f2fs: updates on v4.16-rc1
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / f2fs / gc.c
1 /*
2 * fs/f2fs/gc.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/module.h>
13 #include <linux/backing-dev.h>
14 #include <linux/init.h>
15 #include <linux/f2fs_fs.h>
16 #include <linux/kthread.h>
17 #include <linux/delay.h>
18 #include <linux/freezer.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "gc.h"
24 #include <trace/events/f2fs.h>
25
26 static int gc_thread_func(void *data)
27 {
28 struct f2fs_sb_info *sbi = data;
29 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
30 wait_queue_head_t *wq = &sbi->gc_thread->gc_wait_queue_head;
31 unsigned int wait_ms;
32
33 wait_ms = gc_th->min_sleep_time;
34
35 set_freezable();
36 do {
37 wait_event_interruptible_timeout(*wq,
38 kthread_should_stop() || freezing(current) ||
39 gc_th->gc_wake,
40 msecs_to_jiffies(wait_ms));
41
42 /* give it a try one time */
43 if (gc_th->gc_wake)
44 gc_th->gc_wake = 0;
45
46 if (try_to_freeze())
47 continue;
48 if (kthread_should_stop())
49 break;
50
51 if (sbi->sb->s_writers.frozen >= SB_FREEZE_WRITE) {
52 increase_sleep_time(gc_th, &wait_ms);
53 continue;
54 }
55
56 #ifdef CONFIG_F2FS_FAULT_INJECTION
57 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
58 f2fs_show_injection_info(FAULT_CHECKPOINT);
59 f2fs_stop_checkpoint(sbi, false);
60 }
61 #endif
62
63 if (!sb_start_write_trylock(sbi->sb))
64 continue;
65
66 /*
67 * [GC triggering condition]
68 * 0. GC is not conducted currently.
69 * 1. There are enough dirty segments.
70 * 2. IO subsystem is idle by checking the # of writeback pages.
71 * 3. IO subsystem is idle by checking the # of requests in
72 * bdev's request list.
73 *
74 * Note) We have to avoid triggering GCs frequently.
75 * Because it is possible that some segments can be
76 * invalidated soon after by user update or deletion.
77 * So, I'd like to wait some time to collect dirty segments.
78 */
79 if (!mutex_trylock(&sbi->gc_mutex))
80 goto next;
81
82 if (gc_th->gc_urgent) {
83 wait_ms = gc_th->urgent_sleep_time;
84 goto do_gc;
85 }
86
87 if (!is_idle(sbi)) {
88 increase_sleep_time(gc_th, &wait_ms);
89 mutex_unlock(&sbi->gc_mutex);
90 goto next;
91 }
92
93 if (has_enough_invalid_blocks(sbi))
94 decrease_sleep_time(gc_th, &wait_ms);
95 else
96 increase_sleep_time(gc_th, &wait_ms);
97 do_gc:
98 stat_inc_bggc_count(sbi);
99
100 /* if return value is not zero, no victim was selected */
101 if (f2fs_gc(sbi, test_opt(sbi, FORCE_FG_GC), true, NULL_SEGNO))
102 wait_ms = gc_th->no_gc_sleep_time;
103
104 trace_f2fs_background_gc(sbi->sb, wait_ms,
105 prefree_segments(sbi), free_segments(sbi));
106
107 /* balancing f2fs's metadata periodically */
108 f2fs_balance_fs_bg(sbi);
109 next:
110 sb_end_write(sbi->sb);
111
112 } while (!kthread_should_stop());
113 return 0;
114 }
115
116 int start_gc_thread(struct f2fs_sb_info *sbi)
117 {
118 struct f2fs_gc_kthread *gc_th;
119 dev_t dev = sbi->sb->s_bdev->bd_dev;
120 int err = 0;
121
122 gc_th = f2fs_kmalloc(sbi, sizeof(struct f2fs_gc_kthread), GFP_KERNEL);
123 if (!gc_th) {
124 err = -ENOMEM;
125 goto out;
126 }
127
128 gc_th->urgent_sleep_time = DEF_GC_THREAD_URGENT_SLEEP_TIME;
129 gc_th->min_sleep_time = DEF_GC_THREAD_MIN_SLEEP_TIME;
130 gc_th->max_sleep_time = DEF_GC_THREAD_MAX_SLEEP_TIME;
131 gc_th->no_gc_sleep_time = DEF_GC_THREAD_NOGC_SLEEP_TIME;
132
133 gc_th->gc_idle = 0;
134 gc_th->gc_urgent = 0;
135 gc_th->gc_wake= 0;
136
137 sbi->gc_thread = gc_th;
138 init_waitqueue_head(&sbi->gc_thread->gc_wait_queue_head);
139 sbi->gc_thread->f2fs_gc_task = kthread_run(gc_thread_func, sbi,
140 "f2fs_gc-%u:%u", MAJOR(dev), MINOR(dev));
141 if (IS_ERR(gc_th->f2fs_gc_task)) {
142 err = PTR_ERR(gc_th->f2fs_gc_task);
143 kfree(gc_th);
144 sbi->gc_thread = NULL;
145 }
146 out:
147 return err;
148 }
149
150 void stop_gc_thread(struct f2fs_sb_info *sbi)
151 {
152 struct f2fs_gc_kthread *gc_th = sbi->gc_thread;
153 if (!gc_th)
154 return;
155 kthread_stop(gc_th->f2fs_gc_task);
156 kfree(gc_th);
157 sbi->gc_thread = NULL;
158 }
159
160 static int select_gc_type(struct f2fs_gc_kthread *gc_th, int gc_type)
161 {
162 int gc_mode = (gc_type == BG_GC) ? GC_CB : GC_GREEDY;
163
164 if (gc_th && gc_th->gc_idle) {
165 if (gc_th->gc_idle == 1)
166 gc_mode = GC_CB;
167 else if (gc_th->gc_idle == 2)
168 gc_mode = GC_GREEDY;
169 }
170 return gc_mode;
171 }
172
173 static void select_policy(struct f2fs_sb_info *sbi, int gc_type,
174 int type, struct victim_sel_policy *p)
175 {
176 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
177
178 if (p->alloc_mode == SSR) {
179 p->gc_mode = GC_GREEDY;
180 p->dirty_segmap = dirty_i->dirty_segmap[type];
181 p->max_search = dirty_i->nr_dirty[type];
182 p->ofs_unit = 1;
183 } else {
184 p->gc_mode = select_gc_type(sbi->gc_thread, gc_type);
185 p->dirty_segmap = dirty_i->dirty_segmap[DIRTY];
186 p->max_search = dirty_i->nr_dirty[DIRTY];
187 p->ofs_unit = sbi->segs_per_sec;
188 }
189
190 /* we need to check every dirty segments in the FG_GC case */
191 if (gc_type != FG_GC && p->max_search > sbi->max_victim_search)
192 p->max_search = sbi->max_victim_search;
193
194 /* let's select beginning hot/small space first */
195 if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
196 p->offset = 0;
197 else
198 p->offset = SIT_I(sbi)->last_victim[p->gc_mode];
199 }
200
201 static unsigned int get_max_cost(struct f2fs_sb_info *sbi,
202 struct victim_sel_policy *p)
203 {
204 /* SSR allocates in a segment unit */
205 if (p->alloc_mode == SSR)
206 return sbi->blocks_per_seg;
207 if (p->gc_mode == GC_GREEDY)
208 return 2 * sbi->blocks_per_seg * p->ofs_unit;
209 else if (p->gc_mode == GC_CB)
210 return UINT_MAX;
211 else /* No other gc_mode */
212 return 0;
213 }
214
215 static unsigned int check_bg_victims(struct f2fs_sb_info *sbi)
216 {
217 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
218 unsigned int secno;
219
220 /*
221 * If the gc_type is FG_GC, we can select victim segments
222 * selected by background GC before.
223 * Those segments guarantee they have small valid blocks.
224 */
225 for_each_set_bit(secno, dirty_i->victim_secmap, MAIN_SECS(sbi)) {
226 if (sec_usage_check(sbi, secno))
227 continue;
228
229 if (no_fggc_candidate(sbi, secno))
230 continue;
231
232 clear_bit(secno, dirty_i->victim_secmap);
233 return GET_SEG_FROM_SEC(sbi, secno);
234 }
235 return NULL_SEGNO;
236 }
237
238 static unsigned int get_cb_cost(struct f2fs_sb_info *sbi, unsigned int segno)
239 {
240 struct sit_info *sit_i = SIT_I(sbi);
241 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
242 unsigned int start = GET_SEG_FROM_SEC(sbi, secno);
243 unsigned long long mtime = 0;
244 unsigned int vblocks;
245 unsigned char age = 0;
246 unsigned char u;
247 unsigned int i;
248
249 for (i = 0; i < sbi->segs_per_sec; i++)
250 mtime += get_seg_entry(sbi, start + i)->mtime;
251 vblocks = get_valid_blocks(sbi, segno, true);
252
253 mtime = div_u64(mtime, sbi->segs_per_sec);
254 vblocks = div_u64(vblocks, sbi->segs_per_sec);
255
256 u = (vblocks * 100) >> sbi->log_blocks_per_seg;
257
258 /* Handle if the system time has changed by the user */
259 if (mtime < sit_i->min_mtime)
260 sit_i->min_mtime = mtime;
261 if (mtime > sit_i->max_mtime)
262 sit_i->max_mtime = mtime;
263 if (sit_i->max_mtime != sit_i->min_mtime)
264 age = 100 - div64_u64(100 * (mtime - sit_i->min_mtime),
265 sit_i->max_mtime - sit_i->min_mtime);
266
267 return UINT_MAX - ((100 * (100 - u) * age) / (100 + u));
268 }
269
270 static inline unsigned int get_gc_cost(struct f2fs_sb_info *sbi,
271 unsigned int segno, struct victim_sel_policy *p)
272 {
273 if (p->alloc_mode == SSR)
274 return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
275
276 /* alloc_mode == LFS */
277 if (p->gc_mode == GC_GREEDY)
278 return get_valid_blocks(sbi, segno, true);
279 else
280 return get_cb_cost(sbi, segno);
281 }
282
283 static unsigned int count_bits(const unsigned long *addr,
284 unsigned int offset, unsigned int len)
285 {
286 unsigned int end = offset + len, sum = 0;
287
288 while (offset < end) {
289 if (test_bit(offset++, addr))
290 ++sum;
291 }
292 return sum;
293 }
294
295 /*
296 * This function is called from two paths.
297 * One is garbage collection and the other is SSR segment selection.
298 * When it is called during GC, it just gets a victim segment
299 * and it does not remove it from dirty seglist.
300 * When it is called from SSR segment selection, it finds a segment
301 * which has minimum valid blocks and removes it from dirty seglist.
302 */
303 static int get_victim_by_default(struct f2fs_sb_info *sbi,
304 unsigned int *result, int gc_type, int type, char alloc_mode)
305 {
306 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
307 struct sit_info *sm = SIT_I(sbi);
308 struct victim_sel_policy p;
309 unsigned int secno, last_victim;
310 unsigned int last_segment = MAIN_SEGS(sbi);
311 unsigned int nsearched = 0;
312
313 mutex_lock(&dirty_i->seglist_lock);
314
315 p.alloc_mode = alloc_mode;
316 select_policy(sbi, gc_type, type, &p);
317
318 p.min_segno = NULL_SEGNO;
319 p.min_cost = get_max_cost(sbi, &p);
320
321 if (*result != NULL_SEGNO) {
322 if (IS_DATASEG(get_seg_entry(sbi, *result)->type) &&
323 get_valid_blocks(sbi, *result, false) &&
324 !sec_usage_check(sbi, GET_SEC_FROM_SEG(sbi, *result)))
325 p.min_segno = *result;
326 goto out;
327 }
328
329 if (p.max_search == 0)
330 goto out;
331
332 last_victim = sm->last_victim[p.gc_mode];
333 if (p.alloc_mode == LFS && gc_type == FG_GC) {
334 p.min_segno = check_bg_victims(sbi);
335 if (p.min_segno != NULL_SEGNO)
336 goto got_it;
337 }
338
339 while (1) {
340 unsigned long cost;
341 unsigned int segno;
342
343 segno = find_next_bit(p.dirty_segmap, last_segment, p.offset);
344 if (segno >= last_segment) {
345 if (sm->last_victim[p.gc_mode]) {
346 last_segment =
347 sm->last_victim[p.gc_mode];
348 sm->last_victim[p.gc_mode] = 0;
349 p.offset = 0;
350 continue;
351 }
352 break;
353 }
354
355 p.offset = segno + p.ofs_unit;
356 if (p.ofs_unit > 1) {
357 p.offset -= segno % p.ofs_unit;
358 nsearched += count_bits(p.dirty_segmap,
359 p.offset - p.ofs_unit,
360 p.ofs_unit);
361 } else {
362 nsearched++;
363 }
364
365 secno = GET_SEC_FROM_SEG(sbi, segno);
366
367 if (sec_usage_check(sbi, secno))
368 goto next;
369 if (gc_type == BG_GC && test_bit(secno, dirty_i->victim_secmap))
370 goto next;
371 if (gc_type == FG_GC && p.alloc_mode == LFS &&
372 no_fggc_candidate(sbi, secno))
373 goto next;
374
375 cost = get_gc_cost(sbi, segno, &p);
376
377 if (p.min_cost > cost) {
378 p.min_segno = segno;
379 p.min_cost = cost;
380 }
381 next:
382 if (nsearched >= p.max_search) {
383 if (!sm->last_victim[p.gc_mode] && segno <= last_victim)
384 sm->last_victim[p.gc_mode] = last_victim + 1;
385 else
386 sm->last_victim[p.gc_mode] = segno + 1;
387 sm->last_victim[p.gc_mode] %= MAIN_SEGS(sbi);
388 break;
389 }
390 }
391 if (p.min_segno != NULL_SEGNO) {
392 got_it:
393 if (p.alloc_mode == LFS) {
394 secno = GET_SEC_FROM_SEG(sbi, p.min_segno);
395 if (gc_type == FG_GC)
396 sbi->cur_victim_sec = secno;
397 else
398 set_bit(secno, dirty_i->victim_secmap);
399 }
400 *result = (p.min_segno / p.ofs_unit) * p.ofs_unit;
401
402 trace_f2fs_get_victim(sbi->sb, type, gc_type, &p,
403 sbi->cur_victim_sec,
404 prefree_segments(sbi), free_segments(sbi));
405 }
406 out:
407 mutex_unlock(&dirty_i->seglist_lock);
408
409 return (p.min_segno == NULL_SEGNO) ? 0 : 1;
410 }
411
412 static const struct victim_selection default_v_ops = {
413 .get_victim = get_victim_by_default,
414 };
415
416 static struct inode *find_gc_inode(struct gc_inode_list *gc_list, nid_t ino)
417 {
418 struct inode_entry *ie;
419
420 ie = radix_tree_lookup(&gc_list->iroot, ino);
421 if (ie)
422 return ie->inode;
423 return NULL;
424 }
425
426 static void add_gc_inode(struct gc_inode_list *gc_list, struct inode *inode)
427 {
428 struct inode_entry *new_ie;
429
430 if (inode == find_gc_inode(gc_list, inode->i_ino)) {
431 iput(inode);
432 return;
433 }
434 new_ie = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
435 new_ie->inode = inode;
436
437 f2fs_radix_tree_insert(&gc_list->iroot, inode->i_ino, new_ie);
438 list_add_tail(&new_ie->list, &gc_list->ilist);
439 }
440
441 static void put_gc_inode(struct gc_inode_list *gc_list)
442 {
443 struct inode_entry *ie, *next_ie;
444 list_for_each_entry_safe(ie, next_ie, &gc_list->ilist, list) {
445 radix_tree_delete(&gc_list->iroot, ie->inode->i_ino);
446 iput(ie->inode);
447 list_del(&ie->list);
448 kmem_cache_free(inode_entry_slab, ie);
449 }
450 }
451
452 static int check_valid_map(struct f2fs_sb_info *sbi,
453 unsigned int segno, int offset)
454 {
455 struct sit_info *sit_i = SIT_I(sbi);
456 struct seg_entry *sentry;
457 int ret;
458
459 down_read(&sit_i->sentry_lock);
460 sentry = get_seg_entry(sbi, segno);
461 ret = f2fs_test_bit(offset, sentry->cur_valid_map);
462 up_read(&sit_i->sentry_lock);
463 return ret;
464 }
465
466 /*
467 * This function compares node address got in summary with that in NAT.
468 * On validity, copy that node with cold status, otherwise (invalid node)
469 * ignore that.
470 */
471 static void gc_node_segment(struct f2fs_sb_info *sbi,
472 struct f2fs_summary *sum, unsigned int segno, int gc_type)
473 {
474 struct f2fs_summary *entry;
475 block_t start_addr;
476 int off;
477 int phase = 0;
478
479 start_addr = START_BLOCK(sbi, segno);
480
481 next_step:
482 entry = sum;
483
484 for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
485 nid_t nid = le32_to_cpu(entry->nid);
486 struct page *node_page;
487 struct node_info ni;
488
489 /* stop BG_GC if there is not enough free sections. */
490 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
491 return;
492
493 if (check_valid_map(sbi, segno, off) == 0)
494 continue;
495
496 if (phase == 0) {
497 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
498 META_NAT, true);
499 continue;
500 }
501
502 if (phase == 1) {
503 ra_node_page(sbi, nid);
504 continue;
505 }
506
507 /* phase == 2 */
508 node_page = get_node_page(sbi, nid);
509 if (IS_ERR(node_page))
510 continue;
511
512 /* block may become invalid during get_node_page */
513 if (check_valid_map(sbi, segno, off) == 0) {
514 f2fs_put_page(node_page, 1);
515 continue;
516 }
517
518 get_node_info(sbi, nid, &ni);
519 if (ni.blk_addr != start_addr + off) {
520 f2fs_put_page(node_page, 1);
521 continue;
522 }
523
524 move_node_page(node_page, gc_type);
525 stat_inc_node_blk_count(sbi, 1, gc_type);
526 }
527
528 if (++phase < 3)
529 goto next_step;
530 }
531
532 /*
533 * Calculate start block index indicating the given node offset.
534 * Be careful, caller should give this node offset only indicating direct node
535 * blocks. If any node offsets, which point the other types of node blocks such
536 * as indirect or double indirect node blocks, are given, it must be a caller's
537 * bug.
538 */
539 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode)
540 {
541 unsigned int indirect_blks = 2 * NIDS_PER_BLOCK + 4;
542 unsigned int bidx;
543
544 if (node_ofs == 0)
545 return 0;
546
547 if (node_ofs <= 2) {
548 bidx = node_ofs - 1;
549 } else if (node_ofs <= indirect_blks) {
550 int dec = (node_ofs - 4) / (NIDS_PER_BLOCK + 1);
551 bidx = node_ofs - 2 - dec;
552 } else {
553 int dec = (node_ofs - indirect_blks - 3) / (NIDS_PER_BLOCK + 1);
554 bidx = node_ofs - 5 - dec;
555 }
556 return bidx * ADDRS_PER_BLOCK + ADDRS_PER_INODE(inode);
557 }
558
559 static bool is_alive(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
560 struct node_info *dni, block_t blkaddr, unsigned int *nofs)
561 {
562 struct page *node_page;
563 nid_t nid;
564 unsigned int ofs_in_node;
565 block_t source_blkaddr;
566
567 nid = le32_to_cpu(sum->nid);
568 ofs_in_node = le16_to_cpu(sum->ofs_in_node);
569
570 node_page = get_node_page(sbi, nid);
571 if (IS_ERR(node_page))
572 return false;
573
574 get_node_info(sbi, nid, dni);
575
576 if (sum->version != dni->version) {
577 f2fs_msg(sbi->sb, KERN_WARNING,
578 "%s: valid data with mismatched node version.",
579 __func__);
580 set_sbi_flag(sbi, SBI_NEED_FSCK);
581 }
582
583 *nofs = ofs_of_node(node_page);
584 source_blkaddr = datablock_addr(NULL, node_page, ofs_in_node);
585 f2fs_put_page(node_page, 1);
586
587 if (source_blkaddr != blkaddr)
588 return false;
589 return true;
590 }
591
592 /*
593 * Move data block via META_MAPPING while keeping locked data page.
594 * This can be used to move blocks, aka LBAs, directly on disk.
595 */
596 static void move_data_block(struct inode *inode, block_t bidx,
597 unsigned int segno, int off)
598 {
599 struct f2fs_io_info fio = {
600 .sbi = F2FS_I_SB(inode),
601 .ino = inode->i_ino,
602 .type = DATA,
603 .temp = COLD,
604 .op = REQ_OP_READ,
605 .op_flags = 0,
606 .encrypted_page = NULL,
607 .in_list = false,
608 };
609 struct dnode_of_data dn;
610 struct f2fs_summary sum;
611 struct node_info ni;
612 struct page *page;
613 block_t newaddr;
614 int err;
615
616 /* do not read out */
617 page = f2fs_grab_cache_page(inode->i_mapping, bidx, false);
618 if (!page)
619 return;
620
621 if (!check_valid_map(F2FS_I_SB(inode), segno, off))
622 goto out;
623
624 if (f2fs_is_atomic_file(inode))
625 goto out;
626
627 if (f2fs_is_pinned_file(inode)) {
628 f2fs_pin_file_control(inode, true);
629 goto out;
630 }
631
632 set_new_dnode(&dn, inode, NULL, NULL, 0);
633 err = get_dnode_of_data(&dn, bidx, LOOKUP_NODE);
634 if (err)
635 goto out;
636
637 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
638 ClearPageUptodate(page);
639 goto put_out;
640 }
641
642 /*
643 * don't cache encrypted data into meta inode until previous dirty
644 * data were writebacked to avoid racing between GC and flush.
645 */
646 f2fs_wait_on_page_writeback(page, DATA, true);
647
648 get_node_info(fio.sbi, dn.nid, &ni);
649 set_summary(&sum, dn.nid, dn.ofs_in_node, ni.version);
650
651 /* read page */
652 fio.page = page;
653 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
654
655 allocate_data_block(fio.sbi, NULL, fio.old_blkaddr, &newaddr,
656 &sum, CURSEG_COLD_DATA, NULL, false);
657
658 fio.encrypted_page = f2fs_pagecache_get_page(META_MAPPING(fio.sbi),
659 newaddr, FGP_LOCK | FGP_CREAT, GFP_NOFS);
660 if (!fio.encrypted_page) {
661 err = -ENOMEM;
662 goto recover_block;
663 }
664
665 err = f2fs_submit_page_bio(&fio);
666 if (err)
667 goto put_page_out;
668
669 /* write page */
670 lock_page(fio.encrypted_page);
671
672 if (unlikely(fio.encrypted_page->mapping != META_MAPPING(fio.sbi))) {
673 err = -EIO;
674 goto put_page_out;
675 }
676 if (unlikely(!PageUptodate(fio.encrypted_page))) {
677 err = -EIO;
678 goto put_page_out;
679 }
680
681 set_page_dirty(fio.encrypted_page);
682 f2fs_wait_on_page_writeback(fio.encrypted_page, DATA, true);
683 if (clear_page_dirty_for_io(fio.encrypted_page))
684 dec_page_count(fio.sbi, F2FS_DIRTY_META);
685
686 set_page_writeback(fio.encrypted_page);
687
688 /* allocate block address */
689 f2fs_wait_on_page_writeback(dn.node_page, NODE, true);
690
691 fio.op = REQ_OP_WRITE;
692 fio.op_flags = REQ_SYNC;
693 fio.new_blkaddr = newaddr;
694 err = f2fs_submit_page_write(&fio);
695 if (err) {
696 if (PageWriteback(fio.encrypted_page))
697 end_page_writeback(fio.encrypted_page);
698 goto put_page_out;
699 }
700
701 f2fs_update_iostat(fio.sbi, FS_GC_DATA_IO, F2FS_BLKSIZE);
702
703 f2fs_update_data_blkaddr(&dn, newaddr);
704 set_inode_flag(inode, FI_APPEND_WRITE);
705 if (page->index == 0)
706 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
707 put_page_out:
708 f2fs_put_page(fio.encrypted_page, 1);
709 recover_block:
710 if (err)
711 __f2fs_replace_block(fio.sbi, &sum, newaddr, fio.old_blkaddr,
712 true, true);
713 put_out:
714 f2fs_put_dnode(&dn);
715 out:
716 f2fs_put_page(page, 1);
717 }
718
719 static void move_data_page(struct inode *inode, block_t bidx, int gc_type,
720 unsigned int segno, int off)
721 {
722 struct page *page;
723
724 page = get_lock_data_page(inode, bidx, true);
725 if (IS_ERR(page))
726 return;
727
728 if (!check_valid_map(F2FS_I_SB(inode), segno, off))
729 goto out;
730
731 if (f2fs_is_atomic_file(inode))
732 goto out;
733 if (f2fs_is_pinned_file(inode)) {
734 if (gc_type == FG_GC)
735 f2fs_pin_file_control(inode, true);
736 goto out;
737 }
738
739 if (gc_type == BG_GC) {
740 if (PageWriteback(page))
741 goto out;
742 set_page_dirty(page);
743 set_cold_data(page);
744 } else {
745 struct f2fs_io_info fio = {
746 .sbi = F2FS_I_SB(inode),
747 .ino = inode->i_ino,
748 .type = DATA,
749 .temp = COLD,
750 .op = REQ_OP_WRITE,
751 .op_flags = REQ_SYNC,
752 .old_blkaddr = NULL_ADDR,
753 .page = page,
754 .encrypted_page = NULL,
755 .need_lock = LOCK_REQ,
756 .io_type = FS_GC_DATA_IO,
757 };
758 bool is_dirty = PageDirty(page);
759 int err;
760
761 retry:
762 set_page_dirty(page);
763 f2fs_wait_on_page_writeback(page, DATA, true);
764 if (clear_page_dirty_for_io(page)) {
765 inode_dec_dirty_pages(inode);
766 remove_dirty_inode(inode);
767 }
768
769 set_cold_data(page);
770
771 err = do_write_data_page(&fio);
772 if (err == -ENOMEM && is_dirty) {
773 congestion_wait(BLK_RW_ASYNC, HZ/50);
774 goto retry;
775 }
776 }
777 out:
778 f2fs_put_page(page, 1);
779 }
780
781 /*
782 * This function tries to get parent node of victim data block, and identifies
783 * data block validity. If the block is valid, copy that with cold status and
784 * modify parent node.
785 * If the parent node is not valid or the data block address is different,
786 * the victim data block is ignored.
787 */
788 static void gc_data_segment(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
789 struct gc_inode_list *gc_list, unsigned int segno, int gc_type)
790 {
791 struct super_block *sb = sbi->sb;
792 struct f2fs_summary *entry;
793 block_t start_addr;
794 int off;
795 int phase = 0;
796
797 start_addr = START_BLOCK(sbi, segno);
798
799 next_step:
800 entry = sum;
801
802 for (off = 0; off < sbi->blocks_per_seg; off++, entry++) {
803 struct page *data_page;
804 struct inode *inode;
805 struct node_info dni; /* dnode info for the data */
806 unsigned int ofs_in_node, nofs;
807 block_t start_bidx;
808 nid_t nid = le32_to_cpu(entry->nid);
809
810 /* stop BG_GC if there is not enough free sections. */
811 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0))
812 return;
813
814 if (check_valid_map(sbi, segno, off) == 0)
815 continue;
816
817 if (phase == 0) {
818 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), 1,
819 META_NAT, true);
820 continue;
821 }
822
823 if (phase == 1) {
824 ra_node_page(sbi, nid);
825 continue;
826 }
827
828 /* Get an inode by ino with checking validity */
829 if (!is_alive(sbi, entry, &dni, start_addr + off, &nofs))
830 continue;
831
832 if (phase == 2) {
833 ra_node_page(sbi, dni.ino);
834 continue;
835 }
836
837 ofs_in_node = le16_to_cpu(entry->ofs_in_node);
838
839 if (phase == 3) {
840 inode = f2fs_iget(sb, dni.ino);
841 if (IS_ERR(inode) || is_bad_inode(inode))
842 continue;
843
844 /* if encrypted inode, let's go phase 3 */
845 if (f2fs_encrypted_file(inode)) {
846 add_gc_inode(gc_list, inode);
847 continue;
848 }
849
850 if (!down_write_trylock(
851 &F2FS_I(inode)->dio_rwsem[WRITE])) {
852 iput(inode);
853 continue;
854 }
855
856 start_bidx = start_bidx_of_node(nofs, inode);
857 data_page = get_read_data_page(inode,
858 start_bidx + ofs_in_node, REQ_RAHEAD,
859 true);
860 up_write(&F2FS_I(inode)->dio_rwsem[WRITE]);
861 if (IS_ERR(data_page)) {
862 iput(inode);
863 continue;
864 }
865
866 f2fs_put_page(data_page, 0);
867 add_gc_inode(gc_list, inode);
868 continue;
869 }
870
871 /* phase 4 */
872 inode = find_gc_inode(gc_list, dni.ino);
873 if (inode) {
874 struct f2fs_inode_info *fi = F2FS_I(inode);
875 bool locked = false;
876
877 if (S_ISREG(inode->i_mode)) {
878 if (!down_write_trylock(&fi->dio_rwsem[READ]))
879 continue;
880 if (!down_write_trylock(
881 &fi->dio_rwsem[WRITE])) {
882 up_write(&fi->dio_rwsem[READ]);
883 continue;
884 }
885 locked = true;
886
887 /* wait for all inflight aio data */
888 inode_dio_wait(inode);
889 }
890
891 start_bidx = start_bidx_of_node(nofs, inode)
892 + ofs_in_node;
893 if (f2fs_encrypted_file(inode))
894 move_data_block(inode, start_bidx, segno, off);
895 else
896 move_data_page(inode, start_bidx, gc_type,
897 segno, off);
898
899 if (locked) {
900 up_write(&fi->dio_rwsem[WRITE]);
901 up_write(&fi->dio_rwsem[READ]);
902 }
903
904 stat_inc_data_blk_count(sbi, 1, gc_type);
905 }
906 }
907
908 if (++phase < 5)
909 goto next_step;
910 }
911
912 static int __get_victim(struct f2fs_sb_info *sbi, unsigned int *victim,
913 int gc_type)
914 {
915 struct sit_info *sit_i = SIT_I(sbi);
916 int ret;
917
918 down_write(&sit_i->sentry_lock);
919 ret = DIRTY_I(sbi)->v_ops->get_victim(sbi, victim, gc_type,
920 NO_CHECK_TYPE, LFS);
921 up_write(&sit_i->sentry_lock);
922 return ret;
923 }
924
925 static int do_garbage_collect(struct f2fs_sb_info *sbi,
926 unsigned int start_segno,
927 struct gc_inode_list *gc_list, int gc_type)
928 {
929 struct page *sum_page;
930 struct f2fs_summary_block *sum;
931 struct blk_plug plug;
932 unsigned int segno = start_segno;
933 unsigned int end_segno = start_segno + sbi->segs_per_sec;
934 int seg_freed = 0;
935 unsigned char type = IS_DATASEG(get_seg_entry(sbi, segno)->type) ?
936 SUM_TYPE_DATA : SUM_TYPE_NODE;
937
938 /* readahead multi ssa blocks those have contiguous address */
939 if (sbi->segs_per_sec > 1)
940 ra_meta_pages(sbi, GET_SUM_BLOCK(sbi, segno),
941 sbi->segs_per_sec, META_SSA, true);
942
943 /* reference all summary page */
944 while (segno < end_segno) {
945 sum_page = get_sum_page(sbi, segno++);
946 unlock_page(sum_page);
947 }
948
949 blk_start_plug(&plug);
950
951 for (segno = start_segno; segno < end_segno; segno++) {
952
953 /* find segment summary of victim */
954 sum_page = find_get_page(META_MAPPING(sbi),
955 GET_SUM_BLOCK(sbi, segno));
956 f2fs_put_page(sum_page, 0);
957
958 if (get_valid_blocks(sbi, segno, false) == 0 ||
959 !PageUptodate(sum_page) ||
960 unlikely(f2fs_cp_error(sbi)))
961 goto next;
962
963 sum = page_address(sum_page);
964 f2fs_bug_on(sbi, type != GET_SUM_TYPE((&sum->footer)));
965
966 /*
967 * this is to avoid deadlock:
968 * - lock_page(sum_page) - f2fs_replace_block
969 * - check_valid_map() - down_write(sentry_lock)
970 * - down_read(sentry_lock) - change_curseg()
971 * - lock_page(sum_page)
972 */
973 if (type == SUM_TYPE_NODE)
974 gc_node_segment(sbi, sum->entries, segno, gc_type);
975 else
976 gc_data_segment(sbi, sum->entries, gc_list, segno,
977 gc_type);
978
979 stat_inc_seg_count(sbi, type, gc_type);
980
981 if (gc_type == FG_GC &&
982 get_valid_blocks(sbi, segno, false) == 0)
983 seg_freed++;
984 next:
985 f2fs_put_page(sum_page, 0);
986 }
987
988 if (gc_type == FG_GC)
989 f2fs_submit_merged_write(sbi,
990 (type == SUM_TYPE_NODE) ? NODE : DATA);
991
992 blk_finish_plug(&plug);
993
994 stat_inc_call_count(sbi->stat_info);
995
996 return seg_freed;
997 }
998
999 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync,
1000 bool background, unsigned int segno)
1001 {
1002 int gc_type = sync ? FG_GC : BG_GC;
1003 int sec_freed = 0, seg_freed = 0, total_freed = 0;
1004 int ret = 0;
1005 struct cp_control cpc;
1006 unsigned int init_segno = segno;
1007 struct gc_inode_list gc_list = {
1008 .ilist = LIST_HEAD_INIT(gc_list.ilist),
1009 .iroot = RADIX_TREE_INIT(GFP_NOFS),
1010 };
1011
1012 trace_f2fs_gc_begin(sbi->sb, sync, background,
1013 get_pages(sbi, F2FS_DIRTY_NODES),
1014 get_pages(sbi, F2FS_DIRTY_DENTS),
1015 get_pages(sbi, F2FS_DIRTY_IMETA),
1016 free_sections(sbi),
1017 free_segments(sbi),
1018 reserved_segments(sbi),
1019 prefree_segments(sbi));
1020
1021 cpc.reason = __get_cp_reason(sbi);
1022 gc_more:
1023 if (unlikely(!(sbi->sb->s_flags & MS_ACTIVE))) {
1024 ret = -EINVAL;
1025 goto stop;
1026 }
1027 if (unlikely(f2fs_cp_error(sbi))) {
1028 ret = -EIO;
1029 goto stop;
1030 }
1031
1032 if (gc_type == BG_GC && has_not_enough_free_secs(sbi, 0, 0)) {
1033 /*
1034 * For example, if there are many prefree_segments below given
1035 * threshold, we can make them free by checkpoint. Then, we
1036 * secure free segments which doesn't need fggc any more.
1037 */
1038 if (prefree_segments(sbi)) {
1039 ret = write_checkpoint(sbi, &cpc);
1040 if (ret)
1041 goto stop;
1042 }
1043 if (has_not_enough_free_secs(sbi, 0, 0))
1044 gc_type = FG_GC;
1045 }
1046
1047 /* f2fs_balance_fs doesn't need to do BG_GC in critical path. */
1048 if (gc_type == BG_GC && !background) {
1049 ret = -EINVAL;
1050 goto stop;
1051 }
1052 if (!__get_victim(sbi, &segno, gc_type)) {
1053 ret = -ENODATA;
1054 goto stop;
1055 }
1056
1057 seg_freed = do_garbage_collect(sbi, segno, &gc_list, gc_type);
1058 if (gc_type == FG_GC && seg_freed == sbi->segs_per_sec)
1059 sec_freed++;
1060 total_freed += seg_freed;
1061
1062 if (gc_type == FG_GC)
1063 sbi->cur_victim_sec = NULL_SEGNO;
1064
1065 if (!sync) {
1066 if (has_not_enough_free_secs(sbi, sec_freed, 0)) {
1067 segno = NULL_SEGNO;
1068 goto gc_more;
1069 }
1070
1071 if (gc_type == FG_GC)
1072 ret = write_checkpoint(sbi, &cpc);
1073 }
1074 stop:
1075 SIT_I(sbi)->last_victim[ALLOC_NEXT] = 0;
1076 SIT_I(sbi)->last_victim[FLUSH_DEVICE] = init_segno;
1077
1078 trace_f2fs_gc_end(sbi->sb, ret, total_freed, sec_freed,
1079 get_pages(sbi, F2FS_DIRTY_NODES),
1080 get_pages(sbi, F2FS_DIRTY_DENTS),
1081 get_pages(sbi, F2FS_DIRTY_IMETA),
1082 free_sections(sbi),
1083 free_segments(sbi),
1084 reserved_segments(sbi),
1085 prefree_segments(sbi));
1086
1087 mutex_unlock(&sbi->gc_mutex);
1088
1089 put_gc_inode(&gc_list);
1090
1091 if (sync)
1092 ret = sec_freed ? 0 : -EAGAIN;
1093 return ret;
1094 }
1095
1096 void build_gc_manager(struct f2fs_sb_info *sbi)
1097 {
1098 u64 main_count, resv_count, ovp_count;
1099
1100 DIRTY_I(sbi)->v_ops = &default_v_ops;
1101
1102 /* threshold of # of valid blocks in a section for victims of FG_GC */
1103 main_count = SM_I(sbi)->main_segments << sbi->log_blocks_per_seg;
1104 resv_count = SM_I(sbi)->reserved_segments << sbi->log_blocks_per_seg;
1105 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
1106
1107 sbi->fggc_threshold = div64_u64((main_count - ovp_count) *
1108 BLKS_PER_SEC(sbi), (main_count - resv_count));
1109 sbi->gc_pin_file_threshold = DEF_GC_FAILED_PINNED_FILES;
1110
1111 /* give warm/cold data area from slower device */
1112 if (sbi->s_ndevs && sbi->segs_per_sec == 1)
1113 SIT_I(sbi)->last_victim[ALLOC_NEXT] =
1114 GET_SEGNO(sbi, FDEV(0).end_blk) + 1;
1115 }