f2fs: do not change the valid_block value if cur_valid_map was wrongly set or cleared
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / fs / f2fs / file.c
1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uio.h>
24 #include <linux/uuid.h>
25 #include <linux/file.h>
26
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include "trace.h"
34 #include <trace/events/f2fs.h>
35
36 static int f2fs_filemap_fault(struct vm_fault *vmf)
37 {
38 struct inode *inode = file_inode(vmf->vma->vm_file);
39 int err;
40
41 down_read(&F2FS_I(inode)->i_mmap_sem);
42 err = filemap_fault(vmf);
43 up_read(&F2FS_I(inode)->i_mmap_sem);
44
45 return err;
46 }
47
48 static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
49 {
50 struct page *page = vmf->page;
51 struct inode *inode = file_inode(vmf->vma->vm_file);
52 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
53 struct dnode_of_data dn;
54 int err;
55
56 sb_start_pagefault(inode->i_sb);
57
58 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
59
60 /* block allocation */
61 f2fs_lock_op(sbi);
62 set_new_dnode(&dn, inode, NULL, NULL, 0);
63 err = f2fs_reserve_block(&dn, page->index);
64 if (err) {
65 f2fs_unlock_op(sbi);
66 goto out;
67 }
68 f2fs_put_dnode(&dn);
69 f2fs_unlock_op(sbi);
70
71 f2fs_balance_fs(sbi, dn.node_changed);
72
73 file_update_time(vmf->vma->vm_file);
74 down_read(&F2FS_I(inode)->i_mmap_sem);
75 lock_page(page);
76 if (unlikely(page->mapping != inode->i_mapping ||
77 page_offset(page) > i_size_read(inode) ||
78 !PageUptodate(page))) {
79 unlock_page(page);
80 err = -EFAULT;
81 goto out_sem;
82 }
83
84 /*
85 * check to see if the page is mapped already (no holes)
86 */
87 if (PageMappedToDisk(page))
88 goto mapped;
89
90 /* page is wholly or partially inside EOF */
91 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
92 i_size_read(inode)) {
93 unsigned offset;
94 offset = i_size_read(inode) & ~PAGE_MASK;
95 zero_user_segment(page, offset, PAGE_SIZE);
96 }
97 set_page_dirty(page);
98 if (!PageUptodate(page))
99 SetPageUptodate(page);
100
101 trace_f2fs_vm_page_mkwrite(page, DATA);
102 mapped:
103 /* fill the page */
104 f2fs_wait_on_page_writeback(page, DATA, false);
105
106 /* wait for GCed encrypted page writeback */
107 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
108 f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
109
110 out_sem:
111 up_read(&F2FS_I(inode)->i_mmap_sem);
112 out:
113 sb_end_pagefault(inode->i_sb);
114 f2fs_update_time(sbi, REQ_TIME);
115 return block_page_mkwrite_return(err);
116 }
117
118 static const struct vm_operations_struct f2fs_file_vm_ops = {
119 .fault = f2fs_filemap_fault,
120 .map_pages = filemap_map_pages,
121 .page_mkwrite = f2fs_vm_page_mkwrite,
122 };
123
124 static int get_parent_ino(struct inode *inode, nid_t *pino)
125 {
126 struct dentry *dentry;
127
128 inode = igrab(inode);
129 dentry = d_find_any_alias(inode);
130 iput(inode);
131 if (!dentry)
132 return 0;
133
134 *pino = parent_ino(dentry);
135 dput(dentry);
136 return 1;
137 }
138
139 static inline bool need_do_checkpoint(struct inode *inode)
140 {
141 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
142 bool need_cp = false;
143
144 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
145 need_cp = true;
146 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
147 need_cp = true;
148 else if (file_wrong_pino(inode))
149 need_cp = true;
150 else if (!space_for_roll_forward(sbi))
151 need_cp = true;
152 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
153 need_cp = true;
154 else if (test_opt(sbi, FASTBOOT))
155 need_cp = true;
156 else if (sbi->active_logs == 2)
157 need_cp = true;
158
159 return need_cp;
160 }
161
162 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
163 {
164 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
165 bool ret = false;
166 /* But we need to avoid that there are some inode updates */
167 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
168 ret = true;
169 f2fs_put_page(i, 0);
170 return ret;
171 }
172
173 static void try_to_fix_pino(struct inode *inode)
174 {
175 struct f2fs_inode_info *fi = F2FS_I(inode);
176 nid_t pino;
177
178 down_write(&fi->i_sem);
179 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
180 get_parent_ino(inode, &pino)) {
181 f2fs_i_pino_write(inode, pino);
182 file_got_pino(inode);
183 }
184 up_write(&fi->i_sem);
185 }
186
187 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
188 int datasync, bool atomic)
189 {
190 struct inode *inode = file->f_mapping->host;
191 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
192 nid_t ino = inode->i_ino;
193 int ret = 0;
194 bool need_cp = false;
195 struct writeback_control wbc = {
196 .sync_mode = WB_SYNC_ALL,
197 .nr_to_write = LONG_MAX,
198 .for_reclaim = 0,
199 };
200
201 if (unlikely(f2fs_readonly(inode->i_sb)))
202 return 0;
203
204 trace_f2fs_sync_file_enter(inode);
205
206 /* if fdatasync is triggered, let's do in-place-update */
207 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
208 set_inode_flag(inode, FI_NEED_IPU);
209 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
210 clear_inode_flag(inode, FI_NEED_IPU);
211
212 if (ret) {
213 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
214 return ret;
215 }
216
217 /* if the inode is dirty, let's recover all the time */
218 if (!f2fs_skip_inode_update(inode, datasync)) {
219 f2fs_write_inode(inode, NULL);
220 goto go_write;
221 }
222
223 /*
224 * if there is no written data, don't waste time to write recovery info.
225 */
226 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
227 !exist_written_data(sbi, ino, APPEND_INO)) {
228
229 /* it may call write_inode just prior to fsync */
230 if (need_inode_page_update(sbi, ino))
231 goto go_write;
232
233 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
234 exist_written_data(sbi, ino, UPDATE_INO))
235 goto flush_out;
236 goto out;
237 }
238 go_write:
239 /*
240 * Both of fdatasync() and fsync() are able to be recovered from
241 * sudden-power-off.
242 */
243 down_read(&F2FS_I(inode)->i_sem);
244 need_cp = need_do_checkpoint(inode);
245 up_read(&F2FS_I(inode)->i_sem);
246
247 if (need_cp) {
248 /* all the dirty node pages should be flushed for POR */
249 ret = f2fs_sync_fs(inode->i_sb, 1);
250
251 /*
252 * We've secured consistency through sync_fs. Following pino
253 * will be used only for fsynced inodes after checkpoint.
254 */
255 try_to_fix_pino(inode);
256 clear_inode_flag(inode, FI_APPEND_WRITE);
257 clear_inode_flag(inode, FI_UPDATE_WRITE);
258 goto out;
259 }
260 sync_nodes:
261 ret = fsync_node_pages(sbi, inode, &wbc, atomic);
262 if (ret)
263 goto out;
264
265 /* if cp_error was enabled, we should avoid infinite loop */
266 if (unlikely(f2fs_cp_error(sbi))) {
267 ret = -EIO;
268 goto out;
269 }
270
271 if (need_inode_block_update(sbi, ino)) {
272 f2fs_mark_inode_dirty_sync(inode, true);
273 f2fs_write_inode(inode, NULL);
274 goto sync_nodes;
275 }
276
277 /*
278 * If it's atomic_write, it's just fine to keep write ordering. So
279 * here we don't need to wait for node write completion, since we use
280 * node chain which serializes node blocks. If one of node writes are
281 * reordered, we can see simply broken chain, resulting in stopping
282 * roll-forward recovery. It means we'll recover all or none node blocks
283 * given fsync mark.
284 */
285 if (!atomic) {
286 ret = wait_on_node_pages_writeback(sbi, ino);
287 if (ret)
288 goto out;
289 }
290
291 /* once recovery info is written, don't need to tack this */
292 remove_ino_entry(sbi, ino, APPEND_INO);
293 clear_inode_flag(inode, FI_APPEND_WRITE);
294 flush_out:
295 remove_ino_entry(sbi, ino, UPDATE_INO);
296 clear_inode_flag(inode, FI_UPDATE_WRITE);
297 if (!atomic)
298 ret = f2fs_issue_flush(sbi);
299 f2fs_update_time(sbi, REQ_TIME);
300 out:
301 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
302 f2fs_trace_ios(NULL, 1);
303 return ret;
304 }
305
306 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
307 {
308 return f2fs_do_sync_file(file, start, end, datasync, false);
309 }
310
311 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
312 pgoff_t pgofs, int whence)
313 {
314 struct pagevec pvec;
315 int nr_pages;
316
317 if (whence != SEEK_DATA)
318 return 0;
319
320 /* find first dirty page index */
321 pagevec_init(&pvec, 0);
322 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
323 PAGECACHE_TAG_DIRTY, 1);
324 pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
325 pagevec_release(&pvec);
326 return pgofs;
327 }
328
329 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
330 int whence)
331 {
332 switch (whence) {
333 case SEEK_DATA:
334 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
335 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
336 return true;
337 break;
338 case SEEK_HOLE:
339 if (blkaddr == NULL_ADDR)
340 return true;
341 break;
342 }
343 return false;
344 }
345
346 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
347 {
348 struct inode *inode = file->f_mapping->host;
349 loff_t maxbytes = inode->i_sb->s_maxbytes;
350 struct dnode_of_data dn;
351 pgoff_t pgofs, end_offset, dirty;
352 loff_t data_ofs = offset;
353 loff_t isize;
354 int err = 0;
355
356 inode_lock(inode);
357
358 isize = i_size_read(inode);
359 if (offset >= isize)
360 goto fail;
361
362 /* handle inline data case */
363 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
364 if (whence == SEEK_HOLE)
365 data_ofs = isize;
366 goto found;
367 }
368
369 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
370
371 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
372
373 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
374 set_new_dnode(&dn, inode, NULL, NULL, 0);
375 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
376 if (err && err != -ENOENT) {
377 goto fail;
378 } else if (err == -ENOENT) {
379 /* direct node does not exists */
380 if (whence == SEEK_DATA) {
381 pgofs = get_next_page_offset(&dn, pgofs);
382 continue;
383 } else {
384 goto found;
385 }
386 }
387
388 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
389
390 /* find data/hole in dnode block */
391 for (; dn.ofs_in_node < end_offset;
392 dn.ofs_in_node++, pgofs++,
393 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
394 block_t blkaddr;
395 blkaddr = datablock_addr(dn.inode,
396 dn.node_page, dn.ofs_in_node);
397
398 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
399 f2fs_put_dnode(&dn);
400 goto found;
401 }
402 }
403 f2fs_put_dnode(&dn);
404 }
405
406 if (whence == SEEK_DATA)
407 goto fail;
408 found:
409 if (whence == SEEK_HOLE && data_ofs > isize)
410 data_ofs = isize;
411 inode_unlock(inode);
412 return vfs_setpos(file, data_ofs, maxbytes);
413 fail:
414 inode_unlock(inode);
415 return -ENXIO;
416 }
417
418 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
419 {
420 struct inode *inode = file->f_mapping->host;
421 loff_t maxbytes = inode->i_sb->s_maxbytes;
422
423 switch (whence) {
424 case SEEK_SET:
425 case SEEK_CUR:
426 case SEEK_END:
427 return generic_file_llseek_size(file, offset, whence,
428 maxbytes, i_size_read(inode));
429 case SEEK_DATA:
430 case SEEK_HOLE:
431 if (offset < 0)
432 return -ENXIO;
433 return f2fs_seek_block(file, offset, whence);
434 }
435
436 return -EINVAL;
437 }
438
439 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
440 {
441 struct inode *inode = file_inode(file);
442 int err;
443
444 /* we don't need to use inline_data strictly */
445 err = f2fs_convert_inline_inode(inode);
446 if (err)
447 return err;
448
449 file_accessed(file);
450 vma->vm_ops = &f2fs_file_vm_ops;
451 return 0;
452 }
453
454 static int f2fs_file_open(struct inode *inode, struct file *filp)
455 {
456 struct dentry *dir;
457
458 if (f2fs_encrypted_inode(inode)) {
459 int ret = fscrypt_get_encryption_info(inode);
460 if (ret)
461 return -EACCES;
462 if (!fscrypt_has_encryption_key(inode))
463 return -ENOKEY;
464 }
465 dir = dget_parent(file_dentry(filp));
466 if (f2fs_encrypted_inode(d_inode(dir)) &&
467 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
468 dput(dir);
469 return -EPERM;
470 }
471 dput(dir);
472 return dquot_file_open(inode, filp);
473 }
474
475 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
476 {
477 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
478 struct f2fs_node *raw_node;
479 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
480 __le32 *addr;
481 int base = 0;
482
483 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
484 base = get_extra_isize(dn->inode);
485
486 raw_node = F2FS_NODE(dn->node_page);
487 addr = blkaddr_in_node(raw_node) + base + ofs;
488
489 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
490 block_t blkaddr = le32_to_cpu(*addr);
491 if (blkaddr == NULL_ADDR)
492 continue;
493
494 dn->data_blkaddr = NULL_ADDR;
495 set_data_blkaddr(dn);
496 invalidate_blocks(sbi, blkaddr);
497 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
498 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
499 nr_free++;
500 }
501
502 if (nr_free) {
503 pgoff_t fofs;
504 /*
505 * once we invalidate valid blkaddr in range [ofs, ofs + count],
506 * we will invalidate all blkaddr in the whole range.
507 */
508 fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
509 dn->inode) + ofs;
510 f2fs_update_extent_cache_range(dn, fofs, 0, len);
511 dec_valid_block_count(sbi, dn->inode, nr_free);
512 }
513 dn->ofs_in_node = ofs;
514
515 f2fs_update_time(sbi, REQ_TIME);
516 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
517 dn->ofs_in_node, nr_free);
518 return nr_free;
519 }
520
521 void truncate_data_blocks(struct dnode_of_data *dn)
522 {
523 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
524 }
525
526 static int truncate_partial_data_page(struct inode *inode, u64 from,
527 bool cache_only)
528 {
529 unsigned offset = from & (PAGE_SIZE - 1);
530 pgoff_t index = from >> PAGE_SHIFT;
531 struct address_space *mapping = inode->i_mapping;
532 struct page *page;
533
534 if (!offset && !cache_only)
535 return 0;
536
537 if (cache_only) {
538 page = find_lock_page(mapping, index);
539 if (page && PageUptodate(page))
540 goto truncate_out;
541 f2fs_put_page(page, 1);
542 return 0;
543 }
544
545 page = get_lock_data_page(inode, index, true);
546 if (IS_ERR(page))
547 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
548 truncate_out:
549 f2fs_wait_on_page_writeback(page, DATA, true);
550 zero_user(page, offset, PAGE_SIZE - offset);
551
552 /* An encrypted inode should have a key and truncate the last page. */
553 f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
554 if (!cache_only)
555 set_page_dirty(page);
556 f2fs_put_page(page, 1);
557 return 0;
558 }
559
560 int truncate_blocks(struct inode *inode, u64 from, bool lock)
561 {
562 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
563 unsigned int blocksize = inode->i_sb->s_blocksize;
564 struct dnode_of_data dn;
565 pgoff_t free_from;
566 int count = 0, err = 0;
567 struct page *ipage;
568 bool truncate_page = false;
569
570 trace_f2fs_truncate_blocks_enter(inode, from);
571
572 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
573
574 if (free_from >= sbi->max_file_blocks)
575 goto free_partial;
576
577 if (lock)
578 f2fs_lock_op(sbi);
579
580 ipage = get_node_page(sbi, inode->i_ino);
581 if (IS_ERR(ipage)) {
582 err = PTR_ERR(ipage);
583 goto out;
584 }
585
586 if (f2fs_has_inline_data(inode)) {
587 truncate_inline_inode(inode, ipage, from);
588 f2fs_put_page(ipage, 1);
589 truncate_page = true;
590 goto out;
591 }
592
593 set_new_dnode(&dn, inode, ipage, NULL, 0);
594 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
595 if (err) {
596 if (err == -ENOENT)
597 goto free_next;
598 goto out;
599 }
600
601 count = ADDRS_PER_PAGE(dn.node_page, inode);
602
603 count -= dn.ofs_in_node;
604 f2fs_bug_on(sbi, count < 0);
605
606 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
607 truncate_data_blocks_range(&dn, count);
608 free_from += count;
609 }
610
611 f2fs_put_dnode(&dn);
612 free_next:
613 err = truncate_inode_blocks(inode, free_from);
614 out:
615 if (lock)
616 f2fs_unlock_op(sbi);
617 free_partial:
618 /* lastly zero out the first data page */
619 if (!err)
620 err = truncate_partial_data_page(inode, from, truncate_page);
621
622 trace_f2fs_truncate_blocks_exit(inode, err);
623 return err;
624 }
625
626 int f2fs_truncate(struct inode *inode)
627 {
628 int err;
629
630 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
631 S_ISLNK(inode->i_mode)))
632 return 0;
633
634 trace_f2fs_truncate(inode);
635
636 #ifdef CONFIG_F2FS_FAULT_INJECTION
637 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
638 f2fs_show_injection_info(FAULT_TRUNCATE);
639 return -EIO;
640 }
641 #endif
642 /* we should check inline_data size */
643 if (!f2fs_may_inline_data(inode)) {
644 err = f2fs_convert_inline_inode(inode);
645 if (err)
646 return err;
647 }
648
649 err = truncate_blocks(inode, i_size_read(inode), true);
650 if (err)
651 return err;
652
653 inode->i_mtime = inode->i_ctime = current_time(inode);
654 f2fs_mark_inode_dirty_sync(inode, false);
655 return 0;
656 }
657
658 int f2fs_getattr(const struct path *path, struct kstat *stat,
659 u32 request_mask, unsigned int query_flags)
660 {
661 struct inode *inode = d_inode(path->dentry);
662 struct f2fs_inode_info *fi = F2FS_I(inode);
663 unsigned int flags;
664
665 flags = fi->i_flags & (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
666 if (flags & FS_APPEND_FL)
667 stat->attributes |= STATX_ATTR_APPEND;
668 if (flags & FS_COMPR_FL)
669 stat->attributes |= STATX_ATTR_COMPRESSED;
670 if (f2fs_encrypted_inode(inode))
671 stat->attributes |= STATX_ATTR_ENCRYPTED;
672 if (flags & FS_IMMUTABLE_FL)
673 stat->attributes |= STATX_ATTR_IMMUTABLE;
674 if (flags & FS_NODUMP_FL)
675 stat->attributes |= STATX_ATTR_NODUMP;
676
677 stat->attributes_mask |= (STATX_ATTR_APPEND |
678 STATX_ATTR_COMPRESSED |
679 STATX_ATTR_ENCRYPTED |
680 STATX_ATTR_IMMUTABLE |
681 STATX_ATTR_NODUMP);
682
683 generic_fillattr(inode, stat);
684 return 0;
685 }
686
687 #ifdef CONFIG_F2FS_FS_POSIX_ACL
688 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
689 {
690 unsigned int ia_valid = attr->ia_valid;
691
692 if (ia_valid & ATTR_UID)
693 inode->i_uid = attr->ia_uid;
694 if (ia_valid & ATTR_GID)
695 inode->i_gid = attr->ia_gid;
696 if (ia_valid & ATTR_ATIME)
697 inode->i_atime = timespec_trunc(attr->ia_atime,
698 inode->i_sb->s_time_gran);
699 if (ia_valid & ATTR_MTIME)
700 inode->i_mtime = timespec_trunc(attr->ia_mtime,
701 inode->i_sb->s_time_gran);
702 if (ia_valid & ATTR_CTIME)
703 inode->i_ctime = timespec_trunc(attr->ia_ctime,
704 inode->i_sb->s_time_gran);
705 if (ia_valid & ATTR_MODE) {
706 umode_t mode = attr->ia_mode;
707
708 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
709 mode &= ~S_ISGID;
710 set_acl_inode(inode, mode);
711 }
712 }
713 #else
714 #define __setattr_copy setattr_copy
715 #endif
716
717 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
718 {
719 struct inode *inode = d_inode(dentry);
720 int err;
721 bool size_changed = false;
722
723 err = setattr_prepare(dentry, attr);
724 if (err)
725 return err;
726
727 if (is_quota_modification(inode, attr)) {
728 err = dquot_initialize(inode);
729 if (err)
730 return err;
731 }
732 if ((attr->ia_valid & ATTR_UID &&
733 !uid_eq(attr->ia_uid, inode->i_uid)) ||
734 (attr->ia_valid & ATTR_GID &&
735 !gid_eq(attr->ia_gid, inode->i_gid))) {
736 err = dquot_transfer(inode, attr);
737 if (err)
738 return err;
739 }
740
741 if (attr->ia_valid & ATTR_SIZE) {
742 if (f2fs_encrypted_inode(inode)) {
743 err = fscrypt_get_encryption_info(inode);
744 if (err)
745 return err;
746 if (!fscrypt_has_encryption_key(inode))
747 return -ENOKEY;
748 }
749
750 if (attr->ia_size <= i_size_read(inode)) {
751 down_write(&F2FS_I(inode)->i_mmap_sem);
752 truncate_setsize(inode, attr->ia_size);
753 err = f2fs_truncate(inode);
754 up_write(&F2FS_I(inode)->i_mmap_sem);
755 if (err)
756 return err;
757 } else {
758 /*
759 * do not trim all blocks after i_size if target size is
760 * larger than i_size.
761 */
762 down_write(&F2FS_I(inode)->i_mmap_sem);
763 truncate_setsize(inode, attr->ia_size);
764 up_write(&F2FS_I(inode)->i_mmap_sem);
765
766 /* should convert inline inode here */
767 if (!f2fs_may_inline_data(inode)) {
768 err = f2fs_convert_inline_inode(inode);
769 if (err)
770 return err;
771 }
772 inode->i_mtime = inode->i_ctime = current_time(inode);
773 }
774
775 size_changed = true;
776 }
777
778 __setattr_copy(inode, attr);
779
780 if (attr->ia_valid & ATTR_MODE) {
781 err = posix_acl_chmod(inode, get_inode_mode(inode));
782 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
783 inode->i_mode = F2FS_I(inode)->i_acl_mode;
784 clear_inode_flag(inode, FI_ACL_MODE);
785 }
786 }
787
788 /* file size may changed here */
789 f2fs_mark_inode_dirty_sync(inode, size_changed);
790
791 /* inode change will produce dirty node pages flushed by checkpoint */
792 f2fs_balance_fs(F2FS_I_SB(inode), true);
793
794 return err;
795 }
796
797 const struct inode_operations f2fs_file_inode_operations = {
798 .getattr = f2fs_getattr,
799 .setattr = f2fs_setattr,
800 .get_acl = f2fs_get_acl,
801 .set_acl = f2fs_set_acl,
802 #ifdef CONFIG_F2FS_FS_XATTR
803 .listxattr = f2fs_listxattr,
804 #endif
805 .fiemap = f2fs_fiemap,
806 };
807
808 static int fill_zero(struct inode *inode, pgoff_t index,
809 loff_t start, loff_t len)
810 {
811 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
812 struct page *page;
813
814 if (!len)
815 return 0;
816
817 f2fs_balance_fs(sbi, true);
818
819 f2fs_lock_op(sbi);
820 page = get_new_data_page(inode, NULL, index, false);
821 f2fs_unlock_op(sbi);
822
823 if (IS_ERR(page))
824 return PTR_ERR(page);
825
826 f2fs_wait_on_page_writeback(page, DATA, true);
827 zero_user(page, start, len);
828 set_page_dirty(page);
829 f2fs_put_page(page, 1);
830 return 0;
831 }
832
833 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
834 {
835 int err;
836
837 while (pg_start < pg_end) {
838 struct dnode_of_data dn;
839 pgoff_t end_offset, count;
840
841 set_new_dnode(&dn, inode, NULL, NULL, 0);
842 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
843 if (err) {
844 if (err == -ENOENT) {
845 pg_start++;
846 continue;
847 }
848 return err;
849 }
850
851 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
852 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
853
854 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
855
856 truncate_data_blocks_range(&dn, count);
857 f2fs_put_dnode(&dn);
858
859 pg_start += count;
860 }
861 return 0;
862 }
863
864 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
865 {
866 pgoff_t pg_start, pg_end;
867 loff_t off_start, off_end;
868 int ret;
869
870 ret = f2fs_convert_inline_inode(inode);
871 if (ret)
872 return ret;
873
874 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
875 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
876
877 off_start = offset & (PAGE_SIZE - 1);
878 off_end = (offset + len) & (PAGE_SIZE - 1);
879
880 if (pg_start == pg_end) {
881 ret = fill_zero(inode, pg_start, off_start,
882 off_end - off_start);
883 if (ret)
884 return ret;
885 } else {
886 if (off_start) {
887 ret = fill_zero(inode, pg_start++, off_start,
888 PAGE_SIZE - off_start);
889 if (ret)
890 return ret;
891 }
892 if (off_end) {
893 ret = fill_zero(inode, pg_end, 0, off_end);
894 if (ret)
895 return ret;
896 }
897
898 if (pg_start < pg_end) {
899 struct address_space *mapping = inode->i_mapping;
900 loff_t blk_start, blk_end;
901 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
902
903 f2fs_balance_fs(sbi, true);
904
905 blk_start = (loff_t)pg_start << PAGE_SHIFT;
906 blk_end = (loff_t)pg_end << PAGE_SHIFT;
907 down_write(&F2FS_I(inode)->i_mmap_sem);
908 truncate_inode_pages_range(mapping, blk_start,
909 blk_end - 1);
910
911 f2fs_lock_op(sbi);
912 ret = truncate_hole(inode, pg_start, pg_end);
913 f2fs_unlock_op(sbi);
914 up_write(&F2FS_I(inode)->i_mmap_sem);
915 }
916 }
917
918 return ret;
919 }
920
921 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
922 int *do_replace, pgoff_t off, pgoff_t len)
923 {
924 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
925 struct dnode_of_data dn;
926 int ret, done, i;
927
928 next_dnode:
929 set_new_dnode(&dn, inode, NULL, NULL, 0);
930 ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
931 if (ret && ret != -ENOENT) {
932 return ret;
933 } else if (ret == -ENOENT) {
934 if (dn.max_level == 0)
935 return -ENOENT;
936 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
937 blkaddr += done;
938 do_replace += done;
939 goto next;
940 }
941
942 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
943 dn.ofs_in_node, len);
944 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
945 *blkaddr = datablock_addr(dn.inode,
946 dn.node_page, dn.ofs_in_node);
947 if (!is_checkpointed_data(sbi, *blkaddr)) {
948
949 if (test_opt(sbi, LFS)) {
950 f2fs_put_dnode(&dn);
951 return -ENOTSUPP;
952 }
953
954 /* do not invalidate this block address */
955 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
956 *do_replace = 1;
957 }
958 }
959 f2fs_put_dnode(&dn);
960 next:
961 len -= done;
962 off += done;
963 if (len)
964 goto next_dnode;
965 return 0;
966 }
967
968 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
969 int *do_replace, pgoff_t off, int len)
970 {
971 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
972 struct dnode_of_data dn;
973 int ret, i;
974
975 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
976 if (*do_replace == 0)
977 continue;
978
979 set_new_dnode(&dn, inode, NULL, NULL, 0);
980 ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
981 if (ret) {
982 dec_valid_block_count(sbi, inode, 1);
983 invalidate_blocks(sbi, *blkaddr);
984 } else {
985 f2fs_update_data_blkaddr(&dn, *blkaddr);
986 }
987 f2fs_put_dnode(&dn);
988 }
989 return 0;
990 }
991
992 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
993 block_t *blkaddr, int *do_replace,
994 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
995 {
996 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
997 pgoff_t i = 0;
998 int ret;
999
1000 while (i < len) {
1001 if (blkaddr[i] == NULL_ADDR && !full) {
1002 i++;
1003 continue;
1004 }
1005
1006 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1007 struct dnode_of_data dn;
1008 struct node_info ni;
1009 size_t new_size;
1010 pgoff_t ilen;
1011
1012 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1013 ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1014 if (ret)
1015 return ret;
1016
1017 get_node_info(sbi, dn.nid, &ni);
1018 ilen = min((pgoff_t)
1019 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1020 dn.ofs_in_node, len - i);
1021 do {
1022 dn.data_blkaddr = datablock_addr(dn.inode,
1023 dn.node_page, dn.ofs_in_node);
1024 truncate_data_blocks_range(&dn, 1);
1025
1026 if (do_replace[i]) {
1027 f2fs_i_blocks_write(src_inode,
1028 1, false, false);
1029 f2fs_i_blocks_write(dst_inode,
1030 1, true, false);
1031 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1032 blkaddr[i], ni.version, true, false);
1033
1034 do_replace[i] = 0;
1035 }
1036 dn.ofs_in_node++;
1037 i++;
1038 new_size = (dst + i) << PAGE_SHIFT;
1039 if (dst_inode->i_size < new_size)
1040 f2fs_i_size_write(dst_inode, new_size);
1041 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1042
1043 f2fs_put_dnode(&dn);
1044 } else {
1045 struct page *psrc, *pdst;
1046
1047 psrc = get_lock_data_page(src_inode, src + i, true);
1048 if (IS_ERR(psrc))
1049 return PTR_ERR(psrc);
1050 pdst = get_new_data_page(dst_inode, NULL, dst + i,
1051 true);
1052 if (IS_ERR(pdst)) {
1053 f2fs_put_page(psrc, 1);
1054 return PTR_ERR(pdst);
1055 }
1056 f2fs_copy_page(psrc, pdst);
1057 set_page_dirty(pdst);
1058 f2fs_put_page(pdst, 1);
1059 f2fs_put_page(psrc, 1);
1060
1061 ret = truncate_hole(src_inode, src + i, src + i + 1);
1062 if (ret)
1063 return ret;
1064 i++;
1065 }
1066 }
1067 return 0;
1068 }
1069
1070 static int __exchange_data_block(struct inode *src_inode,
1071 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1072 pgoff_t len, bool full)
1073 {
1074 block_t *src_blkaddr;
1075 int *do_replace;
1076 pgoff_t olen;
1077 int ret;
1078
1079 while (len) {
1080 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1081
1082 src_blkaddr = kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
1083 if (!src_blkaddr)
1084 return -ENOMEM;
1085
1086 do_replace = kvzalloc(sizeof(int) * olen, GFP_KERNEL);
1087 if (!do_replace) {
1088 kvfree(src_blkaddr);
1089 return -ENOMEM;
1090 }
1091
1092 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1093 do_replace, src, olen);
1094 if (ret)
1095 goto roll_back;
1096
1097 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1098 do_replace, src, dst, olen, full);
1099 if (ret)
1100 goto roll_back;
1101
1102 src += olen;
1103 dst += olen;
1104 len -= olen;
1105
1106 kvfree(src_blkaddr);
1107 kvfree(do_replace);
1108 }
1109 return 0;
1110
1111 roll_back:
1112 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1113 kvfree(src_blkaddr);
1114 kvfree(do_replace);
1115 return ret;
1116 }
1117
1118 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1119 {
1120 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1121 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1122 int ret;
1123
1124 f2fs_balance_fs(sbi, true);
1125 f2fs_lock_op(sbi);
1126
1127 f2fs_drop_extent_tree(inode);
1128
1129 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1130 f2fs_unlock_op(sbi);
1131 return ret;
1132 }
1133
1134 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1135 {
1136 pgoff_t pg_start, pg_end;
1137 loff_t new_size;
1138 int ret;
1139
1140 if (offset + len >= i_size_read(inode))
1141 return -EINVAL;
1142
1143 /* collapse range should be aligned to block size of f2fs. */
1144 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1145 return -EINVAL;
1146
1147 ret = f2fs_convert_inline_inode(inode);
1148 if (ret)
1149 return ret;
1150
1151 pg_start = offset >> PAGE_SHIFT;
1152 pg_end = (offset + len) >> PAGE_SHIFT;
1153
1154 down_write(&F2FS_I(inode)->i_mmap_sem);
1155 /* write out all dirty pages from offset */
1156 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1157 if (ret)
1158 goto out;
1159
1160 truncate_pagecache(inode, offset);
1161
1162 ret = f2fs_do_collapse(inode, pg_start, pg_end);
1163 if (ret)
1164 goto out;
1165
1166 /* write out all moved pages, if possible */
1167 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1168 truncate_pagecache(inode, offset);
1169
1170 new_size = i_size_read(inode) - len;
1171 truncate_pagecache(inode, new_size);
1172
1173 ret = truncate_blocks(inode, new_size, true);
1174 if (!ret)
1175 f2fs_i_size_write(inode, new_size);
1176
1177 out:
1178 up_write(&F2FS_I(inode)->i_mmap_sem);
1179 return ret;
1180 }
1181
1182 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1183 pgoff_t end)
1184 {
1185 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1186 pgoff_t index = start;
1187 unsigned int ofs_in_node = dn->ofs_in_node;
1188 blkcnt_t count = 0;
1189 int ret;
1190
1191 for (; index < end; index++, dn->ofs_in_node++) {
1192 if (datablock_addr(dn->inode, dn->node_page,
1193 dn->ofs_in_node) == NULL_ADDR)
1194 count++;
1195 }
1196
1197 dn->ofs_in_node = ofs_in_node;
1198 ret = reserve_new_blocks(dn, count);
1199 if (ret)
1200 return ret;
1201
1202 dn->ofs_in_node = ofs_in_node;
1203 for (index = start; index < end; index++, dn->ofs_in_node++) {
1204 dn->data_blkaddr = datablock_addr(dn->inode,
1205 dn->node_page, dn->ofs_in_node);
1206 /*
1207 * reserve_new_blocks will not guarantee entire block
1208 * allocation.
1209 */
1210 if (dn->data_blkaddr == NULL_ADDR) {
1211 ret = -ENOSPC;
1212 break;
1213 }
1214 if (dn->data_blkaddr != NEW_ADDR) {
1215 invalidate_blocks(sbi, dn->data_blkaddr);
1216 dn->data_blkaddr = NEW_ADDR;
1217 set_data_blkaddr(dn);
1218 }
1219 }
1220
1221 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1222
1223 return ret;
1224 }
1225
1226 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1227 int mode)
1228 {
1229 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1230 struct address_space *mapping = inode->i_mapping;
1231 pgoff_t index, pg_start, pg_end;
1232 loff_t new_size = i_size_read(inode);
1233 loff_t off_start, off_end;
1234 int ret = 0;
1235
1236 ret = inode_newsize_ok(inode, (len + offset));
1237 if (ret)
1238 return ret;
1239
1240 ret = f2fs_convert_inline_inode(inode);
1241 if (ret)
1242 return ret;
1243
1244 down_write(&F2FS_I(inode)->i_mmap_sem);
1245 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1246 if (ret)
1247 goto out_sem;
1248
1249 truncate_pagecache_range(inode, offset, offset + len - 1);
1250
1251 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1252 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1253
1254 off_start = offset & (PAGE_SIZE - 1);
1255 off_end = (offset + len) & (PAGE_SIZE - 1);
1256
1257 if (pg_start == pg_end) {
1258 ret = fill_zero(inode, pg_start, off_start,
1259 off_end - off_start);
1260 if (ret)
1261 goto out_sem;
1262
1263 new_size = max_t(loff_t, new_size, offset + len);
1264 } else {
1265 if (off_start) {
1266 ret = fill_zero(inode, pg_start++, off_start,
1267 PAGE_SIZE - off_start);
1268 if (ret)
1269 goto out_sem;
1270
1271 new_size = max_t(loff_t, new_size,
1272 (loff_t)pg_start << PAGE_SHIFT);
1273 }
1274
1275 for (index = pg_start; index < pg_end;) {
1276 struct dnode_of_data dn;
1277 unsigned int end_offset;
1278 pgoff_t end;
1279
1280 f2fs_lock_op(sbi);
1281
1282 set_new_dnode(&dn, inode, NULL, NULL, 0);
1283 ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1284 if (ret) {
1285 f2fs_unlock_op(sbi);
1286 goto out;
1287 }
1288
1289 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1290 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1291
1292 ret = f2fs_do_zero_range(&dn, index, end);
1293 f2fs_put_dnode(&dn);
1294 f2fs_unlock_op(sbi);
1295
1296 f2fs_balance_fs(sbi, dn.node_changed);
1297
1298 if (ret)
1299 goto out;
1300
1301 index = end;
1302 new_size = max_t(loff_t, new_size,
1303 (loff_t)index << PAGE_SHIFT);
1304 }
1305
1306 if (off_end) {
1307 ret = fill_zero(inode, pg_end, 0, off_end);
1308 if (ret)
1309 goto out;
1310
1311 new_size = max_t(loff_t, new_size, offset + len);
1312 }
1313 }
1314
1315 out:
1316 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1317 f2fs_i_size_write(inode, new_size);
1318 out_sem:
1319 up_write(&F2FS_I(inode)->i_mmap_sem);
1320
1321 return ret;
1322 }
1323
1324 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1325 {
1326 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1327 pgoff_t nr, pg_start, pg_end, delta, idx;
1328 loff_t new_size;
1329 int ret = 0;
1330
1331 new_size = i_size_read(inode) + len;
1332 ret = inode_newsize_ok(inode, new_size);
1333 if (ret)
1334 return ret;
1335
1336 if (offset >= i_size_read(inode))
1337 return -EINVAL;
1338
1339 /* insert range should be aligned to block size of f2fs. */
1340 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1341 return -EINVAL;
1342
1343 ret = f2fs_convert_inline_inode(inode);
1344 if (ret)
1345 return ret;
1346
1347 f2fs_balance_fs(sbi, true);
1348
1349 down_write(&F2FS_I(inode)->i_mmap_sem);
1350 ret = truncate_blocks(inode, i_size_read(inode), true);
1351 if (ret)
1352 goto out;
1353
1354 /* write out all dirty pages from offset */
1355 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1356 if (ret)
1357 goto out;
1358
1359 truncate_pagecache(inode, offset);
1360
1361 pg_start = offset >> PAGE_SHIFT;
1362 pg_end = (offset + len) >> PAGE_SHIFT;
1363 delta = pg_end - pg_start;
1364 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1365
1366 while (!ret && idx > pg_start) {
1367 nr = idx - pg_start;
1368 if (nr > delta)
1369 nr = delta;
1370 idx -= nr;
1371
1372 f2fs_lock_op(sbi);
1373 f2fs_drop_extent_tree(inode);
1374
1375 ret = __exchange_data_block(inode, inode, idx,
1376 idx + delta, nr, false);
1377 f2fs_unlock_op(sbi);
1378 }
1379
1380 /* write out all moved pages, if possible */
1381 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1382 truncate_pagecache(inode, offset);
1383
1384 if (!ret)
1385 f2fs_i_size_write(inode, new_size);
1386 out:
1387 up_write(&F2FS_I(inode)->i_mmap_sem);
1388 return ret;
1389 }
1390
1391 static int expand_inode_data(struct inode *inode, loff_t offset,
1392 loff_t len, int mode)
1393 {
1394 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1395 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1396 pgoff_t pg_end;
1397 loff_t new_size = i_size_read(inode);
1398 loff_t off_end;
1399 int err;
1400
1401 err = inode_newsize_ok(inode, (len + offset));
1402 if (err)
1403 return err;
1404
1405 err = f2fs_convert_inline_inode(inode);
1406 if (err)
1407 return err;
1408
1409 f2fs_balance_fs(sbi, true);
1410
1411 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1412 off_end = (offset + len) & (PAGE_SIZE - 1);
1413
1414 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1415 map.m_len = pg_end - map.m_lblk;
1416 if (off_end)
1417 map.m_len++;
1418
1419 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1420 if (err) {
1421 pgoff_t last_off;
1422
1423 if (!map.m_len)
1424 return err;
1425
1426 last_off = map.m_lblk + map.m_len - 1;
1427
1428 /* update new size to the failed position */
1429 new_size = (last_off == pg_end) ? offset + len:
1430 (loff_t)(last_off + 1) << PAGE_SHIFT;
1431 } else {
1432 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1433 }
1434
1435 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1436 f2fs_i_size_write(inode, new_size);
1437
1438 return err;
1439 }
1440
1441 static long f2fs_fallocate(struct file *file, int mode,
1442 loff_t offset, loff_t len)
1443 {
1444 struct inode *inode = file_inode(file);
1445 long ret = 0;
1446
1447 /* f2fs only support ->fallocate for regular file */
1448 if (!S_ISREG(inode->i_mode))
1449 return -EINVAL;
1450
1451 if (f2fs_encrypted_inode(inode) &&
1452 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1453 return -EOPNOTSUPP;
1454
1455 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1456 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1457 FALLOC_FL_INSERT_RANGE))
1458 return -EOPNOTSUPP;
1459
1460 inode_lock(inode);
1461
1462 if (mode & FALLOC_FL_PUNCH_HOLE) {
1463 if (offset >= inode->i_size)
1464 goto out;
1465
1466 ret = punch_hole(inode, offset, len);
1467 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1468 ret = f2fs_collapse_range(inode, offset, len);
1469 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1470 ret = f2fs_zero_range(inode, offset, len, mode);
1471 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1472 ret = f2fs_insert_range(inode, offset, len);
1473 } else {
1474 ret = expand_inode_data(inode, offset, len, mode);
1475 }
1476
1477 if (!ret) {
1478 inode->i_mtime = inode->i_ctime = current_time(inode);
1479 f2fs_mark_inode_dirty_sync(inode, false);
1480 if (mode & FALLOC_FL_KEEP_SIZE)
1481 file_set_keep_isize(inode);
1482 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1483 }
1484
1485 out:
1486 inode_unlock(inode);
1487
1488 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1489 return ret;
1490 }
1491
1492 static int f2fs_release_file(struct inode *inode, struct file *filp)
1493 {
1494 /*
1495 * f2fs_relase_file is called at every close calls. So we should
1496 * not drop any inmemory pages by close called by other process.
1497 */
1498 if (!(filp->f_mode & FMODE_WRITE) ||
1499 atomic_read(&inode->i_writecount) != 1)
1500 return 0;
1501
1502 /* some remained atomic pages should discarded */
1503 if (f2fs_is_atomic_file(inode))
1504 drop_inmem_pages(inode);
1505 if (f2fs_is_volatile_file(inode)) {
1506 clear_inode_flag(inode, FI_VOLATILE_FILE);
1507 stat_dec_volatile_write(inode);
1508 set_inode_flag(inode, FI_DROP_CACHE);
1509 filemap_fdatawrite(inode->i_mapping);
1510 clear_inode_flag(inode, FI_DROP_CACHE);
1511 }
1512 return 0;
1513 }
1514
1515 static int f2fs_file_flush(struct file *file, fl_owner_t id)
1516 {
1517 struct inode *inode = file_inode(file);
1518
1519 /*
1520 * If the process doing a transaction is crashed, we should do
1521 * roll-back. Otherwise, other reader/write can see corrupted database
1522 * until all the writers close its file. Since this should be done
1523 * before dropping file lock, it needs to do in ->flush.
1524 */
1525 if (f2fs_is_atomic_file(inode) &&
1526 F2FS_I(inode)->inmem_task == current)
1527 drop_inmem_pages(inode);
1528 return 0;
1529 }
1530
1531 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1532 {
1533 struct inode *inode = file_inode(filp);
1534 struct f2fs_inode_info *fi = F2FS_I(inode);
1535 unsigned int flags = fi->i_flags &
1536 (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL);
1537 return put_user(flags, (int __user *)arg);
1538 }
1539
1540 static int __f2fs_ioc_setflags(struct inode *inode, unsigned int flags)
1541 {
1542 struct f2fs_inode_info *fi = F2FS_I(inode);
1543 unsigned int oldflags;
1544
1545 /* Is it quota file? Do not allow user to mess with it */
1546 if (IS_NOQUOTA(inode))
1547 return -EPERM;
1548
1549 flags = f2fs_mask_flags(inode->i_mode, flags);
1550
1551 oldflags = fi->i_flags;
1552
1553 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL))
1554 if (!capable(CAP_LINUX_IMMUTABLE))
1555 return -EPERM;
1556
1557 flags = flags & (FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
1558 flags |= oldflags & ~(FS_FL_USER_MODIFIABLE | FS_PROJINHERIT_FL);
1559 fi->i_flags = flags;
1560
1561 if (fi->i_flags & FS_PROJINHERIT_FL)
1562 set_inode_flag(inode, FI_PROJ_INHERIT);
1563 else
1564 clear_inode_flag(inode, FI_PROJ_INHERIT);
1565
1566 inode->i_ctime = current_time(inode);
1567 f2fs_set_inode_flags(inode);
1568 f2fs_mark_inode_dirty_sync(inode, false);
1569 return 0;
1570 }
1571
1572 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1573 {
1574 struct inode *inode = file_inode(filp);
1575 unsigned int flags;
1576 int ret;
1577
1578 if (!inode_owner_or_capable(inode))
1579 return -EACCES;
1580
1581 if (get_user(flags, (int __user *)arg))
1582 return -EFAULT;
1583
1584 ret = mnt_want_write_file(filp);
1585 if (ret)
1586 return ret;
1587
1588 inode_lock(inode);
1589
1590 ret = __f2fs_ioc_setflags(inode, flags);
1591
1592 inode_unlock(inode);
1593 mnt_drop_write_file(filp);
1594 return ret;
1595 }
1596
1597 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1598 {
1599 struct inode *inode = file_inode(filp);
1600
1601 return put_user(inode->i_generation, (int __user *)arg);
1602 }
1603
1604 static int f2fs_ioc_start_atomic_write(struct file *filp)
1605 {
1606 struct inode *inode = file_inode(filp);
1607 int ret;
1608
1609 if (!inode_owner_or_capable(inode))
1610 return -EACCES;
1611
1612 if (!S_ISREG(inode->i_mode))
1613 return -EINVAL;
1614
1615 ret = mnt_want_write_file(filp);
1616 if (ret)
1617 return ret;
1618
1619 inode_lock(inode);
1620
1621 if (f2fs_is_atomic_file(inode))
1622 goto out;
1623
1624 ret = f2fs_convert_inline_inode(inode);
1625 if (ret)
1626 goto out;
1627
1628 set_inode_flag(inode, FI_ATOMIC_FILE);
1629 set_inode_flag(inode, FI_HOT_DATA);
1630 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1631
1632 if (!get_dirty_pages(inode))
1633 goto inc_stat;
1634
1635 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1636 "Unexpected flush for atomic writes: ino=%lu, npages=%u",
1637 inode->i_ino, get_dirty_pages(inode));
1638 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1639 if (ret) {
1640 clear_inode_flag(inode, FI_ATOMIC_FILE);
1641 goto out;
1642 }
1643
1644 inc_stat:
1645 F2FS_I(inode)->inmem_task = current;
1646 stat_inc_atomic_write(inode);
1647 stat_update_max_atomic_write(inode);
1648 out:
1649 inode_unlock(inode);
1650 mnt_drop_write_file(filp);
1651 return ret;
1652 }
1653
1654 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1655 {
1656 struct inode *inode = file_inode(filp);
1657 int ret;
1658
1659 if (!inode_owner_or_capable(inode))
1660 return -EACCES;
1661
1662 ret = mnt_want_write_file(filp);
1663 if (ret)
1664 return ret;
1665
1666 inode_lock(inode);
1667
1668 if (f2fs_is_volatile_file(inode))
1669 goto err_out;
1670
1671 if (f2fs_is_atomic_file(inode)) {
1672 ret = commit_inmem_pages(inode);
1673 if (ret)
1674 goto err_out;
1675
1676 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1677 if (!ret) {
1678 clear_inode_flag(inode, FI_ATOMIC_FILE);
1679 stat_dec_atomic_write(inode);
1680 }
1681 } else {
1682 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1683 }
1684 err_out:
1685 inode_unlock(inode);
1686 mnt_drop_write_file(filp);
1687 return ret;
1688 }
1689
1690 static int f2fs_ioc_start_volatile_write(struct file *filp)
1691 {
1692 struct inode *inode = file_inode(filp);
1693 int ret;
1694
1695 if (!inode_owner_or_capable(inode))
1696 return -EACCES;
1697
1698 if (!S_ISREG(inode->i_mode))
1699 return -EINVAL;
1700
1701 ret = mnt_want_write_file(filp);
1702 if (ret)
1703 return ret;
1704
1705 inode_lock(inode);
1706
1707 if (f2fs_is_volatile_file(inode))
1708 goto out;
1709
1710 ret = f2fs_convert_inline_inode(inode);
1711 if (ret)
1712 goto out;
1713
1714 stat_inc_volatile_write(inode);
1715 stat_update_max_volatile_write(inode);
1716
1717 set_inode_flag(inode, FI_VOLATILE_FILE);
1718 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1719 out:
1720 inode_unlock(inode);
1721 mnt_drop_write_file(filp);
1722 return ret;
1723 }
1724
1725 static int f2fs_ioc_release_volatile_write(struct file *filp)
1726 {
1727 struct inode *inode = file_inode(filp);
1728 int ret;
1729
1730 if (!inode_owner_or_capable(inode))
1731 return -EACCES;
1732
1733 ret = mnt_want_write_file(filp);
1734 if (ret)
1735 return ret;
1736
1737 inode_lock(inode);
1738
1739 if (!f2fs_is_volatile_file(inode))
1740 goto out;
1741
1742 if (!f2fs_is_first_block_written(inode)) {
1743 ret = truncate_partial_data_page(inode, 0, true);
1744 goto out;
1745 }
1746
1747 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1748 out:
1749 inode_unlock(inode);
1750 mnt_drop_write_file(filp);
1751 return ret;
1752 }
1753
1754 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1755 {
1756 struct inode *inode = file_inode(filp);
1757 int ret;
1758
1759 if (!inode_owner_or_capable(inode))
1760 return -EACCES;
1761
1762 ret = mnt_want_write_file(filp);
1763 if (ret)
1764 return ret;
1765
1766 inode_lock(inode);
1767
1768 if (f2fs_is_atomic_file(inode))
1769 drop_inmem_pages(inode);
1770 if (f2fs_is_volatile_file(inode)) {
1771 clear_inode_flag(inode, FI_VOLATILE_FILE);
1772 stat_dec_volatile_write(inode);
1773 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1774 }
1775
1776 inode_unlock(inode);
1777
1778 mnt_drop_write_file(filp);
1779 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1780 return ret;
1781 }
1782
1783 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1784 {
1785 struct inode *inode = file_inode(filp);
1786 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1787 struct super_block *sb = sbi->sb;
1788 __u32 in;
1789 int ret;
1790
1791 if (!capable(CAP_SYS_ADMIN))
1792 return -EPERM;
1793
1794 if (get_user(in, (__u32 __user *)arg))
1795 return -EFAULT;
1796
1797 ret = mnt_want_write_file(filp);
1798 if (ret)
1799 return ret;
1800
1801 switch (in) {
1802 case F2FS_GOING_DOWN_FULLSYNC:
1803 sb = freeze_bdev(sb->s_bdev);
1804 if (sb && !IS_ERR(sb)) {
1805 f2fs_stop_checkpoint(sbi, false);
1806 thaw_bdev(sb->s_bdev, sb);
1807 }
1808 break;
1809 case F2FS_GOING_DOWN_METASYNC:
1810 /* do checkpoint only */
1811 f2fs_sync_fs(sb, 1);
1812 f2fs_stop_checkpoint(sbi, false);
1813 break;
1814 case F2FS_GOING_DOWN_NOSYNC:
1815 f2fs_stop_checkpoint(sbi, false);
1816 break;
1817 case F2FS_GOING_DOWN_METAFLUSH:
1818 sync_meta_pages(sbi, META, LONG_MAX);
1819 f2fs_stop_checkpoint(sbi, false);
1820 break;
1821 default:
1822 ret = -EINVAL;
1823 goto out;
1824 }
1825 f2fs_update_time(sbi, REQ_TIME);
1826 out:
1827 mnt_drop_write_file(filp);
1828 return ret;
1829 }
1830
1831 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1832 {
1833 struct inode *inode = file_inode(filp);
1834 struct super_block *sb = inode->i_sb;
1835 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1836 struct fstrim_range range;
1837 int ret;
1838
1839 if (!capable(CAP_SYS_ADMIN))
1840 return -EPERM;
1841
1842 if (!blk_queue_discard(q))
1843 return -EOPNOTSUPP;
1844
1845 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1846 sizeof(range)))
1847 return -EFAULT;
1848
1849 ret = mnt_want_write_file(filp);
1850 if (ret)
1851 return ret;
1852
1853 range.minlen = max((unsigned int)range.minlen,
1854 q->limits.discard_granularity);
1855 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1856 mnt_drop_write_file(filp);
1857 if (ret < 0)
1858 return ret;
1859
1860 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1861 sizeof(range)))
1862 return -EFAULT;
1863 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1864 return 0;
1865 }
1866
1867 static bool uuid_is_nonzero(__u8 u[16])
1868 {
1869 int i;
1870
1871 for (i = 0; i < 16; i++)
1872 if (u[i])
1873 return true;
1874 return false;
1875 }
1876
1877 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1878 {
1879 struct inode *inode = file_inode(filp);
1880
1881 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1882
1883 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1884 }
1885
1886 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1887 {
1888 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1889 }
1890
1891 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1892 {
1893 struct inode *inode = file_inode(filp);
1894 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1895 int err;
1896
1897 if (!f2fs_sb_has_crypto(inode->i_sb))
1898 return -EOPNOTSUPP;
1899
1900 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1901 goto got_it;
1902
1903 err = mnt_want_write_file(filp);
1904 if (err)
1905 return err;
1906
1907 /* update superblock with uuid */
1908 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1909
1910 err = f2fs_commit_super(sbi, false);
1911 if (err) {
1912 /* undo new data */
1913 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1914 mnt_drop_write_file(filp);
1915 return err;
1916 }
1917 mnt_drop_write_file(filp);
1918 got_it:
1919 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1920 16))
1921 return -EFAULT;
1922 return 0;
1923 }
1924
1925 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1926 {
1927 struct inode *inode = file_inode(filp);
1928 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1929 __u32 sync;
1930 int ret;
1931
1932 if (!capable(CAP_SYS_ADMIN))
1933 return -EPERM;
1934
1935 if (get_user(sync, (__u32 __user *)arg))
1936 return -EFAULT;
1937
1938 if (f2fs_readonly(sbi->sb))
1939 return -EROFS;
1940
1941 ret = mnt_want_write_file(filp);
1942 if (ret)
1943 return ret;
1944
1945 if (!sync) {
1946 if (!mutex_trylock(&sbi->gc_mutex)) {
1947 ret = -EBUSY;
1948 goto out;
1949 }
1950 } else {
1951 mutex_lock(&sbi->gc_mutex);
1952 }
1953
1954 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
1955 out:
1956 mnt_drop_write_file(filp);
1957 return ret;
1958 }
1959
1960 static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
1961 {
1962 struct inode *inode = file_inode(filp);
1963 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1964 struct f2fs_gc_range range;
1965 u64 end;
1966 int ret;
1967
1968 if (!capable(CAP_SYS_ADMIN))
1969 return -EPERM;
1970
1971 if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
1972 sizeof(range)))
1973 return -EFAULT;
1974
1975 if (f2fs_readonly(sbi->sb))
1976 return -EROFS;
1977
1978 ret = mnt_want_write_file(filp);
1979 if (ret)
1980 return ret;
1981
1982 end = range.start + range.len;
1983 if (range.start < MAIN_BLKADDR(sbi) || end >= MAX_BLKADDR(sbi))
1984 return -EINVAL;
1985 do_more:
1986 if (!range.sync) {
1987 if (!mutex_trylock(&sbi->gc_mutex)) {
1988 ret = -EBUSY;
1989 goto out;
1990 }
1991 } else {
1992 mutex_lock(&sbi->gc_mutex);
1993 }
1994
1995 ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
1996 range.start += sbi->blocks_per_seg;
1997 if (range.start <= end)
1998 goto do_more;
1999 out:
2000 mnt_drop_write_file(filp);
2001 return ret;
2002 }
2003
2004 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2005 {
2006 struct inode *inode = file_inode(filp);
2007 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2008 int ret;
2009
2010 if (!capable(CAP_SYS_ADMIN))
2011 return -EPERM;
2012
2013 if (f2fs_readonly(sbi->sb))
2014 return -EROFS;
2015
2016 ret = mnt_want_write_file(filp);
2017 if (ret)
2018 return ret;
2019
2020 ret = f2fs_sync_fs(sbi->sb, 1);
2021
2022 mnt_drop_write_file(filp);
2023 return ret;
2024 }
2025
2026 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2027 struct file *filp,
2028 struct f2fs_defragment *range)
2029 {
2030 struct inode *inode = file_inode(filp);
2031 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
2032 struct extent_info ei = {0,0,0};
2033 pgoff_t pg_start, pg_end;
2034 unsigned int blk_per_seg = sbi->blocks_per_seg;
2035 unsigned int total = 0, sec_num;
2036 block_t blk_end = 0;
2037 bool fragmented = false;
2038 int err;
2039
2040 /* if in-place-update policy is enabled, don't waste time here */
2041 if (need_inplace_update_policy(inode, NULL))
2042 return -EINVAL;
2043
2044 pg_start = range->start >> PAGE_SHIFT;
2045 pg_end = (range->start + range->len) >> PAGE_SHIFT;
2046
2047 f2fs_balance_fs(sbi, true);
2048
2049 inode_lock(inode);
2050
2051 /* writeback all dirty pages in the range */
2052 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2053 range->start + range->len - 1);
2054 if (err)
2055 goto out;
2056
2057 /*
2058 * lookup mapping info in extent cache, skip defragmenting if physical
2059 * block addresses are continuous.
2060 */
2061 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2062 if (ei.fofs + ei.len >= pg_end)
2063 goto out;
2064 }
2065
2066 map.m_lblk = pg_start;
2067
2068 /*
2069 * lookup mapping info in dnode page cache, skip defragmenting if all
2070 * physical block addresses are continuous even if there are hole(s)
2071 * in logical blocks.
2072 */
2073 while (map.m_lblk < pg_end) {
2074 map.m_len = pg_end - map.m_lblk;
2075 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
2076 if (err)
2077 goto out;
2078
2079 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2080 map.m_lblk++;
2081 continue;
2082 }
2083
2084 if (blk_end && blk_end != map.m_pblk) {
2085 fragmented = true;
2086 break;
2087 }
2088 blk_end = map.m_pblk + map.m_len;
2089
2090 map.m_lblk += map.m_len;
2091 }
2092
2093 if (!fragmented)
2094 goto out;
2095
2096 map.m_lblk = pg_start;
2097 map.m_len = pg_end - pg_start;
2098
2099 sec_num = (map.m_len + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2100
2101 /*
2102 * make sure there are enough free section for LFS allocation, this can
2103 * avoid defragment running in SSR mode when free section are allocated
2104 * intensively
2105 */
2106 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2107 err = -EAGAIN;
2108 goto out;
2109 }
2110
2111 while (map.m_lblk < pg_end) {
2112 pgoff_t idx;
2113 int cnt = 0;
2114
2115 do_map:
2116 map.m_len = pg_end - map.m_lblk;
2117 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
2118 if (err)
2119 goto clear_out;
2120
2121 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2122 map.m_lblk++;
2123 continue;
2124 }
2125
2126 set_inode_flag(inode, FI_DO_DEFRAG);
2127
2128 idx = map.m_lblk;
2129 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2130 struct page *page;
2131
2132 page = get_lock_data_page(inode, idx, true);
2133 if (IS_ERR(page)) {
2134 err = PTR_ERR(page);
2135 goto clear_out;
2136 }
2137
2138 set_page_dirty(page);
2139 f2fs_put_page(page, 1);
2140
2141 idx++;
2142 cnt++;
2143 total++;
2144 }
2145
2146 map.m_lblk = idx;
2147
2148 if (idx < pg_end && cnt < blk_per_seg)
2149 goto do_map;
2150
2151 clear_inode_flag(inode, FI_DO_DEFRAG);
2152
2153 err = filemap_fdatawrite(inode->i_mapping);
2154 if (err)
2155 goto out;
2156 }
2157 clear_out:
2158 clear_inode_flag(inode, FI_DO_DEFRAG);
2159 out:
2160 inode_unlock(inode);
2161 if (!err)
2162 range->len = (u64)total << PAGE_SHIFT;
2163 return err;
2164 }
2165
2166 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2167 {
2168 struct inode *inode = file_inode(filp);
2169 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2170 struct f2fs_defragment range;
2171 int err;
2172
2173 if (!capable(CAP_SYS_ADMIN))
2174 return -EPERM;
2175
2176 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2177 return -EINVAL;
2178
2179 if (f2fs_readonly(sbi->sb))
2180 return -EROFS;
2181
2182 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2183 sizeof(range)))
2184 return -EFAULT;
2185
2186 /* verify alignment of offset & size */
2187 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2188 return -EINVAL;
2189
2190 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2191 sbi->max_file_blocks))
2192 return -EINVAL;
2193
2194 err = mnt_want_write_file(filp);
2195 if (err)
2196 return err;
2197
2198 err = f2fs_defragment_range(sbi, filp, &range);
2199 mnt_drop_write_file(filp);
2200
2201 f2fs_update_time(sbi, REQ_TIME);
2202 if (err < 0)
2203 return err;
2204
2205 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2206 sizeof(range)))
2207 return -EFAULT;
2208
2209 return 0;
2210 }
2211
2212 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2213 struct file *file_out, loff_t pos_out, size_t len)
2214 {
2215 struct inode *src = file_inode(file_in);
2216 struct inode *dst = file_inode(file_out);
2217 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2218 size_t olen = len, dst_max_i_size = 0;
2219 size_t dst_osize;
2220 int ret;
2221
2222 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2223 src->i_sb != dst->i_sb)
2224 return -EXDEV;
2225
2226 if (unlikely(f2fs_readonly(src->i_sb)))
2227 return -EROFS;
2228
2229 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2230 return -EINVAL;
2231
2232 if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2233 return -EOPNOTSUPP;
2234
2235 if (src == dst) {
2236 if (pos_in == pos_out)
2237 return 0;
2238 if (pos_out > pos_in && pos_out < pos_in + len)
2239 return -EINVAL;
2240 }
2241
2242 inode_lock(src);
2243 if (src != dst) {
2244 if (!inode_trylock(dst)) {
2245 ret = -EBUSY;
2246 goto out;
2247 }
2248 }
2249
2250 ret = -EINVAL;
2251 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2252 goto out_unlock;
2253 if (len == 0)
2254 olen = len = src->i_size - pos_in;
2255 if (pos_in + len == src->i_size)
2256 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2257 if (len == 0) {
2258 ret = 0;
2259 goto out_unlock;
2260 }
2261
2262 dst_osize = dst->i_size;
2263 if (pos_out + olen > dst->i_size)
2264 dst_max_i_size = pos_out + olen;
2265
2266 /* verify the end result is block aligned */
2267 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2268 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2269 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2270 goto out_unlock;
2271
2272 ret = f2fs_convert_inline_inode(src);
2273 if (ret)
2274 goto out_unlock;
2275
2276 ret = f2fs_convert_inline_inode(dst);
2277 if (ret)
2278 goto out_unlock;
2279
2280 /* write out all dirty pages from offset */
2281 ret = filemap_write_and_wait_range(src->i_mapping,
2282 pos_in, pos_in + len);
2283 if (ret)
2284 goto out_unlock;
2285
2286 ret = filemap_write_and_wait_range(dst->i_mapping,
2287 pos_out, pos_out + len);
2288 if (ret)
2289 goto out_unlock;
2290
2291 f2fs_balance_fs(sbi, true);
2292 f2fs_lock_op(sbi);
2293 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2294 pos_out >> F2FS_BLKSIZE_BITS,
2295 len >> F2FS_BLKSIZE_BITS, false);
2296
2297 if (!ret) {
2298 if (dst_max_i_size)
2299 f2fs_i_size_write(dst, dst_max_i_size);
2300 else if (dst_osize != dst->i_size)
2301 f2fs_i_size_write(dst, dst_osize);
2302 }
2303 f2fs_unlock_op(sbi);
2304 out_unlock:
2305 if (src != dst)
2306 inode_unlock(dst);
2307 out:
2308 inode_unlock(src);
2309 return ret;
2310 }
2311
2312 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2313 {
2314 struct f2fs_move_range range;
2315 struct fd dst;
2316 int err;
2317
2318 if (!(filp->f_mode & FMODE_READ) ||
2319 !(filp->f_mode & FMODE_WRITE))
2320 return -EBADF;
2321
2322 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2323 sizeof(range)))
2324 return -EFAULT;
2325
2326 dst = fdget(range.dst_fd);
2327 if (!dst.file)
2328 return -EBADF;
2329
2330 if (!(dst.file->f_mode & FMODE_WRITE)) {
2331 err = -EBADF;
2332 goto err_out;
2333 }
2334
2335 err = mnt_want_write_file(filp);
2336 if (err)
2337 goto err_out;
2338
2339 err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2340 range.pos_out, range.len);
2341
2342 mnt_drop_write_file(filp);
2343 if (err)
2344 goto err_out;
2345
2346 if (copy_to_user((struct f2fs_move_range __user *)arg,
2347 &range, sizeof(range)))
2348 err = -EFAULT;
2349 err_out:
2350 fdput(dst);
2351 return err;
2352 }
2353
2354 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2355 {
2356 struct inode *inode = file_inode(filp);
2357 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2358 struct sit_info *sm = SIT_I(sbi);
2359 unsigned int start_segno = 0, end_segno = 0;
2360 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2361 struct f2fs_flush_device range;
2362 int ret;
2363
2364 if (!capable(CAP_SYS_ADMIN))
2365 return -EPERM;
2366
2367 if (f2fs_readonly(sbi->sb))
2368 return -EROFS;
2369
2370 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2371 sizeof(range)))
2372 return -EFAULT;
2373
2374 if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
2375 sbi->segs_per_sec != 1) {
2376 f2fs_msg(sbi->sb, KERN_WARNING,
2377 "Can't flush %u in %d for segs_per_sec %u != 1\n",
2378 range.dev_num, sbi->s_ndevs,
2379 sbi->segs_per_sec);
2380 return -EINVAL;
2381 }
2382
2383 ret = mnt_want_write_file(filp);
2384 if (ret)
2385 return ret;
2386
2387 if (range.dev_num != 0)
2388 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2389 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2390
2391 start_segno = sm->last_victim[FLUSH_DEVICE];
2392 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2393 start_segno = dev_start_segno;
2394 end_segno = min(start_segno + range.segments, dev_end_segno);
2395
2396 while (start_segno < end_segno) {
2397 if (!mutex_trylock(&sbi->gc_mutex)) {
2398 ret = -EBUSY;
2399 goto out;
2400 }
2401 sm->last_victim[GC_CB] = end_segno + 1;
2402 sm->last_victim[GC_GREEDY] = end_segno + 1;
2403 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2404 ret = f2fs_gc(sbi, true, true, start_segno);
2405 if (ret == -EAGAIN)
2406 ret = 0;
2407 else if (ret < 0)
2408 break;
2409 start_segno++;
2410 }
2411 out:
2412 mnt_drop_write_file(filp);
2413 return ret;
2414 }
2415
2416 static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2417 {
2418 struct inode *inode = file_inode(filp);
2419 u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2420
2421 /* Must validate to set it with SQLite behavior in Android. */
2422 sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2423
2424 return put_user(sb_feature, (u32 __user *)arg);
2425 }
2426
2427 #ifdef CONFIG_QUOTA
2428 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2429 {
2430 struct inode *inode = file_inode(filp);
2431 struct f2fs_inode_info *fi = F2FS_I(inode);
2432 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2433 struct super_block *sb = sbi->sb;
2434 struct dquot *transfer_to[MAXQUOTAS] = {};
2435 struct page *ipage;
2436 kprojid_t kprojid;
2437 int err;
2438
2439 if (!f2fs_sb_has_project_quota(sb)) {
2440 if (projid != F2FS_DEF_PROJID)
2441 return -EOPNOTSUPP;
2442 else
2443 return 0;
2444 }
2445
2446 if (!f2fs_has_extra_attr(inode))
2447 return -EOPNOTSUPP;
2448
2449 kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2450
2451 if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2452 return 0;
2453
2454 err = mnt_want_write_file(filp);
2455 if (err)
2456 return err;
2457
2458 err = -EPERM;
2459 inode_lock(inode);
2460
2461 /* Is it quota file? Do not allow user to mess with it */
2462 if (IS_NOQUOTA(inode))
2463 goto out_unlock;
2464
2465 ipage = get_node_page(sbi, inode->i_ino);
2466 if (IS_ERR(ipage)) {
2467 err = PTR_ERR(ipage);
2468 goto out_unlock;
2469 }
2470
2471 if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2472 i_projid)) {
2473 err = -EOVERFLOW;
2474 f2fs_put_page(ipage, 1);
2475 goto out_unlock;
2476 }
2477 f2fs_put_page(ipage, 1);
2478
2479 dquot_initialize(inode);
2480
2481 transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2482 if (!IS_ERR(transfer_to[PRJQUOTA])) {
2483 err = __dquot_transfer(inode, transfer_to);
2484 dqput(transfer_to[PRJQUOTA]);
2485 if (err)
2486 goto out_dirty;
2487 }
2488
2489 F2FS_I(inode)->i_projid = kprojid;
2490 inode->i_ctime = current_time(inode);
2491 out_dirty:
2492 f2fs_mark_inode_dirty_sync(inode, true);
2493 out_unlock:
2494 inode_unlock(inode);
2495 mnt_drop_write_file(filp);
2496 return err;
2497 }
2498 #else
2499 static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2500 {
2501 if (projid != F2FS_DEF_PROJID)
2502 return -EOPNOTSUPP;
2503 return 0;
2504 }
2505 #endif
2506
2507 /* Transfer internal flags to xflags */
2508 static inline __u32 f2fs_iflags_to_xflags(unsigned long iflags)
2509 {
2510 __u32 xflags = 0;
2511
2512 if (iflags & FS_SYNC_FL)
2513 xflags |= FS_XFLAG_SYNC;
2514 if (iflags & FS_IMMUTABLE_FL)
2515 xflags |= FS_XFLAG_IMMUTABLE;
2516 if (iflags & FS_APPEND_FL)
2517 xflags |= FS_XFLAG_APPEND;
2518 if (iflags & FS_NODUMP_FL)
2519 xflags |= FS_XFLAG_NODUMP;
2520 if (iflags & FS_NOATIME_FL)
2521 xflags |= FS_XFLAG_NOATIME;
2522 if (iflags & FS_PROJINHERIT_FL)
2523 xflags |= FS_XFLAG_PROJINHERIT;
2524 return xflags;
2525 }
2526
2527 #define F2FS_SUPPORTED_FS_XFLAGS (FS_XFLAG_SYNC | FS_XFLAG_IMMUTABLE | \
2528 FS_XFLAG_APPEND | FS_XFLAG_NODUMP | \
2529 FS_XFLAG_NOATIME | FS_XFLAG_PROJINHERIT)
2530
2531 /* Flags we can manipulate with through EXT4_IOC_FSSETXATTR */
2532 #define F2FS_FL_XFLAG_VISIBLE (FS_SYNC_FL | \
2533 FS_IMMUTABLE_FL | \
2534 FS_APPEND_FL | \
2535 FS_NODUMP_FL | \
2536 FS_NOATIME_FL | \
2537 FS_PROJINHERIT_FL)
2538
2539 /* Transfer xflags flags to internal */
2540 static inline unsigned long f2fs_xflags_to_iflags(__u32 xflags)
2541 {
2542 unsigned long iflags = 0;
2543
2544 if (xflags & FS_XFLAG_SYNC)
2545 iflags |= FS_SYNC_FL;
2546 if (xflags & FS_XFLAG_IMMUTABLE)
2547 iflags |= FS_IMMUTABLE_FL;
2548 if (xflags & FS_XFLAG_APPEND)
2549 iflags |= FS_APPEND_FL;
2550 if (xflags & FS_XFLAG_NODUMP)
2551 iflags |= FS_NODUMP_FL;
2552 if (xflags & FS_XFLAG_NOATIME)
2553 iflags |= FS_NOATIME_FL;
2554 if (xflags & FS_XFLAG_PROJINHERIT)
2555 iflags |= FS_PROJINHERIT_FL;
2556
2557 return iflags;
2558 }
2559
2560 static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
2561 {
2562 struct inode *inode = file_inode(filp);
2563 struct f2fs_inode_info *fi = F2FS_I(inode);
2564 struct fsxattr fa;
2565
2566 memset(&fa, 0, sizeof(struct fsxattr));
2567 fa.fsx_xflags = f2fs_iflags_to_xflags(fi->i_flags &
2568 (FS_FL_USER_VISIBLE | FS_PROJINHERIT_FL));
2569
2570 if (f2fs_sb_has_project_quota(inode->i_sb))
2571 fa.fsx_projid = (__u32)from_kprojid(&init_user_ns,
2572 fi->i_projid);
2573
2574 if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
2575 return -EFAULT;
2576 return 0;
2577 }
2578
2579 static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
2580 {
2581 struct inode *inode = file_inode(filp);
2582 struct f2fs_inode_info *fi = F2FS_I(inode);
2583 struct fsxattr fa;
2584 unsigned int flags;
2585 int err;
2586
2587 if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
2588 return -EFAULT;
2589
2590 /* Make sure caller has proper permission */
2591 if (!inode_owner_or_capable(inode))
2592 return -EACCES;
2593
2594 if (fa.fsx_xflags & ~F2FS_SUPPORTED_FS_XFLAGS)
2595 return -EOPNOTSUPP;
2596
2597 flags = f2fs_xflags_to_iflags(fa.fsx_xflags);
2598 if (f2fs_mask_flags(inode->i_mode, flags) != flags)
2599 return -EOPNOTSUPP;
2600
2601 err = mnt_want_write_file(filp);
2602 if (err)
2603 return err;
2604
2605 inode_lock(inode);
2606 flags = (fi->i_flags & ~F2FS_FL_XFLAG_VISIBLE) |
2607 (flags & F2FS_FL_XFLAG_VISIBLE);
2608 err = __f2fs_ioc_setflags(inode, flags);
2609 inode_unlock(inode);
2610 mnt_drop_write_file(filp);
2611 if (err)
2612 return err;
2613
2614 err = f2fs_ioc_setproject(filp, fa.fsx_projid);
2615 if (err)
2616 return err;
2617
2618 return 0;
2619 }
2620
2621 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2622 {
2623 switch (cmd) {
2624 case F2FS_IOC_GETFLAGS:
2625 return f2fs_ioc_getflags(filp, arg);
2626 case F2FS_IOC_SETFLAGS:
2627 return f2fs_ioc_setflags(filp, arg);
2628 case F2FS_IOC_GETVERSION:
2629 return f2fs_ioc_getversion(filp, arg);
2630 case F2FS_IOC_START_ATOMIC_WRITE:
2631 return f2fs_ioc_start_atomic_write(filp);
2632 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2633 return f2fs_ioc_commit_atomic_write(filp);
2634 case F2FS_IOC_START_VOLATILE_WRITE:
2635 return f2fs_ioc_start_volatile_write(filp);
2636 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2637 return f2fs_ioc_release_volatile_write(filp);
2638 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2639 return f2fs_ioc_abort_volatile_write(filp);
2640 case F2FS_IOC_SHUTDOWN:
2641 return f2fs_ioc_shutdown(filp, arg);
2642 case FITRIM:
2643 return f2fs_ioc_fitrim(filp, arg);
2644 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2645 return f2fs_ioc_set_encryption_policy(filp, arg);
2646 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2647 return f2fs_ioc_get_encryption_policy(filp, arg);
2648 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2649 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2650 case F2FS_IOC_GARBAGE_COLLECT:
2651 return f2fs_ioc_gc(filp, arg);
2652 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2653 return f2fs_ioc_gc_range(filp, arg);
2654 case F2FS_IOC_WRITE_CHECKPOINT:
2655 return f2fs_ioc_write_checkpoint(filp, arg);
2656 case F2FS_IOC_DEFRAGMENT:
2657 return f2fs_ioc_defragment(filp, arg);
2658 case F2FS_IOC_MOVE_RANGE:
2659 return f2fs_ioc_move_range(filp, arg);
2660 case F2FS_IOC_FLUSH_DEVICE:
2661 return f2fs_ioc_flush_device(filp, arg);
2662 case F2FS_IOC_GET_FEATURES:
2663 return f2fs_ioc_get_features(filp, arg);
2664 case F2FS_IOC_FSGETXATTR:
2665 return f2fs_ioc_fsgetxattr(filp, arg);
2666 case F2FS_IOC_FSSETXATTR:
2667 return f2fs_ioc_fssetxattr(filp, arg);
2668 default:
2669 return -ENOTTY;
2670 }
2671 }
2672
2673 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2674 {
2675 struct file *file = iocb->ki_filp;
2676 struct inode *inode = file_inode(file);
2677 struct blk_plug plug;
2678 ssize_t ret;
2679
2680 inode_lock(inode);
2681 ret = generic_write_checks(iocb, from);
2682 if (ret > 0) {
2683 int err;
2684
2685 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2686 set_inode_flag(inode, FI_NO_PREALLOC);
2687
2688 err = f2fs_preallocate_blocks(iocb, from);
2689 if (err) {
2690 inode_unlock(inode);
2691 return err;
2692 }
2693 blk_start_plug(&plug);
2694 ret = __generic_file_write_iter(iocb, from);
2695 blk_finish_plug(&plug);
2696 clear_inode_flag(inode, FI_NO_PREALLOC);
2697 }
2698 inode_unlock(inode);
2699
2700 if (ret > 0)
2701 ret = generic_write_sync(iocb, ret);
2702 return ret;
2703 }
2704
2705 #ifdef CONFIG_COMPAT
2706 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2707 {
2708 switch (cmd) {
2709 case F2FS_IOC32_GETFLAGS:
2710 cmd = F2FS_IOC_GETFLAGS;
2711 break;
2712 case F2FS_IOC32_SETFLAGS:
2713 cmd = F2FS_IOC_SETFLAGS;
2714 break;
2715 case F2FS_IOC32_GETVERSION:
2716 cmd = F2FS_IOC_GETVERSION;
2717 break;
2718 case F2FS_IOC_START_ATOMIC_WRITE:
2719 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2720 case F2FS_IOC_START_VOLATILE_WRITE:
2721 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2722 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2723 case F2FS_IOC_SHUTDOWN:
2724 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2725 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2726 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2727 case F2FS_IOC_GARBAGE_COLLECT:
2728 case F2FS_IOC_GARBAGE_COLLECT_RANGE:
2729 case F2FS_IOC_WRITE_CHECKPOINT:
2730 case F2FS_IOC_DEFRAGMENT:
2731 case F2FS_IOC_MOVE_RANGE:
2732 case F2FS_IOC_FLUSH_DEVICE:
2733 case F2FS_IOC_GET_FEATURES:
2734 case F2FS_IOC_FSGETXATTR:
2735 case F2FS_IOC_FSSETXATTR:
2736 break;
2737 default:
2738 return -ENOIOCTLCMD;
2739 }
2740 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2741 }
2742 #endif
2743
2744 const struct file_operations f2fs_file_operations = {
2745 .llseek = f2fs_llseek,
2746 .read_iter = generic_file_read_iter,
2747 .write_iter = f2fs_file_write_iter,
2748 .open = f2fs_file_open,
2749 .release = f2fs_release_file,
2750 .mmap = f2fs_file_mmap,
2751 .flush = f2fs_file_flush,
2752 .fsync = f2fs_sync_file,
2753 .fallocate = f2fs_fallocate,
2754 .unlocked_ioctl = f2fs_ioctl,
2755 #ifdef CONFIG_COMPAT
2756 .compat_ioctl = f2fs_compat_ioctl,
2757 #endif
2758 .splice_read = generic_file_splice_read,
2759 .splice_write = iter_file_splice_write,
2760 };