f2fs: revisit inline_data to avoid data races and potential bugs
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / inline.c
1 /*
2 * fs/f2fs/inline.c
3 * Copyright (c) 2013, Intel Corporation
4 * Authors: Huajun Li <huajun.li@intel.com>
5 * Haicheng Li <haicheng.li@intel.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13
14 #include "f2fs.h"
15
16 bool f2fs_may_inline(struct inode *inode)
17 {
18 if (!test_opt(F2FS_I_SB(inode), INLINE_DATA))
19 return false;
20
21 if (f2fs_is_atomic_file(inode))
22 return false;
23
24 if (!S_ISREG(inode->i_mode))
25 return false;
26
27 return true;
28 }
29
30 void read_inline_data(struct page *page, struct page *ipage)
31 {
32 void *src_addr, *dst_addr;
33
34 if (PageUptodate(page))
35 return;
36
37 f2fs_bug_on(F2FS_P_SB(page), page->index);
38
39 zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
40
41 /* Copy the whole inline data block */
42 src_addr = inline_data_addr(ipage);
43 dst_addr = kmap_atomic(page);
44 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
45 flush_dcache_page(page);
46 kunmap_atomic(dst_addr);
47 SetPageUptodate(page);
48 }
49
50 int f2fs_read_inline_data(struct inode *inode, struct page *page)
51 {
52 struct page *ipage;
53
54 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
55 if (IS_ERR(ipage)) {
56 unlock_page(page);
57 return PTR_ERR(ipage);
58 }
59
60 if (!f2fs_has_inline_data(inode)) {
61 f2fs_put_page(ipage, 1);
62 return -EAGAIN;
63 }
64
65 if (page->index)
66 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
67 else
68 read_inline_data(page, ipage);
69
70 SetPageUptodate(page);
71 f2fs_put_page(ipage, 1);
72 unlock_page(page);
73 return 0;
74 }
75
76 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page)
77 {
78 void *src_addr, *dst_addr;
79 block_t new_blk_addr;
80 struct f2fs_io_info fio = {
81 .type = DATA,
82 .rw = WRITE_SYNC | REQ_PRIO,
83 };
84 int err;
85
86 f2fs_bug_on(F2FS_I_SB(dn->inode), page->index);
87
88 if (!f2fs_exist_data(dn->inode))
89 goto clear_out;
90
91 err = f2fs_reserve_block(dn, 0);
92 if (err)
93 return err;
94
95 f2fs_wait_on_page_writeback(page, DATA);
96
97 if (PageUptodate(page))
98 goto no_update;
99
100 zero_user_segment(page, MAX_INLINE_DATA, PAGE_CACHE_SIZE);
101
102 /* Copy the whole inline data block */
103 src_addr = inline_data_addr(dn->inode_page);
104 dst_addr = kmap_atomic(page);
105 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
106 kunmap_atomic(dst_addr);
107 SetPageUptodate(page);
108 no_update:
109 /* write data page to try to make data consistent */
110 set_page_writeback(page);
111
112 write_data_page(page, dn, &new_blk_addr, &fio);
113 update_extent_cache(new_blk_addr, dn);
114 f2fs_wait_on_page_writeback(page, DATA);
115
116 /* clear inline data and flag after data writeback */
117 truncate_inline_data(dn->inode_page, 0);
118 clear_out:
119 f2fs_clear_inline_inode(dn->inode);
120 stat_dec_inline_inode(dn->inode);
121 sync_inode_page(dn);
122 f2fs_put_dnode(dn);
123 return 0;
124 }
125
126 int f2fs_convert_inline_inode(struct inode *inode)
127 {
128 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
129 struct dnode_of_data dn;
130 struct page *ipage, *page;
131 int err = 0;
132
133 page = grab_cache_page(inode->i_mapping, 0);
134 if (!page)
135 return -ENOMEM;
136
137 f2fs_lock_op(sbi);
138
139 ipage = get_node_page(sbi, inode->i_ino);
140 if (IS_ERR(ipage)) {
141 f2fs_unlock_op(sbi);
142 return PTR_ERR(ipage);
143 }
144
145 set_new_dnode(&dn, inode, ipage, ipage, 0);
146
147 if (f2fs_has_inline_data(inode))
148 err = f2fs_convert_inline_page(&dn, page);
149
150 f2fs_put_dnode(&dn);
151
152 f2fs_unlock_op(sbi);
153
154 f2fs_put_page(page, 1);
155 return err;
156 }
157
158 int f2fs_write_inline_data(struct inode *inode, struct page *page)
159 {
160 void *src_addr, *dst_addr;
161 struct dnode_of_data dn;
162 int err;
163
164 set_new_dnode(&dn, inode, NULL, NULL, 0);
165 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
166 if (err)
167 return err;
168
169 if (!f2fs_has_inline_data(inode)) {
170 f2fs_put_dnode(&dn);
171 return -EAGAIN;
172 }
173
174 f2fs_bug_on(F2FS_I_SB(inode), page->index);
175
176 f2fs_wait_on_page_writeback(dn.inode_page, NODE);
177 src_addr = kmap_atomic(page);
178 dst_addr = inline_data_addr(dn.inode_page);
179 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
180 kunmap_atomic(src_addr);
181
182 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
183 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
184
185 sync_inode_page(&dn);
186 f2fs_put_dnode(&dn);
187 return 0;
188 }
189
190 void truncate_inline_data(struct page *ipage, u64 from)
191 {
192 void *addr;
193
194 if (from >= MAX_INLINE_DATA)
195 return;
196
197 f2fs_wait_on_page_writeback(ipage, NODE);
198
199 addr = inline_data_addr(ipage);
200 memset(addr + from, 0, MAX_INLINE_DATA - from);
201 }
202
203 bool recover_inline_data(struct inode *inode, struct page *npage)
204 {
205 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
206 struct f2fs_inode *ri = NULL;
207 void *src_addr, *dst_addr;
208 struct page *ipage;
209
210 /*
211 * The inline_data recovery policy is as follows.
212 * [prev.] [next] of inline_data flag
213 * o o -> recover inline_data
214 * o x -> remove inline_data, and then recover data blocks
215 * x o -> remove inline_data, and then recover inline_data
216 * x x -> recover data blocks
217 */
218 if (IS_INODE(npage))
219 ri = F2FS_INODE(npage);
220
221 if (f2fs_has_inline_data(inode) &&
222 ri && (ri->i_inline & F2FS_INLINE_DATA)) {
223 process_inline:
224 ipage = get_node_page(sbi, inode->i_ino);
225 f2fs_bug_on(sbi, IS_ERR(ipage));
226
227 f2fs_wait_on_page_writeback(ipage, NODE);
228
229 src_addr = inline_data_addr(npage);
230 dst_addr = inline_data_addr(ipage);
231 memcpy(dst_addr, src_addr, MAX_INLINE_DATA);
232
233 set_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
234 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
235
236 update_inode(inode, ipage);
237 f2fs_put_page(ipage, 1);
238 return true;
239 }
240
241 if (f2fs_has_inline_data(inode)) {
242 ipage = get_node_page(sbi, inode->i_ino);
243 f2fs_bug_on(sbi, IS_ERR(ipage));
244 truncate_inline_data(ipage, 0);
245 f2fs_clear_inline_inode(inode);
246 update_inode(inode, ipage);
247 f2fs_put_page(ipage, 1);
248 } else if (ri && (ri->i_inline & F2FS_INLINE_DATA)) {
249 truncate_blocks(inode, 0, false);
250 goto process_inline;
251 }
252 return false;
253 }
254
255 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
256 struct qstr *name, struct page **res_page)
257 {
258 struct f2fs_sb_info *sbi = F2FS_SB(dir->i_sb);
259 struct f2fs_inline_dentry *inline_dentry;
260 struct f2fs_dir_entry *de;
261 struct f2fs_dentry_ptr d;
262 struct page *ipage;
263
264 ipage = get_node_page(sbi, dir->i_ino);
265 if (IS_ERR(ipage))
266 return NULL;
267
268 inline_dentry = inline_data_addr(ipage);
269
270 make_dentry_ptr(&d, (void *)inline_dentry, 2);
271 de = find_target_dentry(name, NULL, &d);
272
273 unlock_page(ipage);
274 if (de)
275 *res_page = ipage;
276 else
277 f2fs_put_page(ipage, 0);
278
279 /*
280 * For the most part, it should be a bug when name_len is zero.
281 * We stop here for figuring out where the bugs has occurred.
282 */
283 f2fs_bug_on(sbi, d.max < 0);
284 return de;
285 }
286
287 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *dir,
288 struct page **p)
289 {
290 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
291 struct page *ipage;
292 struct f2fs_dir_entry *de;
293 struct f2fs_inline_dentry *dentry_blk;
294
295 ipage = get_node_page(sbi, dir->i_ino);
296 if (IS_ERR(ipage))
297 return NULL;
298
299 dentry_blk = inline_data_addr(ipage);
300 de = &dentry_blk->dentry[1];
301 *p = ipage;
302 unlock_page(ipage);
303 return de;
304 }
305
306 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
307 struct page *ipage)
308 {
309 struct f2fs_inline_dentry *dentry_blk;
310 struct f2fs_dentry_ptr d;
311
312 dentry_blk = inline_data_addr(ipage);
313
314 make_dentry_ptr(&d, (void *)dentry_blk, 2);
315 do_make_empty_dir(inode, parent, &d);
316
317 set_page_dirty(ipage);
318
319 /* update i_size to MAX_INLINE_DATA */
320 if (i_size_read(inode) < MAX_INLINE_DATA) {
321 i_size_write(inode, MAX_INLINE_DATA);
322 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
323 }
324 return 0;
325 }
326
327 static int f2fs_convert_inline_dir(struct inode *dir, struct page *ipage,
328 struct f2fs_inline_dentry *inline_dentry)
329 {
330 struct page *page;
331 struct dnode_of_data dn;
332 struct f2fs_dentry_block *dentry_blk;
333 int err;
334
335 page = grab_cache_page(dir->i_mapping, 0);
336 if (!page)
337 return -ENOMEM;
338
339 set_new_dnode(&dn, dir, ipage, NULL, 0);
340 err = f2fs_reserve_block(&dn, 0);
341 if (err)
342 goto out;
343
344 f2fs_wait_on_page_writeback(page, DATA);
345 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
346
347 dentry_blk = kmap_atomic(page);
348
349 /* copy data from inline dentry block to new dentry block */
350 memcpy(dentry_blk->dentry_bitmap, inline_dentry->dentry_bitmap,
351 INLINE_DENTRY_BITMAP_SIZE);
352 memcpy(dentry_blk->dentry, inline_dentry->dentry,
353 sizeof(struct f2fs_dir_entry) * NR_INLINE_DENTRY);
354 memcpy(dentry_blk->filename, inline_dentry->filename,
355 NR_INLINE_DENTRY * F2FS_SLOT_LEN);
356
357 kunmap_atomic(dentry_blk);
358 SetPageUptodate(page);
359 set_page_dirty(page);
360
361 /* clear inline dir and flag after data writeback */
362 truncate_inline_data(ipage, 0);
363
364 stat_dec_inline_dir(dir);
365 clear_inode_flag(F2FS_I(dir), FI_INLINE_DENTRY);
366
367 if (i_size_read(dir) < PAGE_CACHE_SIZE) {
368 i_size_write(dir, PAGE_CACHE_SIZE);
369 set_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
370 }
371
372 sync_inode_page(&dn);
373 out:
374 f2fs_put_page(page, 1);
375 return err;
376 }
377
378 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *name,
379 struct inode *inode)
380 {
381 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
382 struct page *ipage;
383 unsigned int bit_pos;
384 f2fs_hash_t name_hash;
385 struct f2fs_dir_entry *de;
386 size_t namelen = name->len;
387 struct f2fs_inline_dentry *dentry_blk = NULL;
388 int slots = GET_DENTRY_SLOTS(namelen);
389 struct page *page;
390 int err = 0;
391 int i;
392
393 name_hash = f2fs_dentry_hash(name);
394
395 ipage = get_node_page(sbi, dir->i_ino);
396 if (IS_ERR(ipage))
397 return PTR_ERR(ipage);
398
399 dentry_blk = inline_data_addr(ipage);
400 bit_pos = room_for_filename(&dentry_blk->dentry_bitmap,
401 slots, NR_INLINE_DENTRY);
402 if (bit_pos >= NR_INLINE_DENTRY) {
403 err = f2fs_convert_inline_dir(dir, ipage, dentry_blk);
404 if (!err)
405 err = -EAGAIN;
406 goto out;
407 }
408
409 down_write(&F2FS_I(inode)->i_sem);
410 page = init_inode_metadata(inode, dir, name, ipage);
411 if (IS_ERR(page)) {
412 err = PTR_ERR(page);
413 goto fail;
414 }
415
416 f2fs_wait_on_page_writeback(ipage, NODE);
417 de = &dentry_blk->dentry[bit_pos];
418 de->hash_code = name_hash;
419 de->name_len = cpu_to_le16(namelen);
420 memcpy(dentry_blk->filename[bit_pos], name->name, name->len);
421 de->ino = cpu_to_le32(inode->i_ino);
422 set_de_type(de, inode);
423 for (i = 0; i < slots; i++)
424 test_and_set_bit_le(bit_pos + i, &dentry_blk->dentry_bitmap);
425 set_page_dirty(ipage);
426
427 /* we don't need to mark_inode_dirty now */
428 F2FS_I(inode)->i_pino = dir->i_ino;
429 update_inode(inode, page);
430 f2fs_put_page(page, 1);
431
432 update_parent_metadata(dir, inode, 0);
433 fail:
434 up_write(&F2FS_I(inode)->i_sem);
435
436 if (is_inode_flag_set(F2FS_I(dir), FI_UPDATE_DIR)) {
437 update_inode(dir, ipage);
438 clear_inode_flag(F2FS_I(dir), FI_UPDATE_DIR);
439 }
440 out:
441 f2fs_put_page(ipage, 1);
442 return err;
443 }
444
445 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
446 struct inode *dir, struct inode *inode)
447 {
448 struct f2fs_inline_dentry *inline_dentry;
449 int slots = GET_DENTRY_SLOTS(le16_to_cpu(dentry->name_len));
450 unsigned int bit_pos;
451 int i;
452
453 lock_page(page);
454 f2fs_wait_on_page_writeback(page, NODE);
455
456 inline_dentry = inline_data_addr(page);
457 bit_pos = dentry - inline_dentry->dentry;
458 for (i = 0; i < slots; i++)
459 test_and_clear_bit_le(bit_pos + i,
460 &inline_dentry->dentry_bitmap);
461
462 set_page_dirty(page);
463
464 dir->i_ctime = dir->i_mtime = CURRENT_TIME;
465
466 if (inode)
467 f2fs_drop_nlink(dir, inode, page);
468
469 f2fs_put_page(page, 1);
470 }
471
472 bool f2fs_empty_inline_dir(struct inode *dir)
473 {
474 struct f2fs_sb_info *sbi = F2FS_I_SB(dir);
475 struct page *ipage;
476 unsigned int bit_pos = 2;
477 struct f2fs_inline_dentry *dentry_blk;
478
479 ipage = get_node_page(sbi, dir->i_ino);
480 if (IS_ERR(ipage))
481 return false;
482
483 dentry_blk = inline_data_addr(ipage);
484 bit_pos = find_next_bit_le(&dentry_blk->dentry_bitmap,
485 NR_INLINE_DENTRY,
486 bit_pos);
487
488 f2fs_put_page(ipage, 1);
489
490 if (bit_pos < NR_INLINE_DENTRY)
491 return false;
492
493 return true;
494 }
495
496 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx)
497 {
498 struct inode *inode = file_inode(file);
499 struct f2fs_inline_dentry *inline_dentry = NULL;
500 struct page *ipage = NULL;
501 struct f2fs_dentry_ptr d;
502
503 if (ctx->pos == NR_INLINE_DENTRY)
504 return 0;
505
506 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
507 if (IS_ERR(ipage))
508 return PTR_ERR(ipage);
509
510 inline_dentry = inline_data_addr(ipage);
511
512 make_dentry_ptr(&d, (void *)inline_dentry, 2);
513
514 if (!f2fs_fill_dentries(ctx, &d, 0))
515 ctx->pos = NR_INLINE_DENTRY;
516
517 f2fs_put_page(ipage, 1);
518 return 0;
519 }