f2fs: don't need to check encrypted inode for partial truncation
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / fs / f2fs / file.c
1 /*
2 * fs/f2fs/file.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/stat.h>
14 #include <linux/buffer_head.h>
15 #include <linux/writeback.h>
16 #include <linux/blkdev.h>
17 #include <linux/falloc.h>
18 #include <linux/types.h>
19 #include <linux/compat.h>
20 #include <linux/uaccess.h>
21 #include <linux/mount.h>
22 #include <linux/pagevec.h>
23 #include <linux/uio.h>
24 #include <linux/uuid.h>
25 #include <linux/file.h>
26
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "acl.h"
32 #include "gc.h"
33 #include "trace.h"
34 #include <trace/events/f2fs.h>
35
36 static int f2fs_filemap_fault(struct vm_fault *vmf)
37 {
38 struct inode *inode = file_inode(vmf->vma->vm_file);
39 int err;
40
41 down_read(&F2FS_I(inode)->i_mmap_sem);
42 err = filemap_fault(vmf);
43 up_read(&F2FS_I(inode)->i_mmap_sem);
44
45 return err;
46 }
47
48 static int f2fs_vm_page_mkwrite(struct vm_fault *vmf)
49 {
50 struct page *page = vmf->page;
51 struct inode *inode = file_inode(vmf->vma->vm_file);
52 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
53 struct dnode_of_data dn;
54 int err;
55
56 sb_start_pagefault(inode->i_sb);
57
58 f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
59
60 /* block allocation */
61 f2fs_lock_op(sbi);
62 set_new_dnode(&dn, inode, NULL, NULL, 0);
63 err = f2fs_reserve_block(&dn, page->index);
64 if (err) {
65 f2fs_unlock_op(sbi);
66 goto out;
67 }
68 f2fs_put_dnode(&dn);
69 f2fs_unlock_op(sbi);
70
71 f2fs_balance_fs(sbi, dn.node_changed);
72
73 file_update_time(vmf->vma->vm_file);
74 down_read(&F2FS_I(inode)->i_mmap_sem);
75 lock_page(page);
76 if (unlikely(page->mapping != inode->i_mapping ||
77 page_offset(page) > i_size_read(inode) ||
78 !PageUptodate(page))) {
79 unlock_page(page);
80 err = -EFAULT;
81 goto out_sem;
82 }
83
84 /*
85 * check to see if the page is mapped already (no holes)
86 */
87 if (PageMappedToDisk(page))
88 goto mapped;
89
90 /* page is wholly or partially inside EOF */
91 if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
92 i_size_read(inode)) {
93 unsigned offset;
94 offset = i_size_read(inode) & ~PAGE_MASK;
95 zero_user_segment(page, offset, PAGE_SIZE);
96 }
97 set_page_dirty(page);
98 if (!PageUptodate(page))
99 SetPageUptodate(page);
100
101 trace_f2fs_vm_page_mkwrite(page, DATA);
102 mapped:
103 /* fill the page */
104 f2fs_wait_on_page_writeback(page, DATA, false);
105
106 /* wait for GCed encrypted page writeback */
107 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
108 f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
109
110 out_sem:
111 up_read(&F2FS_I(inode)->i_mmap_sem);
112 out:
113 sb_end_pagefault(inode->i_sb);
114 f2fs_update_time(sbi, REQ_TIME);
115 return block_page_mkwrite_return(err);
116 }
117
118 static const struct vm_operations_struct f2fs_file_vm_ops = {
119 .fault = f2fs_filemap_fault,
120 .map_pages = filemap_map_pages,
121 .page_mkwrite = f2fs_vm_page_mkwrite,
122 };
123
124 static int get_parent_ino(struct inode *inode, nid_t *pino)
125 {
126 struct dentry *dentry;
127
128 inode = igrab(inode);
129 dentry = d_find_any_alias(inode);
130 iput(inode);
131 if (!dentry)
132 return 0;
133
134 *pino = parent_ino(dentry);
135 dput(dentry);
136 return 1;
137 }
138
139 static inline bool need_do_checkpoint(struct inode *inode)
140 {
141 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
142 bool need_cp = false;
143
144 if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
145 need_cp = true;
146 else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
147 need_cp = true;
148 else if (file_wrong_pino(inode))
149 need_cp = true;
150 else if (!space_for_roll_forward(sbi))
151 need_cp = true;
152 else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
153 need_cp = true;
154 else if (test_opt(sbi, FASTBOOT))
155 need_cp = true;
156 else if (sbi->active_logs == 2)
157 need_cp = true;
158
159 return need_cp;
160 }
161
162 static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
163 {
164 struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
165 bool ret = false;
166 /* But we need to avoid that there are some inode updates */
167 if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
168 ret = true;
169 f2fs_put_page(i, 0);
170 return ret;
171 }
172
173 static void try_to_fix_pino(struct inode *inode)
174 {
175 struct f2fs_inode_info *fi = F2FS_I(inode);
176 nid_t pino;
177
178 down_write(&fi->i_sem);
179 if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
180 get_parent_ino(inode, &pino)) {
181 f2fs_i_pino_write(inode, pino);
182 file_got_pino(inode);
183 }
184 up_write(&fi->i_sem);
185 }
186
187 static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
188 int datasync, bool atomic)
189 {
190 struct inode *inode = file->f_mapping->host;
191 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
192 nid_t ino = inode->i_ino;
193 int ret = 0;
194 bool need_cp = false;
195 struct writeback_control wbc = {
196 .sync_mode = WB_SYNC_ALL,
197 .nr_to_write = LONG_MAX,
198 .for_reclaim = 0,
199 };
200
201 if (unlikely(f2fs_readonly(inode->i_sb)))
202 return 0;
203
204 trace_f2fs_sync_file_enter(inode);
205
206 /* if fdatasync is triggered, let's do in-place-update */
207 if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
208 set_inode_flag(inode, FI_NEED_IPU);
209 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
210 clear_inode_flag(inode, FI_NEED_IPU);
211
212 if (ret) {
213 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
214 return ret;
215 }
216
217 /* if the inode is dirty, let's recover all the time */
218 if (!f2fs_skip_inode_update(inode, datasync)) {
219 f2fs_write_inode(inode, NULL);
220 goto go_write;
221 }
222
223 /*
224 * if there is no written data, don't waste time to write recovery info.
225 */
226 if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
227 !exist_written_data(sbi, ino, APPEND_INO)) {
228
229 /* it may call write_inode just prior to fsync */
230 if (need_inode_page_update(sbi, ino))
231 goto go_write;
232
233 if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
234 exist_written_data(sbi, ino, UPDATE_INO))
235 goto flush_out;
236 goto out;
237 }
238 go_write:
239 /*
240 * Both of fdatasync() and fsync() are able to be recovered from
241 * sudden-power-off.
242 */
243 down_read(&F2FS_I(inode)->i_sem);
244 need_cp = need_do_checkpoint(inode);
245 up_read(&F2FS_I(inode)->i_sem);
246
247 if (need_cp) {
248 /* all the dirty node pages should be flushed for POR */
249 ret = f2fs_sync_fs(inode->i_sb, 1);
250
251 /*
252 * We've secured consistency through sync_fs. Following pino
253 * will be used only for fsynced inodes after checkpoint.
254 */
255 try_to_fix_pino(inode);
256 clear_inode_flag(inode, FI_APPEND_WRITE);
257 clear_inode_flag(inode, FI_UPDATE_WRITE);
258 goto out;
259 }
260 sync_nodes:
261 ret = fsync_node_pages(sbi, inode, &wbc, atomic);
262 if (ret)
263 goto out;
264
265 /* if cp_error was enabled, we should avoid infinite loop */
266 if (unlikely(f2fs_cp_error(sbi))) {
267 ret = -EIO;
268 goto out;
269 }
270
271 if (need_inode_block_update(sbi, ino)) {
272 f2fs_mark_inode_dirty_sync(inode, true);
273 f2fs_write_inode(inode, NULL);
274 goto sync_nodes;
275 }
276
277 ret = wait_on_node_pages_writeback(sbi, ino);
278 if (ret)
279 goto out;
280
281 /* once recovery info is written, don't need to tack this */
282 remove_ino_entry(sbi, ino, APPEND_INO);
283 clear_inode_flag(inode, FI_APPEND_WRITE);
284 flush_out:
285 remove_ino_entry(sbi, ino, UPDATE_INO);
286 clear_inode_flag(inode, FI_UPDATE_WRITE);
287 if (!atomic)
288 ret = f2fs_issue_flush(sbi);
289 f2fs_update_time(sbi, REQ_TIME);
290 out:
291 trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
292 f2fs_trace_ios(NULL, 1);
293 return ret;
294 }
295
296 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
297 {
298 return f2fs_do_sync_file(file, start, end, datasync, false);
299 }
300
301 static pgoff_t __get_first_dirty_index(struct address_space *mapping,
302 pgoff_t pgofs, int whence)
303 {
304 struct pagevec pvec;
305 int nr_pages;
306
307 if (whence != SEEK_DATA)
308 return 0;
309
310 /* find first dirty page index */
311 pagevec_init(&pvec, 0);
312 nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
313 PAGECACHE_TAG_DIRTY, 1);
314 pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
315 pagevec_release(&pvec);
316 return pgofs;
317 }
318
319 static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
320 int whence)
321 {
322 switch (whence) {
323 case SEEK_DATA:
324 if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
325 (blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
326 return true;
327 break;
328 case SEEK_HOLE:
329 if (blkaddr == NULL_ADDR)
330 return true;
331 break;
332 }
333 return false;
334 }
335
336 static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
337 {
338 struct inode *inode = file->f_mapping->host;
339 loff_t maxbytes = inode->i_sb->s_maxbytes;
340 struct dnode_of_data dn;
341 pgoff_t pgofs, end_offset, dirty;
342 loff_t data_ofs = offset;
343 loff_t isize;
344 int err = 0;
345
346 inode_lock(inode);
347
348 isize = i_size_read(inode);
349 if (offset >= isize)
350 goto fail;
351
352 /* handle inline data case */
353 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
354 if (whence == SEEK_HOLE)
355 data_ofs = isize;
356 goto found;
357 }
358
359 pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
360
361 dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
362
363 for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
364 set_new_dnode(&dn, inode, NULL, NULL, 0);
365 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
366 if (err && err != -ENOENT) {
367 goto fail;
368 } else if (err == -ENOENT) {
369 /* direct node does not exists */
370 if (whence == SEEK_DATA) {
371 pgofs = get_next_page_offset(&dn, pgofs);
372 continue;
373 } else {
374 goto found;
375 }
376 }
377
378 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
379
380 /* find data/hole in dnode block */
381 for (; dn.ofs_in_node < end_offset;
382 dn.ofs_in_node++, pgofs++,
383 data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
384 block_t blkaddr;
385 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
386
387 if (__found_offset(blkaddr, dirty, pgofs, whence)) {
388 f2fs_put_dnode(&dn);
389 goto found;
390 }
391 }
392 f2fs_put_dnode(&dn);
393 }
394
395 if (whence == SEEK_DATA)
396 goto fail;
397 found:
398 if (whence == SEEK_HOLE && data_ofs > isize)
399 data_ofs = isize;
400 inode_unlock(inode);
401 return vfs_setpos(file, data_ofs, maxbytes);
402 fail:
403 inode_unlock(inode);
404 return -ENXIO;
405 }
406
407 static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
408 {
409 struct inode *inode = file->f_mapping->host;
410 loff_t maxbytes = inode->i_sb->s_maxbytes;
411
412 switch (whence) {
413 case SEEK_SET:
414 case SEEK_CUR:
415 case SEEK_END:
416 return generic_file_llseek_size(file, offset, whence,
417 maxbytes, i_size_read(inode));
418 case SEEK_DATA:
419 case SEEK_HOLE:
420 if (offset < 0)
421 return -ENXIO;
422 return f2fs_seek_block(file, offset, whence);
423 }
424
425 return -EINVAL;
426 }
427
428 static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
429 {
430 struct inode *inode = file_inode(file);
431 int err;
432
433 /* we don't need to use inline_data strictly */
434 err = f2fs_convert_inline_inode(inode);
435 if (err)
436 return err;
437
438 file_accessed(file);
439 vma->vm_ops = &f2fs_file_vm_ops;
440 return 0;
441 }
442
443 static int f2fs_file_open(struct inode *inode, struct file *filp)
444 {
445 int ret = generic_file_open(inode, filp);
446 struct dentry *dir;
447
448 if (!ret && f2fs_encrypted_inode(inode)) {
449 ret = fscrypt_get_encryption_info(inode);
450 if (ret)
451 return -EACCES;
452 if (!fscrypt_has_encryption_key(inode))
453 return -ENOKEY;
454 }
455 dir = dget_parent(file_dentry(filp));
456 if (f2fs_encrypted_inode(d_inode(dir)) &&
457 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
458 dput(dir);
459 return -EPERM;
460 }
461 dput(dir);
462 return ret;
463 }
464
465 int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
466 {
467 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
468 struct f2fs_node *raw_node;
469 int nr_free = 0, ofs = dn->ofs_in_node, len = count;
470 __le32 *addr;
471
472 raw_node = F2FS_NODE(dn->node_page);
473 addr = blkaddr_in_node(raw_node) + ofs;
474
475 for (; count > 0; count--, addr++, dn->ofs_in_node++) {
476 block_t blkaddr = le32_to_cpu(*addr);
477 if (blkaddr == NULL_ADDR)
478 continue;
479
480 dn->data_blkaddr = NULL_ADDR;
481 set_data_blkaddr(dn);
482 invalidate_blocks(sbi, blkaddr);
483 if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
484 clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
485 nr_free++;
486 }
487
488 if (nr_free) {
489 pgoff_t fofs;
490 /*
491 * once we invalidate valid blkaddr in range [ofs, ofs + count],
492 * we will invalidate all blkaddr in the whole range.
493 */
494 fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
495 dn->inode) + ofs;
496 f2fs_update_extent_cache_range(dn, fofs, 0, len);
497 dec_valid_block_count(sbi, dn->inode, nr_free);
498 }
499 dn->ofs_in_node = ofs;
500
501 f2fs_update_time(sbi, REQ_TIME);
502 trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
503 dn->ofs_in_node, nr_free);
504 return nr_free;
505 }
506
507 void truncate_data_blocks(struct dnode_of_data *dn)
508 {
509 truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
510 }
511
512 static int truncate_partial_data_page(struct inode *inode, u64 from,
513 bool cache_only)
514 {
515 unsigned offset = from & (PAGE_SIZE - 1);
516 pgoff_t index = from >> PAGE_SHIFT;
517 struct address_space *mapping = inode->i_mapping;
518 struct page *page;
519
520 if (!offset && !cache_only)
521 return 0;
522
523 if (cache_only) {
524 page = find_lock_page(mapping, index);
525 if (page && PageUptodate(page))
526 goto truncate_out;
527 f2fs_put_page(page, 1);
528 return 0;
529 }
530
531 page = get_lock_data_page(inode, index, true);
532 if (IS_ERR(page))
533 return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
534 truncate_out:
535 f2fs_wait_on_page_writeback(page, DATA, true);
536 zero_user(page, offset, PAGE_SIZE - offset);
537
538 /* An encrypted inode should have a key and truncate the last page. */
539 f2fs_bug_on(F2FS_I_SB(inode), cache_only && f2fs_encrypted_inode(inode));
540 if (!cache_only)
541 set_page_dirty(page);
542 f2fs_put_page(page, 1);
543 return 0;
544 }
545
546 int truncate_blocks(struct inode *inode, u64 from, bool lock)
547 {
548 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
549 unsigned int blocksize = inode->i_sb->s_blocksize;
550 struct dnode_of_data dn;
551 pgoff_t free_from;
552 int count = 0, err = 0;
553 struct page *ipage;
554 bool truncate_page = false;
555
556 trace_f2fs_truncate_blocks_enter(inode, from);
557
558 free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
559
560 if (free_from >= sbi->max_file_blocks)
561 goto free_partial;
562
563 if (lock)
564 f2fs_lock_op(sbi);
565
566 ipage = get_node_page(sbi, inode->i_ino);
567 if (IS_ERR(ipage)) {
568 err = PTR_ERR(ipage);
569 goto out;
570 }
571
572 if (f2fs_has_inline_data(inode)) {
573 truncate_inline_inode(inode, ipage, from);
574 f2fs_put_page(ipage, 1);
575 truncate_page = true;
576 goto out;
577 }
578
579 set_new_dnode(&dn, inode, ipage, NULL, 0);
580 err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
581 if (err) {
582 if (err == -ENOENT)
583 goto free_next;
584 goto out;
585 }
586
587 count = ADDRS_PER_PAGE(dn.node_page, inode);
588
589 count -= dn.ofs_in_node;
590 f2fs_bug_on(sbi, count < 0);
591
592 if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
593 truncate_data_blocks_range(&dn, count);
594 free_from += count;
595 }
596
597 f2fs_put_dnode(&dn);
598 free_next:
599 err = truncate_inode_blocks(inode, free_from);
600 out:
601 if (lock)
602 f2fs_unlock_op(sbi);
603 free_partial:
604 /* lastly zero out the first data page */
605 if (!err)
606 err = truncate_partial_data_page(inode, from, truncate_page);
607
608 trace_f2fs_truncate_blocks_exit(inode, err);
609 return err;
610 }
611
612 int f2fs_truncate(struct inode *inode)
613 {
614 int err;
615
616 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
617 S_ISLNK(inode->i_mode)))
618 return 0;
619
620 trace_f2fs_truncate(inode);
621
622 #ifdef CONFIG_F2FS_FAULT_INJECTION
623 if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
624 f2fs_show_injection_info(FAULT_TRUNCATE);
625 return -EIO;
626 }
627 #endif
628 /* we should check inline_data size */
629 if (!f2fs_may_inline_data(inode)) {
630 err = f2fs_convert_inline_inode(inode);
631 if (err)
632 return err;
633 }
634
635 err = truncate_blocks(inode, i_size_read(inode), true);
636 if (err)
637 return err;
638
639 inode->i_mtime = inode->i_ctime = current_time(inode);
640 f2fs_mark_inode_dirty_sync(inode, false);
641 return 0;
642 }
643
644 int f2fs_getattr(const struct path *path, struct kstat *stat,
645 u32 request_mask, unsigned int query_flags)
646 {
647 struct inode *inode = d_inode(path->dentry);
648 struct f2fs_inode_info *fi = F2FS_I(inode);
649 unsigned int flags;
650
651 flags = fi->i_flags & FS_FL_USER_VISIBLE;
652 if (flags & FS_APPEND_FL)
653 stat->attributes |= STATX_ATTR_APPEND;
654 if (flags & FS_COMPR_FL)
655 stat->attributes |= STATX_ATTR_COMPRESSED;
656 if (f2fs_encrypted_inode(inode))
657 stat->attributes |= STATX_ATTR_ENCRYPTED;
658 if (flags & FS_IMMUTABLE_FL)
659 stat->attributes |= STATX_ATTR_IMMUTABLE;
660 if (flags & FS_NODUMP_FL)
661 stat->attributes |= STATX_ATTR_NODUMP;
662
663 stat->attributes_mask |= (STATX_ATTR_APPEND |
664 STATX_ATTR_COMPRESSED |
665 STATX_ATTR_ENCRYPTED |
666 STATX_ATTR_IMMUTABLE |
667 STATX_ATTR_NODUMP);
668
669 generic_fillattr(inode, stat);
670 return 0;
671 }
672
673 #ifdef CONFIG_F2FS_FS_POSIX_ACL
674 static void __setattr_copy(struct inode *inode, const struct iattr *attr)
675 {
676 unsigned int ia_valid = attr->ia_valid;
677
678 if (ia_valid & ATTR_UID)
679 inode->i_uid = attr->ia_uid;
680 if (ia_valid & ATTR_GID)
681 inode->i_gid = attr->ia_gid;
682 if (ia_valid & ATTR_ATIME)
683 inode->i_atime = timespec_trunc(attr->ia_atime,
684 inode->i_sb->s_time_gran);
685 if (ia_valid & ATTR_MTIME)
686 inode->i_mtime = timespec_trunc(attr->ia_mtime,
687 inode->i_sb->s_time_gran);
688 if (ia_valid & ATTR_CTIME)
689 inode->i_ctime = timespec_trunc(attr->ia_ctime,
690 inode->i_sb->s_time_gran);
691 if (ia_valid & ATTR_MODE) {
692 umode_t mode = attr->ia_mode;
693
694 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
695 mode &= ~S_ISGID;
696 set_acl_inode(inode, mode);
697 }
698 }
699 #else
700 #define __setattr_copy setattr_copy
701 #endif
702
703 int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
704 {
705 struct inode *inode = d_inode(dentry);
706 int err;
707 bool size_changed = false;
708
709 err = setattr_prepare(dentry, attr);
710 if (err)
711 return err;
712
713 if (attr->ia_valid & ATTR_SIZE) {
714 if (f2fs_encrypted_inode(inode)) {
715 err = fscrypt_get_encryption_info(inode);
716 if (err)
717 return err;
718 if (!fscrypt_has_encryption_key(inode))
719 return -ENOKEY;
720 }
721
722 if (attr->ia_size <= i_size_read(inode)) {
723 down_write(&F2FS_I(inode)->i_mmap_sem);
724 truncate_setsize(inode, attr->ia_size);
725 err = f2fs_truncate(inode);
726 up_write(&F2FS_I(inode)->i_mmap_sem);
727 if (err)
728 return err;
729 } else {
730 /*
731 * do not trim all blocks after i_size if target size is
732 * larger than i_size.
733 */
734 down_write(&F2FS_I(inode)->i_mmap_sem);
735 truncate_setsize(inode, attr->ia_size);
736 up_write(&F2FS_I(inode)->i_mmap_sem);
737
738 /* should convert inline inode here */
739 if (!f2fs_may_inline_data(inode)) {
740 err = f2fs_convert_inline_inode(inode);
741 if (err)
742 return err;
743 }
744 inode->i_mtime = inode->i_ctime = current_time(inode);
745 }
746
747 size_changed = true;
748 }
749
750 __setattr_copy(inode, attr);
751
752 if (attr->ia_valid & ATTR_MODE) {
753 err = posix_acl_chmod(inode, get_inode_mode(inode));
754 if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
755 inode->i_mode = F2FS_I(inode)->i_acl_mode;
756 clear_inode_flag(inode, FI_ACL_MODE);
757 }
758 }
759
760 /* file size may changed here */
761 f2fs_mark_inode_dirty_sync(inode, size_changed);
762
763 /* inode change will produce dirty node pages flushed by checkpoint */
764 f2fs_balance_fs(F2FS_I_SB(inode), true);
765
766 return err;
767 }
768
769 const struct inode_operations f2fs_file_inode_operations = {
770 .getattr = f2fs_getattr,
771 .setattr = f2fs_setattr,
772 .get_acl = f2fs_get_acl,
773 .set_acl = f2fs_set_acl,
774 #ifdef CONFIG_F2FS_FS_XATTR
775 .listxattr = f2fs_listxattr,
776 #endif
777 .fiemap = f2fs_fiemap,
778 };
779
780 static int fill_zero(struct inode *inode, pgoff_t index,
781 loff_t start, loff_t len)
782 {
783 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
784 struct page *page;
785
786 if (!len)
787 return 0;
788
789 f2fs_balance_fs(sbi, true);
790
791 f2fs_lock_op(sbi);
792 page = get_new_data_page(inode, NULL, index, false);
793 f2fs_unlock_op(sbi);
794
795 if (IS_ERR(page))
796 return PTR_ERR(page);
797
798 f2fs_wait_on_page_writeback(page, DATA, true);
799 zero_user(page, start, len);
800 set_page_dirty(page);
801 f2fs_put_page(page, 1);
802 return 0;
803 }
804
805 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
806 {
807 int err;
808
809 while (pg_start < pg_end) {
810 struct dnode_of_data dn;
811 pgoff_t end_offset, count;
812
813 set_new_dnode(&dn, inode, NULL, NULL, 0);
814 err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
815 if (err) {
816 if (err == -ENOENT) {
817 pg_start++;
818 continue;
819 }
820 return err;
821 }
822
823 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
824 count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
825
826 f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
827
828 truncate_data_blocks_range(&dn, count);
829 f2fs_put_dnode(&dn);
830
831 pg_start += count;
832 }
833 return 0;
834 }
835
836 static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
837 {
838 pgoff_t pg_start, pg_end;
839 loff_t off_start, off_end;
840 int ret;
841
842 ret = f2fs_convert_inline_inode(inode);
843 if (ret)
844 return ret;
845
846 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
847 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
848
849 off_start = offset & (PAGE_SIZE - 1);
850 off_end = (offset + len) & (PAGE_SIZE - 1);
851
852 if (pg_start == pg_end) {
853 ret = fill_zero(inode, pg_start, off_start,
854 off_end - off_start);
855 if (ret)
856 return ret;
857 } else {
858 if (off_start) {
859 ret = fill_zero(inode, pg_start++, off_start,
860 PAGE_SIZE - off_start);
861 if (ret)
862 return ret;
863 }
864 if (off_end) {
865 ret = fill_zero(inode, pg_end, 0, off_end);
866 if (ret)
867 return ret;
868 }
869
870 if (pg_start < pg_end) {
871 struct address_space *mapping = inode->i_mapping;
872 loff_t blk_start, blk_end;
873 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
874
875 f2fs_balance_fs(sbi, true);
876
877 blk_start = (loff_t)pg_start << PAGE_SHIFT;
878 blk_end = (loff_t)pg_end << PAGE_SHIFT;
879 down_write(&F2FS_I(inode)->i_mmap_sem);
880 truncate_inode_pages_range(mapping, blk_start,
881 blk_end - 1);
882
883 f2fs_lock_op(sbi);
884 ret = truncate_hole(inode, pg_start, pg_end);
885 f2fs_unlock_op(sbi);
886 up_write(&F2FS_I(inode)->i_mmap_sem);
887 }
888 }
889
890 return ret;
891 }
892
893 static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
894 int *do_replace, pgoff_t off, pgoff_t len)
895 {
896 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
897 struct dnode_of_data dn;
898 int ret, done, i;
899
900 next_dnode:
901 set_new_dnode(&dn, inode, NULL, NULL, 0);
902 ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
903 if (ret && ret != -ENOENT) {
904 return ret;
905 } else if (ret == -ENOENT) {
906 if (dn.max_level == 0)
907 return -ENOENT;
908 done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
909 blkaddr += done;
910 do_replace += done;
911 goto next;
912 }
913
914 done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
915 dn.ofs_in_node, len);
916 for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
917 *blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
918 if (!is_checkpointed_data(sbi, *blkaddr)) {
919
920 if (test_opt(sbi, LFS)) {
921 f2fs_put_dnode(&dn);
922 return -ENOTSUPP;
923 }
924
925 /* do not invalidate this block address */
926 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
927 *do_replace = 1;
928 }
929 }
930 f2fs_put_dnode(&dn);
931 next:
932 len -= done;
933 off += done;
934 if (len)
935 goto next_dnode;
936 return 0;
937 }
938
939 static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
940 int *do_replace, pgoff_t off, int len)
941 {
942 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
943 struct dnode_of_data dn;
944 int ret, i;
945
946 for (i = 0; i < len; i++, do_replace++, blkaddr++) {
947 if (*do_replace == 0)
948 continue;
949
950 set_new_dnode(&dn, inode, NULL, NULL, 0);
951 ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
952 if (ret) {
953 dec_valid_block_count(sbi, inode, 1);
954 invalidate_blocks(sbi, *blkaddr);
955 } else {
956 f2fs_update_data_blkaddr(&dn, *blkaddr);
957 }
958 f2fs_put_dnode(&dn);
959 }
960 return 0;
961 }
962
963 static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
964 block_t *blkaddr, int *do_replace,
965 pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
966 {
967 struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
968 pgoff_t i = 0;
969 int ret;
970
971 while (i < len) {
972 if (blkaddr[i] == NULL_ADDR && !full) {
973 i++;
974 continue;
975 }
976
977 if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
978 struct dnode_of_data dn;
979 struct node_info ni;
980 size_t new_size;
981 pgoff_t ilen;
982
983 set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
984 ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
985 if (ret)
986 return ret;
987
988 get_node_info(sbi, dn.nid, &ni);
989 ilen = min((pgoff_t)
990 ADDRS_PER_PAGE(dn.node_page, dst_inode) -
991 dn.ofs_in_node, len - i);
992 do {
993 dn.data_blkaddr = datablock_addr(dn.node_page,
994 dn.ofs_in_node);
995 truncate_data_blocks_range(&dn, 1);
996
997 if (do_replace[i]) {
998 f2fs_i_blocks_write(src_inode,
999 1, false);
1000 f2fs_i_blocks_write(dst_inode,
1001 1, true);
1002 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1003 blkaddr[i], ni.version, true, false);
1004
1005 do_replace[i] = 0;
1006 }
1007 dn.ofs_in_node++;
1008 i++;
1009 new_size = (dst + i) << PAGE_SHIFT;
1010 if (dst_inode->i_size < new_size)
1011 f2fs_i_size_write(dst_inode, new_size);
1012 } while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1013
1014 f2fs_put_dnode(&dn);
1015 } else {
1016 struct page *psrc, *pdst;
1017
1018 psrc = get_lock_data_page(src_inode, src + i, true);
1019 if (IS_ERR(psrc))
1020 return PTR_ERR(psrc);
1021 pdst = get_new_data_page(dst_inode, NULL, dst + i,
1022 true);
1023 if (IS_ERR(pdst)) {
1024 f2fs_put_page(psrc, 1);
1025 return PTR_ERR(pdst);
1026 }
1027 f2fs_copy_page(psrc, pdst);
1028 set_page_dirty(pdst);
1029 f2fs_put_page(pdst, 1);
1030 f2fs_put_page(psrc, 1);
1031
1032 ret = truncate_hole(src_inode, src + i, src + i + 1);
1033 if (ret)
1034 return ret;
1035 i++;
1036 }
1037 }
1038 return 0;
1039 }
1040
1041 static int __exchange_data_block(struct inode *src_inode,
1042 struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1043 pgoff_t len, bool full)
1044 {
1045 block_t *src_blkaddr;
1046 int *do_replace;
1047 pgoff_t olen;
1048 int ret;
1049
1050 while (len) {
1051 olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1052
1053 src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
1054 if (!src_blkaddr)
1055 return -ENOMEM;
1056
1057 do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL);
1058 if (!do_replace) {
1059 kvfree(src_blkaddr);
1060 return -ENOMEM;
1061 }
1062
1063 ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1064 do_replace, src, olen);
1065 if (ret)
1066 goto roll_back;
1067
1068 ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1069 do_replace, src, dst, olen, full);
1070 if (ret)
1071 goto roll_back;
1072
1073 src += olen;
1074 dst += olen;
1075 len -= olen;
1076
1077 kvfree(src_blkaddr);
1078 kvfree(do_replace);
1079 }
1080 return 0;
1081
1082 roll_back:
1083 __roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1084 kvfree(src_blkaddr);
1085 kvfree(do_replace);
1086 return ret;
1087 }
1088
1089 static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1090 {
1091 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1092 pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1093 int ret;
1094
1095 f2fs_balance_fs(sbi, true);
1096 f2fs_lock_op(sbi);
1097
1098 f2fs_drop_extent_tree(inode);
1099
1100 ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1101 f2fs_unlock_op(sbi);
1102 return ret;
1103 }
1104
1105 static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1106 {
1107 pgoff_t pg_start, pg_end;
1108 loff_t new_size;
1109 int ret;
1110
1111 if (offset + len >= i_size_read(inode))
1112 return -EINVAL;
1113
1114 /* collapse range should be aligned to block size of f2fs. */
1115 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1116 return -EINVAL;
1117
1118 ret = f2fs_convert_inline_inode(inode);
1119 if (ret)
1120 return ret;
1121
1122 pg_start = offset >> PAGE_SHIFT;
1123 pg_end = (offset + len) >> PAGE_SHIFT;
1124
1125 down_write(&F2FS_I(inode)->i_mmap_sem);
1126 /* write out all dirty pages from offset */
1127 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1128 if (ret)
1129 goto out;
1130
1131 truncate_pagecache(inode, offset);
1132
1133 ret = f2fs_do_collapse(inode, pg_start, pg_end);
1134 if (ret)
1135 goto out;
1136
1137 /* write out all moved pages, if possible */
1138 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1139 truncate_pagecache(inode, offset);
1140
1141 new_size = i_size_read(inode) - len;
1142 truncate_pagecache(inode, new_size);
1143
1144 ret = truncate_blocks(inode, new_size, true);
1145 if (!ret)
1146 f2fs_i_size_write(inode, new_size);
1147
1148 out:
1149 up_write(&F2FS_I(inode)->i_mmap_sem);
1150 return ret;
1151 }
1152
1153 static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1154 pgoff_t end)
1155 {
1156 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1157 pgoff_t index = start;
1158 unsigned int ofs_in_node = dn->ofs_in_node;
1159 blkcnt_t count = 0;
1160 int ret;
1161
1162 for (; index < end; index++, dn->ofs_in_node++) {
1163 if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
1164 count++;
1165 }
1166
1167 dn->ofs_in_node = ofs_in_node;
1168 ret = reserve_new_blocks(dn, count);
1169 if (ret)
1170 return ret;
1171
1172 dn->ofs_in_node = ofs_in_node;
1173 for (index = start; index < end; index++, dn->ofs_in_node++) {
1174 dn->data_blkaddr =
1175 datablock_addr(dn->node_page, dn->ofs_in_node);
1176 /*
1177 * reserve_new_blocks will not guarantee entire block
1178 * allocation.
1179 */
1180 if (dn->data_blkaddr == NULL_ADDR) {
1181 ret = -ENOSPC;
1182 break;
1183 }
1184 if (dn->data_blkaddr != NEW_ADDR) {
1185 invalidate_blocks(sbi, dn->data_blkaddr);
1186 dn->data_blkaddr = NEW_ADDR;
1187 set_data_blkaddr(dn);
1188 }
1189 }
1190
1191 f2fs_update_extent_cache_range(dn, start, 0, index - start);
1192
1193 return ret;
1194 }
1195
1196 static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1197 int mode)
1198 {
1199 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1200 struct address_space *mapping = inode->i_mapping;
1201 pgoff_t index, pg_start, pg_end;
1202 loff_t new_size = i_size_read(inode);
1203 loff_t off_start, off_end;
1204 int ret = 0;
1205
1206 ret = inode_newsize_ok(inode, (len + offset));
1207 if (ret)
1208 return ret;
1209
1210 ret = f2fs_convert_inline_inode(inode);
1211 if (ret)
1212 return ret;
1213
1214 down_write(&F2FS_I(inode)->i_mmap_sem);
1215 ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1216 if (ret)
1217 goto out_sem;
1218
1219 truncate_pagecache_range(inode, offset, offset + len - 1);
1220
1221 pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1222 pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1223
1224 off_start = offset & (PAGE_SIZE - 1);
1225 off_end = (offset + len) & (PAGE_SIZE - 1);
1226
1227 if (pg_start == pg_end) {
1228 ret = fill_zero(inode, pg_start, off_start,
1229 off_end - off_start);
1230 if (ret)
1231 goto out_sem;
1232
1233 new_size = max_t(loff_t, new_size, offset + len);
1234 } else {
1235 if (off_start) {
1236 ret = fill_zero(inode, pg_start++, off_start,
1237 PAGE_SIZE - off_start);
1238 if (ret)
1239 goto out_sem;
1240
1241 new_size = max_t(loff_t, new_size,
1242 (loff_t)pg_start << PAGE_SHIFT);
1243 }
1244
1245 for (index = pg_start; index < pg_end;) {
1246 struct dnode_of_data dn;
1247 unsigned int end_offset;
1248 pgoff_t end;
1249
1250 f2fs_lock_op(sbi);
1251
1252 set_new_dnode(&dn, inode, NULL, NULL, 0);
1253 ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1254 if (ret) {
1255 f2fs_unlock_op(sbi);
1256 goto out;
1257 }
1258
1259 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1260 end = min(pg_end, end_offset - dn.ofs_in_node + index);
1261
1262 ret = f2fs_do_zero_range(&dn, index, end);
1263 f2fs_put_dnode(&dn);
1264 f2fs_unlock_op(sbi);
1265
1266 f2fs_balance_fs(sbi, dn.node_changed);
1267
1268 if (ret)
1269 goto out;
1270
1271 index = end;
1272 new_size = max_t(loff_t, new_size,
1273 (loff_t)index << PAGE_SHIFT);
1274 }
1275
1276 if (off_end) {
1277 ret = fill_zero(inode, pg_end, 0, off_end);
1278 if (ret)
1279 goto out;
1280
1281 new_size = max_t(loff_t, new_size, offset + len);
1282 }
1283 }
1284
1285 out:
1286 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1287 f2fs_i_size_write(inode, new_size);
1288 out_sem:
1289 up_write(&F2FS_I(inode)->i_mmap_sem);
1290
1291 return ret;
1292 }
1293
1294 static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1295 {
1296 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1297 pgoff_t nr, pg_start, pg_end, delta, idx;
1298 loff_t new_size;
1299 int ret = 0;
1300
1301 new_size = i_size_read(inode) + len;
1302 ret = inode_newsize_ok(inode, new_size);
1303 if (ret)
1304 return ret;
1305
1306 if (offset >= i_size_read(inode))
1307 return -EINVAL;
1308
1309 /* insert range should be aligned to block size of f2fs. */
1310 if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1311 return -EINVAL;
1312
1313 ret = f2fs_convert_inline_inode(inode);
1314 if (ret)
1315 return ret;
1316
1317 f2fs_balance_fs(sbi, true);
1318
1319 down_write(&F2FS_I(inode)->i_mmap_sem);
1320 ret = truncate_blocks(inode, i_size_read(inode), true);
1321 if (ret)
1322 goto out;
1323
1324 /* write out all dirty pages from offset */
1325 ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1326 if (ret)
1327 goto out;
1328
1329 truncate_pagecache(inode, offset);
1330
1331 pg_start = offset >> PAGE_SHIFT;
1332 pg_end = (offset + len) >> PAGE_SHIFT;
1333 delta = pg_end - pg_start;
1334 idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
1335
1336 while (!ret && idx > pg_start) {
1337 nr = idx - pg_start;
1338 if (nr > delta)
1339 nr = delta;
1340 idx -= nr;
1341
1342 f2fs_lock_op(sbi);
1343 f2fs_drop_extent_tree(inode);
1344
1345 ret = __exchange_data_block(inode, inode, idx,
1346 idx + delta, nr, false);
1347 f2fs_unlock_op(sbi);
1348 }
1349
1350 /* write out all moved pages, if possible */
1351 filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1352 truncate_pagecache(inode, offset);
1353
1354 if (!ret)
1355 f2fs_i_size_write(inode, new_size);
1356 out:
1357 up_write(&F2FS_I(inode)->i_mmap_sem);
1358 return ret;
1359 }
1360
1361 static int expand_inode_data(struct inode *inode, loff_t offset,
1362 loff_t len, int mode)
1363 {
1364 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1365 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1366 pgoff_t pg_end;
1367 loff_t new_size = i_size_read(inode);
1368 loff_t off_end;
1369 int err;
1370
1371 err = inode_newsize_ok(inode, (len + offset));
1372 if (err)
1373 return err;
1374
1375 err = f2fs_convert_inline_inode(inode);
1376 if (err)
1377 return err;
1378
1379 f2fs_balance_fs(sbi, true);
1380
1381 pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1382 off_end = (offset + len) & (PAGE_SIZE - 1);
1383
1384 map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1385 map.m_len = pg_end - map.m_lblk;
1386 if (off_end)
1387 map.m_len++;
1388
1389 err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
1390 if (err) {
1391 pgoff_t last_off;
1392
1393 if (!map.m_len)
1394 return err;
1395
1396 last_off = map.m_lblk + map.m_len - 1;
1397
1398 /* update new size to the failed position */
1399 new_size = (last_off == pg_end) ? offset + len:
1400 (loff_t)(last_off + 1) << PAGE_SHIFT;
1401 } else {
1402 new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1403 }
1404
1405 if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1406 f2fs_i_size_write(inode, new_size);
1407
1408 return err;
1409 }
1410
1411 static long f2fs_fallocate(struct file *file, int mode,
1412 loff_t offset, loff_t len)
1413 {
1414 struct inode *inode = file_inode(file);
1415 long ret = 0;
1416
1417 /* f2fs only support ->fallocate for regular file */
1418 if (!S_ISREG(inode->i_mode))
1419 return -EINVAL;
1420
1421 if (f2fs_encrypted_inode(inode) &&
1422 (mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1423 return -EOPNOTSUPP;
1424
1425 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1426 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1427 FALLOC_FL_INSERT_RANGE))
1428 return -EOPNOTSUPP;
1429
1430 inode_lock(inode);
1431
1432 if (mode & FALLOC_FL_PUNCH_HOLE) {
1433 if (offset >= inode->i_size)
1434 goto out;
1435
1436 ret = punch_hole(inode, offset, len);
1437 } else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1438 ret = f2fs_collapse_range(inode, offset, len);
1439 } else if (mode & FALLOC_FL_ZERO_RANGE) {
1440 ret = f2fs_zero_range(inode, offset, len, mode);
1441 } else if (mode & FALLOC_FL_INSERT_RANGE) {
1442 ret = f2fs_insert_range(inode, offset, len);
1443 } else {
1444 ret = expand_inode_data(inode, offset, len, mode);
1445 }
1446
1447 if (!ret) {
1448 inode->i_mtime = inode->i_ctime = current_time(inode);
1449 f2fs_mark_inode_dirty_sync(inode, false);
1450 if (mode & FALLOC_FL_KEEP_SIZE)
1451 file_set_keep_isize(inode);
1452 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1453 }
1454
1455 out:
1456 inode_unlock(inode);
1457
1458 trace_f2fs_fallocate(inode, mode, offset, len, ret);
1459 return ret;
1460 }
1461
1462 static int f2fs_release_file(struct inode *inode, struct file *filp)
1463 {
1464 /*
1465 * f2fs_relase_file is called at every close calls. So we should
1466 * not drop any inmemory pages by close called by other process.
1467 */
1468 if (!(filp->f_mode & FMODE_WRITE) ||
1469 atomic_read(&inode->i_writecount) != 1)
1470 return 0;
1471
1472 /* some remained atomic pages should discarded */
1473 if (f2fs_is_atomic_file(inode))
1474 drop_inmem_pages(inode);
1475 if (f2fs_is_volatile_file(inode)) {
1476 clear_inode_flag(inode, FI_VOLATILE_FILE);
1477 stat_dec_volatile_write(inode);
1478 set_inode_flag(inode, FI_DROP_CACHE);
1479 filemap_fdatawrite(inode->i_mapping);
1480 clear_inode_flag(inode, FI_DROP_CACHE);
1481 }
1482 return 0;
1483 }
1484
1485 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1486 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
1487
1488 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1489 {
1490 if (S_ISDIR(mode))
1491 return flags;
1492 else if (S_ISREG(mode))
1493 return flags & F2FS_REG_FLMASK;
1494 else
1495 return flags & F2FS_OTHER_FLMASK;
1496 }
1497
1498 static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1499 {
1500 struct inode *inode = file_inode(filp);
1501 struct f2fs_inode_info *fi = F2FS_I(inode);
1502 unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1503 return put_user(flags, (int __user *)arg);
1504 }
1505
1506 static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1507 {
1508 struct inode *inode = file_inode(filp);
1509 struct f2fs_inode_info *fi = F2FS_I(inode);
1510 unsigned int flags;
1511 unsigned int oldflags;
1512 int ret;
1513
1514 if (!inode_owner_or_capable(inode))
1515 return -EACCES;
1516
1517 if (get_user(flags, (int __user *)arg))
1518 return -EFAULT;
1519
1520 ret = mnt_want_write_file(filp);
1521 if (ret)
1522 return ret;
1523
1524 inode_lock(inode);
1525
1526 flags = f2fs_mask_flags(inode->i_mode, flags);
1527
1528 oldflags = fi->i_flags;
1529
1530 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1531 if (!capable(CAP_LINUX_IMMUTABLE)) {
1532 inode_unlock(inode);
1533 ret = -EPERM;
1534 goto out;
1535 }
1536 }
1537
1538 flags = flags & FS_FL_USER_MODIFIABLE;
1539 flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1540 fi->i_flags = flags;
1541
1542 inode->i_ctime = current_time(inode);
1543 f2fs_set_inode_flags(inode);
1544 f2fs_mark_inode_dirty_sync(inode, false);
1545
1546 inode_unlock(inode);
1547 out:
1548 mnt_drop_write_file(filp);
1549 return ret;
1550 }
1551
1552 static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1553 {
1554 struct inode *inode = file_inode(filp);
1555
1556 return put_user(inode->i_generation, (int __user *)arg);
1557 }
1558
1559 static int f2fs_ioc_start_atomic_write(struct file *filp)
1560 {
1561 struct inode *inode = file_inode(filp);
1562 int ret;
1563
1564 if (!inode_owner_or_capable(inode))
1565 return -EACCES;
1566
1567 if (!S_ISREG(inode->i_mode))
1568 return -EINVAL;
1569
1570 ret = mnt_want_write_file(filp);
1571 if (ret)
1572 return ret;
1573
1574 inode_lock(inode);
1575
1576 if (f2fs_is_atomic_file(inode))
1577 goto out;
1578
1579 ret = f2fs_convert_inline_inode(inode);
1580 if (ret)
1581 goto out;
1582
1583 set_inode_flag(inode, FI_ATOMIC_FILE);
1584 set_inode_flag(inode, FI_HOT_DATA);
1585 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1586
1587 if (!get_dirty_pages(inode))
1588 goto inc_stat;
1589
1590 f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1591 "Unexpected flush for atomic writes: ino=%lu, npages=%u",
1592 inode->i_ino, get_dirty_pages(inode));
1593 ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1594 if (ret) {
1595 clear_inode_flag(inode, FI_ATOMIC_FILE);
1596 goto out;
1597 }
1598
1599 inc_stat:
1600 stat_inc_atomic_write(inode);
1601 stat_update_max_atomic_write(inode);
1602 out:
1603 inode_unlock(inode);
1604 mnt_drop_write_file(filp);
1605 return ret;
1606 }
1607
1608 static int f2fs_ioc_commit_atomic_write(struct file *filp)
1609 {
1610 struct inode *inode = file_inode(filp);
1611 int ret;
1612
1613 if (!inode_owner_or_capable(inode))
1614 return -EACCES;
1615
1616 ret = mnt_want_write_file(filp);
1617 if (ret)
1618 return ret;
1619
1620 inode_lock(inode);
1621
1622 if (f2fs_is_volatile_file(inode))
1623 goto err_out;
1624
1625 if (f2fs_is_atomic_file(inode)) {
1626 ret = commit_inmem_pages(inode);
1627 if (ret)
1628 goto err_out;
1629
1630 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1631 if (!ret) {
1632 clear_inode_flag(inode, FI_ATOMIC_FILE);
1633 stat_dec_atomic_write(inode);
1634 }
1635 } else {
1636 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1637 }
1638 err_out:
1639 inode_unlock(inode);
1640 mnt_drop_write_file(filp);
1641 return ret;
1642 }
1643
1644 static int f2fs_ioc_start_volatile_write(struct file *filp)
1645 {
1646 struct inode *inode = file_inode(filp);
1647 int ret;
1648
1649 if (!inode_owner_or_capable(inode))
1650 return -EACCES;
1651
1652 if (!S_ISREG(inode->i_mode))
1653 return -EINVAL;
1654
1655 ret = mnt_want_write_file(filp);
1656 if (ret)
1657 return ret;
1658
1659 inode_lock(inode);
1660
1661 if (f2fs_is_volatile_file(inode))
1662 goto out;
1663
1664 ret = f2fs_convert_inline_inode(inode);
1665 if (ret)
1666 goto out;
1667
1668 stat_inc_volatile_write(inode);
1669 stat_update_max_volatile_write(inode);
1670
1671 set_inode_flag(inode, FI_VOLATILE_FILE);
1672 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1673 out:
1674 inode_unlock(inode);
1675 mnt_drop_write_file(filp);
1676 return ret;
1677 }
1678
1679 static int f2fs_ioc_release_volatile_write(struct file *filp)
1680 {
1681 struct inode *inode = file_inode(filp);
1682 int ret;
1683
1684 if (!inode_owner_or_capable(inode))
1685 return -EACCES;
1686
1687 ret = mnt_want_write_file(filp);
1688 if (ret)
1689 return ret;
1690
1691 inode_lock(inode);
1692
1693 if (!f2fs_is_volatile_file(inode))
1694 goto out;
1695
1696 if (!f2fs_is_first_block_written(inode)) {
1697 ret = truncate_partial_data_page(inode, 0, true);
1698 goto out;
1699 }
1700
1701 ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1702 out:
1703 inode_unlock(inode);
1704 mnt_drop_write_file(filp);
1705 return ret;
1706 }
1707
1708 static int f2fs_ioc_abort_volatile_write(struct file *filp)
1709 {
1710 struct inode *inode = file_inode(filp);
1711 int ret;
1712
1713 if (!inode_owner_or_capable(inode))
1714 return -EACCES;
1715
1716 ret = mnt_want_write_file(filp);
1717 if (ret)
1718 return ret;
1719
1720 inode_lock(inode);
1721
1722 if (f2fs_is_atomic_file(inode))
1723 drop_inmem_pages(inode);
1724 if (f2fs_is_volatile_file(inode)) {
1725 clear_inode_flag(inode, FI_VOLATILE_FILE);
1726 stat_dec_volatile_write(inode);
1727 ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1728 }
1729
1730 inode_unlock(inode);
1731
1732 mnt_drop_write_file(filp);
1733 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1734 return ret;
1735 }
1736
1737 static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1738 {
1739 struct inode *inode = file_inode(filp);
1740 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1741 struct super_block *sb = sbi->sb;
1742 __u32 in;
1743 int ret;
1744
1745 if (!capable(CAP_SYS_ADMIN))
1746 return -EPERM;
1747
1748 if (get_user(in, (__u32 __user *)arg))
1749 return -EFAULT;
1750
1751 ret = mnt_want_write_file(filp);
1752 if (ret)
1753 return ret;
1754
1755 switch (in) {
1756 case F2FS_GOING_DOWN_FULLSYNC:
1757 sb = freeze_bdev(sb->s_bdev);
1758 if (sb && !IS_ERR(sb)) {
1759 f2fs_stop_checkpoint(sbi, false);
1760 thaw_bdev(sb->s_bdev, sb);
1761 }
1762 break;
1763 case F2FS_GOING_DOWN_METASYNC:
1764 /* do checkpoint only */
1765 f2fs_sync_fs(sb, 1);
1766 f2fs_stop_checkpoint(sbi, false);
1767 break;
1768 case F2FS_GOING_DOWN_NOSYNC:
1769 f2fs_stop_checkpoint(sbi, false);
1770 break;
1771 case F2FS_GOING_DOWN_METAFLUSH:
1772 sync_meta_pages(sbi, META, LONG_MAX);
1773 f2fs_stop_checkpoint(sbi, false);
1774 break;
1775 default:
1776 ret = -EINVAL;
1777 goto out;
1778 }
1779 f2fs_update_time(sbi, REQ_TIME);
1780 out:
1781 mnt_drop_write_file(filp);
1782 return ret;
1783 }
1784
1785 static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1786 {
1787 struct inode *inode = file_inode(filp);
1788 struct super_block *sb = inode->i_sb;
1789 struct request_queue *q = bdev_get_queue(sb->s_bdev);
1790 struct fstrim_range range;
1791 int ret;
1792
1793 if (!capable(CAP_SYS_ADMIN))
1794 return -EPERM;
1795
1796 if (!blk_queue_discard(q))
1797 return -EOPNOTSUPP;
1798
1799 if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1800 sizeof(range)))
1801 return -EFAULT;
1802
1803 ret = mnt_want_write_file(filp);
1804 if (ret)
1805 return ret;
1806
1807 range.minlen = max((unsigned int)range.minlen,
1808 q->limits.discard_granularity);
1809 ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1810 mnt_drop_write_file(filp);
1811 if (ret < 0)
1812 return ret;
1813
1814 if (copy_to_user((struct fstrim_range __user *)arg, &range,
1815 sizeof(range)))
1816 return -EFAULT;
1817 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1818 return 0;
1819 }
1820
1821 static bool uuid_is_nonzero(__u8 u[16])
1822 {
1823 int i;
1824
1825 for (i = 0; i < 16; i++)
1826 if (u[i])
1827 return true;
1828 return false;
1829 }
1830
1831 static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1832 {
1833 struct inode *inode = file_inode(filp);
1834
1835 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1836
1837 return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1838 }
1839
1840 static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1841 {
1842 return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1843 }
1844
1845 static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1846 {
1847 struct inode *inode = file_inode(filp);
1848 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1849 int err;
1850
1851 if (!f2fs_sb_has_crypto(inode->i_sb))
1852 return -EOPNOTSUPP;
1853
1854 if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1855 goto got_it;
1856
1857 err = mnt_want_write_file(filp);
1858 if (err)
1859 return err;
1860
1861 /* update superblock with uuid */
1862 generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1863
1864 err = f2fs_commit_super(sbi, false);
1865 if (err) {
1866 /* undo new data */
1867 memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1868 mnt_drop_write_file(filp);
1869 return err;
1870 }
1871 mnt_drop_write_file(filp);
1872 got_it:
1873 if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1874 16))
1875 return -EFAULT;
1876 return 0;
1877 }
1878
1879 static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1880 {
1881 struct inode *inode = file_inode(filp);
1882 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1883 __u32 sync;
1884 int ret;
1885
1886 if (!capable(CAP_SYS_ADMIN))
1887 return -EPERM;
1888
1889 if (get_user(sync, (__u32 __user *)arg))
1890 return -EFAULT;
1891
1892 if (f2fs_readonly(sbi->sb))
1893 return -EROFS;
1894
1895 ret = mnt_want_write_file(filp);
1896 if (ret)
1897 return ret;
1898
1899 if (!sync) {
1900 if (!mutex_trylock(&sbi->gc_mutex)) {
1901 ret = -EBUSY;
1902 goto out;
1903 }
1904 } else {
1905 mutex_lock(&sbi->gc_mutex);
1906 }
1907
1908 ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
1909 out:
1910 mnt_drop_write_file(filp);
1911 return ret;
1912 }
1913
1914 static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1915 {
1916 struct inode *inode = file_inode(filp);
1917 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1918 int ret;
1919
1920 if (!capable(CAP_SYS_ADMIN))
1921 return -EPERM;
1922
1923 if (f2fs_readonly(sbi->sb))
1924 return -EROFS;
1925
1926 ret = mnt_want_write_file(filp);
1927 if (ret)
1928 return ret;
1929
1930 ret = f2fs_sync_fs(sbi->sb, 1);
1931
1932 mnt_drop_write_file(filp);
1933 return ret;
1934 }
1935
1936 static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
1937 struct file *filp,
1938 struct f2fs_defragment *range)
1939 {
1940 struct inode *inode = file_inode(filp);
1941 struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1942 struct extent_info ei = {0,0,0};
1943 pgoff_t pg_start, pg_end;
1944 unsigned int blk_per_seg = sbi->blocks_per_seg;
1945 unsigned int total = 0, sec_num;
1946 block_t blk_end = 0;
1947 bool fragmented = false;
1948 int err;
1949
1950 /* if in-place-update policy is enabled, don't waste time here */
1951 if (need_inplace_update_policy(inode, NULL))
1952 return -EINVAL;
1953
1954 pg_start = range->start >> PAGE_SHIFT;
1955 pg_end = (range->start + range->len) >> PAGE_SHIFT;
1956
1957 f2fs_balance_fs(sbi, true);
1958
1959 inode_lock(inode);
1960
1961 /* writeback all dirty pages in the range */
1962 err = filemap_write_and_wait_range(inode->i_mapping, range->start,
1963 range->start + range->len - 1);
1964 if (err)
1965 goto out;
1966
1967 /*
1968 * lookup mapping info in extent cache, skip defragmenting if physical
1969 * block addresses are continuous.
1970 */
1971 if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
1972 if (ei.fofs + ei.len >= pg_end)
1973 goto out;
1974 }
1975
1976 map.m_lblk = pg_start;
1977
1978 /*
1979 * lookup mapping info in dnode page cache, skip defragmenting if all
1980 * physical block addresses are continuous even if there are hole(s)
1981 * in logical blocks.
1982 */
1983 while (map.m_lblk < pg_end) {
1984 map.m_len = pg_end - map.m_lblk;
1985 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1986 if (err)
1987 goto out;
1988
1989 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1990 map.m_lblk++;
1991 continue;
1992 }
1993
1994 if (blk_end && blk_end != map.m_pblk) {
1995 fragmented = true;
1996 break;
1997 }
1998 blk_end = map.m_pblk + map.m_len;
1999
2000 map.m_lblk += map.m_len;
2001 }
2002
2003 if (!fragmented)
2004 goto out;
2005
2006 map.m_lblk = pg_start;
2007 map.m_len = pg_end - pg_start;
2008
2009 sec_num = (map.m_len + BLKS_PER_SEC(sbi) - 1) / BLKS_PER_SEC(sbi);
2010
2011 /*
2012 * make sure there are enough free section for LFS allocation, this can
2013 * avoid defragment running in SSR mode when free section are allocated
2014 * intensively
2015 */
2016 if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2017 err = -EAGAIN;
2018 goto out;
2019 }
2020
2021 while (map.m_lblk < pg_end) {
2022 pgoff_t idx;
2023 int cnt = 0;
2024
2025 do_map:
2026 map.m_len = pg_end - map.m_lblk;
2027 err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
2028 if (err)
2029 goto clear_out;
2030
2031 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2032 map.m_lblk++;
2033 continue;
2034 }
2035
2036 set_inode_flag(inode, FI_DO_DEFRAG);
2037
2038 idx = map.m_lblk;
2039 while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2040 struct page *page;
2041
2042 page = get_lock_data_page(inode, idx, true);
2043 if (IS_ERR(page)) {
2044 err = PTR_ERR(page);
2045 goto clear_out;
2046 }
2047
2048 set_page_dirty(page);
2049 f2fs_put_page(page, 1);
2050
2051 idx++;
2052 cnt++;
2053 total++;
2054 }
2055
2056 map.m_lblk = idx;
2057
2058 if (idx < pg_end && cnt < blk_per_seg)
2059 goto do_map;
2060
2061 clear_inode_flag(inode, FI_DO_DEFRAG);
2062
2063 err = filemap_fdatawrite(inode->i_mapping);
2064 if (err)
2065 goto out;
2066 }
2067 clear_out:
2068 clear_inode_flag(inode, FI_DO_DEFRAG);
2069 out:
2070 inode_unlock(inode);
2071 if (!err)
2072 range->len = (u64)total << PAGE_SHIFT;
2073 return err;
2074 }
2075
2076 static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2077 {
2078 struct inode *inode = file_inode(filp);
2079 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2080 struct f2fs_defragment range;
2081 int err;
2082
2083 if (!capable(CAP_SYS_ADMIN))
2084 return -EPERM;
2085
2086 if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2087 return -EINVAL;
2088
2089 if (f2fs_readonly(sbi->sb))
2090 return -EROFS;
2091
2092 if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2093 sizeof(range)))
2094 return -EFAULT;
2095
2096 /* verify alignment of offset & size */
2097 if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2098 return -EINVAL;
2099
2100 if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2101 sbi->max_file_blocks))
2102 return -EINVAL;
2103
2104 err = mnt_want_write_file(filp);
2105 if (err)
2106 return err;
2107
2108 err = f2fs_defragment_range(sbi, filp, &range);
2109 mnt_drop_write_file(filp);
2110
2111 f2fs_update_time(sbi, REQ_TIME);
2112 if (err < 0)
2113 return err;
2114
2115 if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2116 sizeof(range)))
2117 return -EFAULT;
2118
2119 return 0;
2120 }
2121
2122 static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2123 struct file *file_out, loff_t pos_out, size_t len)
2124 {
2125 struct inode *src = file_inode(file_in);
2126 struct inode *dst = file_inode(file_out);
2127 struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2128 size_t olen = len, dst_max_i_size = 0;
2129 size_t dst_osize;
2130 int ret;
2131
2132 if (file_in->f_path.mnt != file_out->f_path.mnt ||
2133 src->i_sb != dst->i_sb)
2134 return -EXDEV;
2135
2136 if (unlikely(f2fs_readonly(src->i_sb)))
2137 return -EROFS;
2138
2139 if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2140 return -EINVAL;
2141
2142 if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2143 return -EOPNOTSUPP;
2144
2145 if (src == dst) {
2146 if (pos_in == pos_out)
2147 return 0;
2148 if (pos_out > pos_in && pos_out < pos_in + len)
2149 return -EINVAL;
2150 }
2151
2152 inode_lock(src);
2153 if (src != dst) {
2154 if (!inode_trylock(dst)) {
2155 ret = -EBUSY;
2156 goto out;
2157 }
2158 }
2159
2160 ret = -EINVAL;
2161 if (pos_in + len > src->i_size || pos_in + len < pos_in)
2162 goto out_unlock;
2163 if (len == 0)
2164 olen = len = src->i_size - pos_in;
2165 if (pos_in + len == src->i_size)
2166 len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2167 if (len == 0) {
2168 ret = 0;
2169 goto out_unlock;
2170 }
2171
2172 dst_osize = dst->i_size;
2173 if (pos_out + olen > dst->i_size)
2174 dst_max_i_size = pos_out + olen;
2175
2176 /* verify the end result is block aligned */
2177 if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2178 !IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2179 !IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2180 goto out_unlock;
2181
2182 ret = f2fs_convert_inline_inode(src);
2183 if (ret)
2184 goto out_unlock;
2185
2186 ret = f2fs_convert_inline_inode(dst);
2187 if (ret)
2188 goto out_unlock;
2189
2190 /* write out all dirty pages from offset */
2191 ret = filemap_write_and_wait_range(src->i_mapping,
2192 pos_in, pos_in + len);
2193 if (ret)
2194 goto out_unlock;
2195
2196 ret = filemap_write_and_wait_range(dst->i_mapping,
2197 pos_out, pos_out + len);
2198 if (ret)
2199 goto out_unlock;
2200
2201 f2fs_balance_fs(sbi, true);
2202 f2fs_lock_op(sbi);
2203 ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2204 pos_out >> F2FS_BLKSIZE_BITS,
2205 len >> F2FS_BLKSIZE_BITS, false);
2206
2207 if (!ret) {
2208 if (dst_max_i_size)
2209 f2fs_i_size_write(dst, dst_max_i_size);
2210 else if (dst_osize != dst->i_size)
2211 f2fs_i_size_write(dst, dst_osize);
2212 }
2213 f2fs_unlock_op(sbi);
2214 out_unlock:
2215 if (src != dst)
2216 inode_unlock(dst);
2217 out:
2218 inode_unlock(src);
2219 return ret;
2220 }
2221
2222 static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2223 {
2224 struct f2fs_move_range range;
2225 struct fd dst;
2226 int err;
2227
2228 if (!(filp->f_mode & FMODE_READ) ||
2229 !(filp->f_mode & FMODE_WRITE))
2230 return -EBADF;
2231
2232 if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2233 sizeof(range)))
2234 return -EFAULT;
2235
2236 dst = fdget(range.dst_fd);
2237 if (!dst.file)
2238 return -EBADF;
2239
2240 if (!(dst.file->f_mode & FMODE_WRITE)) {
2241 err = -EBADF;
2242 goto err_out;
2243 }
2244
2245 err = mnt_want_write_file(filp);
2246 if (err)
2247 goto err_out;
2248
2249 err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2250 range.pos_out, range.len);
2251
2252 mnt_drop_write_file(filp);
2253 if (err)
2254 goto err_out;
2255
2256 if (copy_to_user((struct f2fs_move_range __user *)arg,
2257 &range, sizeof(range)))
2258 err = -EFAULT;
2259 err_out:
2260 fdput(dst);
2261 return err;
2262 }
2263
2264 static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2265 {
2266 struct inode *inode = file_inode(filp);
2267 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2268 struct sit_info *sm = SIT_I(sbi);
2269 unsigned int start_segno = 0, end_segno = 0;
2270 unsigned int dev_start_segno = 0, dev_end_segno = 0;
2271 struct f2fs_flush_device range;
2272 int ret;
2273
2274 if (!capable(CAP_SYS_ADMIN))
2275 return -EPERM;
2276
2277 if (f2fs_readonly(sbi->sb))
2278 return -EROFS;
2279
2280 if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2281 sizeof(range)))
2282 return -EFAULT;
2283
2284 if (sbi->s_ndevs <= 1 || sbi->s_ndevs - 1 <= range.dev_num ||
2285 sbi->segs_per_sec != 1) {
2286 f2fs_msg(sbi->sb, KERN_WARNING,
2287 "Can't flush %u in %d for segs_per_sec %u != 1\n",
2288 range.dev_num, sbi->s_ndevs,
2289 sbi->segs_per_sec);
2290 return -EINVAL;
2291 }
2292
2293 ret = mnt_want_write_file(filp);
2294 if (ret)
2295 return ret;
2296
2297 if (range.dev_num != 0)
2298 dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2299 dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2300
2301 start_segno = sm->last_victim[FLUSH_DEVICE];
2302 if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2303 start_segno = dev_start_segno;
2304 end_segno = min(start_segno + range.segments, dev_end_segno);
2305
2306 while (start_segno < end_segno) {
2307 if (!mutex_trylock(&sbi->gc_mutex)) {
2308 ret = -EBUSY;
2309 goto out;
2310 }
2311 sm->last_victim[GC_CB] = end_segno + 1;
2312 sm->last_victim[GC_GREEDY] = end_segno + 1;
2313 sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2314 ret = f2fs_gc(sbi, true, true, start_segno);
2315 if (ret == -EAGAIN)
2316 ret = 0;
2317 else if (ret < 0)
2318 break;
2319 start_segno++;
2320 }
2321 out:
2322 mnt_drop_write_file(filp);
2323 return ret;
2324 }
2325
2326
2327 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2328 {
2329 switch (cmd) {
2330 case F2FS_IOC_GETFLAGS:
2331 return f2fs_ioc_getflags(filp, arg);
2332 case F2FS_IOC_SETFLAGS:
2333 return f2fs_ioc_setflags(filp, arg);
2334 case F2FS_IOC_GETVERSION:
2335 return f2fs_ioc_getversion(filp, arg);
2336 case F2FS_IOC_START_ATOMIC_WRITE:
2337 return f2fs_ioc_start_atomic_write(filp);
2338 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2339 return f2fs_ioc_commit_atomic_write(filp);
2340 case F2FS_IOC_START_VOLATILE_WRITE:
2341 return f2fs_ioc_start_volatile_write(filp);
2342 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2343 return f2fs_ioc_release_volatile_write(filp);
2344 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2345 return f2fs_ioc_abort_volatile_write(filp);
2346 case F2FS_IOC_SHUTDOWN:
2347 return f2fs_ioc_shutdown(filp, arg);
2348 case FITRIM:
2349 return f2fs_ioc_fitrim(filp, arg);
2350 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2351 return f2fs_ioc_set_encryption_policy(filp, arg);
2352 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2353 return f2fs_ioc_get_encryption_policy(filp, arg);
2354 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2355 return f2fs_ioc_get_encryption_pwsalt(filp, arg);
2356 case F2FS_IOC_GARBAGE_COLLECT:
2357 return f2fs_ioc_gc(filp, arg);
2358 case F2FS_IOC_WRITE_CHECKPOINT:
2359 return f2fs_ioc_write_checkpoint(filp, arg);
2360 case F2FS_IOC_DEFRAGMENT:
2361 return f2fs_ioc_defragment(filp, arg);
2362 case F2FS_IOC_MOVE_RANGE:
2363 return f2fs_ioc_move_range(filp, arg);
2364 case F2FS_IOC_FLUSH_DEVICE:
2365 return f2fs_ioc_flush_device(filp, arg);
2366 default:
2367 return -ENOTTY;
2368 }
2369 }
2370
2371 static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2372 {
2373 struct file *file = iocb->ki_filp;
2374 struct inode *inode = file_inode(file);
2375 struct blk_plug plug;
2376 ssize_t ret;
2377
2378 inode_lock(inode);
2379 ret = generic_write_checks(iocb, from);
2380 if (ret > 0) {
2381 int err;
2382
2383 if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
2384 set_inode_flag(inode, FI_NO_PREALLOC);
2385
2386 err = f2fs_preallocate_blocks(iocb, from);
2387 if (err) {
2388 inode_unlock(inode);
2389 return err;
2390 }
2391 blk_start_plug(&plug);
2392 ret = __generic_file_write_iter(iocb, from);
2393 blk_finish_plug(&plug);
2394 clear_inode_flag(inode, FI_NO_PREALLOC);
2395 }
2396 inode_unlock(inode);
2397
2398 if (ret > 0)
2399 ret = generic_write_sync(iocb, ret);
2400 return ret;
2401 }
2402
2403 #ifdef CONFIG_COMPAT
2404 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2405 {
2406 switch (cmd) {
2407 case F2FS_IOC32_GETFLAGS:
2408 cmd = F2FS_IOC_GETFLAGS;
2409 break;
2410 case F2FS_IOC32_SETFLAGS:
2411 cmd = F2FS_IOC_SETFLAGS;
2412 break;
2413 case F2FS_IOC32_GETVERSION:
2414 cmd = F2FS_IOC_GETVERSION;
2415 break;
2416 case F2FS_IOC_START_ATOMIC_WRITE:
2417 case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2418 case F2FS_IOC_START_VOLATILE_WRITE:
2419 case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2420 case F2FS_IOC_ABORT_VOLATILE_WRITE:
2421 case F2FS_IOC_SHUTDOWN:
2422 case F2FS_IOC_SET_ENCRYPTION_POLICY:
2423 case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2424 case F2FS_IOC_GET_ENCRYPTION_POLICY:
2425 case F2FS_IOC_GARBAGE_COLLECT:
2426 case F2FS_IOC_WRITE_CHECKPOINT:
2427 case F2FS_IOC_DEFRAGMENT:
2428 case F2FS_IOC_MOVE_RANGE:
2429 case F2FS_IOC_FLUSH_DEVICE:
2430 break;
2431 default:
2432 return -ENOIOCTLCMD;
2433 }
2434 return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2435 }
2436 #endif
2437
2438 const struct file_operations f2fs_file_operations = {
2439 .llseek = f2fs_llseek,
2440 .read_iter = generic_file_read_iter,
2441 .write_iter = f2fs_file_write_iter,
2442 .open = f2fs_file_open,
2443 .release = f2fs_release_file,
2444 .mmap = f2fs_file_mmap,
2445 .fsync = f2fs_sync_file,
2446 .fallocate = f2fs_fallocate,
2447 .unlocked_ioctl = f2fs_ioctl,
2448 #ifdef CONFIG_COMPAT
2449 .compat_ioctl = f2fs_compat_ioctl,
2450 #endif
2451 .splice_read = generic_file_splice_read,
2452 .splice_write = iter_file_splice_write,
2453 };