode_flag(F2FS_I(dn->inode), FI_APPEND_WRITE);
126
127 /* clear inline data and flag after data writeback */
128 truncate_inline_data(dn->inode_page, 0);
129 clear_out:
130 stat_dec_inline_inode(dn->inode);
131 f2fs_clear_inline_inode(dn->inode);
132 sync_inode_page(dn);
133 f2fs_put_dnode(dn);
134 return 0;
135 }
136
137 int f2fs_convert_inline_inode(struct inode *inode)
138 {
139 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
140 struct dnode_of_data dn;
141 struct page *ipage, *page;
142 int err = 0;
143
144 page = grab_cache_page(inode->i_mapping, 0);
145 if (!page)
146 return -ENOMEM;
147
148 f2fs_lock_op(sbi);
149
150 ipage = get_node_page(sbi, inode->i_ino);
151 if (IS_ERR(ipage)) {
152 err = PTR_ERR(ipage);
153 goto out;
154 }
155
156 set_new_dnode(&dn, inode, ipage, ipage, 0);
157
158 if (f2fs_has_inline_data(inode))
159 err = f2fs_convert_inline_page(&dn, page);
160
161 f2fs_put_dnode(&dn);
162 out:
163 f2fs_unlock_op(sbi);
164
165 f2fs_put_page(page, 1);
166 return err;
167 }
168
169 int f2fs_write_inline_data(struct inode *inode, struct page *page)
170 {
171 void *src_addr, *dst_addr;
172 struct dnode_of_data dn;
173 int err;
174
175 set_new_dnode(&dn, inode, NULL, NULL, 0);
176 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
177 if (err)
178 return err;
179
180 if (!f2fs_has_inline_data(inode)) {
181 f2fs_put_dnode(&dn);
182 return -EAGAIN;
183 }
184
185 f2fs_bug_on(F2FS_I_SB(inode), page->index);
186
187 f2fs_wait_on_page_writeback(dn.inode_page, NODE);
188 src_addr = kmap_atomic(page);
189 dst_addr = inline_data_addr(dn.inode_page);
190 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
191 kunmap_atomic(src_addr);
192
193 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
194 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
195
196 sync_inode_page(&dn);
197 f2fs_put_dnode(&dn);
198 return 0;
199 }
200
201 void truncate_inline_data(struct page *ipage, u64 from)
202 {
203 void *addr;
204
205 if (from >= MAX_INLINE_DATA)
206 return;
207
208 f2fs_wait_on_page_writeback(ipage, NODE);
209
210 addr = inline_data_addr(ipage);
211 memset(addr + from, 0, MAX_INLINE_DATA - from);
212 }
213
214 bool recover_inline_data(struct inode *inode, struct page *npage)
215 {
216 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
217 struct f2fs_inode *ri = NULL;
218 void *src_addr, *dst_addr;
219 struct page *ipage;
220
221 /*
222 * The inline_data recovery policy is as follows.
223 * [prev.] [next] of inline_data flag
224 * o o -> recover inline_data
225 * o x -> remove inline_data, and then recover data blocks
226 * x o -> remove inline_data, and then recover inline_data
227 * x x -> recover data blocks
228 */
229 if (IS_INODE(npage))
230 ri = F2FS_INODE(npage);
231
232 if (f2fs_has_inline_data(inode) &&
233 ri && (ri->i_inline & F2FS_INLINE_DATA)) {
234 process_inline:
235 ipage = get_node_page(sbi, inode->i_ino);
236 f2fs_bug_on(sbi, IS_ERR(ipage));
237
238 f2fs_wait_on_page_writeback(ipage, NODE);
239
240 src_addr = inline_data_addr(npage);
241 dst_addr = inline_data_addr(ipage);
242 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
243
244 set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
245 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
246
247 update_inode(inode, ipage);
248 f2fs_put_page(ipage, 1);
249 return true;
250 }
251
252 if (f2fs_has_inline_data(inode)) {
253 ipage = get_node_page(sbi, inode->i_ino);
254 f2fs_bug_on(sbi, IS_ERR(ipage));
255 truncate_inline_data(ipage, 0);
256 f2fs_clear_inline_inode(inode);
257 update_inode(inode, ipage);
258 f2fs_put_page(ipage, 1);
259 } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
260 truncate_blocks(inode, 0, false);
261 goto process_inline;
262 }
263 return false;
264 }
265
266 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
267 struct qstr *name, struct page **res_page)
268 {
269 struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
270 struct f2fs_inline_dentry *inline_dentry;
271 struct f2fs_dir_entry *de;
272 struct f2fs_dentry_ptr d;
273 struct page *ipage;
274
275 ipage = get_node_page(sbi, dir->i_ino);
276 if (IS_ERR(ipage))
277 return NULL;
278
279 inline_dentry = inline_data_addr(ipage);
280
281 make_dentry_ptr(&d, (void *)inline_dentry, 2);
282 de = find_target_dentry(name, NULL, &d);
283
284 unlock_page(ipage);
285 if (de)
286 *res_page = ipage;
287 else
288 f2fs_put_page(ipage, 0);
289
290 /*
291 * For the most part, it should be a bug when name_len is zero.
292 * We stop here for figuring out where the bugs has occurred.
293 */
294 f2fs_bug_on(sbi, d.max < 0);
295 return de;
296 }
297
298 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir,
299 struct page **p)
300 {
301 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
302 struct page *ipage;
303 struct f2fs_dir_entry *de;
304 struct f2fs_inline_dentry *dentry_blk;
305
306 ipage = get_node_page(sbi, dir->i_ino);
307 if (IS_ERR(ipage))
308 return NULL;
309
310 dentry_blk = inline_data_addr(ipage);
311 de = &dentry_blk->dentry[1];
312 *p = ipage;
313 unlock_page(ipage);
314 return de;
315 }
316
317 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
318 struct page *ipage)
319 {
320 struct f2fs_inline_dentry *dentry_blk;
321 struct f2fs_dentry_ptr d;
322
323 dentry_blk = inline_data_addr(ipage);
324
325 make_dentry_ptr(&d, (void *)dentry_blk, 2);
326 do_make_empty_dir(inode, parent, &d);
327
328 set_page_dirty(ipage);
329
330 /* update i_size to MAX_INLINE_DATA */
331 if (i_size_read(inode) < MAX_INLINE_DATA) {
332 i_size_write(inode, MAX_INLINE_DATA);
333 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
334 }
335 return 0;
336 }
337
338 static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
339 struct f2fs_inline_dentry *inline_dentry)
340 {
341 struct page *page;
342 struct dnode_of_data dn;
343 struct f2fs_dentry_block *dentry_blk;
344 int err;
345
346 page = grab_cache_page(dir->i_mapping, 0);
347 if (!page)
348 return -ENOMEM;
349
350 set_new_dnode(&dn, dir, ipage, NULL, 0);
351 err = f2fs_reserve_block(&dn, 0);
352 if (err)
353 goto out;
354
355 f2fs_wait_on_page_writeback(page, DATA);
356 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
357
358 dentry_blk = kmap_atomic(page);
359
360 /* copy data from inline dentry block to new dentry block */
361 memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
362 INLINE_DENTRY_BITMAP_SIZE);
363 memcpy(dentry_blk->dentry, inline_dentry->dentry,
364 sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
365 memcpy(dentry_blk->filename, inline_dentry->filename,
366 NR_INLINE_DENTRY * F2FS_SLOT_LEN);
367
368 kunmap_atomic(dentry_blk);
369 SetPageUptodate(page);
370 set_page_dirty(page);
371
372 /* clear inline dir and flag after data writeback */
373 truncate_inline_data(ipage, 0);
374
375 stat_dec_inline_dir(dir);
376 clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY);
377
378 if (i_size_read(dir) < PAGE_CACHE_SIZE) {
379 i_size_write(dir, PAGE_CACHE_SIZE);
380 set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
381 }
382
383 sync_inode_page(&dn);
384 out:
385 f2fs_put_page(page, 1);
386 return err;
387 }
388
389 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
390 struct inode *inode)
391 {
392 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
393 struct page *ipage;
394 unsigned int bit_pos;
395 f2fs_hash_t name_hash;
396 struct f2fs_dir_entry *de;
397 size_t namelen = name->len;
398 struct f2fs_inline_dentry *dentry_blk = NULL;
399 int slots = GET_DENTRY_SLOTS(namelen);
400 struct page *page;
401 int err = 0;
402 int i;
403
404 name_hash = f2fs_dentry_hash(name);
405
406 ipage = get_node_page(sbi, dir->i_ino);
407 if (IS_ERR(ipage))
408 return PTR_ERR(ipage);
409
410 dentry_blk = inline_data_addr(ipage);
411 bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
412 slots, NR_INLINE_DENTRY);
413 if (bit_pos >= NR_INLINE_DENTRY) {
414 err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
415 if (!err)
416 err = -EAGAIN;
417 goto out;
418 }
419
420 down_write(&F2FS_I(inode)->i_sem);
421 page = init_inode_metadata(inode, dir, name, ipage);
422 if (IS_ERR(page)) {
423 err = PTR_ERR(page);
424 goto fail;
425 }
426
427 f2fs_wait_on_page_writeback(ipage, NODE);
428 de = &dentry_blk->dentry[bit_pos];
429 de->hash_code = name_hash;
430 de->name_len = cpu_to_le16(namelen);
431 memcpy(dentry_blk->filename[bit_pos], name->name, name->len);
432 de->ino = cpu_to_le32(inode->i_ino);
433 set_de_type(de, inode);
434 for (i = 0; i < slots; i++)
435 test_and_set_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
436 set_page_dirty(ipage);
437
438 /* we don't need to mark_inode_dirty now */
439 F2FS_I(inode)->i_pino = dir->i_ino;
440 update_inode(inode, page);
441 f2fs_put_page(page, 1);
442
443 update_parent_metadata(dir, inode, 0);
444 fail:
445 up_write(&F2FS_I(inode)->i_sem);
446
447 if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) {
448 update_inode(dir, ipage);
449 clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
450 }
451 out:
452 f2fs_put_page(ipage, 1);
453 return err;
454 }
455
456 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
457 struct inode *dir, struct inode *inode)
458 {
459 struct f2fs_inline_dentry *inline_dentry;
460 int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
461 unsigned int bit_pos;
462 int i;
463
464 lock_page(page);
465 f2fs_wait_on_page_writeback(page, NODE);
466
467 inline_dentry = inline_data_addr(page);
468 bit_pos = dentry - inline_dentry->dentry;
469 for (i = 0; i < slots; i++)
470 test_and_clear_bit_le(bit_pos + i,
471 &inline_dentry->dentry_bitmap);
472
473 set_page_dirty(page);
474
475 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
476
477 if (inode)
478 f2fs_drop_nlink(dir, inode, page);
479
480 f2fs_put_page(page, 1);
481 }
482
483 bool f2fs_empty_inline_dir(struct inode *dir)
484 {
485 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
486 struct page *ipage;
487 unsigned int bit_pos = 2;
488 struct f2fs_inline_dentry *dentry_blk;
489
490 ipage = get_node_page(sbi, dir->i_ino);
491 if (IS_ERR(ipage))
492 return false;
493
494 dentry_blk = inline_data_addr(ipage);
495 bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
496 NR_INLINE_DENTRY,
497 bit_pos);
498
499 f2fs_put_page(ipage, 1);
500
501 if (bit_pos < NR_INLINE_DENTRY)
502 return false;
503
504 return true;
505 }
506
507 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx)
508 {
509 struct inode *inode = file_inode(file);
510 struct f2fs_inline_dentry *inline_dentry = NULL;
511 struct page *ipage = NULL;
512 struct f2fs_dentry_ptr d;
513
514 if (ctx->pos == NR_INLINE_DENTRY)
515 return 0;
516
517 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
518 if (IS_ERR(ipage))
519 return PTR_ERR(ipage);
520
521 inline_dentry = inline_data_addr(ipage);
522
523 make_dentry_ptr(&d, (void *)inline_dentry, 2);
524
525 if (!f2fs_fill_dentries(ctx, &d, 0))
526 ctx->pos = NR_INLINE_DENTRY;
527
528 f2fs_put_page(ipage, 1);
529 return 0;
530 }