f2fs: catch up to v4.14-rc1
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22 #include <linux/vmalloc.h>
23 #include <linux/bio.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #ifdef CONFIG_F2FS_FS_ENCRYPTION
27 #include <linux/fscrypt_supp.h>
28 #else
29 #include <linux/fscrypt_notsupp.h>
30 #endif
31 #include <crypto/hash.h>
32 #include <linux/writeback.h>
33
34 #ifdef CONFIG_F2FS_CHECK_FS
35 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
36 #else
37 #define f2fs_bug_on(sbi, condition) \
38 do { \
39 if (unlikely(condition)) { \
40 WARN_ON(1); \
41 set_sbi_flag(sbi, SBI_NEED_FSCK); \
42 } \
43 } while (0)
44 #endif
45
46 #ifdef CONFIG_F2FS_FAULT_INJECTION
47 enum {
48 FAULT_KMALLOC,
49 FAULT_PAGE_ALLOC,
50 FAULT_ALLOC_NID,
51 FAULT_ORPHAN,
52 FAULT_BLOCK,
53 FAULT_DIR_DEPTH,
54 FAULT_EVICT_INODE,
55 FAULT_TRUNCATE,
56 FAULT_IO,
57 FAULT_CHECKPOINT,
58 FAULT_MAX,
59 };
60
61 struct f2fs_fault_info {
62 atomic_t inject_ops;
63 unsigned int inject_rate;
64 unsigned int inject_type;
65 };
66
67 extern char *fault_name[FAULT_MAX];
68 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & (1 << (type)))
69 #endif
70
71 /*
72 * For mount options
73 */
74 #define F2FS_MOUNT_BG_GC 0x00000001
75 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
76 #define F2FS_MOUNT_DISCARD 0x00000004
77 #define F2FS_MOUNT_NOHEAP 0x00000008
78 #define F2FS_MOUNT_XATTR_USER 0x00000010
79 #define F2FS_MOUNT_POSIX_ACL 0x00000020
80 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
81 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
82 #define F2FS_MOUNT_INLINE_DATA 0x00000100
83 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
84 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
85 #define F2FS_MOUNT_NOBARRIER 0x00000800
86 #define F2FS_MOUNT_FASTBOOT 0x00001000
87 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
88 #define F2FS_MOUNT_FORCE_FG_GC 0x00004000
89 #define F2FS_MOUNT_DATA_FLUSH 0x00008000
90 #define F2FS_MOUNT_FAULT_INJECTION 0x00010000
91 #define F2FS_MOUNT_ADAPTIVE 0x00020000
92 #define F2FS_MOUNT_LFS 0x00040000
93 #define F2FS_MOUNT_USRQUOTA 0x00080000
94 #define F2FS_MOUNT_GRPQUOTA 0x00100000
95 #define F2FS_MOUNT_PRJQUOTA 0x00200000
96 #define F2FS_MOUNT_QUOTA 0x00400000
97
98 #define clear_opt(sbi, option) ((sbi)->mount_opt.opt &= ~F2FS_MOUNT_##option)
99 #define set_opt(sbi, option) ((sbi)->mount_opt.opt |= F2FS_MOUNT_##option)
100 #define test_opt(sbi, option) ((sbi)->mount_opt.opt & F2FS_MOUNT_##option)
101
102 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
103 typecheck(unsigned long long, b) && \
104 ((long long)((a) - (b)) > 0))
105
106 typedef u32 block_t; /*
107 * should not change u32, since it is the on-disk block
108 * address format, __le32.
109 */
110 typedef u32 nid_t;
111
112 struct f2fs_mount_info {
113 unsigned int opt;
114 };
115
116 #define F2FS_FEATURE_ENCRYPT 0x0001
117 #define F2FS_FEATURE_BLKZONED 0x0002
118 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
119 #define F2FS_FEATURE_EXTRA_ATTR 0x0008
120 #define F2FS_FEATURE_PRJQUOTA 0x0010
121 #define F2FS_FEATURE_INODE_CHKSUM 0x0020
122
123 #define F2FS_HAS_FEATURE(sb, mask) \
124 ((F2FS_SB(sb)->raw_super->feature & cpu_to_le32(mask)) != 0)
125 #define F2FS_SET_FEATURE(sb, mask) \
126 (F2FS_SB(sb)->raw_super->feature |= cpu_to_le32(mask))
127 #define F2FS_CLEAR_FEATURE(sb, mask) \
128 (F2FS_SB(sb)->raw_super->feature &= ~cpu_to_le32(mask))
129
130 /* bio stuffs */
131 #define REQ_OP_READ READ
132 #define REQ_OP_WRITE WRITE
133 #define bio_op(bio) ((bio)->bi_rw & 1)
134
135 static inline void bio_set_op_attrs(struct bio *bio, unsigned op,
136 unsigned op_flags)
137 {
138 bio->bi_rw = op | op_flags;
139 }
140
141 static inline int wbc_to_write_flags(struct writeback_control *wbc)
142 {
143 if (wbc->sync_mode == WB_SYNC_ALL)
144 return REQ_SYNC | REQ_NOIDLE;
145 return 0;
146 }
147
148 /**
149 * wq_has_sleeper - check if there are any waiting processes
150 * @wq: wait queue head
151 *
152 * Returns true if wq has waiting processes
153 *
154 * Please refer to the comment for waitqueue_active.
155 */
156 static inline bool wq_has_sleeper(wait_queue_head_t *wq)
157 {
158 /*
159 * We need to be sure we are in sync with the
160 * add_wait_queue modifications to the wait queue.
161 *
162 * This memory barrier should be paired with one on the
163 * waiting side.
164 */
165 smp_mb();
166 return waitqueue_active(wq);
167 }
168
169 static inline void inode_nohighmem(struct inode *inode)
170 {
171 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
172 }
173
174 /**
175 * current_time - Return FS time
176 * @inode: inode.
177 *
178 * Return the current time truncated to the time granularity supported by
179 * the fs.
180 *
181 * Note that inode and inode->sb cannot be NULL.
182 * Otherwise, the function warns and returns time without truncation.
183 */
184 static inline struct timespec current_time(struct inode *inode)
185 {
186 struct timespec now = current_kernel_time();
187
188 if (unlikely(!inode->i_sb)) {
189 WARN(1, "current_time() called with uninitialized super_block in the inode");
190 return now;
191 }
192
193 return timespec_trunc(now, inode->i_sb->s_time_gran);
194 }
195
196 /*
197 * For checkpoint manager
198 */
199 enum {
200 NAT_BITMAP,
201 SIT_BITMAP
202 };
203
204 #define CP_UMOUNT 0x00000001
205 #define CP_FASTBOOT 0x00000002
206 #define CP_SYNC 0x00000004
207 #define CP_RECOVERY 0x00000008
208 #define CP_DISCARD 0x00000010
209 #define CP_TRIMMED 0x00000020
210
211 #define DEF_BATCHED_TRIM_SECTIONS 2048
212 #define BATCHED_TRIM_SEGMENTS(sbi) \
213 (GET_SEG_FROM_SEC(sbi, SM_I(sbi)->trim_sections))
214 #define BATCHED_TRIM_BLOCKS(sbi) \
215 (BATCHED_TRIM_SEGMENTS(sbi) << (sbi)->log_blocks_per_seg)
216 #define MAX_DISCARD_BLOCKS(sbi) BLKS_PER_SEC(sbi)
217 #define DISCARD_ISSUE_RATE 8
218 #define DEF_MIN_DISCARD_ISSUE_TIME 50 /* 50 ms, if exists */
219 #define DEF_MAX_DISCARD_ISSUE_TIME 60000 /* 60 s, if no candidates */
220 #define DEF_CP_INTERVAL 60 /* 60 secs */
221 #define DEF_IDLE_INTERVAL 5 /* 5 secs */
222
223 struct cp_control {
224 int reason;
225 __u64 trim_start;
226 __u64 trim_end;
227 __u64 trim_minlen;
228 __u64 trimmed;
229 };
230
231 /*
232 * For CP/NAT/SIT/SSA readahead
233 */
234 enum {
235 META_CP,
236 META_NAT,
237 META_SIT,
238 META_SSA,
239 META_POR,
240 };
241
242 /* for the list of ino */
243 enum {
244 ORPHAN_INO, /* for orphan ino list */
245 APPEND_INO, /* for append ino list */
246 UPDATE_INO, /* for update ino list */
247 MAX_INO_ENTRY, /* max. list */
248 };
249
250 struct ino_entry {
251 struct list_head list; /* list head */
252 nid_t ino; /* inode number */
253 };
254
255 /* for the list of inodes to be GCed */
256 struct inode_entry {
257 struct list_head list; /* list head */
258 struct inode *inode; /* vfs inode pointer */
259 };
260
261 /* for the bitmap indicate blocks to be discarded */
262 struct discard_entry {
263 struct list_head list; /* list head */
264 block_t start_blkaddr; /* start blockaddr of current segment */
265 unsigned char discard_map[SIT_VBLOCK_MAP_SIZE]; /* segment discard bitmap */
266 };
267
268 /* default discard granularity of inner discard thread, unit: block count */
269 #define DEFAULT_DISCARD_GRANULARITY 16
270
271 /* max discard pend list number */
272 #define MAX_PLIST_NUM 512
273 #define plist_idx(blk_num) ((blk_num) >= MAX_PLIST_NUM ? \
274 (MAX_PLIST_NUM - 1) : (blk_num - 1))
275
276 #define P_ACTIVE 0x01
277 #define P_TRIM 0x02
278 #define plist_issue(tag) (((tag) & P_ACTIVE) || ((tag) & P_TRIM))
279
280 enum {
281 D_PREP,
282 D_SUBMIT,
283 D_DONE,
284 };
285
286 struct discard_info {
287 block_t lstart; /* logical start address */
288 block_t len; /* length */
289 block_t start; /* actual start address in dev */
290 };
291
292 struct discard_cmd {
293 struct rb_node rb_node; /* rb node located in rb-tree */
294 union {
295 struct {
296 block_t lstart; /* logical start address */
297 block_t len; /* length */
298 block_t start; /* actual start address in dev */
299 };
300 struct discard_info di; /* discard info */
301
302 };
303 struct list_head list; /* command list */
304 struct completion wait; /* compleation */
305 struct block_device *bdev; /* bdev */
306 unsigned short ref; /* reference count */
307 unsigned char state; /* state */
308 int error; /* bio error */
309 };
310
311 struct discard_cmd_control {
312 struct task_struct *f2fs_issue_discard; /* discard thread */
313 struct list_head entry_list; /* 4KB discard entry list */
314 struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
315 unsigned char pend_list_tag[MAX_PLIST_NUM];/* tag for pending entries */
316 struct list_head wait_list; /* store on-flushing entries */
317 wait_queue_head_t discard_wait_queue; /* waiting queue for wake-up */
318 unsigned int discard_wake; /* to wake up discard thread */
319 struct mutex cmd_lock;
320 unsigned int nr_discards; /* # of discards in the list */
321 unsigned int max_discards; /* max. discards to be issued */
322 unsigned int discard_granularity; /* discard granularity */
323 unsigned int undiscard_blks; /* # of undiscard blocks */
324 atomic_t issued_discard; /* # of issued discard */
325 atomic_t issing_discard; /* # of issing discard */
326 atomic_t discard_cmd_cnt; /* # of cached cmd count */
327 struct rb_root root; /* root of discard rb-tree */
328 };
329
330 /* for the list of fsync inodes, used only during recovery */
331 struct fsync_inode_entry {
332 struct list_head list; /* list head */
333 struct inode *inode; /* vfs inode pointer */
334 block_t blkaddr; /* block address locating the last fsync */
335 block_t last_dentry; /* block address locating the last dentry */
336 };
337
338 #define nats_in_cursum(jnl) (le16_to_cpu((jnl)->n_nats))
339 #define sits_in_cursum(jnl) (le16_to_cpu((jnl)->n_sits))
340
341 #define nat_in_journal(jnl, i) ((jnl)->nat_j.entries[i].ne)
342 #define nid_in_journal(jnl, i) ((jnl)->nat_j.entries[i].nid)
343 #define sit_in_journal(jnl, i) ((jnl)->sit_j.entries[i].se)
344 #define segno_in_journal(jnl, i) ((jnl)->sit_j.entries[i].segno)
345
346 #define MAX_NAT_JENTRIES(jnl) (NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
347 #define MAX_SIT_JENTRIES(jnl) (SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
348
349 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
350 {
351 int before = nats_in_cursum(journal);
352
353 journal->n_nats = cpu_to_le16(before + i);
354 return before;
355 }
356
357 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
358 {
359 int before = sits_in_cursum(journal);
360
361 journal->n_sits = cpu_to_le16(before + i);
362 return before;
363 }
364
365 static inline bool __has_cursum_space(struct f2fs_journal *journal,
366 int size, int type)
367 {
368 if (type == NAT_JOURNAL)
369 return size <= MAX_NAT_JENTRIES(journal);
370 return size <= MAX_SIT_JENTRIES(journal);
371 }
372
373 /*
374 * ioctl commands
375 */
376 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
377 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
378 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
379
380 #define F2FS_IOCTL_MAGIC 0xf5
381 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
382 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
383 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
384 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
385 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
386 #define F2FS_IOC_GARBAGE_COLLECT _IOW(F2FS_IOCTL_MAGIC, 6, __u32)
387 #define F2FS_IOC_WRITE_CHECKPOINT _IO(F2FS_IOCTL_MAGIC, 7)
388 #define F2FS_IOC_DEFRAGMENT _IOWR(F2FS_IOCTL_MAGIC, 8, \
389 struct f2fs_defragment)
390 #define F2FS_IOC_MOVE_RANGE _IOWR(F2FS_IOCTL_MAGIC, 9, \
391 struct f2fs_move_range)
392 #define F2FS_IOC_FLUSH_DEVICE _IOW(F2FS_IOCTL_MAGIC, 10, \
393 struct f2fs_flush_device)
394 #define F2FS_IOC_GARBAGE_COLLECT_RANGE _IOW(F2FS_IOCTL_MAGIC, 11, \
395 struct f2fs_gc_range)
396 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, __u32)
397
398 #define F2FS_IOC_SET_ENCRYPTION_POLICY FS_IOC_SET_ENCRYPTION_POLICY
399 #define F2FS_IOC_GET_ENCRYPTION_POLICY FS_IOC_GET_ENCRYPTION_POLICY
400 #define F2FS_IOC_GET_ENCRYPTION_PWSALT FS_IOC_GET_ENCRYPTION_PWSALT
401
402 /*
403 * should be same as XFS_IOC_GOINGDOWN.
404 * Flags for going down operation used by FS_IOC_GOINGDOWN
405 */
406 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
407 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
408 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
409 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
410 #define F2FS_GOING_DOWN_METAFLUSH 0x3 /* going down with meta flush */
411
412 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
413 /*
414 * ioctl commands in 32 bit emulation
415 */
416 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
417 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
418 #define F2FS_IOC32_GETVERSION FS_IOC32_GETVERSION
419 #endif
420
421 struct f2fs_gc_range {
422 u32 sync;
423 u64 start;
424 u64 len;
425 };
426
427 struct f2fs_defragment {
428 u64 start;
429 u64 len;
430 };
431
432 struct f2fs_move_range {
433 u32 dst_fd; /* destination fd */
434 u64 pos_in; /* start position in src_fd */
435 u64 pos_out; /* start position in dst_fd */
436 u64 len; /* size to move */
437 };
438
439 struct f2fs_flush_device {
440 u32 dev_num; /* device number to flush */
441 u32 segments; /* # of segments to flush */
442 };
443
444 /* for inline stuff */
445 #define DEF_INLINE_RESERVED_SIZE 1
446 static inline int get_extra_isize(struct inode *inode);
447 #define MAX_INLINE_DATA(inode) (sizeof(__le32) * \
448 (CUR_ADDRS_PER_INODE(inode) - \
449 DEF_INLINE_RESERVED_SIZE - \
450 F2FS_INLINE_XATTR_ADDRS))
451
452 /* for inline dir */
453 #define NR_INLINE_DENTRY(inode) (MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
454 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
455 BITS_PER_BYTE + 1))
456 #define INLINE_DENTRY_BITMAP_SIZE(inode) ((NR_INLINE_DENTRY(inode) + \
457 BITS_PER_BYTE - 1) / BITS_PER_BYTE)
458 #define INLINE_RESERVED_SIZE(inode) (MAX_INLINE_DATA(inode) - \
459 ((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
460 NR_INLINE_DENTRY(inode) + \
461 INLINE_DENTRY_BITMAP_SIZE(inode)))
462
463 /*
464 * For INODE and NODE manager
465 */
466 /* for directory operations */
467 struct f2fs_dentry_ptr {
468 struct inode *inode;
469 void *bitmap;
470 struct f2fs_dir_entry *dentry;
471 __u8 (*filename)[F2FS_SLOT_LEN];
472 int max;
473 int nr_bitmap;
474 };
475
476 static inline void make_dentry_ptr_block(struct inode *inode,
477 struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
478 {
479 d->inode = inode;
480 d->max = NR_DENTRY_IN_BLOCK;
481 d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
482 d->bitmap = &t->dentry_bitmap;
483 d->dentry = t->dentry;
484 d->filename = t->filename;
485 }
486
487 static inline void make_dentry_ptr_inline(struct inode *inode,
488 struct f2fs_dentry_ptr *d, void *t)
489 {
490 int entry_cnt = NR_INLINE_DENTRY(inode);
491 int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
492 int reserved_size = INLINE_RESERVED_SIZE(inode);
493
494 d->inode = inode;
495 d->max = entry_cnt;
496 d->nr_bitmap = bitmap_size;
497 d->bitmap = t;
498 d->dentry = t + bitmap_size + reserved_size;
499 d->filename = t + bitmap_size + reserved_size +
500 SIZE_OF_DIR_ENTRY * entry_cnt;
501 }
502
503 /*
504 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
505 * as its node offset to distinguish from index node blocks.
506 * But some bits are used to mark the node block.
507 */
508 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
509 >> OFFSET_BIT_SHIFT)
510 enum {
511 ALLOC_NODE, /* allocate a new node page if needed */
512 LOOKUP_NODE, /* look up a node without readahead */
513 LOOKUP_NODE_RA, /*
514 * look up a node with readahead called
515 * by get_data_block.
516 */
517 };
518
519 #define F2FS_LINK_MAX 0xffffffff /* maximum link count per file */
520
521 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
522
523 /* vector size for gang look-up from extent cache that consists of radix tree */
524 #define EXT_TREE_VEC_SIZE 64
525
526 /* for in-memory extent cache entry */
527 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
528
529 /* number of extent info in extent cache we try to shrink */
530 #define EXTENT_CACHE_SHRINK_NUMBER 128
531
532 struct rb_entry {
533 struct rb_node rb_node; /* rb node located in rb-tree */
534 unsigned int ofs; /* start offset of the entry */
535 unsigned int len; /* length of the entry */
536 };
537
538 struct extent_info {
539 unsigned int fofs; /* start offset in a file */
540 unsigned int len; /* length of the extent */
541 u32 blk; /* start block address of the extent */
542 };
543
544 struct extent_node {
545 struct rb_node rb_node;
546 union {
547 struct {
548 unsigned int fofs;
549 unsigned int len;
550 u32 blk;
551 };
552 struct extent_info ei; /* extent info */
553
554 };
555 struct list_head list; /* node in global extent list of sbi */
556 struct extent_tree *et; /* extent tree pointer */
557 };
558
559 struct extent_tree {
560 nid_t ino; /* inode number */
561 struct rb_root root; /* root of extent info rb-tree */
562 struct extent_node *cached_en; /* recently accessed extent node */
563 struct extent_info largest; /* largested extent info */
564 struct list_head list; /* to be used by sbi->zombie_list */
565 rwlock_t lock; /* protect extent info rb-tree */
566 atomic_t node_cnt; /* # of extent node in rb-tree*/
567 };
568
569 /*
570 * This structure is taken from ext4_map_blocks.
571 *
572 * Note that, however, f2fs uses NEW and MAPPED flags for f2fs_map_blocks().
573 */
574 #define F2FS_MAP_NEW (1 << BH_New)
575 #define F2FS_MAP_MAPPED (1 << BH_Mapped)
576 #define F2FS_MAP_UNWRITTEN (1 << BH_Unwritten)
577 #define F2FS_MAP_FLAGS (F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
578 F2FS_MAP_UNWRITTEN)
579
580 struct f2fs_map_blocks {
581 block_t m_pblk;
582 block_t m_lblk;
583 unsigned int m_len;
584 unsigned int m_flags;
585 pgoff_t *m_next_pgofs; /* point next possible non-hole pgofs */
586 };
587
588 /* for flag in get_data_block */
589 enum {
590 F2FS_GET_BLOCK_DEFAULT,
591 F2FS_GET_BLOCK_FIEMAP,
592 F2FS_GET_BLOCK_BMAP,
593 F2FS_GET_BLOCK_PRE_DIO,
594 F2FS_GET_BLOCK_PRE_AIO,
595 };
596
597 /*
598 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
599 */
600 #define FADVISE_COLD_BIT 0x01
601 #define FADVISE_LOST_PINO_BIT 0x02
602 #define FADVISE_ENCRYPT_BIT 0x04
603 #define FADVISE_ENC_NAME_BIT 0x08
604 #define FADVISE_KEEP_SIZE_BIT 0x10
605
606 #define file_is_cold(inode) is_file(inode, FADVISE_COLD_BIT)
607 #define file_wrong_pino(inode) is_file(inode, FADVISE_LOST_PINO_BIT)
608 #define file_set_cold(inode) set_file(inode, FADVISE_COLD_BIT)
609 #define file_lost_pino(inode) set_file(inode, FADVISE_LOST_PINO_BIT)
610 #define file_clear_cold(inode) clear_file(inode, FADVISE_COLD_BIT)
611 #define file_got_pino(inode) clear_file(inode, FADVISE_LOST_PINO_BIT)
612 #define file_is_encrypt(inode) is_file(inode, FADVISE_ENCRYPT_BIT)
613 #define file_set_encrypt(inode) set_file(inode, FADVISE_ENCRYPT_BIT)
614 #define file_clear_encrypt(inode) clear_file(inode, FADVISE_ENCRYPT_BIT)
615 #define file_enc_name(inode) is_file(inode, FADVISE_ENC_NAME_BIT)
616 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
617 #define file_keep_isize(inode) is_file(inode, FADVISE_KEEP_SIZE_BIT)
618 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
619
620 #define DEF_DIR_LEVEL 0
621
622 struct f2fs_inode_info {
623 struct inode vfs_inode; /* serve a vfs inode */
624 unsigned long i_flags; /* keep an inode flags for ioctl */
625 unsigned char i_advise; /* use to give file attribute hints */
626 unsigned char i_dir_level; /* use for dentry level for large dir */
627 unsigned int i_current_depth; /* use only in directory structure */
628 unsigned int i_pino; /* parent inode number */
629 umode_t i_acl_mode; /* keep file acl mode temporarily */
630
631 /* Use below internally in f2fs*/
632 unsigned long flags; /* use to pass per-file flags */
633 struct rw_semaphore i_sem; /* protect fi info */
634 atomic_t dirty_pages; /* # of dirty pages */
635 f2fs_hash_t chash; /* hash value of given file name */
636 unsigned int clevel; /* maximum level of given file name */
637 struct task_struct *task; /* lookup and create consistency */
638 struct task_struct *cp_task; /* separate cp/wb IO stats*/
639 nid_t i_xattr_nid; /* node id that contains xattrs */
640 loff_t last_disk_size; /* lastly written file size */
641
642 #ifdef CONFIG_QUOTA
643 struct dquot *i_dquot[MAXQUOTAS];
644
645 /* quota space reservation, managed internally by quota code */
646 qsize_t i_reserved_quota;
647 #endif
648 struct list_head dirty_list; /* dirty list for dirs and files */
649 struct list_head gdirty_list; /* linked in global dirty list */
650 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
651 struct task_struct *inmem_task; /* store inmemory task */
652 struct mutex inmem_lock; /* lock for inmemory pages */
653 struct extent_tree *extent_tree; /* cached extent_tree entry */
654 struct rw_semaphore dio_rwsem[2];/* avoid racing between dio and gc */
655 struct rw_semaphore i_mmap_sem;
656 struct rw_semaphore i_xattr_sem; /* avoid racing between reading and changing EAs */
657
658 int i_extra_isize; /* size of extra space located in i_addr */
659 kprojid_t i_projid; /* id for project quota */
660 };
661
662 static inline void get_extent_info(struct extent_info *ext,
663 struct f2fs_extent *i_ext)
664 {
665 ext->fofs = le32_to_cpu(i_ext->fofs);
666 ext->blk = le32_to_cpu(i_ext->blk);
667 ext->len = le32_to_cpu(i_ext->len);
668 }
669
670 static inline void set_raw_extent(struct extent_info *ext,
671 struct f2fs_extent *i_ext)
672 {
673 i_ext->fofs = cpu_to_le32(ext->fofs);
674 i_ext->blk = cpu_to_le32(ext->blk);
675 i_ext->len = cpu_to_le32(ext->len);
676 }
677
678 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
679 u32 blk, unsigned int len)
680 {
681 ei->fofs = fofs;
682 ei->blk = blk;
683 ei->len = len;
684 }
685
686 static inline bool __is_discard_mergeable(struct discard_info *back,
687 struct discard_info *front)
688 {
689 return back->lstart + back->len == front->lstart;
690 }
691
692 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
693 struct discard_info *back)
694 {
695 return __is_discard_mergeable(back, cur);
696 }
697
698 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
699 struct discard_info *front)
700 {
701 return __is_discard_mergeable(cur, front);
702 }
703
704 static inline bool __is_extent_mergeable(struct extent_info *back,
705 struct extent_info *front)
706 {
707 return (back->fofs + back->len == front->fofs &&
708 back->blk + back->len == front->blk);
709 }
710
711 static inline bool __is_back_mergeable(struct extent_info *cur,
712 struct extent_info *back)
713 {
714 return __is_extent_mergeable(back, cur);
715 }
716
717 static inline bool __is_front_mergeable(struct extent_info *cur,
718 struct extent_info *front)
719 {
720 return __is_extent_mergeable(cur, front);
721 }
722
723 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
724 static inline void __try_update_largest_extent(struct inode *inode,
725 struct extent_tree *et, struct extent_node *en)
726 {
727 if (en->ei.len > et->largest.len) {
728 et->largest = en->ei;
729 f2fs_mark_inode_dirty_sync(inode, true);
730 }
731 }
732
733 enum nid_list {
734 FREE_NID_LIST,
735 ALLOC_NID_LIST,
736 MAX_NID_LIST,
737 };
738
739 struct f2fs_nm_info {
740 block_t nat_blkaddr; /* base disk address of NAT */
741 nid_t max_nid; /* maximum possible node ids */
742 nid_t available_nids; /* # of available node ids */
743 nid_t next_scan_nid; /* the next nid to be scanned */
744 unsigned int ram_thresh; /* control the memory footprint */
745 unsigned int ra_nid_pages; /* # of nid pages to be readaheaded */
746 unsigned int dirty_nats_ratio; /* control dirty nats ratio threshold */
747
748 /* NAT cache management */
749 struct radix_tree_root nat_root;/* root of the nat entry cache */
750 struct radix_tree_root nat_set_root;/* root of the nat set cache */
751 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
752 struct list_head nat_entries; /* cached nat entry list (clean) */
753 unsigned int nat_cnt; /* the # of cached nat entries */
754 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
755 unsigned int nat_blocks; /* # of nat blocks */
756
757 /* free node ids management */
758 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
759 struct list_head nid_list[MAX_NID_LIST];/* lists for free nids */
760 unsigned int nid_cnt[MAX_NID_LIST]; /* the number of free node id */
761 spinlock_t nid_list_lock; /* protect nid lists ops */
762 struct mutex build_lock; /* lock for build free nids */
763 unsigned char (*free_nid_bitmap)[NAT_ENTRY_BITMAP_SIZE];
764 unsigned char *nat_block_bitmap;
765 unsigned short *free_nid_count; /* free nid count of NAT block */
766
767 /* for checkpoint */
768 char *nat_bitmap; /* NAT bitmap pointer */
769
770 unsigned int nat_bits_blocks; /* # of nat bits blocks */
771 unsigned char *nat_bits; /* NAT bits blocks */
772 unsigned char *full_nat_bits; /* full NAT pages */
773 unsigned char *empty_nat_bits; /* empty NAT pages */
774 #ifdef CONFIG_F2FS_CHECK_FS
775 char *nat_bitmap_mir; /* NAT bitmap mirror */
776 #endif
777 int bitmap_size; /* bitmap size */
778 };
779
780 /*
781 * this structure is used as one of function parameters.
782 * all the information are dedicated to a given direct node block determined
783 * by the data offset in a file.
784 */
785 struct dnode_of_data {
786 struct inode *inode; /* vfs inode pointer */
787 struct page *inode_page; /* its inode page, NULL is possible */
788 struct page *node_page; /* cached direct node page */
789 nid_t nid; /* node id of the direct node block */
790 unsigned int ofs_in_node; /* data offset in the node page */
791 bool inode_page_locked; /* inode page is locked or not */
792 bool node_changed; /* is node block changed */
793 char cur_level; /* level of hole node page */
794 char max_level; /* level of current page located */
795 block_t data_blkaddr; /* block address of the node block */
796 };
797
798 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
799 struct page *ipage, struct page *npage, nid_t nid)
800 {
801 memset(dn, 0, sizeof(*dn));
802 dn->inode = inode;
803 dn->inode_page = ipage;
804 dn->node_page = npage;
805 dn->nid = nid;
806 }
807
808 /*
809 * For SIT manager
810 *
811 * By default, there are 6 active log areas across the whole main area.
812 * When considering hot and cold data separation to reduce cleaning overhead,
813 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
814 * respectively.
815 * In the current design, you should not change the numbers intentionally.
816 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
817 * logs individually according to the underlying devices. (default: 6)
818 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
819 * data and 8 for node logs.
820 */
821 #define NR_CURSEG_DATA_TYPE (3)
822 #define NR_CURSEG_NODE_TYPE (3)
823 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
824
825 enum {
826 CURSEG_HOT_DATA = 0, /* directory entry blocks */
827 CURSEG_WARM_DATA, /* data blocks */
828 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
829 CURSEG_HOT_NODE, /* direct node blocks of directory files */
830 CURSEG_WARM_NODE, /* direct node blocks of normal files */
831 CURSEG_COLD_NODE, /* indirect node blocks */
832 NO_CHECK_TYPE,
833 };
834
835 struct flush_cmd {
836 struct completion wait;
837 struct llist_node llnode;
838 int ret;
839 };
840
841 struct flush_cmd_control {
842 struct task_struct *f2fs_issue_flush; /* flush thread */
843 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
844 atomic_t issued_flush; /* # of issued flushes */
845 atomic_t issing_flush; /* # of issing flushes */
846 struct llist_head issue_list; /* list for command issue */
847 struct llist_node *dispatch_list; /* list for command dispatch */
848 };
849
850 struct f2fs_sm_info {
851 struct sit_info *sit_info; /* whole segment information */
852 struct free_segmap_info *free_info; /* free segment information */
853 struct dirty_seglist_info *dirty_info; /* dirty segment information */
854 struct curseg_info *curseg_array; /* active segment information */
855
856 block_t seg0_blkaddr; /* block address of 0'th segment */
857 block_t main_blkaddr; /* start block address of main area */
858 block_t ssa_blkaddr; /* start block address of SSA area */
859
860 unsigned int segment_count; /* total # of segments */
861 unsigned int main_segments; /* # of segments in main area */
862 unsigned int reserved_segments; /* # of reserved segments */
863 unsigned int ovp_segments; /* # of overprovision segments */
864
865 /* a threshold to reclaim prefree segments */
866 unsigned int rec_prefree_segments;
867
868 /* for batched trimming */
869 unsigned int trim_sections; /* # of sections to trim */
870
871 struct list_head sit_entry_set; /* sit entry set list */
872
873 unsigned int ipu_policy; /* in-place-update policy */
874 unsigned int min_ipu_util; /* in-place-update threshold */
875 unsigned int min_fsync_blocks; /* threshold for fsync */
876 unsigned int min_hot_blocks; /* threshold for hot block allocation */
877
878 /* for flush command control */
879 struct flush_cmd_control *fcc_info;
880
881 /* for discard command control */
882 struct discard_cmd_control *dcc_info;
883 };
884
885 /*
886 * For superblock
887 */
888 /*
889 * COUNT_TYPE for monitoring
890 *
891 * f2fs monitors the number of several block types such as on-writeback,
892 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
893 */
894 #define WB_DATA_TYPE(p) (__is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
895 enum count_type {
896 F2FS_DIRTY_DENTS,
897 F2FS_DIRTY_DATA,
898 F2FS_DIRTY_NODES,
899 F2FS_DIRTY_META,
900 F2FS_INMEM_PAGES,
901 F2FS_DIRTY_IMETA,
902 F2FS_WB_CP_DATA,
903 F2FS_WB_DATA,
904 NR_COUNT_TYPE,
905 };
906
907 /*
908 * The below are the page types of bios used in submit_bio().
909 * The available types are:
910 * DATA User data pages. It operates as async mode.
911 * NODE Node pages. It operates as async mode.
912 * META FS metadata pages such as SIT, NAT, CP.
913 * NR_PAGE_TYPE The number of page types.
914 * META_FLUSH Make sure the previous pages are written
915 * with waiting the bio's completion
916 * ... Only can be used with META.
917 */
918 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
919 enum page_type {
920 DATA,
921 NODE,
922 META,
923 NR_PAGE_TYPE,
924 META_FLUSH,
925 INMEM, /* the below types are used by tracepoints only. */
926 INMEM_DROP,
927 INMEM_INVALIDATE,
928 INMEM_REVOKE,
929 IPU,
930 OPU,
931 };
932
933 enum temp_type {
934 HOT = 0, /* must be zero for meta bio */
935 WARM,
936 COLD,
937 NR_TEMP_TYPE,
938 };
939
940 enum need_lock_type {
941 LOCK_REQ = 0,
942 LOCK_DONE,
943 LOCK_RETRY,
944 };
945
946 enum iostat_type {
947 APP_DIRECT_IO, /* app direct IOs */
948 APP_BUFFERED_IO, /* app buffered IOs */
949 APP_WRITE_IO, /* app write IOs */
950 APP_MAPPED_IO, /* app mapped IOs */
951 FS_DATA_IO, /* data IOs from kworker/fsync/reclaimer */
952 FS_NODE_IO, /* node IOs from kworker/fsync/reclaimer */
953 FS_META_IO, /* meta IOs from kworker/reclaimer */
954 FS_GC_DATA_IO, /* data IOs from forground gc */
955 FS_GC_NODE_IO, /* node IOs from forground gc */
956 FS_CP_DATA_IO, /* data IOs from checkpoint */
957 FS_CP_NODE_IO, /* node IOs from checkpoint */
958 FS_CP_META_IO, /* meta IOs from checkpoint */
959 FS_DISCARD, /* discard */
960 NR_IO_TYPE,
961 };
962
963 struct f2fs_io_info {
964 struct f2fs_sb_info *sbi; /* f2fs_sb_info pointer */
965 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
966 enum temp_type temp; /* contains HOT/WARM/COLD */
967 int op; /* contains REQ_OP_ */
968 int op_flags; /* req_flag_bits */
969 block_t new_blkaddr; /* new block address to be written */
970 block_t old_blkaddr; /* old block address before Cow */
971 struct page *page; /* page to be written */
972 struct page *encrypted_page; /* encrypted page */
973 struct list_head list; /* serialize IOs */
974 bool submitted; /* indicate IO submission */
975 int need_lock; /* indicate we need to lock cp_rwsem */
976 bool in_list; /* indicate fio is in io_list */
977 enum iostat_type io_type; /* io type */
978 };
979
980 #define is_read_io(rw) ((rw) == READ)
981 struct f2fs_bio_info {
982 struct f2fs_sb_info *sbi; /* f2fs superblock */
983 struct bio *bio; /* bios to merge */
984 sector_t last_block_in_bio; /* last block number */
985 struct f2fs_io_info fio; /* store buffered io info. */
986 struct rw_semaphore io_rwsem; /* blocking op for bio */
987 spinlock_t io_lock; /* serialize DATA/NODE IOs */
988 struct list_head io_list; /* track fios */
989 };
990
991 #define FDEV(i) (sbi->devs[i])
992 #define RDEV(i) (raw_super->devs[i])
993 struct f2fs_dev_info {
994 struct block_device *bdev;
995 char path[MAX_PATH_LEN];
996 unsigned int total_segments;
997 block_t start_blk;
998 block_t end_blk;
999 #ifdef CONFIG_BLK_DEV_ZONED
1000 unsigned int nr_blkz; /* Total number of zones */
1001 u8 *blkz_type; /* Array of zones type */
1002 #endif
1003 };
1004
1005 enum inode_type {
1006 DIR_INODE, /* for dirty dir inode */
1007 FILE_INODE, /* for dirty regular/symlink inode */
1008 DIRTY_META, /* for all dirtied inode metadata */
1009 NR_INODE_TYPE,
1010 };
1011
1012 /* for inner inode cache management */
1013 struct inode_management {
1014 struct radix_tree_root ino_root; /* ino entry array */
1015 spinlock_t ino_lock; /* for ino entry lock */
1016 struct list_head ino_list; /* inode list head */
1017 unsigned long ino_num; /* number of entries */
1018 };
1019
1020 /* For s_flag in struct f2fs_sb_info */
1021 enum {
1022 SBI_IS_DIRTY, /* dirty flag for checkpoint */
1023 SBI_IS_CLOSE, /* specify unmounting */
1024 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
1025 SBI_POR_DOING, /* recovery is doing or not */
1026 SBI_NEED_SB_WRITE, /* need to recover superblock */
1027 SBI_NEED_CP, /* need to checkpoint */
1028 };
1029
1030 enum {
1031 CP_TIME,
1032 REQ_TIME,
1033 MAX_TIME,
1034 };
1035
1036 struct f2fs_sb_info {
1037 struct super_block *sb; /* pointer to VFS super block */
1038 struct proc_dir_entry *s_proc; /* proc entry */
1039 struct f2fs_super_block *raw_super; /* raw super block pointer */
1040 int valid_super_block; /* valid super block no */
1041 unsigned long s_flag; /* flags for sbi */
1042
1043 #ifdef CONFIG_BLK_DEV_ZONED
1044 unsigned int blocks_per_blkz; /* F2FS blocks per zone */
1045 unsigned int log_blocks_per_blkz; /* log2 F2FS blocks per zone */
1046 #endif
1047
1048 /* for node-related operations */
1049 struct f2fs_nm_info *nm_info; /* node manager */
1050 struct inode *node_inode; /* cache node blocks */
1051
1052 /* for segment-related operations */
1053 struct f2fs_sm_info *sm_info; /* segment manager */
1054
1055 /* for bio operations */
1056 struct f2fs_bio_info *write_io[NR_PAGE_TYPE]; /* for write bios */
1057 struct mutex wio_mutex[NR_PAGE_TYPE - 1][NR_TEMP_TYPE];
1058 /* bio ordering for NODE/DATA */
1059 int write_io_size_bits; /* Write IO size bits */
1060 mempool_t *write_io_dummy; /* Dummy pages */
1061
1062 /* for checkpoint */
1063 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
1064 int cur_cp_pack; /* remain current cp pack */
1065 spinlock_t cp_lock; /* for flag in ckpt */
1066 struct inode *meta_inode; /* cache meta blocks */
1067 struct mutex cp_mutex; /* checkpoint procedure lock */
1068 struct rw_semaphore cp_rwsem; /* blocking FS operations */
1069 struct rw_semaphore node_write; /* locking node writes */
1070 struct rw_semaphore node_change; /* locking node change */
1071 wait_queue_head_t cp_wait;
1072 unsigned long last_time[MAX_TIME]; /* to store time in jiffies */
1073 long interval_time[MAX_TIME]; /* to store thresholds */
1074
1075 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
1076
1077 /* for orphan inode, use 0'th array */
1078 unsigned int max_orphans; /* max orphan inodes */
1079
1080 /* for inode management */
1081 struct list_head inode_list[NR_INODE_TYPE]; /* dirty inode list */
1082 spinlock_t inode_lock[NR_INODE_TYPE]; /* for dirty inode list lock */
1083
1084 /* for extent tree cache */
1085 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
1086 struct mutex extent_tree_lock; /* locking extent radix tree */
1087 struct list_head extent_list; /* lru list for shrinker */
1088 spinlock_t extent_lock; /* locking extent lru list */
1089 atomic_t total_ext_tree; /* extent tree count */
1090 struct list_head zombie_list; /* extent zombie tree list */
1091 atomic_t total_zombie_tree; /* extent zombie tree count */
1092 atomic_t total_ext_node; /* extent info count */
1093
1094 /* basic filesystem units */
1095 unsigned int log_sectors_per_block; /* log2 sectors per block */
1096 unsigned int log_blocksize; /* log2 block size */
1097 unsigned int blocksize; /* block size */
1098 unsigned int root_ino_num; /* root inode number*/
1099 unsigned int node_ino_num; /* node inode number*/
1100 unsigned int meta_ino_num; /* meta inode number*/
1101 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
1102 unsigned int blocks_per_seg; /* blocks per segment */
1103 unsigned int segs_per_sec; /* segments per section */
1104 unsigned int secs_per_zone; /* sections per zone */
1105 unsigned int total_sections; /* total section count */
1106 unsigned int total_node_count; /* total node block count */
1107 unsigned int total_valid_node_count; /* valid node block count */
1108 loff_t max_file_blocks; /* max block index of file */
1109 int active_logs; /* # of active logs */
1110 int dir_level; /* directory level */
1111
1112 block_t user_block_count; /* # of user blocks */
1113 block_t total_valid_block_count; /* # of valid blocks */
1114 block_t discard_blks; /* discard command candidats */
1115 block_t last_valid_block_count; /* for recovery */
1116 block_t reserved_blocks; /* configurable reserved blocks */
1117
1118 u32 s_next_generation; /* for NFS support */
1119
1120 /* # of pages, see count_type */
1121 atomic_t nr_pages[NR_COUNT_TYPE];
1122 /* # of allocated blocks */
1123 struct percpu_counter alloc_valid_block_count;
1124
1125 /* writeback control */
1126 atomic_t wb_sync_req; /* count # of WB_SYNC threads */
1127
1128 /* valid inode count */
1129 struct percpu_counter total_valid_inode_count;
1130
1131 struct f2fs_mount_info mount_opt; /* mount options */
1132
1133 /* for cleaning operations */
1134 struct mutex gc_mutex; /* mutex for GC */
1135 struct f2fs_gc_kthread *gc_thread; /* GC thread */
1136 unsigned int cur_victim_sec; /* current victim section num */
1137
1138 /* threshold for converting bg victims for fg */
1139 u64 fggc_threshold;
1140
1141 /* maximum # of trials to find a victim segment for SSR and GC */
1142 unsigned int max_victim_search;
1143
1144 /*
1145 * for stat information.
1146 * one is for the LFS mode, and the other is for the SSR mode.
1147 */
1148 #ifdef CONFIG_F2FS_STAT_FS
1149 struct f2fs_stat_info *stat_info; /* FS status information */
1150 unsigned int segment_count[2]; /* # of allocated segments */
1151 unsigned int block_count[2]; /* # of allocated blocks */
1152 atomic_t inplace_count; /* # of inplace update */
1153 atomic64_t total_hit_ext; /* # of lookup extent cache */
1154 atomic64_t read_hit_rbtree; /* # of hit rbtree extent node */
1155 atomic64_t read_hit_largest; /* # of hit largest extent node */
1156 atomic64_t read_hit_cached; /* # of hit cached extent node */
1157 atomic_t inline_xattr; /* # of inline_xattr inodes */
1158 atomic_t inline_inode; /* # of inline_data inodes */
1159 atomic_t inline_dir; /* # of inline_dentry inodes */
1160 atomic_t aw_cnt; /* # of atomic writes */
1161 atomic_t vw_cnt; /* # of volatile writes */
1162 atomic_t max_aw_cnt; /* max # of atomic writes */
1163 atomic_t max_vw_cnt; /* max # of volatile writes */
1164 int bg_gc; /* background gc calls */
1165 unsigned int ndirty_inode[NR_INODE_TYPE]; /* # of dirty inodes */
1166 #endif
1167 spinlock_t stat_lock; /* lock for stat operations */
1168
1169 /* For app/fs IO statistics */
1170 spinlock_t iostat_lock;
1171 unsigned long long write_iostat[NR_IO_TYPE];
1172 bool iostat_enable;
1173
1174 /* For sysfs suppport */
1175 struct kobject s_kobj;
1176 struct completion s_kobj_unregister;
1177
1178 /* For shrinker support */
1179 struct list_head s_list;
1180 int s_ndevs; /* number of devices */
1181 struct f2fs_dev_info *devs; /* for device list */
1182 struct mutex umount_mutex;
1183 unsigned int shrinker_run_no;
1184
1185 /* For write statistics */
1186 u64 sectors_written_start;
1187 u64 kbytes_written;
1188
1189 /* Reference to checksum algorithm driver via cryptoapi */
1190 struct crypto_shash *s_chksum_driver;
1191
1192 /* Precomputed FS UUID checksum for seeding other checksums */
1193 __u32 s_chksum_seed;
1194
1195 /* For fault injection */
1196 #ifdef CONFIG_F2FS_FAULT_INJECTION
1197 struct f2fs_fault_info fault_info;
1198 #endif
1199
1200 #ifdef CONFIG_QUOTA
1201 /* Names of quota files with journalled quota */
1202 char *s_qf_names[MAXQUOTAS];
1203 int s_jquota_fmt; /* Format of quota to use */
1204 #endif
1205 };
1206
1207 #ifdef CONFIG_F2FS_FAULT_INJECTION
1208 #define f2fs_show_injection_info(type) \
1209 printk("%sF2FS-fs : inject %s in %s of %pF\n", \
1210 KERN_INFO, fault_name[type], \
1211 __func__, __builtin_return_address(0))
1212 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1213 {
1214 struct f2fs_fault_info *ffi = &sbi->fault_info;
1215
1216 if (!ffi->inject_rate)
1217 return false;
1218
1219 if (!IS_FAULT_SET(ffi, type))
1220 return false;
1221
1222 atomic_inc(&ffi->inject_ops);
1223 if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1224 atomic_set(&ffi->inject_ops, 0);
1225 return true;
1226 }
1227 return false;
1228 }
1229 #endif
1230
1231 /* For write statistics. Suppose sector size is 512 bytes,
1232 * and the return value is in kbytes. s is of struct f2fs_sb_info.
1233 */
1234 #define BD_PART_WRITTEN(s) \
1235 (((u64)part_stat_read((s)->sb->s_bdev->bd_part, sectors[1]) - \
1236 (s)->sectors_written_start) >> 1)
1237
1238 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1239 {
1240 sbi->last_time[type] = jiffies;
1241 }
1242
1243 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1244 {
1245 struct timespec ts = {sbi->interval_time[type], 0};
1246 unsigned long interval = timespec_to_jiffies(&ts);
1247
1248 return time_after(jiffies, sbi->last_time[type] + interval);
1249 }
1250
1251 static inline bool is_idle(struct f2fs_sb_info *sbi)
1252 {
1253 struct block_device *bdev = sbi->sb->s_bdev;
1254 struct request_queue *q = bdev_get_queue(bdev);
1255 struct request_list *rl = &q->root_rl;
1256
1257 if (rl->count[BLK_RW_SYNC] || rl->count[BLK_RW_ASYNC])
1258 return 0;
1259
1260 return f2fs_time_over(sbi, REQ_TIME);
1261 }
1262
1263 /*
1264 * Inline functions
1265 */
1266 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1267 unsigned int length)
1268 {
1269 SHASH_DESC_ON_STACK(shash, sbi->s_chksum_driver);
1270 u32 *ctx = (u32 *)shash_desc_ctx(shash);
1271 int err;
1272
1273 shash->tfm = sbi->s_chksum_driver;
1274 shash->flags = 0;
1275 *ctx = F2FS_SUPER_MAGIC;
1276
1277 err = crypto_shash_update(shash, address, length);
1278 BUG_ON(err);
1279
1280 return *ctx;
1281 }
1282
1283 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1284 void *buf, size_t buf_size)
1285 {
1286 return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1287 }
1288
1289 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1290 const void *address, unsigned int length)
1291 {
1292 struct {
1293 struct shash_desc shash;
1294 char ctx[4];
1295 } desc;
1296 int err;
1297
1298 BUG_ON(crypto_shash_descsize(sbi->s_chksum_driver) != sizeof(desc.ctx));
1299
1300 desc.shash.tfm = sbi->s_chksum_driver;
1301 desc.shash.flags = 0;
1302 *(u32 *)desc.ctx = crc;
1303
1304 err = crypto_shash_update(&desc.shash, address, length);
1305 BUG_ON(err);
1306
1307 return *(u32 *)desc.ctx;
1308 }
1309
1310 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1311 {
1312 return container_of(inode, struct f2fs_inode_info, vfs_inode);
1313 }
1314
1315 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1316 {
1317 return sb->s_fs_info;
1318 }
1319
1320 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
1321 {
1322 return F2FS_SB(inode->i_sb);
1323 }
1324
1325 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
1326 {
1327 return F2FS_I_SB(mapping->host);
1328 }
1329
1330 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
1331 {
1332 return F2FS_M_SB(page->mapping);
1333 }
1334
1335 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
1336 {
1337 return (struct f2fs_super_block *)(sbi->raw_super);
1338 }
1339
1340 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
1341 {
1342 return (struct f2fs_checkpoint *)(sbi->ckpt);
1343 }
1344
1345 static inline struct f2fs_node *F2FS_NODE(struct page *page)
1346 {
1347 return (struct f2fs_node *)page_address(page);
1348 }
1349
1350 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
1351 {
1352 return &((struct f2fs_node *)page_address(page))->i;
1353 }
1354
1355 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
1356 {
1357 return (struct f2fs_nm_info *)(sbi->nm_info);
1358 }
1359
1360 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
1361 {
1362 return (struct f2fs_sm_info *)(sbi->sm_info);
1363 }
1364
1365 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
1366 {
1367 return (struct sit_info *)(SM_I(sbi)->sit_info);
1368 }
1369
1370 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
1371 {
1372 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
1373 }
1374
1375 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
1376 {
1377 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
1378 }
1379
1380 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
1381 {
1382 return sbi->meta_inode->i_mapping;
1383 }
1384
1385 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
1386 {
1387 return sbi->node_inode->i_mapping;
1388 }
1389
1390 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
1391 {
1392 return test_bit(type, &sbi->s_flag);
1393 }
1394
1395 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1396 {
1397 set_bit(type, &sbi->s_flag);
1398 }
1399
1400 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
1401 {
1402 clear_bit(type, &sbi->s_flag);
1403 }
1404
1405 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
1406 {
1407 return le64_to_cpu(cp->checkpoint_ver);
1408 }
1409
1410 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
1411 {
1412 size_t crc_offset = le32_to_cpu(cp->checksum_offset);
1413 return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
1414 }
1415
1416 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1417 {
1418 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1419
1420 return ckpt_flags & f;
1421 }
1422
1423 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1424 {
1425 return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
1426 }
1427
1428 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1429 {
1430 unsigned int ckpt_flags;
1431
1432 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1433 ckpt_flags |= f;
1434 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1435 }
1436
1437 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1438 {
1439 unsigned long flags;
1440
1441 spin_lock_irqsave(&sbi->cp_lock, flags);
1442 __set_ckpt_flags(F2FS_CKPT(sbi), f);
1443 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1444 }
1445
1446 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
1447 {
1448 unsigned int ckpt_flags;
1449
1450 ckpt_flags = le32_to_cpu(cp->ckpt_flags);
1451 ckpt_flags &= (~f);
1452 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
1453 }
1454
1455 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
1456 {
1457 unsigned long flags;
1458
1459 spin_lock_irqsave(&sbi->cp_lock, flags);
1460 __clear_ckpt_flags(F2FS_CKPT(sbi), f);
1461 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1462 }
1463
1464 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
1465 {
1466 unsigned long flags;
1467
1468 set_sbi_flag(sbi, SBI_NEED_FSCK);
1469
1470 if (lock)
1471 spin_lock_irqsave(&sbi->cp_lock, flags);
1472 __clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
1473 kfree(NM_I(sbi)->nat_bits);
1474 NM_I(sbi)->nat_bits = NULL;
1475 if (lock)
1476 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1477 }
1478
1479 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
1480 struct cp_control *cpc)
1481 {
1482 bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
1483
1484 return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
1485 }
1486
1487 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
1488 {
1489 down_read(&sbi->cp_rwsem);
1490 }
1491
1492 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
1493 {
1494 return down_read_trylock(&sbi->cp_rwsem);
1495 }
1496
1497 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
1498 {
1499 up_read(&sbi->cp_rwsem);
1500 }
1501
1502 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
1503 {
1504 down_write(&sbi->cp_rwsem);
1505 }
1506
1507 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
1508 {
1509 up_write(&sbi->cp_rwsem);
1510 }
1511
1512 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
1513 {
1514 int reason = CP_SYNC;
1515
1516 if (test_opt(sbi, FASTBOOT))
1517 reason = CP_FASTBOOT;
1518 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
1519 reason = CP_UMOUNT;
1520 return reason;
1521 }
1522
1523 static inline bool __remain_node_summaries(int reason)
1524 {
1525 return (reason & (CP_UMOUNT | CP_FASTBOOT));
1526 }
1527
1528 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
1529 {
1530 return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
1531 is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
1532 }
1533
1534 /*
1535 * Check whether the given nid is within node id range.
1536 */
1537 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
1538 {
1539 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
1540 return -EINVAL;
1541 if (unlikely(nid >= NM_I(sbi)->max_nid))
1542 return -EINVAL;
1543 return 0;
1544 }
1545
1546 /*
1547 * Check whether the inode has blocks or not
1548 */
1549 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
1550 {
1551 block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
1552
1553 return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
1554 }
1555
1556 static inline bool f2fs_has_xattr_block(unsigned int ofs)
1557 {
1558 return ofs == XATTR_NODE_OFFSET;
1559 }
1560
1561 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
1562 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
1563 struct inode *inode, blkcnt_t *count)
1564 {
1565 blkcnt_t diff = 0, release = 0;
1566 block_t avail_user_block_count;
1567 int ret;
1568
1569 ret = dquot_reserve_block(inode, *count);
1570 if (ret)
1571 return ret;
1572
1573 #ifdef CONFIG_F2FS_FAULT_INJECTION
1574 if (time_to_inject(sbi, FAULT_BLOCK)) {
1575 f2fs_show_injection_info(FAULT_BLOCK);
1576 release = *count;
1577 goto enospc;
1578 }
1579 #endif
1580 /*
1581 * let's increase this in prior to actual block count change in order
1582 * for f2fs_sync_file to avoid data races when deciding checkpoint.
1583 */
1584 percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
1585
1586 spin_lock(&sbi->stat_lock);
1587 sbi->total_valid_block_count += (block_t)(*count);
1588 avail_user_block_count = sbi->user_block_count - sbi->reserved_blocks;
1589 if (unlikely(sbi->total_valid_block_count > avail_user_block_count)) {
1590 diff = sbi->total_valid_block_count - avail_user_block_count;
1591 *count -= diff;
1592 release = diff;
1593 sbi->total_valid_block_count = avail_user_block_count;
1594 if (!*count) {
1595 spin_unlock(&sbi->stat_lock);
1596 percpu_counter_sub(&sbi->alloc_valid_block_count, diff);
1597 goto enospc;
1598 }
1599 }
1600 spin_unlock(&sbi->stat_lock);
1601
1602 if (release)
1603 dquot_release_reservation_block(inode, release);
1604 f2fs_i_blocks_write(inode, *count, true, true);
1605 return 0;
1606
1607 enospc:
1608 dquot_release_reservation_block(inode, release);
1609 return -ENOSPC;
1610 }
1611
1612 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
1613 struct inode *inode,
1614 block_t count)
1615 {
1616 blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
1617
1618 spin_lock(&sbi->stat_lock);
1619 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
1620 f2fs_bug_on(sbi, inode->i_blocks < sectors);
1621 sbi->total_valid_block_count -= (block_t)count;
1622 spin_unlock(&sbi->stat_lock);
1623 f2fs_i_blocks_write(inode, count, false, true);
1624 }
1625
1626 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
1627 {
1628 atomic_inc(&sbi->nr_pages[count_type]);
1629
1630 if (count_type == F2FS_DIRTY_DATA || count_type == F2FS_INMEM_PAGES ||
1631 count_type == F2FS_WB_CP_DATA || count_type == F2FS_WB_DATA)
1632 return;
1633
1634 set_sbi_flag(sbi, SBI_IS_DIRTY);
1635 }
1636
1637 static inline void inode_inc_dirty_pages(struct inode *inode)
1638 {
1639 atomic_inc(&F2FS_I(inode)->dirty_pages);
1640 inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1641 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1642 }
1643
1644 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
1645 {
1646 atomic_dec(&sbi->nr_pages[count_type]);
1647 }
1648
1649 static inline void inode_dec_dirty_pages(struct inode *inode)
1650 {
1651 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
1652 !S_ISLNK(inode->i_mode))
1653 return;
1654
1655 atomic_dec(&F2FS_I(inode)->dirty_pages);
1656 dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
1657 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
1658 }
1659
1660 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
1661 {
1662 return atomic_read(&sbi->nr_pages[count_type]);
1663 }
1664
1665 static inline int get_dirty_pages(struct inode *inode)
1666 {
1667 return atomic_read(&F2FS_I(inode)->dirty_pages);
1668 }
1669
1670 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
1671 {
1672 unsigned int pages_per_sec = sbi->segs_per_sec * sbi->blocks_per_seg;
1673 unsigned int segs = (get_pages(sbi, block_type) + pages_per_sec - 1) >>
1674 sbi->log_blocks_per_seg;
1675
1676 return segs / sbi->segs_per_sec;
1677 }
1678
1679 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
1680 {
1681 return sbi->total_valid_block_count;
1682 }
1683
1684 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
1685 {
1686 return sbi->discard_blks;
1687 }
1688
1689 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
1690 {
1691 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1692
1693 /* return NAT or SIT bitmap */
1694 if (flag == NAT_BITMAP)
1695 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
1696 else if (flag == SIT_BITMAP)
1697 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
1698
1699 return 0;
1700 }
1701
1702 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
1703 {
1704 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1705 }
1706
1707 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1708 {
1709 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1710 int offset;
1711
1712 if (__cp_payload(sbi) > 0) {
1713 if (flag == NAT_BITMAP)
1714 return &ckpt->sit_nat_version_bitmap;
1715 else
1716 return (unsigned char *)ckpt + F2FS_BLKSIZE;
1717 } else {
1718 offset = (flag == NAT_BITMAP) ?
1719 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1720 return &ckpt->sit_nat_version_bitmap + offset;
1721 }
1722 }
1723
1724 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1725 {
1726 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1727
1728 if (sbi->cur_cp_pack == 2)
1729 start_addr += sbi->blocks_per_seg;
1730 return start_addr;
1731 }
1732
1733 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
1734 {
1735 block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1736
1737 if (sbi->cur_cp_pack == 1)
1738 start_addr += sbi->blocks_per_seg;
1739 return start_addr;
1740 }
1741
1742 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
1743 {
1744 sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
1745 }
1746
1747 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1748 {
1749 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1750 }
1751
1752 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
1753 struct inode *inode, bool is_inode)
1754 {
1755 block_t valid_block_count;
1756 unsigned int valid_node_count;
1757 bool quota = inode && !is_inode;
1758
1759 if (quota) {
1760 int ret = dquot_reserve_block(inode, 1);
1761 if (ret)
1762 return ret;
1763 }
1764
1765 spin_lock(&sbi->stat_lock);
1766
1767 valid_block_count = sbi->total_valid_block_count + 1;
1768 if (unlikely(valid_block_count + sbi->reserved_blocks >
1769 sbi->user_block_count)) {
1770 spin_unlock(&sbi->stat_lock);
1771 goto enospc;
1772 }
1773
1774 valid_node_count = sbi->total_valid_node_count + 1;
1775 if (unlikely(valid_node_count > sbi->total_node_count)) {
1776 spin_unlock(&sbi->stat_lock);
1777 goto enospc;
1778 }
1779
1780 sbi->total_valid_node_count++;
1781 sbi->total_valid_block_count++;
1782 spin_unlock(&sbi->stat_lock);
1783
1784 if (inode) {
1785 if (is_inode)
1786 f2fs_mark_inode_dirty_sync(inode, true);
1787 else
1788 f2fs_i_blocks_write(inode, 1, true, true);
1789 }
1790
1791 percpu_counter_inc(&sbi->alloc_valid_block_count);
1792 return 0;
1793
1794 enospc:
1795 if (quota)
1796 dquot_release_reservation_block(inode, 1);
1797 return -ENOSPC;
1798 }
1799
1800 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1801 struct inode *inode, bool is_inode)
1802 {
1803 spin_lock(&sbi->stat_lock);
1804
1805 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1806 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1807 f2fs_bug_on(sbi, !is_inode && !inode->i_blocks);
1808
1809 sbi->total_valid_node_count--;
1810 sbi->total_valid_block_count--;
1811
1812 spin_unlock(&sbi->stat_lock);
1813
1814 if (!is_inode)
1815 f2fs_i_blocks_write(inode, 1, false, true);
1816 }
1817
1818 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1819 {
1820 return sbi->total_valid_node_count;
1821 }
1822
1823 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1824 {
1825 percpu_counter_inc(&sbi->total_valid_inode_count);
1826 }
1827
1828 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1829 {
1830 percpu_counter_dec(&sbi->total_valid_inode_count);
1831 }
1832
1833 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
1834 {
1835 return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
1836 }
1837
1838 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
1839 pgoff_t index, bool for_write)
1840 {
1841 #ifdef CONFIG_F2FS_FAULT_INJECTION
1842 struct page *page = find_lock_page(mapping, index);
1843
1844 if (page)
1845 return page;
1846
1847 if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC)) {
1848 f2fs_show_injection_info(FAULT_PAGE_ALLOC);
1849 return NULL;
1850 }
1851 #endif
1852 if (!for_write)
1853 return grab_cache_page(mapping, index);
1854 return grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
1855 }
1856
1857 static inline void f2fs_copy_page(struct page *src, struct page *dst)
1858 {
1859 char *src_kaddr = kmap(src);
1860 char *dst_kaddr = kmap(dst);
1861
1862 memcpy(dst_kaddr, src_kaddr, PAGE_SIZE);
1863 kunmap(dst);
1864 kunmap(src);
1865 }
1866
1867 static inline void f2fs_put_page(struct page *page, int unlock)
1868 {
1869 if (!page)
1870 return;
1871
1872 if (unlock) {
1873 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1874 unlock_page(page);
1875 }
1876 put_page(page);
1877 }
1878
1879 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1880 {
1881 if (dn->node_page)
1882 f2fs_put_page(dn->node_page, 1);
1883 if (dn->inode_page && dn->node_page != dn->inode_page)
1884 f2fs_put_page(dn->inode_page, 0);
1885 dn->node_page = NULL;
1886 dn->inode_page = NULL;
1887 }
1888
1889 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1890 size_t size)
1891 {
1892 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1893 }
1894
1895 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1896 gfp_t flags)
1897 {
1898 void *entry;
1899
1900 entry = kmem_cache_alloc(cachep, flags);
1901 if (!entry)
1902 entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
1903 return entry;
1904 }
1905
1906 static inline struct bio *f2fs_bio_alloc(int npages)
1907 {
1908 struct bio *bio;
1909
1910 /* No failure on bio allocation */
1911 bio = bio_alloc(GFP_NOIO, npages);
1912 if (!bio)
1913 bio = bio_alloc(GFP_NOIO | __GFP_NOFAIL, npages);
1914 return bio;
1915 }
1916
1917 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1918 unsigned long index, void *item)
1919 {
1920 while (radix_tree_insert(root, index, item))
1921 cond_resched();
1922 }
1923
1924 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1925
1926 static inline bool IS_INODE(struct page *page)
1927 {
1928 struct f2fs_node *p = F2FS_NODE(page);
1929
1930 return RAW_IS_INODE(p);
1931 }
1932
1933 static inline int offset_in_addr(struct f2fs_inode *i)
1934 {
1935 return (i->i_inline & F2FS_EXTRA_ATTR) ?
1936 (le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
1937 }
1938
1939 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1940 {
1941 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1942 }
1943
1944 static inline int f2fs_has_extra_attr(struct inode *inode);
1945 static inline block_t datablock_addr(struct inode *inode,
1946 struct page *node_page, unsigned int offset)
1947 {
1948 struct f2fs_node *raw_node;
1949 __le32 *addr_array;
1950 int base = 0;
1951 bool is_inode = IS_INODE(node_page);
1952
1953 raw_node = F2FS_NODE(node_page);
1954
1955 /* from GC path only */
1956 if (!inode) {
1957 if (is_inode)
1958 base = offset_in_addr(&raw_node->i);
1959 } else if (f2fs_has_extra_attr(inode) && is_inode) {
1960 base = get_extra_isize(inode);
1961 }
1962
1963 addr_array = blkaddr_in_node(raw_node);
1964 return le32_to_cpu(addr_array[base + offset]);
1965 }
1966
1967 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1968 {
1969 int mask;
1970
1971 addr += (nr >> 3);
1972 mask = 1 << (7 - (nr & 0x07));
1973 return mask & *addr;
1974 }
1975
1976 static inline void f2fs_set_bit(unsigned int nr, char *addr)
1977 {
1978 int mask;
1979
1980 addr += (nr >> 3);
1981 mask = 1 << (7 - (nr & 0x07));
1982 *addr |= mask;
1983 }
1984
1985 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
1986 {
1987 int mask;
1988
1989 addr += (nr >> 3);
1990 mask = 1 << (7 - (nr & 0x07));
1991 *addr &= ~mask;
1992 }
1993
1994 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1995 {
1996 int mask;
1997 int ret;
1998
1999 addr += (nr >> 3);
2000 mask = 1 << (7 - (nr & 0x07));
2001 ret = mask & *addr;
2002 *addr |= mask;
2003 return ret;
2004 }
2005
2006 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
2007 {
2008 int mask;
2009 int ret;
2010
2011 addr += (nr >> 3);
2012 mask = 1 << (7 - (nr & 0x07));
2013 ret = mask & *addr;
2014 *addr &= ~mask;
2015 return ret;
2016 }
2017
2018 static inline void f2fs_change_bit(unsigned int nr, char *addr)
2019 {
2020 int mask;
2021
2022 addr += (nr >> 3);
2023 mask = 1 << (7 - (nr & 0x07));
2024 *addr ^= mask;
2025 }
2026
2027 #define F2FS_REG_FLMASK (~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
2028 #define F2FS_OTHER_FLMASK (FS_NODUMP_FL | FS_NOATIME_FL)
2029 #define F2FS_FL_INHERITED (FS_PROJINHERIT_FL)
2030
2031 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
2032 {
2033 if (S_ISDIR(mode))
2034 return flags;
2035 else if (S_ISREG(mode))
2036 return flags & F2FS_REG_FLMASK;
2037 else
2038 return flags & F2FS_OTHER_FLMASK;
2039 }
2040
2041 /* used for f2fs_inode_info->flags */
2042 enum {
2043 FI_NEW_INODE, /* indicate newly allocated inode */
2044 FI_DIRTY_INODE, /* indicate inode is dirty or not */
2045 FI_AUTO_RECOVER, /* indicate inode is recoverable */
2046 FI_DIRTY_DIR, /* indicate directory has dirty pages */
2047 FI_INC_LINK, /* need to increment i_nlink */
2048 FI_ACL_MODE, /* indicate acl mode */
2049 FI_NO_ALLOC, /* should not allocate any blocks */
2050 FI_FREE_NID, /* free allocated nide */
2051 FI_NO_EXTENT, /* not to use the extent cache */
2052 FI_INLINE_XATTR, /* used for inline xattr */
2053 FI_INLINE_DATA, /* used for inline data*/
2054 FI_INLINE_DENTRY, /* used for inline dentry */
2055 FI_APPEND_WRITE, /* inode has appended data */
2056 FI_UPDATE_WRITE, /* inode has in-place-update data */
2057 FI_NEED_IPU, /* used for ipu per file */
2058 FI_ATOMIC_FILE, /* indicate atomic file */
2059 FI_ATOMIC_COMMIT, /* indicate the state of atomical committing */
2060 FI_VOLATILE_FILE, /* indicate volatile file */
2061 FI_FIRST_BLOCK_WRITTEN, /* indicate #0 data block was written */
2062 FI_DROP_CACHE, /* drop dirty page cache */
2063 FI_DATA_EXIST, /* indicate data exists */
2064 FI_INLINE_DOTS, /* indicate inline dot dentries */
2065 FI_DO_DEFRAG, /* indicate defragment is running */
2066 FI_DIRTY_FILE, /* indicate regular/symlink has dirty pages */
2067 FI_NO_PREALLOC, /* indicate skipped preallocated blocks */
2068 FI_HOT_DATA, /* indicate file is hot */
2069 FI_EXTRA_ATTR, /* indicate file has extra attribute */
2070 FI_PROJ_INHERIT, /* indicate file inherits projectid */
2071 };
2072
2073 static inline void __mark_inode_dirty_flag(struct inode *inode,
2074 int flag, bool set)
2075 {
2076 switch (flag) {
2077 case FI_INLINE_XATTR:
2078 case FI_INLINE_DATA:
2079 case FI_INLINE_DENTRY:
2080 if (set)
2081 return;
2082 case FI_DATA_EXIST:
2083 case FI_INLINE_DOTS:
2084 f2fs_mark_inode_dirty_sync(inode, true);
2085 }
2086 }
2087
2088 static inline void set_inode_flag(struct inode *inode, int flag)
2089 {
2090 if (!test_bit(flag, &F2FS_I(inode)->flags))
2091 set_bit(flag, &F2FS_I(inode)->flags);
2092 __mark_inode_dirty_flag(inode, flag, true);
2093 }
2094
2095 static inline int is_inode_flag_set(struct inode *inode, int flag)
2096 {
2097 return test_bit(flag, &F2FS_I(inode)->flags);
2098 }
2099
2100 static inline void clear_inode_flag(struct inode *inode, int flag)
2101 {
2102 if (test_bit(flag, &F2FS_I(inode)->flags))
2103 clear_bit(flag, &F2FS_I(inode)->flags);
2104 __mark_inode_dirty_flag(inode, flag, false);
2105 }
2106
2107 static inline void set_acl_inode(struct inode *inode, umode_t mode)
2108 {
2109 F2FS_I(inode)->i_acl_mode = mode;
2110 set_inode_flag(inode, FI_ACL_MODE);
2111 f2fs_mark_inode_dirty_sync(inode, false);
2112 }
2113
2114 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
2115 {
2116 if (inc)
2117 inc_nlink(inode);
2118 else
2119 drop_nlink(inode);
2120 f2fs_mark_inode_dirty_sync(inode, true);
2121 }
2122
2123 static inline void f2fs_i_blocks_write(struct inode *inode,
2124 block_t diff, bool add, bool claim)
2125 {
2126 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2127 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2128
2129 /* add = 1, claim = 1 should be dquot_reserve_block in pair */
2130 if (add) {
2131 if (claim)
2132 dquot_claim_block(inode, diff);
2133 else
2134 dquot_alloc_block_nofail(inode, diff);
2135 } else {
2136 dquot_free_block(inode, diff);
2137 }
2138
2139 f2fs_mark_inode_dirty_sync(inode, true);
2140 if (clean || recover)
2141 set_inode_flag(inode, FI_AUTO_RECOVER);
2142 }
2143
2144 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
2145 {
2146 bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
2147 bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
2148
2149 if (i_size_read(inode) == i_size)
2150 return;
2151
2152 i_size_write(inode, i_size);
2153 f2fs_mark_inode_dirty_sync(inode, true);
2154 if (clean || recover)
2155 set_inode_flag(inode, FI_AUTO_RECOVER);
2156 }
2157
2158 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
2159 {
2160 F2FS_I(inode)->i_current_depth = depth;
2161 f2fs_mark_inode_dirty_sync(inode, true);
2162 }
2163
2164 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
2165 {
2166 F2FS_I(inode)->i_xattr_nid = xnid;
2167 f2fs_mark_inode_dirty_sync(inode, true);
2168 }
2169
2170 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
2171 {
2172 F2FS_I(inode)->i_pino = pino;
2173 f2fs_mark_inode_dirty_sync(inode, true);
2174 }
2175
2176 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
2177 {
2178 struct f2fs_inode_info *fi = F2FS_I(inode);
2179
2180 if (ri->i_inline & F2FS_INLINE_XATTR)
2181 set_bit(FI_INLINE_XATTR, &fi->flags);
2182 if (ri->i_inline & F2FS_INLINE_DATA)
2183 set_bit(FI_INLINE_DATA, &fi->flags);
2184 if (ri->i_inline & F2FS_INLINE_DENTRY)
2185 set_bit(FI_INLINE_DENTRY, &fi->flags);
2186 if (ri->i_inline & F2FS_DATA_EXIST)
2187 set_bit(FI_DATA_EXIST, &fi->flags);
2188 if (ri->i_inline & F2FS_INLINE_DOTS)
2189 set_bit(FI_INLINE_DOTS, &fi->flags);
2190 if (ri->i_inline & F2FS_EXTRA_ATTR)
2191 set_bit(FI_EXTRA_ATTR, &fi->flags);
2192 }
2193
2194 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
2195 {
2196 ri->i_inline = 0;
2197
2198 if (is_inode_flag_set(inode, FI_INLINE_XATTR))
2199 ri->i_inline |= F2FS_INLINE_XATTR;
2200 if (is_inode_flag_set(inode, FI_INLINE_DATA))
2201 ri->i_inline |= F2FS_INLINE_DATA;
2202 if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
2203 ri->i_inline |= F2FS_INLINE_DENTRY;
2204 if (is_inode_flag_set(inode, FI_DATA_EXIST))
2205 ri->i_inline |= F2FS_DATA_EXIST;
2206 if (is_inode_flag_set(inode, FI_INLINE_DOTS))
2207 ri->i_inline |= F2FS_INLINE_DOTS;
2208 if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
2209 ri->i_inline |= F2FS_EXTRA_ATTR;
2210 }
2211
2212 static inline int f2fs_has_extra_attr(struct inode *inode)
2213 {
2214 return is_inode_flag_set(inode, FI_EXTRA_ATTR);
2215 }
2216
2217 static inline int f2fs_has_inline_xattr(struct inode *inode)
2218 {
2219 return is_inode_flag_set(inode, FI_INLINE_XATTR);
2220 }
2221
2222 static inline unsigned int addrs_per_inode(struct inode *inode)
2223 {
2224 if (f2fs_has_inline_xattr(inode))
2225 return CUR_ADDRS_PER_INODE(inode) - F2FS_INLINE_XATTR_ADDRS;
2226 return CUR_ADDRS_PER_INODE(inode);
2227 }
2228
2229 static inline void *inline_xattr_addr(struct page *page)
2230 {
2231 struct f2fs_inode *ri = F2FS_INODE(page);
2232
2233 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
2234 F2FS_INLINE_XATTR_ADDRS]);
2235 }
2236
2237 static inline int inline_xattr_size(struct inode *inode)
2238 {
2239 if (f2fs_has_inline_xattr(inode))
2240 return F2FS_INLINE_XATTR_ADDRS << 2;
2241 else
2242 return 0;
2243 }
2244
2245 static inline int f2fs_has_inline_data(struct inode *inode)
2246 {
2247 return is_inode_flag_set(inode, FI_INLINE_DATA);
2248 }
2249
2250 static inline int f2fs_exist_data(struct inode *inode)
2251 {
2252 return is_inode_flag_set(inode, FI_DATA_EXIST);
2253 }
2254
2255 static inline int f2fs_has_inline_dots(struct inode *inode)
2256 {
2257 return is_inode_flag_set(inode, FI_INLINE_DOTS);
2258 }
2259
2260 static inline bool f2fs_is_atomic_file(struct inode *inode)
2261 {
2262 return is_inode_flag_set(inode, FI_ATOMIC_FILE);
2263 }
2264
2265 static inline bool f2fs_is_commit_atomic_write(struct inode *inode)
2266 {
2267 return is_inode_flag_set(inode, FI_ATOMIC_COMMIT);
2268 }
2269
2270 static inline bool f2fs_is_volatile_file(struct inode *inode)
2271 {
2272 return is_inode_flag_set(inode, FI_VOLATILE_FILE);
2273 }
2274
2275 static inline bool f2fs_is_first_block_written(struct inode *inode)
2276 {
2277 return is_inode_flag_set(inode, FI_FIRST_BLOCK_WRITTEN);
2278 }
2279
2280 static inline bool f2fs_is_drop_cache(struct inode *inode)
2281 {
2282 return is_inode_flag_set(inode, FI_DROP_CACHE);
2283 }
2284
2285 static inline void *inline_data_addr(struct inode *inode, struct page *page)
2286 {
2287 struct f2fs_inode *ri = F2FS_INODE(page);
2288 int extra_size = get_extra_isize(inode);
2289
2290 return (void *)&(ri->i_addr[extra_size + DEF_INLINE_RESERVED_SIZE]);
2291 }
2292
2293 static inline int f2fs_has_inline_dentry(struct inode *inode)
2294 {
2295 return is_inode_flag_set(inode, FI_INLINE_DENTRY);
2296 }
2297
2298 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
2299 {
2300 if (!f2fs_has_inline_dentry(dir))
2301 kunmap(page);
2302 }
2303
2304 static inline int is_file(struct inode *inode, int type)
2305 {
2306 return F2FS_I(inode)->i_advise & type;
2307 }
2308
2309 static inline void set_file(struct inode *inode, int type)
2310 {
2311 F2FS_I(inode)->i_advise |= type;
2312 f2fs_mark_inode_dirty_sync(inode, true);
2313 }
2314
2315 static inline void clear_file(struct inode *inode, int type)
2316 {
2317 F2FS_I(inode)->i_advise &= ~type;
2318 f2fs_mark_inode_dirty_sync(inode, true);
2319 }
2320
2321 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
2322 {
2323 if (dsync) {
2324 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2325 bool ret;
2326
2327 spin_lock(&sbi->inode_lock[DIRTY_META]);
2328 ret = list_empty(&F2FS_I(inode)->gdirty_list);
2329 spin_unlock(&sbi->inode_lock[DIRTY_META]);
2330 return ret;
2331 }
2332 if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
2333 file_keep_isize(inode) ||
2334 i_size_read(inode) & PAGE_MASK)
2335 return false;
2336 return F2FS_I(inode)->last_disk_size == i_size_read(inode);
2337 }
2338
2339 static inline int f2fs_readonly(struct super_block *sb)
2340 {
2341 return sb->s_flags & MS_RDONLY;
2342 }
2343
2344 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
2345 {
2346 return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
2347 }
2348
2349 static inline bool is_dot_dotdot(const struct qstr *str)
2350 {
2351 if (str->len == 1 && str->name[0] == '.')
2352 return true;
2353
2354 if (str->len == 2 && str->name[0] == '.' && str->name[1] == '.')
2355 return true;
2356
2357 return false;
2358 }
2359
2360 static inline bool f2fs_may_extent_tree(struct inode *inode)
2361 {
2362 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE) ||
2363 is_inode_flag_set(inode, FI_NO_EXTENT))
2364 return false;
2365
2366 return S_ISREG(inode->i_mode);
2367 }
2368
2369 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
2370 size_t size, gfp_t flags)
2371 {
2372 #ifdef CONFIG_F2FS_FAULT_INJECTION
2373 if (time_to_inject(sbi, FAULT_KMALLOC)) {
2374 f2fs_show_injection_info(FAULT_KMALLOC);
2375 return NULL;
2376 }
2377 #endif
2378 return kmalloc(size, flags);
2379 }
2380
2381 static inline void *kvmalloc(size_t size, gfp_t flags)
2382 {
2383 void *ret;
2384
2385 ret = kmalloc(size, flags | __GFP_NOWARN);
2386 if (!ret)
2387 ret = __vmalloc(size, flags, PAGE_KERNEL);
2388 return ret;
2389 }
2390
2391 static inline void *kvzalloc(size_t size, gfp_t flags)
2392 {
2393 void *ret;
2394
2395 ret = kzalloc(size, flags | __GFP_NOWARN);
2396 if (!ret)
2397 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
2398 return ret;
2399 }
2400
2401 static inline int get_extra_isize(struct inode *inode)
2402 {
2403 return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
2404 }
2405
2406 #define get_inode_mode(i) \
2407 ((is_inode_flag_set(i, FI_ACL_MODE)) ? \
2408 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
2409
2410 #define F2FS_TOTAL_EXTRA_ATTR_SIZE \
2411 (offsetof(struct f2fs_inode, i_extra_end) - \
2412 offsetof(struct f2fs_inode, i_extra_isize)) \
2413
2414 #define F2FS_OLD_ATTRIBUTE_SIZE (offsetof(struct f2fs_inode, i_addr))
2415 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field) \
2416 ((offsetof(typeof(*f2fs_inode), field) + \
2417 sizeof((f2fs_inode)->field)) \
2418 <= (F2FS_OLD_ATTRIBUTE_SIZE + extra_isize)) \
2419
2420 static inline void f2fs_reset_iostat(struct f2fs_sb_info *sbi)
2421 {
2422 int i;
2423
2424 spin_lock(&sbi->iostat_lock);
2425 for (i = 0; i < NR_IO_TYPE; i++)
2426 sbi->write_iostat[i] = 0;
2427 spin_unlock(&sbi->iostat_lock);
2428 }
2429
2430 static inline void f2fs_update_iostat(struct f2fs_sb_info *sbi,
2431 enum iostat_type type, unsigned long long io_bytes)
2432 {
2433 if (!sbi->iostat_enable)
2434 return;
2435 spin_lock(&sbi->iostat_lock);
2436 sbi->write_iostat[type] += io_bytes;
2437
2438 if (type == APP_WRITE_IO || type == APP_DIRECT_IO)
2439 sbi->write_iostat[APP_BUFFERED_IO] =
2440 sbi->write_iostat[APP_WRITE_IO] -
2441 sbi->write_iostat[APP_DIRECT_IO];
2442 spin_unlock(&sbi->iostat_lock);
2443 }
2444
2445 /*
2446 * file.c
2447 */
2448 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2449 void truncate_data_blocks(struct dnode_of_data *dn);
2450 int truncate_blocks(struct inode *inode, u64 from, bool lock);
2451 int f2fs_truncate(struct inode *inode);
2452 int f2fs_getattr(struct vfsmount *mnt, struct dentry *dentry,
2453 struct kstat *stat);
2454 int f2fs_setattr(struct dentry *dentry, struct iattr *attr);
2455 int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
2456 int truncate_data_blocks_range(struct dnode_of_data *dn, int count);
2457 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
2458 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2459
2460 /*
2461 * inode.c
2462 */
2463 void f2fs_set_inode_flags(struct inode *inode);
2464 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
2465 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
2466 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
2467 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
2468 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
2469 int update_inode(struct inode *inode, struct page *node_page);
2470 int update_inode_page(struct inode *inode);
2471 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
2472 void f2fs_evict_inode(struct inode *inode);
2473 void handle_failed_inode(struct inode *inode);
2474
2475 /*
2476 * namei.c
2477 */
2478 struct dentry *f2fs_get_parent(struct dentry *child);
2479
2480 /*
2481 * dir.c
2482 */
2483 void set_de_type(struct f2fs_dir_entry *de, umode_t mode);
2484 unsigned char get_de_type(struct f2fs_dir_entry *de);
2485 struct f2fs_dir_entry *find_target_dentry(struct fscrypt_name *fname,
2486 f2fs_hash_t namehash, int *max_slots,
2487 struct f2fs_dentry_ptr *d);
2488 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
2489 unsigned int start_pos, struct fscrypt_str *fstr);
2490 void do_make_empty_dir(struct inode *inode, struct inode *parent,
2491 struct f2fs_dentry_ptr *d);
2492 struct page *init_inode_metadata(struct inode *inode, struct inode *dir,
2493 const struct qstr *new_name,
2494 const struct qstr *orig_name, struct page *dpage);
2495 void update_parent_metadata(struct inode *dir, struct inode *inode,
2496 unsigned int current_depth);
2497 int room_for_filename(const void *bitmap, int slots, int max_slots);
2498 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
2499 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
2500 struct fscrypt_name *fname, struct page **res_page);
2501 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
2502 const struct qstr *child, struct page **res_page);
2503 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
2504 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
2505 struct page **page);
2506 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
2507 struct page *page, struct inode *inode);
2508 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
2509 const struct qstr *name, f2fs_hash_t name_hash,
2510 unsigned int bit_pos);
2511 int f2fs_add_regular_entry(struct inode *dir, const struct qstr *new_name,
2512 const struct qstr *orig_name,
2513 struct inode *inode, nid_t ino, umode_t mode);
2514 int __f2fs_do_add_link(struct inode *dir, struct fscrypt_name *fname,
2515 struct inode *inode, nid_t ino, umode_t mode);
2516 int __f2fs_add_link(struct inode *dir, const struct qstr *name,
2517 struct inode *inode, nid_t ino, umode_t mode);
2518 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
2519 struct inode *dir, struct inode *inode);
2520 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir);
2521 bool f2fs_empty_dir(struct inode *dir);
2522
2523 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
2524 {
2525 return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
2526 inode, inode->i_ino, inode->i_mode);
2527 }
2528
2529 /*
2530 * super.c
2531 */
2532 int f2fs_inode_dirtied(struct inode *inode, bool sync);
2533 void f2fs_inode_synced(struct inode *inode);
2534 void f2fs_enable_quota_files(struct f2fs_sb_info *sbi);
2535 void f2fs_quota_off_umount(struct super_block *sb);
2536 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
2537 int f2fs_sync_fs(struct super_block *sb, int sync);
2538 extern __printf(3, 4)
2539 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...);
2540 int sanity_check_ckpt(struct f2fs_sb_info *sbi);
2541
2542 /*
2543 * hash.c
2544 */
2545 f2fs_hash_t f2fs_dentry_hash(const struct qstr *name_info,
2546 struct fscrypt_name *fname);
2547
2548 /*
2549 * node.c
2550 */
2551 struct dnode_of_data;
2552 struct node_info;
2553
2554 bool available_free_memory(struct f2fs_sb_info *sbi, int type);
2555 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
2556 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
2557 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
2558 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni);
2559 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
2560 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
2561 int truncate_inode_blocks(struct inode *inode, pgoff_t from);
2562 int truncate_xattr_node(struct inode *inode, struct page *page);
2563 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino);
2564 int remove_inode_page(struct inode *inode);
2565 struct page *new_inode_page(struct inode *inode);
2566 struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs);
2567 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
2568 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
2569 struct page *get_node_page_ra(struct page *parent, int start);
2570 void move_node_page(struct page *node_page, int gc_type);
2571 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
2572 struct writeback_control *wbc, bool atomic);
2573 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
2574 bool do_balance, enum iostat_type io_type);
2575 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
2576 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
2577 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
2578 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
2579 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
2580 void recover_inline_xattr(struct inode *inode, struct page *page);
2581 int recover_xattr_data(struct inode *inode, struct page *page,
2582 block_t blkaddr);
2583 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
2584 int restore_node_summary(struct f2fs_sb_info *sbi,
2585 unsigned int segno, struct f2fs_summary_block *sum);
2586 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2587 int build_node_manager(struct f2fs_sb_info *sbi);
2588 void destroy_node_manager(struct f2fs_sb_info *sbi);
2589 int __init create_node_manager_caches(void);
2590 void destroy_node_manager_caches(void);
2591
2592 /*
2593 * segment.c
2594 */
2595 bool need_SSR(struct f2fs_sb_info *sbi);
2596 void register_inmem_page(struct inode *inode, struct page *page);
2597 void drop_inmem_pages(struct inode *inode);
2598 void drop_inmem_page(struct inode *inode, struct page *page);
2599 int commit_inmem_pages(struct inode *inode);
2600 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
2601 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi);
2602 int f2fs_issue_flush(struct f2fs_sb_info *sbi);
2603 int create_flush_cmd_control(struct f2fs_sb_info *sbi);
2604 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
2605 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr);
2606 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
2607 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new);
2608 void stop_discard_thread(struct f2fs_sb_info *sbi);
2609 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi);
2610 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2611 void release_discard_addrs(struct f2fs_sb_info *sbi);
2612 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
2613 void allocate_new_segments(struct f2fs_sb_info *sbi);
2614 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
2615 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2616 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
2617 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr);
2618 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2619 enum iostat_type io_type);
2620 void write_node_page(unsigned int nid, struct f2fs_io_info *fio);
2621 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio);
2622 int rewrite_data_page(struct f2fs_io_info *fio);
2623 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2624 block_t old_blkaddr, block_t new_blkaddr,
2625 bool recover_curseg, bool recover_newaddr);
2626 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2627 block_t old_addr, block_t new_addr,
2628 unsigned char version, bool recover_curseg,
2629 bool recover_newaddr);
2630 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2631 block_t old_blkaddr, block_t *new_blkaddr,
2632 struct f2fs_summary *sum, int type,
2633 struct f2fs_io_info *fio, bool add_list);
2634 void f2fs_wait_on_page_writeback(struct page *page,
2635 enum page_type type, bool ordered);
2636 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr);
2637 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2638 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
2639 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2640 unsigned int val, int alloc);
2641 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2642 int build_segment_manager(struct f2fs_sb_info *sbi);
2643 void destroy_segment_manager(struct f2fs_sb_info *sbi);
2644 int __init create_segment_manager_caches(void);
2645 void destroy_segment_manager_caches(void);
2646
2647 /*
2648 * checkpoint.c
2649 */
2650 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io);
2651 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2652 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
2653 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
2654 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type);
2655 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
2656 int type, bool sync);
2657 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index);
2658 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
2659 long nr_to_write, enum iostat_type io_type);
2660 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2661 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
2662 void release_ino_entry(struct f2fs_sb_info *sbi, bool all);
2663 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
2664 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi);
2665 int acquire_orphan_inode(struct f2fs_sb_info *sbi);
2666 void release_orphan_inode(struct f2fs_sb_info *sbi);
2667 void add_orphan_inode(struct inode *inode);
2668 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
2669 int recover_orphan_inodes(struct f2fs_sb_info *sbi);
2670 int get_valid_checkpoint(struct f2fs_sb_info *sbi);
2671 void update_dirty_page(struct inode *inode, struct page *page);
2672 void remove_dirty_inode(struct inode *inode);
2673 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type);
2674 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
2675 void init_ino_entry_info(struct f2fs_sb_info *sbi);
2676 int __init create_checkpoint_caches(void);
2677 void destroy_checkpoint_caches(void);
2678
2679 /*
2680 * data.c
2681 */
2682 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
2683 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
2684 struct inode *inode, nid_t ino, pgoff_t idx,
2685 enum page_type type);
2686 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
2687 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
2688 int f2fs_submit_page_write(struct f2fs_io_info *fio);
2689 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
2690 block_t blk_addr, struct bio *bio);
2691 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
2692 void set_data_blkaddr(struct dnode_of_data *dn);
2693 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
2694 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
2695 int reserve_new_block(struct dnode_of_data *dn);
2696 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index);
2697 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from);
2698 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
2699 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
2700 int op_flags, bool for_write);
2701 struct page *find_data_page(struct inode *inode, pgoff_t index);
2702 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
2703 bool for_write);
2704 struct page *get_new_data_page(struct inode *inode,
2705 struct page *ipage, pgoff_t index, bool new_i_size);
2706 int do_write_data_page(struct f2fs_io_info *fio);
2707 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
2708 int create, int flag);
2709 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2710 u64 start, u64 len);
2711 void f2fs_set_page_dirty_nobuffers(struct page *page);
2712 int __f2fs_write_data_pages(struct address_space *mapping,
2713 struct writeback_control *wbc,
2714 enum iostat_type io_type);
2715 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2716 unsigned int length);
2717 int f2fs_release_page(struct page *page, gfp_t wait);
2718 #ifdef CONFIG_MIGRATION
2719 int f2fs_migrate_page(struct address_space *mapping, struct page *newpage,
2720 struct page *page, enum migrate_mode mode);
2721 #endif
2722
2723 /*
2724 * gc.c
2725 */
2726 int start_gc_thread(struct f2fs_sb_info *sbi);
2727 void stop_gc_thread(struct f2fs_sb_info *sbi);
2728 block_t start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
2729 int f2fs_gc(struct f2fs_sb_info *sbi, bool sync, bool background,
2730 unsigned int segno);
2731 void build_gc_manager(struct f2fs_sb_info *sbi);
2732
2733 /*
2734 * recovery.c
2735 */
2736 int recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
2737 bool space_for_roll_forward(struct f2fs_sb_info *sbi);
2738
2739 /*
2740 * debug.c
2741 */
2742 #ifdef CONFIG_F2FS_STAT_FS
2743 struct f2fs_stat_info {
2744 struct list_head stat_list;
2745 struct f2fs_sb_info *sbi;
2746 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
2747 int main_area_segs, main_area_sections, main_area_zones;
2748 unsigned long long hit_largest, hit_cached, hit_rbtree;
2749 unsigned long long hit_total, total_ext;
2750 int ext_tree, zombie_tree, ext_node;
2751 int ndirty_node, ndirty_dent, ndirty_meta, ndirty_data, ndirty_imeta;
2752 int inmem_pages;
2753 unsigned int ndirty_dirs, ndirty_files, ndirty_all;
2754 int nats, dirty_nats, sits, dirty_sits;
2755 int free_nids, avail_nids, alloc_nids;
2756 int total_count, utilization;
2757 int bg_gc, nr_wb_cp_data, nr_wb_data;
2758 int nr_flushing, nr_flushed, nr_discarding, nr_discarded;
2759 int nr_discard_cmd;
2760 unsigned int undiscard_blks;
2761 int inline_xattr, inline_inode, inline_dir, append, update, orphans;
2762 int aw_cnt, max_aw_cnt, vw_cnt, max_vw_cnt;
2763 unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
2764 unsigned int bimodal, avg_vblocks;
2765 int util_free, util_valid, util_invalid;
2766 int rsvd_segs, overp_segs;
2767 int dirty_count, node_pages, meta_pages;
2768 int prefree_count, call_count, cp_count, bg_cp_count;
2769 int tot_segs, node_segs, data_segs, free_segs, free_secs;
2770 int bg_node_segs, bg_data_segs;
2771 int tot_blks, data_blks, node_blks;
2772 int bg_data_blks, bg_node_blks;
2773 int curseg[NR_CURSEG_TYPE];
2774 int cursec[NR_CURSEG_TYPE];
2775 int curzone[NR_CURSEG_TYPE];
2776
2777 unsigned int segment_count[2];
2778 unsigned int block_count[2];
2779 unsigned int inplace_count;
2780 unsigned long long base_mem, cache_mem, page_mem;
2781 };
2782
2783 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
2784 {
2785 return (struct f2fs_stat_info *)sbi->stat_info;
2786 }
2787
2788 #define stat_inc_cp_count(si) ((si)->cp_count++)
2789 #define stat_inc_bg_cp_count(si) ((si)->bg_cp_count++)
2790 #define stat_inc_call_count(si) ((si)->call_count++)
2791 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
2792 #define stat_inc_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]++)
2793 #define stat_dec_dirty_inode(sbi, type) ((sbi)->ndirty_inode[type]--)
2794 #define stat_inc_total_hit(sbi) (atomic64_inc(&(sbi)->total_hit_ext))
2795 #define stat_inc_rbtree_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_rbtree))
2796 #define stat_inc_largest_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_largest))
2797 #define stat_inc_cached_node_hit(sbi) (atomic64_inc(&(sbi)->read_hit_cached))
2798 #define stat_inc_inline_xattr(inode) \
2799 do { \
2800 if (f2fs_has_inline_xattr(inode)) \
2801 (atomic_inc(&F2FS_I_SB(inode)->inline_xattr)); \
2802 } while (0)
2803 #define stat_dec_inline_xattr(inode) \
2804 do { \
2805 if (f2fs_has_inline_xattr(inode)) \
2806 (atomic_dec(&F2FS_I_SB(inode)->inline_xattr)); \
2807 } while (0)
2808 #define stat_inc_inline_inode(inode) \
2809 do { \
2810 if (f2fs_has_inline_data(inode)) \
2811 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
2812 } while (0)
2813 #define stat_dec_inline_inode(inode) \
2814 do { \
2815 if (f2fs_has_inline_data(inode)) \
2816 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
2817 } while (0)
2818 #define stat_inc_inline_dir(inode) \
2819 do { \
2820 if (f2fs_has_inline_dentry(inode)) \
2821 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
2822 } while (0)
2823 #define stat_dec_inline_dir(inode) \
2824 do { \
2825 if (f2fs_has_inline_dentry(inode)) \
2826 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
2827 } while (0)
2828 #define stat_inc_seg_type(sbi, curseg) \
2829 ((sbi)->segment_count[(curseg)->alloc_type]++)
2830 #define stat_inc_block_count(sbi, curseg) \
2831 ((sbi)->block_count[(curseg)->alloc_type]++)
2832 #define stat_inc_inplace_blocks(sbi) \
2833 (atomic_inc(&(sbi)->inplace_count))
2834 #define stat_inc_atomic_write(inode) \
2835 (atomic_inc(&F2FS_I_SB(inode)->aw_cnt))
2836 #define stat_dec_atomic_write(inode) \
2837 (atomic_dec(&F2FS_I_SB(inode)->aw_cnt))
2838 #define stat_update_max_atomic_write(inode) \
2839 do { \
2840 int cur = atomic_read(&F2FS_I_SB(inode)->aw_cnt); \
2841 int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt); \
2842 if (cur > max) \
2843 atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur); \
2844 } while (0)
2845 #define stat_inc_volatile_write(inode) \
2846 (atomic_inc(&F2FS_I_SB(inode)->vw_cnt))
2847 #define stat_dec_volatile_write(inode) \
2848 (atomic_dec(&F2FS_I_SB(inode)->vw_cnt))
2849 #define stat_update_max_volatile_write(inode) \
2850 do { \
2851 int cur = atomic_read(&F2FS_I_SB(inode)->vw_cnt); \
2852 int max = atomic_read(&F2FS_I_SB(inode)->max_vw_cnt); \
2853 if (cur > max) \
2854 atomic_set(&F2FS_I_SB(inode)->max_vw_cnt, cur); \
2855 } while (0)
2856 #define stat_inc_seg_count(sbi, type, gc_type) \
2857 do { \
2858 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2859 si->tot_segs++; \
2860 if ((type) == SUM_TYPE_DATA) { \
2861 si->data_segs++; \
2862 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
2863 } else { \
2864 si->node_segs++; \
2865 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
2866 } \
2867 } while (0)
2868
2869 #define stat_inc_tot_blk_count(si, blks) \
2870 ((si)->tot_blks += (blks))
2871
2872 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
2873 do { \
2874 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2875 stat_inc_tot_blk_count(si, blks); \
2876 si->data_blks += (blks); \
2877 si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2878 } while (0)
2879
2880 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
2881 do { \
2882 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
2883 stat_inc_tot_blk_count(si, blks); \
2884 si->node_blks += (blks); \
2885 si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0; \
2886 } while (0)
2887
2888 int f2fs_build_stats(struct f2fs_sb_info *sbi);
2889 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
2890 int __init f2fs_create_root_stats(void);
2891 void f2fs_destroy_root_stats(void);
2892 #else
2893 #define stat_inc_cp_count(si) do { } while (0)
2894 #define stat_inc_bg_cp_count(si) do { } while (0)
2895 #define stat_inc_call_count(si) do { } while (0)
2896 #define stat_inc_bggc_count(si) do { } while (0)
2897 #define stat_inc_dirty_inode(sbi, type) do { } while (0)
2898 #define stat_dec_dirty_inode(sbi, type) do { } while (0)
2899 #define stat_inc_total_hit(sb) do { } while (0)
2900 #define stat_inc_rbtree_node_hit(sb) do { } while (0)
2901 #define stat_inc_largest_node_hit(sbi) do { } while (0)
2902 #define stat_inc_cached_node_hit(sbi) do { } while (0)
2903 #define stat_inc_inline_xattr(inode) do { } while (0)
2904 #define stat_dec_inline_xattr(inode) do { } while (0)
2905 #define stat_inc_inline_inode(inode) do { } while (0)
2906 #define stat_dec_inline_inode(inode) do { } while (0)
2907 #define stat_inc_inline_dir(inode) do { } while (0)
2908 #define stat_dec_inline_dir(inode) do { } while (0)
2909 #define stat_inc_atomic_write(inode) do { } while (0)
2910 #define stat_dec_atomic_write(inode) do { } while (0)
2911 #define stat_update_max_atomic_write(inode) do { } while (0)
2912 #define stat_inc_volatile_write(inode) do { } while (0)
2913 #define stat_dec_volatile_write(inode) do { } while (0)
2914 #define stat_update_max_volatile_write(inode) do { } while (0)
2915 #define stat_inc_seg_type(sbi, curseg) do { } while (0)
2916 #define stat_inc_block_count(sbi, curseg) do { } while (0)
2917 #define stat_inc_inplace_blocks(sbi) do { } while (0)
2918 #define stat_inc_seg_count(sbi, type, gc_type) do { } while (0)
2919 #define stat_inc_tot_blk_count(si, blks) do { } while (0)
2920 #define stat_inc_data_blk_count(sbi, blks, gc_type) do { } while (0)
2921 #define stat_inc_node_blk_count(sbi, blks, gc_type) do { } while (0)
2922
2923 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
2924 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
2925 static inline int __init f2fs_create_root_stats(void) { return 0; }
2926 static inline void f2fs_destroy_root_stats(void) { }
2927 #endif
2928
2929 extern const struct file_operations f2fs_dir_operations;
2930 extern const struct file_operations f2fs_file_operations;
2931 extern const struct inode_operations f2fs_file_inode_operations;
2932 extern const struct address_space_operations f2fs_dblock_aops;
2933 extern const struct address_space_operations f2fs_node_aops;
2934 extern const struct address_space_operations f2fs_meta_aops;
2935 extern const struct inode_operations f2fs_dir_inode_operations;
2936 extern const struct inode_operations f2fs_symlink_inode_operations;
2937 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
2938 extern const struct inode_operations f2fs_special_inode_operations;
2939 extern struct kmem_cache *inode_entry_slab;
2940
2941 /*
2942 * inline.c
2943 */
2944 bool f2fs_may_inline_data(struct inode *inode);
2945 bool f2fs_may_inline_dentry(struct inode *inode);
2946 void read_inline_data(struct page *page, struct page *ipage);
2947 void truncate_inline_inode(struct inode *inode, struct page *ipage, u64 from);
2948 int f2fs_read_inline_data(struct inode *inode, struct page *page);
2949 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
2950 int f2fs_convert_inline_inode(struct inode *inode);
2951 int f2fs_write_inline_data(struct inode *inode, struct page *page);
2952 bool recover_inline_data(struct inode *inode, struct page *npage);
2953 struct f2fs_dir_entry *find_in_inline_dir(struct inode *dir,
2954 struct fscrypt_name *fname, struct page **res_page);
2955 int make_empty_inline_dir(struct inode *inode, struct inode *parent,
2956 struct page *ipage);
2957 int f2fs_add_inline_entry(struct inode *dir, const struct qstr *new_name,
2958 const struct qstr *orig_name,
2959 struct inode *inode, nid_t ino, umode_t mode);
2960 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry, struct page *page,
2961 struct inode *dir, struct inode *inode);
2962 bool f2fs_empty_inline_dir(struct inode *dir);
2963 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
2964 struct fscrypt_str *fstr);
2965 int f2fs_inline_data_fiemap(struct inode *inode,
2966 struct fiemap_extent_info *fieinfo,
2967 __u64 start, __u64 len);
2968
2969 /*
2970 * shrinker.c
2971 */
2972 unsigned long f2fs_shrink_count(struct shrinker *shrink,
2973 struct shrink_control *sc);
2974 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
2975 struct shrink_control *sc);
2976 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
2977 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
2978
2979 /*
2980 * extent_cache.c
2981 */
2982 struct rb_entry *__lookup_rb_tree(struct rb_root *root,
2983 struct rb_entry *cached_re, unsigned int ofs);
2984 struct rb_node **__lookup_rb_tree_for_insert(struct f2fs_sb_info *sbi,
2985 struct rb_root *root, struct rb_node **parent,
2986 unsigned int ofs);
2987 struct rb_entry *__lookup_rb_tree_ret(struct rb_root *root,
2988 struct rb_entry *cached_re, unsigned int ofs,
2989 struct rb_entry **prev_entry, struct rb_entry **next_entry,
2990 struct rb_node ***insert_p, struct rb_node **insert_parent,
2991 bool force);
2992 bool __check_rb_tree_consistence(struct f2fs_sb_info *sbi,
2993 struct rb_root *root);
2994 unsigned int f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink);
2995 bool f2fs_init_extent_tree(struct inode *inode, struct f2fs_extent *i_ext);
2996 void f2fs_drop_extent_tree(struct inode *inode);
2997 unsigned int f2fs_destroy_extent_node(struct inode *inode);
2998 void f2fs_destroy_extent_tree(struct inode *inode);
2999 bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
3000 struct extent_info *ei);
3001 void f2fs_update_extent_cache(struct dnode_of_data *dn);
3002 void f2fs_update_extent_cache_range(struct dnode_of_data *dn,
3003 pgoff_t fofs, block_t blkaddr, unsigned int len);
3004 void init_extent_cache_info(struct f2fs_sb_info *sbi);
3005 int __init create_extent_cache(void);
3006 void destroy_extent_cache(void);
3007
3008 /*
3009 * sysfs.c
3010 */
3011 int __init f2fs_init_sysfs(void);
3012 void f2fs_exit_sysfs(void);
3013 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
3014 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
3015
3016 /*
3017 * crypto support
3018 */
3019 static inline bool f2fs_encrypted_inode(struct inode *inode)
3020 {
3021 return file_is_encrypt(inode);
3022 }
3023
3024 static inline bool f2fs_encrypted_file(struct inode *inode)
3025 {
3026 return f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode);
3027 }
3028
3029 static inline void f2fs_set_encrypted_inode(struct inode *inode)
3030 {
3031 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3032 file_set_encrypt(inode);
3033 #endif
3034 }
3035
3036 static inline bool f2fs_bio_encrypted(struct bio *bio)
3037 {
3038 return bio->bi_private != NULL;
3039 }
3040
3041 static inline int f2fs_sb_has_crypto(struct super_block *sb)
3042 {
3043 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_ENCRYPT);
3044 }
3045
3046 static inline int f2fs_sb_mounted_blkzoned(struct super_block *sb)
3047 {
3048 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_BLKZONED);
3049 }
3050
3051 static inline int f2fs_sb_has_extra_attr(struct super_block *sb)
3052 {
3053 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_EXTRA_ATTR);
3054 }
3055
3056 static inline int f2fs_sb_has_project_quota(struct super_block *sb)
3057 {
3058 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_PRJQUOTA);
3059 }
3060
3061 static inline int f2fs_sb_has_inode_chksum(struct super_block *sb)
3062 {
3063 return F2FS_HAS_FEATURE(sb, F2FS_FEATURE_INODE_CHKSUM);
3064 }
3065
3066 #ifdef CONFIG_BLK_DEV_ZONED
3067 static inline int get_blkz_type(struct f2fs_sb_info *sbi,
3068 struct block_device *bdev, block_t blkaddr)
3069 {
3070 unsigned int zno = blkaddr >> sbi->log_blocks_per_blkz;
3071 int i;
3072
3073 for (i = 0; i < sbi->s_ndevs; i++)
3074 if (FDEV(i).bdev == bdev)
3075 return FDEV(i).blkz_type[zno];
3076 return -EINVAL;
3077 }
3078 #endif
3079
3080 static inline bool f2fs_discard_en(struct f2fs_sb_info *sbi)
3081 {
3082 struct request_queue *q = bdev_get_queue(sbi->sb->s_bdev);
3083
3084 return blk_queue_discard(q) || f2fs_sb_mounted_blkzoned(sbi->sb);
3085 }
3086
3087 static inline void set_opt_mode(struct f2fs_sb_info *sbi, unsigned int mt)
3088 {
3089 clear_opt(sbi, ADAPTIVE);
3090 clear_opt(sbi, LFS);
3091
3092 switch (mt) {
3093 case F2FS_MOUNT_ADAPTIVE:
3094 set_opt(sbi, ADAPTIVE);
3095 break;
3096 case F2FS_MOUNT_LFS:
3097 set_opt(sbi, LFS);
3098 break;
3099 }
3100 }
3101
3102 static inline bool f2fs_may_encrypt(struct inode *inode)
3103 {
3104 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3105 umode_t mode = inode->i_mode;
3106
3107 return (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode));
3108 #else
3109 return 0;
3110 #endif
3111 }
3112
3113 #endif