Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / file.c
1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23
24 #include "f2fs.h"
25 #include "node.h"
26 #include "segment.h"
27 #include "xattr.h"
28 #include "acl.h"
29 #include <trace/events/f2fs.h>
30
31 static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
32 struct vm_fault *vmf)
33 {
34 struct page *page = vmf->page;
35 struct inode *inode = file_inode(vma->vm_file);
36 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
37 struct dnode_of_data dn;
38 int err;
39
40 f2fs_balance_fs(sbi);
41
42 sb_start_pagefault(inode->i_sb);
43
44 /* force to convert with normal data indices */
45 err = f2fs_convert_inline_data(inode, MAX_INLINE_DATA + 1, page);
46 if (err)
47 goto out;
48
49 /* block allocation */
50 f2fs_lock_op(sbi);
51 set_new_dnode(&dn, inode, NULL, NULL, 0);
52 err = f2fs_reserve_block(&dn, page->index);
53 f2fs_unlock_op(sbi);
54 if (err)
55 goto out;
56
57 file_update_time(vma->vm_file);
58 lock_page(page);
59 if (unlikely(page->mapping != inode->i_mapping ||
60 page_offset(page) > i_size_read(inode) ||
61 !PageUptodate(page))) {
62 unlock_page(page);
63 err = -EFAULT;
64 goto out;
65 }
66
67 /*
68 * check to see if the page is mapped already (no holes)
69 */
70 if (PageMappedToDisk(page))
71 goto mapped;
72
73 /* page is wholly or partially inside EOF */
74 if (((page->index + 1) << PAGE_CACHE_SHIFT) > i_size_read(inode)) {
75 unsigned offset;
76 offset = i_size_read(inode) & ~PAGE_CACHE_MASK;
77 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
78 }
79 set_page_dirty(page);
80 SetPageUptodate(page);
81
82 trace_f2fs_vm_page_mkwrite(page, DATA);
83 mapped:
84 /* fill the page */
85 f2fs_wait_on_page_writeback(page, DATA);
86 out:
87 sb_end_pagefault(inode->i_sb);
88 return block_page_mkwrite_return(err);
89 }
90
91 static const struct vm_operations_struct f2fs_file_vm_ops = {
92 .fault = filemap_fault,
93 .map_pages = filemap_map_pages,
94 .page_mkwrite = f2fs_vm_page_mkwrite,
95 .remap_pages = generic_file_remap_pages,
96 };
97
98 static int get_parent_ino(struct inode *inode, nid_t *pino)
99 {
100 struct dentry *dentry;
101
102 inode = igrab(inode);
103 dentry = d_find_any_alias(inode);
104 iput(inode);
105 if (!dentry)
106 return 0;
107
108 if (update_dent_inode(inode, &dentry->d_name)) {
109 dput(dentry);
110 return 0;
111 }
112
113 *pino = parent_ino(dentry);
114 dput(dentry);
115 return 1;
116 }
117
118 static inline bool need_do_checkpoint(struct inode *inode)
119 {
120 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
121 bool need_cp = false;
122
123 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
124 need_cp = true;
125 else if (file_wrong_pino(inode))
126 need_cp = true;
127 else if (!space_for_roll_forward(sbi))
128 need_cp = true;
129 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
130 need_cp = true;
131 else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
132 need_cp = true;
133
134 return need_cp;
135 }
136
137 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
138 {
139 struct inode *inode = file->f_mapping->host;
140 struct f2fs_inode_info *fi = F2FS_I(inode);
141 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
142 nid_t ino = inode->i_ino;
143 int ret = 0;
144 bool need_cp = false;
145 struct writeback_control wbc = {
146 .sync_mode = WB_SYNC_ALL,
147 .nr_to_write = LONG_MAX,
148 .for_reclaim = 0,
149 };
150
151 if (unlikely(f2fs_readonly(inode->i_sb)))
152 return 0;
153
154 trace_f2fs_sync_file_enter(inode);
155
156 /* if fdatasync is triggered, let's do in-place-update */
157 if (get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
158 set_inode_flag(fi, FI_NEED_IPU);
159 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
160 clear_inode_flag(fi, FI_NEED_IPU);
161
162 if (ret) {
163 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
164 return ret;
165 }
166
167 /*
168 * if there is no written data, don't waste time to write recovery info.
169 */
170 if (!is_inode_flag_set(fi, FI_APPEND_WRITE) &&
171 !exist_written_data(sbi, ino, APPEND_INO)) {
172 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
173
174 /* But we need to avoid that there are some inode updates */
175 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino)) {
176 f2fs_put_page(i, 0);
177 goto go_write;
178 }
179 f2fs_put_page(i, 0);
180
181 if (is_inode_flag_set(fi, FI_UPDATE_WRITE) ||
182 exist_written_data(sbi, ino, UPDATE_INO))
183 goto flush_out;
184 goto out;
185 }
186 go_write:
187 /* guarantee free sections for fsync */
188 f2fs_balance_fs(sbi);
189
190 /*
191 * Both of fdatasync() and fsync() are able to be recovered from
192 * sudden-power-off.
193 */
194 down_read(&fi->i_sem);
195 need_cp = need_do_checkpoint(inode);
196 up_read(&fi->i_sem);
197
198 if (need_cp) {
199 nid_t pino;
200
201 /* all the dirty node pages should be flushed for POR */
202 ret = f2fs_sync_fs(inode->i_sb, 1);
203
204 down_write(&fi->i_sem);
205 F2FS_I(inode)->xattr_ver = 0;
206 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
207 get_parent_ino(inode, &pino)) {
208 F2FS_I(inode)->i_pino = pino;
209 file_got_pino(inode);
210 up_write(&fi->i_sem);
211 mark_inode_dirty_sync(inode);
212 ret = f2fs_write_inode(inode, NULL);
213 if (ret)
214 goto out;
215 } else {
216 up_write(&fi->i_sem);
217 }
218 } else {
219 sync_nodes:
220 sync_node_pages(sbi, ino, &wbc);
221
222 if (need_inode_block_update(sbi, ino)) {
223 mark_inode_dirty_sync(inode);
224 ret = f2fs_write_inode(inode, NULL);
225 if (ret)
226 goto out;
227 goto sync_nodes;
228 }
229
230 ret = wait_on_node_pages_writeback(sbi, ino);
231 if (ret)
232 goto out;
233
234 /* once recovery info is written, don't need to tack this */
235 remove_dirty_inode(sbi, ino, APPEND_INO);
236 clear_inode_flag(fi, FI_APPEND_WRITE);
237 flush_out:
238 remove_dirty_inode(sbi, ino, UPDATE_INO);
239 clear_inode_flag(fi, FI_UPDATE_WRITE);
240 ret = f2fs_issue_flush(F2FS_I_SB(inode));
241 }
242 out:
243 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
244 return ret;
245 }
246
247 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
248 pgoff_t pgofs, int whence)
249 {
250 struct pagevec pvec;
251 int nr_pages;
252
253 if (whence != SEEK_DATA)
254 return 0;
255
256 /* find first dirty page index */
257 pagevec_init(&pvec, 0);
258 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
259 PAGECACHE_TAG_DIRTY, 1);
260 pgofs = nr_pages ? pvec.pages[0]->index : LONG_MAX;
261 pagevec_release(&pvec);
262 return pgofs;
263 }
264
265 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
266 int whence)
267 {
268 switch (whence) {
269 case SEEK_DATA:
270 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
271 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
272 return true;
273 break;
274 case SEEK_HOLE:
275 if (blkaddr == NULL_ADDR)
276 return true;
277 break;
278 }
279 return false;
280 }
281
282 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
283 {
284 struct inode *inode = file->f_mapping->host;
285 loff_t maxbytes = inode->i_sb->s_maxbytes;
286 struct dnode_of_data dn;
287 pgoff_t pgofs, end_offset, dirty;
288 loff_t data_ofs = offset;
289 loff_t isize;
290 int err = 0;
291
292 mutex_lock(&inode->i_mutex);
293
294 isize = i_size_read(inode);
295 if (offset >= isize)
296 goto fail;
297
298 /* handle inline data case */
299 if (f2fs_has_inline_data(inode)) {
300 if (whence == SEEK_HOLE)
301 data_ofs = isize;
302 goto found;
303 }
304
305 pgofs = (pgoff_t)(offset >> PAGE_CACHE_SHIFT);
306
307 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
308
309 for (; data_ofs < isize; data_ofs = pgofs << PAGE_CACHE_SHIFT) {
310 set_new_dnode(&dn, inode, NULL, NULL, 0);
311 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
312 if (err && err != -ENOENT) {
313 goto fail;
314 } else if (err == -ENOENT) {
315 /* direct node does not exists */
316 if (whence == SEEK_DATA) {
317 pgofs = PGOFS_OF_NEXT_DNODE(pgofs,
318 F2FS_I(inode));
319 continue;
320 } else {
321 goto found;
322 }
323 }
324
325 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
326
327 /* find data/hole in dnode block */
328 for (; dn.ofs_in_node < end_offset;
329 dn.ofs_in_node++, pgofs++,
330 data_ofs = pgofs << PAGE_CACHE_SHIFT) {
331 block_t blkaddr;
332 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
333
334 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
335 f2fs_put_dnode(&dn);
336 goto found;
337 }
338 }
339 f2fs_put_dnode(&dn);
340 }
341
342 if (whence == SEEK_DATA)
343 goto fail;
344 found:
345 if (whence == SEEK_HOLE && data_ofs > isize)
346 data_ofs = isize;
347 mutex_unlock(&inode->i_mutex);
348 return vfs_setpos(file, data_ofs, maxbytes);
349 fail:
350 mutex_unlock(&inode->i_mutex);
351 return -ENXIO;
352 }
353
354 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
355 {
356 struct inode *inode = file->f_mapping->host;
357 loff_t maxbytes = inode->i_sb->s_maxbytes;
358
359 switch (whence) {
360 case SEEK_SET:
361 case SEEK_CUR:
362 case SEEK_END:
363 return generic_file_llseek_size(file, offset, whence,
364 maxbytes, i_size_read(inode));
365 case SEEK_DATA:
366 case SEEK_HOLE:
367 if (offset < 0)
368 return -ENXIO;
369 return f2fs_seek_block(file, offset, whence);
370 }
371
372 return -EINVAL;
373 }
374
375 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
376 {
377 file_accessed(file);
378 vma->vm_ops = &f2fs_file_vm_ops;
379 return 0;
380 }
381
382 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
383 {
384 int nr_free = 0, ofs = dn->ofs_in_node;
385 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
386 struct f2fs_node *raw_node;
387 __le32 *addr;
388
389 raw_node = F2FS_NODE(dn->node_page);
390 addr = blkaddr_in_node(raw_node) + ofs;
391
392 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
393 block_t blkaddr = le32_to_cpu(*addr);
394 if (blkaddr == NULL_ADDR)
395 continue;
396
397 update_extent_cache(NULL_ADDR, dn);
398 invalidate_blocks(sbi, blkaddr);
399 nr_free++;
400 }
401 if (nr_free) {
402 dec_valid_block_count(sbi, dn->inode, nr_free);
403 set_page_dirty(dn->node_page);
404 sync_inode_page(dn);
405 }
406 dn->ofs_in_node = ofs;
407
408 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
409 dn->ofs_in_node, nr_free);
410 return nr_free;
411 }
412
413 void truncate_data_blocks(struct dnode_of_data *dn)
414 {
415 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
416 }
417
418 static void truncate_partial_data_page(struct inode *inode, u64 from)
419 {
420 unsigned offset = from & (PAGE_CACHE_SIZE - 1);
421 struct page *page;
422
423 if (f2fs_has_inline_data(inode))
424 return truncate_inline_data(inode, from);
425
426 if (!offset)
427 return;
428
429 page = find_data_page(inode, from >> PAGE_CACHE_SHIFT, false);
430 if (IS_ERR(page))
431 return;
432
433 lock_page(page);
434 if (unlikely(!PageUptodate(page) ||
435 page->mapping != inode->i_mapping))
436 goto out;
437
438 f2fs_wait_on_page_writeback(page, DATA);
439 zero_user(page, offset, PAGE_CACHE_SIZE - offset);
440 set_page_dirty(page);
441
442 out:
443 f2fs_put_page(page, 1);
444 }
445
446 int truncate_blocks(struct inode *inode, u64 from, bool lock)
447 {
448 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
449 unsigned int blocksize = inode->i_sb->s_blocksize;
450 struct dnode_of_data dn;
451 pgoff_t free_from;
452 int count = 0, err = 0;
453
454 trace_f2fs_truncate_blocks_enter(inode, from);
455
456 if (f2fs_has_inline_data(inode))
457 goto done;
458
459 free_from = (pgoff_t)
460 ((from + blocksize - 1) >> (sbi->log_blocksize));
461
462 if (lock)
463 f2fs_lock_op(sbi);
464
465 set_new_dnode(&dn, inode, NULL, NULL, 0);
466 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE);
467 if (err) {
468 if (err == -ENOENT)
469 goto free_next;
470 if (lock)
471 f2fs_unlock_op(sbi);
472 trace_f2fs_truncate_blocks_exit(inode, err);
473 return err;
474 }
475
476 count = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
477
478 count -= dn.ofs_in_node;
479 f2fs_bug_on(sbi, count < 0);
480
481 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
482 truncate_data_blocks_range(&dn, count);
483 free_from += count;
484 }
485
486 f2fs_put_dnode(&dn);
487 free_next:
488 err = truncate_inode_blocks(inode, free_from);
489 if (lock)
490 f2fs_unlock_op(sbi);
491 done:
492 /* lastly zero out the first data page */
493 truncate_partial_data_page(inode, from);
494
495 trace_f2fs_truncate_blocks_exit(inode, err);
496 return err;
497 }
498
499 void f2fs_truncate(struct inode *inode)
500 {
501 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
502 S_ISLNK(inode->i_mode)))
503 return;
504
505 trace_f2fs_truncate(inode);
506
507 if (!truncate_blocks(inode, i_size_read(inode), true)) {
508 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
509 mark_inode_dirty(inode);
510 }
511 }
512
513 int f2fs_getattr(struct vfsmount *mnt,
514 struct dentry *dentry, struct kstat *stat)
515 {
516 struct inode *inode = dentry->d_inode;
517 generic_fillattr(inode, stat);
518 stat->blocks <<= 3;
519 return 0;
520 }
521
522 #ifdef CONFIG_F2FS_FS_POSIX_ACL
523 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
524 {
525 struct f2fs_inode_info *fi = F2FS_I(inode);
526 unsigned int ia_valid = attr->ia_valid;
527
528 if (ia_valid & ATTR_UID)
529 inode->i_uid = attr->ia_uid;
530 if (ia_valid & ATTR_GID)
531 inode->i_gid = attr->ia_gid;
532 if (ia_valid & ATTR_ATIME)
533 inode->i_atime = timespec_trunc(attr->ia_atime,
534 inode->i_sb->s_time_gran);
535 if (ia_valid & ATTR_MTIME)
536 inode->i_mtime = timespec_trunc(attr->ia_mtime,
537 inode->i_sb->s_time_gran);
538 if (ia_valid & ATTR_CTIME)
539 inode->i_ctime = timespec_trunc(attr->ia_ctime,
540 inode->i_sb->s_time_gran);
541 if (ia_valid & ATTR_MODE) {
542 umode_t mode = attr->ia_mode;
543
544 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
545 mode &= ~S_ISGID;
546 set_acl_inode(fi, mode);
547 }
548 }
549 #else
550 #define __setattr_copy setattr_copy
551 #endif
552
553 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
554 {
555 struct inode *inode = dentry->d_inode;
556 struct f2fs_inode_info *fi = F2FS_I(inode);
557 int err;
558
559 err = inode_change_ok(inode, attr);
560 if (err)
561 return err;
562
563 if (attr->ia_valid & ATTR_SIZE) {
564 err = f2fs_convert_inline_data(inode, attr->ia_size, NULL);
565 if (err)
566 return err;
567
568 if (attr->ia_size != i_size_read(inode)) {
569 truncate_setsize(inode, attr->ia_size);
570 f2fs_truncate(inode);
571 f2fs_balance_fs(F2FS_I_SB(inode));
572 } else {
573 /*
574 * giving a chance to truncate blocks past EOF which
575 * are fallocated with FALLOC_FL_KEEP_SIZE.
576 */
577 f2fs_truncate(inode);
578 }
579 }
580
581 __setattr_copy(inode, attr);
582
583 if (attr->ia_valid & ATTR_MODE) {
584 err = posix_acl_chmod(inode, get_inode_mode(inode));
585 if (err || is_inode_flag_set(fi, FI_ACL_MODE)) {
586 inode->i_mode = fi->i_acl_mode;
587 clear_inode_flag(fi, FI_ACL_MODE);
588 }
589 }
590
591 mark_inode_dirty(inode);
592 return err;
593 }
594
595 const struct inode_operations f2fs_file_inode_operations = {
596 .getattr = f2fs_getattr,
597 .setattr = f2fs_setattr,
598 .get_acl = f2fs_get_acl,
599 .set_acl = f2fs_set_acl,
600 #ifdef CONFIG_F2FS_FS_XATTR
601 .setxattr = generic_setxattr,
602 .getxattr = generic_getxattr,
603 .listxattr = f2fs_listxattr,
604 .removexattr = generic_removexattr,
605 #endif
606 .fiemap = f2fs_fiemap,
607 };
608
609 static void fill_zero(struct inode *inode, pgoff_t index,
610 loff_t start, loff_t len)
611 {
612 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
613 struct page *page;
614
615 if (!len)
616 return;
617
618 f2fs_balance_fs(sbi);
619
620 f2fs_lock_op(sbi);
621 page = get_new_data_page(inode, NULL, index, false);
622 f2fs_unlock_op(sbi);
623
624 if (!IS_ERR(page)) {
625 f2fs_wait_on_page_writeback(page, DATA);
626 zero_user(page, start, len);
627 set_page_dirty(page);
628 f2fs_put_page(page, 1);
629 }
630 }
631
632 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
633 {
634 pgoff_t index;
635 int err;
636
637 for (index = pg_start; index < pg_end; index++) {
638 struct dnode_of_data dn;
639
640 set_new_dnode(&dn, inode, NULL, NULL, 0);
641 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
642 if (err) {
643 if (err == -ENOENT)
644 continue;
645 return err;
646 }
647
648 if (dn.data_blkaddr != NULL_ADDR)
649 truncate_data_blocks_range(&dn, 1);
650 f2fs_put_dnode(&dn);
651 }
652 return 0;
653 }
654
655 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
656 {
657 pgoff_t pg_start, pg_end;
658 loff_t off_start, off_end;
659 int ret = 0;
660
661 if (!S_ISREG(inode->i_mode))
662 return -EOPNOTSUPP;
663
664 /* skip punching hole beyond i_size */
665 if (offset >= inode->i_size)
666 return ret;
667
668 ret = f2fs_convert_inline_data(inode, MAX_INLINE_DATA + 1, NULL);
669 if (ret)
670 return ret;
671
672 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
673 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
674
675 off_start = offset & (PAGE_CACHE_SIZE - 1);
676 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
677
678 if (pg_start == pg_end) {
679 fill_zero(inode, pg_start, off_start,
680 off_end - off_start);
681 } else {
682 if (off_start)
683 fill_zero(inode, pg_start++, off_start,
684 PAGE_CACHE_SIZE - off_start);
685 if (off_end)
686 fill_zero(inode, pg_end, 0, off_end);
687
688 if (pg_start < pg_end) {
689 struct address_space *mapping = inode->i_mapping;
690 loff_t blk_start, blk_end;
691 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
692
693 f2fs_balance_fs(sbi);
694
695 blk_start = pg_start << PAGE_CACHE_SHIFT;
696 blk_end = pg_end << PAGE_CACHE_SHIFT;
697 truncate_inode_pages_range(mapping, blk_start,
698 blk_end - 1);
699
700 f2fs_lock_op(sbi);
701 ret = truncate_hole(inode, pg_start, pg_end);
702 f2fs_unlock_op(sbi);
703 }
704 }
705
706 return ret;
707 }
708
709 static int expand_inode_data(struct inode *inode, loff_t offset,
710 loff_t len, int mode)
711 {
712 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
713 pgoff_t index, pg_start, pg_end;
714 loff_t new_size = i_size_read(inode);
715 loff_t off_start, off_end;
716 int ret = 0;
717
718 f2fs_balance_fs(sbi);
719
720 ret = inode_newsize_ok(inode, (len + offset));
721 if (ret)
722 return ret;
723
724 ret = f2fs_convert_inline_data(inode, offset + len, NULL);
725 if (ret)
726 return ret;
727
728 pg_start = ((unsigned long long) offset) >> PAGE_CACHE_SHIFT;
729 pg_end = ((unsigned long long) offset + len) >> PAGE_CACHE_SHIFT;
730
731 off_start = offset & (PAGE_CACHE_SIZE - 1);
732 off_end = (offset + len) & (PAGE_CACHE_SIZE - 1);
733
734 f2fs_lock_op(sbi);
735
736 for (index = pg_start; index <= pg_end; index++) {
737 struct dnode_of_data dn;
738
739 if (index == pg_end && !off_end)
740 goto noalloc;
741
742 set_new_dnode(&dn, inode, NULL, NULL, 0);
743 ret = f2fs_reserve_block(&dn, index);
744 if (ret)
745 break;
746 noalloc:
747 if (pg_start == pg_end)
748 new_size = offset + len;
749 else if (index == pg_start && off_start)
750 new_size = (index + 1) << PAGE_CACHE_SHIFT;
751 else if (index == pg_end)
752 new_size = (index << PAGE_CACHE_SHIFT) + off_end;
753 else
754 new_size += PAGE_CACHE_SIZE;
755 }
756
757 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
758 i_size_read(inode) < new_size) {
759 i_size_write(inode, new_size);
760 mark_inode_dirty(inode);
761 update_inode_page(inode);
762 }
763 f2fs_unlock_op(sbi);
764
765 return ret;
766 }
767
768 static long f2fs_fallocate(struct file *file, int mode,
769 loff_t offset, loff_t len)
770 {
771 struct inode *inode = file_inode(file);
772 long ret;
773
774 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
775 return -EOPNOTSUPP;
776
777 mutex_lock(&inode->i_mutex);
778
779 if (mode & FALLOC_FL_PUNCH_HOLE)
780 ret = punch_hole(inode, offset, len);
781 else
782 ret = expand_inode_data(inode, offset, len, mode);
783
784 if (!ret) {
785 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
786 mark_inode_dirty(inode);
787 }
788
789 mutex_unlock(&inode->i_mutex);
790
791 trace_f2fs_fallocate(inode, mode, offset, len, ret);
792 return ret;
793 }
794
795 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
796 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
797
798 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
799 {
800 if (S_ISDIR(mode))
801 return flags;
802 else if (S_ISREG(mode))
803 return flags & F2FS_REG_FLMASK;
804 else
805 return flags & F2FS_OTHER_FLMASK;
806 }
807
808 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
809 {
810 struct inode *inode = file_inode(filp);
811 struct f2fs_inode_info *fi = F2FS_I(inode);
812 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
813 return put_user(flags, (int __user *)arg);
814 }
815
816 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
817 {
818 struct inode *inode = file_inode(filp);
819 struct f2fs_inode_info *fi = F2FS_I(inode);
820 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
821 unsigned int oldflags;
822 int ret;
823
824 ret = mnt_want_write_file(filp);
825 if (ret)
826 return ret;
827
828 if (!inode_owner_or_capable(inode)) {
829 ret = -EACCES;
830 goto out;
831 }
832
833 if (get_user(flags, (int __user *)arg)) {
834 ret = -EFAULT;
835 goto out;
836 }
837
838 flags = f2fs_mask_flags(inode->i_mode, flags);
839
840 mutex_lock(&inode->i_mutex);
841
842 oldflags = fi->i_flags;
843
844 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
845 if (!capable(CAP_LINUX_IMMUTABLE)) {
846 mutex_unlock(&inode->i_mutex);
847 ret = -EPERM;
848 goto out;
849 }
850 }
851
852 flags = flags & FS_FL_USER_MODIFIABLE;
853 flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
854 fi->i_flags = flags;
855 mutex_unlock(&inode->i_mutex);
856
857 f2fs_set_inode_flags(inode);
858 inode->i_ctime = CURRENT_TIME;
859 mark_inode_dirty(inode);
860 out:
861 mnt_drop_write_file(filp);
862 return ret;
863 }
864
865 static int f2fs_ioc_start_atomic_write(struct file *filp)
866 {
867 struct inode *inode = file_inode(filp);
868 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
869
870 if (!inode_owner_or_capable(inode))
871 return -EACCES;
872
873 f2fs_balance_fs(sbi);
874
875 set_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
876
877 return f2fs_convert_inline_data(inode, MAX_INLINE_DATA + 1, NULL);
878 }
879
880 static int f2fs_ioc_commit_atomic_write(struct file *filp)
881 {
882 struct inode *inode = file_inode(filp);
883 int ret;
884
885 if (!inode_owner_or_capable(inode))
886 return -EACCES;
887
888 if (f2fs_is_volatile_file(inode))
889 return 0;
890
891 ret = mnt_want_write_file(filp);
892 if (ret)
893 return ret;
894
895 if (f2fs_is_atomic_file(inode))
896 commit_inmem_pages(inode, false);
897
898 ret = f2fs_sync_file(filp, 0, LONG_MAX, 0);
899 mnt_drop_write_file(filp);
900 return ret;
901 }
902
903 static int f2fs_ioc_start_volatile_write(struct file *filp)
904 {
905 struct inode *inode = file_inode(filp);
906
907 if (!inode_owner_or_capable(inode))
908 return -EACCES;
909
910 set_inode_flag(F2FS_I(inode), FI_VOLATILE_FILE);
911 return 0;
912 }
913
914 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
915 {
916 struct inode *inode = file_inode(filp);
917 struct super_block *sb = inode->i_sb;
918 struct request_queue *q = bdev_get_queue(sb->s_bdev);
919 struct fstrim_range range;
920 int ret;
921
922 if (!capable(CAP_SYS_ADMIN))
923 return -EPERM;
924
925 if (!blk_queue_discard(q))
926 return -EOPNOTSUPP;
927
928 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
929 sizeof(range)))
930 return -EFAULT;
931
932 range.minlen = max((unsigned int)range.minlen,
933 q->limits.discard_granularity);
934 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
935 if (ret < 0)
936 return ret;
937
938 if (copy_to_user((struct fstrim_range __user *)arg, &range,
939 sizeof(range)))
940 return -EFAULT;
941 return 0;
942 }
943
944 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
945 {
946 switch (cmd) {
947 case F2FS_IOC_GETFLAGS:
948 return f2fs_ioc_getflags(filp, arg);
949 case F2FS_IOC_SETFLAGS:
950 return f2fs_ioc_setflags(filp, arg);
951 case F2FS_IOC_START_ATOMIC_WRITE:
952 return f2fs_ioc_start_atomic_write(filp);
953 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
954 return f2fs_ioc_commit_atomic_write(filp);
955 case F2FS_IOC_START_VOLATILE_WRITE:
956 return f2fs_ioc_start_volatile_write(filp);
957 case FITRIM:
958 return f2fs_ioc_fitrim(filp, arg);
959 default:
960 return -ENOTTY;
961 }
962 }
963
964 #ifdef CONFIG_COMPAT
965 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
966 {
967 switch (cmd) {
968 case F2FS_IOC32_GETFLAGS:
969 cmd = F2FS_IOC_GETFLAGS;
970 break;
971 case F2FS_IOC32_SETFLAGS:
972 cmd = F2FS_IOC_SETFLAGS;
973 break;
974 default:
975 return -ENOIOCTLCMD;
976 }
977 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
978 }
979 #endif
980
981 const struct file_operations f2fs_file_operations = {
982 .llseek = f2fs_llseek,
983 .read = new_sync_read,
984 .write = new_sync_write,
985 .read_iter = generic_file_read_iter,
986 .write_iter = generic_file_write_iter,
987 .open = generic_file_open,
988 .mmap = f2fs_file_mmap,
989 .fsync = f2fs_sync_file,
990 .fallocate = f2fs_fallocate,
991 .unlocked_ioctl = f2fs_ioctl,
992 #ifdef CONFIG_COMPAT
993 .compat_ioctl = f2fs_compat_ioctl,
994 #endif
995 .splice_read = generic_file_splice_read,
996 .splice_write = iter_file_splice_write,
997 };