dbe114463a182a420cf6d869d6989098e6b0c025
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 set_sbi_flag(sbi, SBI_NEED_FSCK); \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
51 #define F2FS_MOUNT_NOBARRIER 0x00000800
52 #define F2FS_MOUNT_FASTBOOT 0x00001000
53 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
54
55 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
56 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
57 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
58
59 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
60 typecheck(unsigned long long, b) && \
61 ((long long)((a) - (b)) > 0))
62
63 typedef u32 block_t; /*
64 * should not change u32, since it is the on-disk block
65 * address format, __le32.
66 */
67 typedef u32 nid_t;
68
69 struct f2fs_mount_info {
70 unsigned int opt;
71 };
72
73 #define CRCPOLY_LE 0xedb88320
74
75 static inline __u32 f2fs_crc32(void *buf, size_t len)
76 {
77 unsigned char *p = (unsigned char *)buf;
78 __u32 crc = F2FS_SUPER_MAGIC;
79 int i;
80
81 while (len--) {
82 crc ^= *p++;
83 for (i = 0; i < 8; i++)
84 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
85 }
86 return crc;
87 }
88
89 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
90 {
91 return f2fs_crc32(buf, buf_size) == blk_crc;
92 }
93
94 /*
95 * For checkpoint manager
96 */
97 enum {
98 NAT_BITMAP,
99 SIT_BITMAP
100 };
101
102 enum {
103 CP_UMOUNT,
104 CP_FASTBOOT,
105 CP_SYNC,
106 CP_DISCARD,
107 };
108
109 #define DEF_BATCHED_TRIM_SECTIONS 32
110 #define BATCHED_TRIM_SEGMENTS(sbi) \
111 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
112
113 struct cp_control {
114 int reason;
115 __u64 trim_start;
116 __u64 trim_end;
117 __u64 trim_minlen;
118 __u64 trimmed;
119 };
120
121 /*
122 * For CP/NAT/SIT/SSA readahead
123 */
124 enum {
125 META_CP,
126 META_NAT,
127 META_SIT,
128 META_SSA,
129 META_POR,
130 };
131
132 /* for the list of ino */
133 enum {
134 ORPHAN_INO, /* for orphan ino list */
135 APPEND_INO, /* for append ino list */
136 UPDATE_INO, /* for update ino list */
137 MAX_INO_ENTRY, /* max. list */
138 };
139
140 struct ino_entry {
141 struct list_head list; /* list head */
142 nid_t ino; /* inode number */
143 };
144
145 /*
146 * for the list of directory inodes or gc inodes.
147 * NOTE: there are two slab users for this structure, if we add/modify/delete
148 * fields in structure for one of slab users, it may affect fields or size of
149 * other one, in this condition, it's better to split both of slab and related
150 * data structure.
151 */
152 struct inode_entry {
153 struct list_head list; /* list head */
154 struct inode *inode; /* vfs inode pointer */
155 };
156
157 /* for the list of blockaddresses to be discarded */
158 struct discard_entry {
159 struct list_head list; /* list head */
160 block_t blkaddr; /* block address to be discarded */
161 int len; /* # of consecutive blocks of the discard */
162 };
163
164 /* for the list of fsync inodes, used only during recovery */
165 struct fsync_inode_entry {
166 struct list_head list; /* list head */
167 struct inode *inode; /* vfs inode pointer */
168 block_t blkaddr; /* block address locating the last fsync */
169 block_t last_dentry; /* block address locating the last dentry */
170 block_t last_inode; /* block address locating the last inode */
171 };
172
173 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
174 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
175
176 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
177 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
178 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
179 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
180
181 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
182 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
183
184 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
185 {
186 int before = nats_in_cursum(rs);
187 rs->n_nats = cpu_to_le16(before + i);
188 return before;
189 }
190
191 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
192 {
193 int before = sits_in_cursum(rs);
194 rs->n_sits = cpu_to_le16(before + i);
195 return before;
196 }
197
198 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
199 int type)
200 {
201 if (type == NAT_JOURNAL)
202 return size <= MAX_NAT_JENTRIES(sum);
203 return size <= MAX_SIT_JENTRIES(sum);
204 }
205
206 /*
207 * ioctl commands
208 */
209 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
210 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
211 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
212
213 #define F2FS_IOCTL_MAGIC 0xf5
214 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
215 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
216 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
217 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
218 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
219
220 /*
221 * should be same as XFS_IOC_GOINGDOWN.
222 * Flags for going down operation used by FS_IOC_GOINGDOWN
223 */
224 #define F2FS_IOC_SHUTDOWN _IOR('X', 125, __u32) /* Shutdown */
225 #define F2FS_GOING_DOWN_FULLSYNC 0x0 /* going down with full sync */
226 #define F2FS_GOING_DOWN_METASYNC 0x1 /* going down with metadata */
227 #define F2FS_GOING_DOWN_NOSYNC 0x2 /* going down */
228
229 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
230 /*
231 * ioctl commands in 32 bit emulation
232 */
233 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
234 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
235 #endif
236
237 /*
238 * For INODE and NODE manager
239 */
240 /* for directory operations */
241 struct f2fs_dentry_ptr {
242 const void *bitmap;
243 struct f2fs_dir_entry *dentry;
244 __u8 (*filename)[F2FS_SLOT_LEN];
245 int max;
246 };
247
248 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
249 void *src, int type)
250 {
251 if (type == 1) {
252 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
253 d->max = NR_DENTRY_IN_BLOCK;
254 d->bitmap = &t->dentry_bitmap;
255 d->dentry = t->dentry;
256 d->filename = t->filename;
257 } else {
258 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
259 d->max = NR_INLINE_DENTRY;
260 d->bitmap = &t->dentry_bitmap;
261 d->dentry = t->dentry;
262 d->filename = t->filename;
263 }
264 }
265
266 /*
267 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
268 * as its node offset to distinguish from index node blocks.
269 * But some bits are used to mark the node block.
270 */
271 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
272 >> OFFSET_BIT_SHIFT)
273 enum {
274 ALLOC_NODE, /* allocate a new node page if needed */
275 LOOKUP_NODE, /* look up a node without readahead */
276 LOOKUP_NODE_RA, /*
277 * look up a node with readahead called
278 * by get_data_block.
279 */
280 };
281
282 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
283
284 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
285
286 /* vector size for gang look-up from extent cache that consists of radix tree */
287 #define EXT_TREE_VEC_SIZE 64
288
289 /* for in-memory extent cache entry */
290 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
291
292 /* number of extent info in extent cache we try to shrink */
293 #define EXTENT_CACHE_SHRINK_NUMBER 128
294
295 struct extent_info {
296 unsigned int fofs; /* start offset in a file */
297 u32 blk; /* start block address of the extent */
298 unsigned int len; /* length of the extent */
299 };
300
301 struct extent_node {
302 struct rb_node rb_node; /* rb node located in rb-tree */
303 struct list_head list; /* node in global extent list of sbi */
304 struct extent_info ei; /* extent info */
305 };
306
307 struct extent_tree {
308 nid_t ino; /* inode number */
309 struct rb_root root; /* root of extent info rb-tree */
310 struct extent_node *cached_en; /* recently accessed extent node */
311 rwlock_t lock; /* protect extent info rb-tree */
312 atomic_t refcount; /* reference count of rb-tree */
313 unsigned int count; /* # of extent node in rb-tree*/
314 };
315
316 /*
317 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
318 */
319 #define FADVISE_COLD_BIT 0x01
320 #define FADVISE_LOST_PINO_BIT 0x02
321
322 #define DEF_DIR_LEVEL 0
323
324 struct f2fs_inode_info {
325 struct inode vfs_inode; /* serve a vfs inode */
326 unsigned long i_flags; /* keep an inode flags for ioctl */
327 unsigned char i_advise; /* use to give file attribute hints */
328 unsigned char i_dir_level; /* use for dentry level for large dir */
329 unsigned int i_current_depth; /* use only in directory structure */
330 unsigned int i_pino; /* parent inode number */
331 umode_t i_acl_mode; /* keep file acl mode temporarily */
332
333 /* Use below internally in f2fs*/
334 unsigned long flags; /* use to pass per-file flags */
335 struct rw_semaphore i_sem; /* protect fi info */
336 atomic_t dirty_pages; /* # of dirty pages */
337 f2fs_hash_t chash; /* hash value of given file name */
338 unsigned int clevel; /* maximum level of given file name */
339 nid_t i_xattr_nid; /* node id that contains xattrs */
340 unsigned long long xattr_ver; /* cp version of xattr modification */
341 struct extent_info ext; /* in-memory extent cache entry */
342 rwlock_t ext_lock; /* rwlock for single extent cache */
343 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
344
345 struct radix_tree_root inmem_root; /* radix tree for inmem pages */
346 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
347 struct mutex inmem_lock; /* lock for inmemory pages */
348 };
349
350 static inline void get_extent_info(struct extent_info *ext,
351 struct f2fs_extent i_ext)
352 {
353 ext->fofs = le32_to_cpu(i_ext.fofs);
354 ext->blk = le32_to_cpu(i_ext.blk);
355 ext->len = le32_to_cpu(i_ext.len);
356 }
357
358 static inline void set_raw_extent(struct extent_info *ext,
359 struct f2fs_extent *i_ext)
360 {
361 i_ext->fofs = cpu_to_le32(ext->fofs);
362 i_ext->blk = cpu_to_le32(ext->blk);
363 i_ext->len = cpu_to_le32(ext->len);
364 }
365
366 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
367 u32 blk, unsigned int len)
368 {
369 ei->fofs = fofs;
370 ei->blk = blk;
371 ei->len = len;
372 }
373
374 static inline bool __is_extent_mergeable(struct extent_info *back,
375 struct extent_info *front)
376 {
377 return (back->fofs + back->len == front->fofs &&
378 back->blk + back->len == front->blk);
379 }
380
381 static inline bool __is_back_mergeable(struct extent_info *cur,
382 struct extent_info *back)
383 {
384 return __is_extent_mergeable(back, cur);
385 }
386
387 static inline bool __is_front_mergeable(struct extent_info *cur,
388 struct extent_info *front)
389 {
390 return __is_extent_mergeable(cur, front);
391 }
392
393 struct f2fs_nm_info {
394 block_t nat_blkaddr; /* base disk address of NAT */
395 nid_t max_nid; /* maximum possible node ids */
396 nid_t available_nids; /* maximum available node ids */
397 nid_t next_scan_nid; /* the next nid to be scanned */
398 unsigned int ram_thresh; /* control the memory footprint */
399
400 /* NAT cache management */
401 struct radix_tree_root nat_root;/* root of the nat entry cache */
402 struct radix_tree_root nat_set_root;/* root of the nat set cache */
403 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
404 struct list_head nat_entries; /* cached nat entry list (clean) */
405 unsigned int nat_cnt; /* the # of cached nat entries */
406 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
407
408 /* free node ids management */
409 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
410 struct list_head free_nid_list; /* a list for free nids */
411 spinlock_t free_nid_list_lock; /* protect free nid list */
412 unsigned int fcnt; /* the number of free node id */
413 struct mutex build_lock; /* lock for build free nids */
414
415 /* for checkpoint */
416 char *nat_bitmap; /* NAT bitmap pointer */
417 int bitmap_size; /* bitmap size */
418 };
419
420 /*
421 * this structure is used as one of function parameters.
422 * all the information are dedicated to a given direct node block determined
423 * by the data offset in a file.
424 */
425 struct dnode_of_data {
426 struct inode *inode; /* vfs inode pointer */
427 struct page *inode_page; /* its inode page, NULL is possible */
428 struct page *node_page; /* cached direct node page */
429 nid_t nid; /* node id of the direct node block */
430 unsigned int ofs_in_node; /* data offset in the node page */
431 bool inode_page_locked; /* inode page is locked or not */
432 block_t data_blkaddr; /* block address of the node block */
433 };
434
435 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
436 struct page *ipage, struct page *npage, nid_t nid)
437 {
438 memset(dn, 0, sizeof(*dn));
439 dn->inode = inode;
440 dn->inode_page = ipage;
441 dn->node_page = npage;
442 dn->nid = nid;
443 }
444
445 /*
446 * For SIT manager
447 *
448 * By default, there are 6 active log areas across the whole main area.
449 * When considering hot and cold data separation to reduce cleaning overhead,
450 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
451 * respectively.
452 * In the current design, you should not change the numbers intentionally.
453 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
454 * logs individually according to the underlying devices. (default: 6)
455 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
456 * data and 8 for node logs.
457 */
458 #define NR_CURSEG_DATA_TYPE (3)
459 #define NR_CURSEG_NODE_TYPE (3)
460 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
461
462 enum {
463 CURSEG_HOT_DATA = 0, /* directory entry blocks */
464 CURSEG_WARM_DATA, /* data blocks */
465 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
466 CURSEG_HOT_NODE, /* direct node blocks of directory files */
467 CURSEG_WARM_NODE, /* direct node blocks of normal files */
468 CURSEG_COLD_NODE, /* indirect node blocks */
469 NO_CHECK_TYPE,
470 CURSEG_DIRECT_IO, /* to use for the direct IO path */
471 };
472
473 struct flush_cmd {
474 struct completion wait;
475 struct llist_node llnode;
476 int ret;
477 };
478
479 struct flush_cmd_control {
480 struct task_struct *f2fs_issue_flush; /* flush thread */
481 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
482 struct llist_head issue_list; /* list for command issue */
483 struct llist_node *dispatch_list; /* list for command dispatch */
484 };
485
486 struct f2fs_sm_info {
487 struct sit_info *sit_info; /* whole segment information */
488 struct free_segmap_info *free_info; /* free segment information */
489 struct dirty_seglist_info *dirty_info; /* dirty segment information */
490 struct curseg_info *curseg_array; /* active segment information */
491
492 block_t seg0_blkaddr; /* block address of 0'th segment */
493 block_t main_blkaddr; /* start block address of main area */
494 block_t ssa_blkaddr; /* start block address of SSA area */
495
496 unsigned int segment_count; /* total # of segments */
497 unsigned int main_segments; /* # of segments in main area */
498 unsigned int reserved_segments; /* # of reserved segments */
499 unsigned int ovp_segments; /* # of overprovision segments */
500
501 /* a threshold to reclaim prefree segments */
502 unsigned int rec_prefree_segments;
503
504 /* for small discard management */
505 struct list_head discard_list; /* 4KB discard list */
506 int nr_discards; /* # of discards in the list */
507 int max_discards; /* max. discards to be issued */
508
509 /* for batched trimming */
510 unsigned int trim_sections; /* # of sections to trim */
511
512 struct list_head sit_entry_set; /* sit entry set list */
513
514 unsigned int ipu_policy; /* in-place-update policy */
515 unsigned int min_ipu_util; /* in-place-update threshold */
516 unsigned int min_fsync_blocks; /* threshold for fsync */
517
518 /* for flush command control */
519 struct flush_cmd_control *cmd_control_info;
520
521 };
522
523 /*
524 * For superblock
525 */
526 /*
527 * COUNT_TYPE for monitoring
528 *
529 * f2fs monitors the number of several block types such as on-writeback,
530 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
531 */
532 enum count_type {
533 F2FS_WRITEBACK,
534 F2FS_DIRTY_DENTS,
535 F2FS_DIRTY_NODES,
536 F2FS_DIRTY_META,
537 F2FS_INMEM_PAGES,
538 NR_COUNT_TYPE,
539 };
540
541 /*
542 * The below are the page types of bios used in submit_bio().
543 * The available types are:
544 * DATA User data pages. It operates as async mode.
545 * NODE Node pages. It operates as async mode.
546 * META FS metadata pages such as SIT, NAT, CP.
547 * NR_PAGE_TYPE The number of page types.
548 * META_FLUSH Make sure the previous pages are written
549 * with waiting the bio's completion
550 * ... Only can be used with META.
551 */
552 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
553 enum page_type {
554 DATA,
555 NODE,
556 META,
557 NR_PAGE_TYPE,
558 META_FLUSH,
559 };
560
561 struct f2fs_io_info {
562 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
563 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
564 block_t blk_addr; /* block address to be written */
565 };
566
567 #define is_read_io(rw) (((rw) & 1) == READ)
568 struct f2fs_bio_info {
569 struct f2fs_sb_info *sbi; /* f2fs superblock */
570 struct bio *bio; /* bios to merge */
571 sector_t last_block_in_bio; /* last block number */
572 struct f2fs_io_info fio; /* store buffered io info. */
573 struct rw_semaphore io_rwsem; /* blocking op for bio */
574 };
575
576 /* for inner inode cache management */
577 struct inode_management {
578 struct radix_tree_root ino_root; /* ino entry array */
579 spinlock_t ino_lock; /* for ino entry lock */
580 struct list_head ino_list; /* inode list head */
581 unsigned long ino_num; /* number of entries */
582 };
583
584 /* For s_flag in struct f2fs_sb_info */
585 enum {
586 SBI_IS_DIRTY, /* dirty flag for checkpoint */
587 SBI_IS_CLOSE, /* specify unmounting */
588 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
589 SBI_POR_DOING, /* recovery is doing or not */
590 };
591
592 struct f2fs_sb_info {
593 struct super_block *sb; /* pointer to VFS super block */
594 struct proc_dir_entry *s_proc; /* proc entry */
595 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
596 struct f2fs_super_block *raw_super; /* raw super block pointer */
597 int s_flag; /* flags for sbi */
598
599 /* for node-related operations */
600 struct f2fs_nm_info *nm_info; /* node manager */
601 struct inode *node_inode; /* cache node blocks */
602
603 /* for segment-related operations */
604 struct f2fs_sm_info *sm_info; /* segment manager */
605
606 /* for bio operations */
607 struct f2fs_bio_info read_io; /* for read bios */
608 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
609
610 /* for checkpoint */
611 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
612 struct inode *meta_inode; /* cache meta blocks */
613 struct mutex cp_mutex; /* checkpoint procedure lock */
614 struct rw_semaphore cp_rwsem; /* blocking FS operations */
615 struct rw_semaphore node_write; /* locking node writes */
616 wait_queue_head_t cp_wait;
617
618 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
619
620 /* for orphan inode, use 0'th array */
621 unsigned int max_orphans; /* max orphan inodes */
622
623 /* for directory inode management */
624 struct list_head dir_inode_list; /* dir inode list */
625 spinlock_t dir_inode_lock; /* for dir inode list lock */
626
627 /* for extent tree cache */
628 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
629 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
630 struct list_head extent_list; /* lru list for shrinker */
631 spinlock_t extent_lock; /* locking extent lru list */
632 int total_ext_tree; /* extent tree count */
633 atomic_t total_ext_node; /* extent info count */
634
635 /* basic filesystem units */
636 unsigned int log_sectors_per_block; /* log2 sectors per block */
637 unsigned int log_blocksize; /* log2 block size */
638 unsigned int blocksize; /* block size */
639 unsigned int root_ino_num; /* root inode number*/
640 unsigned int node_ino_num; /* node inode number*/
641 unsigned int meta_ino_num; /* meta inode number*/
642 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
643 unsigned int blocks_per_seg; /* blocks per segment */
644 unsigned int segs_per_sec; /* segments per section */
645 unsigned int secs_per_zone; /* sections per zone */
646 unsigned int total_sections; /* total section count */
647 unsigned int total_node_count; /* total node block count */
648 unsigned int total_valid_node_count; /* valid node block count */
649 unsigned int total_valid_inode_count; /* valid inode count */
650 int active_logs; /* # of active logs */
651 int dir_level; /* directory level */
652
653 block_t user_block_count; /* # of user blocks */
654 block_t total_valid_block_count; /* # of valid blocks */
655 block_t alloc_valid_block_count; /* # of allocated blocks */
656 block_t last_valid_block_count; /* for recovery */
657 u32 s_next_generation; /* for NFS support */
658 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
659
660 struct f2fs_mount_info mount_opt; /* mount options */
661
662 /* for cleaning operations */
663 struct mutex gc_mutex; /* mutex for GC */
664 struct f2fs_gc_kthread *gc_thread; /* GC thread */
665 unsigned int cur_victim_sec; /* current victim section num */
666
667 /* maximum # of trials to find a victim segment for SSR and GC */
668 unsigned int max_victim_search;
669
670 /*
671 * for stat information.
672 * one is for the LFS mode, and the other is for the SSR mode.
673 */
674 #ifdef CONFIG_F2FS_STAT_FS
675 struct f2fs_stat_info *stat_info; /* FS status information */
676 unsigned int segment_count[2]; /* # of allocated segments */
677 unsigned int block_count[2]; /* # of allocated blocks */
678 atomic_t inplace_count; /* # of inplace update */
679 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
680 atomic_t inline_inode; /* # of inline_data inodes */
681 atomic_t inline_dir; /* # of inline_dentry inodes */
682 int bg_gc; /* background gc calls */
683 unsigned int n_dirty_dirs; /* # of dir inodes */
684 #endif
685 unsigned int last_victim[2]; /* last victim segment # */
686 spinlock_t stat_lock; /* lock for stat operations */
687
688 /* For sysfs suppport */
689 struct kobject s_kobj;
690 struct completion s_kobj_unregister;
691 };
692
693 /*
694 * Inline functions
695 */
696 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
697 {
698 return container_of(inode, struct f2fs_inode_info, vfs_inode);
699 }
700
701 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
702 {
703 return sb->s_fs_info;
704 }
705
706 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
707 {
708 return F2FS_SB(inode->i_sb);
709 }
710
711 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
712 {
713 return F2FS_I_SB(mapping->host);
714 }
715
716 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
717 {
718 return F2FS_M_SB(page->mapping);
719 }
720
721 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
722 {
723 return (struct f2fs_super_block *)(sbi->raw_super);
724 }
725
726 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
727 {
728 return (struct f2fs_checkpoint *)(sbi->ckpt);
729 }
730
731 static inline struct f2fs_node *F2FS_NODE(struct page *page)
732 {
733 return (struct f2fs_node *)page_address(page);
734 }
735
736 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
737 {
738 return &((struct f2fs_node *)page_address(page))->i;
739 }
740
741 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
742 {
743 return (struct f2fs_nm_info *)(sbi->nm_info);
744 }
745
746 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
747 {
748 return (struct f2fs_sm_info *)(sbi->sm_info);
749 }
750
751 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
752 {
753 return (struct sit_info *)(SM_I(sbi)->sit_info);
754 }
755
756 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
757 {
758 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
759 }
760
761 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
762 {
763 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
764 }
765
766 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
767 {
768 return sbi->meta_inode->i_mapping;
769 }
770
771 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
772 {
773 return sbi->node_inode->i_mapping;
774 }
775
776 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
777 {
778 return sbi->s_flag & (0x01 << type);
779 }
780
781 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
782 {
783 sbi->s_flag |= (0x01 << type);
784 }
785
786 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
787 {
788 sbi->s_flag &= ~(0x01 << type);
789 }
790
791 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
792 {
793 return le64_to_cpu(cp->checkpoint_ver);
794 }
795
796 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
797 {
798 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
799 return ckpt_flags & f;
800 }
801
802 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
803 {
804 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
805 ckpt_flags |= f;
806 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
807 }
808
809 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
810 {
811 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
812 ckpt_flags &= (~f);
813 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
814 }
815
816 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
817 {
818 down_read(&sbi->cp_rwsem);
819 }
820
821 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
822 {
823 up_read(&sbi->cp_rwsem);
824 }
825
826 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
827 {
828 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
829 }
830
831 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
832 {
833 up_write(&sbi->cp_rwsem);
834 }
835
836 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
837 {
838 int reason = CP_SYNC;
839
840 if (test_opt(sbi, FASTBOOT))
841 reason = CP_FASTBOOT;
842 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
843 reason = CP_UMOUNT;
844 return reason;
845 }
846
847 static inline bool __remain_node_summaries(int reason)
848 {
849 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
850 }
851
852 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
853 {
854 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
855 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
856 }
857
858 /*
859 * Check whether the given nid is within node id range.
860 */
861 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
862 {
863 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
864 return -EINVAL;
865 if (unlikely(nid >= NM_I(sbi)->max_nid))
866 return -EINVAL;
867 return 0;
868 }
869
870 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
871
872 /*
873 * Check whether the inode has blocks or not
874 */
875 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
876 {
877 if (F2FS_I(inode)->i_xattr_nid)
878 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
879 else
880 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
881 }
882
883 static inline bool f2fs_has_xattr_block(unsigned int ofs)
884 {
885 return ofs == XATTR_NODE_OFFSET;
886 }
887
888 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
889 struct inode *inode, blkcnt_t count)
890 {
891 block_t valid_block_count;
892
893 spin_lock(&sbi->stat_lock);
894 valid_block_count =
895 sbi->total_valid_block_count + (block_t)count;
896 if (unlikely(valid_block_count > sbi->user_block_count)) {
897 spin_unlock(&sbi->stat_lock);
898 return false;
899 }
900 inode->i_blocks += count;
901 sbi->total_valid_block_count = valid_block_count;
902 sbi->alloc_valid_block_count += (block_t)count;
903 spin_unlock(&sbi->stat_lock);
904 return true;
905 }
906
907 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
908 struct inode *inode,
909 blkcnt_t count)
910 {
911 spin_lock(&sbi->stat_lock);
912 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
913 f2fs_bug_on(sbi, inode->i_blocks < count);
914 inode->i_blocks -= count;
915 sbi->total_valid_block_count -= (block_t)count;
916 spin_unlock(&sbi->stat_lock);
917 }
918
919 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
920 {
921 atomic_inc(&sbi->nr_pages[count_type]);
922 set_sbi_flag(sbi, SBI_IS_DIRTY);
923 }
924
925 static inline void inode_inc_dirty_pages(struct inode *inode)
926 {
927 atomic_inc(&F2FS_I(inode)->dirty_pages);
928 if (S_ISDIR(inode->i_mode))
929 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
930 }
931
932 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
933 {
934 atomic_dec(&sbi->nr_pages[count_type]);
935 }
936
937 static inline void inode_dec_dirty_pages(struct inode *inode)
938 {
939 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
940 return;
941
942 atomic_dec(&F2FS_I(inode)->dirty_pages);
943
944 if (S_ISDIR(inode->i_mode))
945 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
946 }
947
948 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
949 {
950 return atomic_read(&sbi->nr_pages[count_type]);
951 }
952
953 static inline int get_dirty_pages(struct inode *inode)
954 {
955 return atomic_read(&F2FS_I(inode)->dirty_pages);
956 }
957
958 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
959 {
960 unsigned int pages_per_sec = sbi->segs_per_sec *
961 (1 << sbi->log_blocks_per_seg);
962 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
963 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
964 }
965
966 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
967 {
968 return sbi->total_valid_block_count;
969 }
970
971 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
972 {
973 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
974
975 /* return NAT or SIT bitmap */
976 if (flag == NAT_BITMAP)
977 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
978 else if (flag == SIT_BITMAP)
979 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
980
981 return 0;
982 }
983
984 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
985 {
986 return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
987 }
988
989 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
990 {
991 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
992 int offset;
993
994 if (__cp_payload(sbi) > 0) {
995 if (flag == NAT_BITMAP)
996 return &ckpt->sit_nat_version_bitmap;
997 else
998 return (unsigned char *)ckpt + F2FS_BLKSIZE;
999 } else {
1000 offset = (flag == NAT_BITMAP) ?
1001 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1002 return &ckpt->sit_nat_version_bitmap + offset;
1003 }
1004 }
1005
1006 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1007 {
1008 block_t start_addr;
1009 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1010 unsigned long long ckpt_version = cur_cp_version(ckpt);
1011
1012 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1013
1014 /*
1015 * odd numbered checkpoint should at cp segment 0
1016 * and even segment must be at cp segment 1
1017 */
1018 if (!(ckpt_version & 1))
1019 start_addr += sbi->blocks_per_seg;
1020
1021 return start_addr;
1022 }
1023
1024 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1025 {
1026 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1027 }
1028
1029 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1030 struct inode *inode)
1031 {
1032 block_t valid_block_count;
1033 unsigned int valid_node_count;
1034
1035 spin_lock(&sbi->stat_lock);
1036
1037 valid_block_count = sbi->total_valid_block_count + 1;
1038 if (unlikely(valid_block_count > sbi->user_block_count)) {
1039 spin_unlock(&sbi->stat_lock);
1040 return false;
1041 }
1042
1043 valid_node_count = sbi->total_valid_node_count + 1;
1044 if (unlikely(valid_node_count > sbi->total_node_count)) {
1045 spin_unlock(&sbi->stat_lock);
1046 return false;
1047 }
1048
1049 if (inode)
1050 inode->i_blocks++;
1051
1052 sbi->alloc_valid_block_count++;
1053 sbi->total_valid_node_count++;
1054 sbi->total_valid_block_count++;
1055 spin_unlock(&sbi->stat_lock);
1056
1057 return true;
1058 }
1059
1060 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1061 struct inode *inode)
1062 {
1063 spin_lock(&sbi->stat_lock);
1064
1065 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1066 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1067 f2fs_bug_on(sbi, !inode->i_blocks);
1068
1069 inode->i_blocks--;
1070 sbi->total_valid_node_count--;
1071 sbi->total_valid_block_count--;
1072
1073 spin_unlock(&sbi->stat_lock);
1074 }
1075
1076 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1077 {
1078 return sbi->total_valid_node_count;
1079 }
1080
1081 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1082 {
1083 spin_lock(&sbi->stat_lock);
1084 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1085 sbi->total_valid_inode_count++;
1086 spin_unlock(&sbi->stat_lock);
1087 }
1088
1089 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1090 {
1091 spin_lock(&sbi->stat_lock);
1092 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1093 sbi->total_valid_inode_count--;
1094 spin_unlock(&sbi->stat_lock);
1095 }
1096
1097 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1098 {
1099 return sbi->total_valid_inode_count;
1100 }
1101
1102 static inline void f2fs_put_page(struct page *page, int unlock)
1103 {
1104 if (!page)
1105 return;
1106
1107 if (unlock) {
1108 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1109 unlock_page(page);
1110 }
1111 page_cache_release(page);
1112 }
1113
1114 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1115 {
1116 if (dn->node_page)
1117 f2fs_put_page(dn->node_page, 1);
1118 if (dn->inode_page && dn->node_page != dn->inode_page)
1119 f2fs_put_page(dn->inode_page, 0);
1120 dn->node_page = NULL;
1121 dn->inode_page = NULL;
1122 }
1123
1124 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1125 size_t size)
1126 {
1127 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1128 }
1129
1130 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1131 gfp_t flags)
1132 {
1133 void *entry;
1134 retry:
1135 entry = kmem_cache_alloc(cachep, flags);
1136 if (!entry) {
1137 cond_resched();
1138 goto retry;
1139 }
1140
1141 return entry;
1142 }
1143
1144 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1145 unsigned long index, void *item)
1146 {
1147 while (radix_tree_insert(root, index, item))
1148 cond_resched();
1149 }
1150
1151 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1152
1153 static inline bool IS_INODE(struct page *page)
1154 {
1155 struct f2fs_node *p = F2FS_NODE(page);
1156 return RAW_IS_INODE(p);
1157 }
1158
1159 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1160 {
1161 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1162 }
1163
1164 static inline block_t datablock_addr(struct page *node_page,
1165 unsigned int offset)
1166 {
1167 struct f2fs_node *raw_node;
1168 __le32 *addr_array;
1169 raw_node = F2FS_NODE(node_page);
1170 addr_array = blkaddr_in_node(raw_node);
1171 return le32_to_cpu(addr_array[offset]);
1172 }
1173
1174 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1175 {
1176 int mask;
1177
1178 addr += (nr >> 3);
1179 mask = 1 << (7 - (nr & 0x07));
1180 return mask & *addr;
1181 }
1182
1183 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1184 {
1185 int mask;
1186 int ret;
1187
1188 addr += (nr >> 3);
1189 mask = 1 << (7 - (nr & 0x07));
1190 ret = mask & *addr;
1191 *addr |= mask;
1192 return ret;
1193 }
1194
1195 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1196 {
1197 int mask;
1198 int ret;
1199
1200 addr += (nr >> 3);
1201 mask = 1 << (7 - (nr & 0x07));
1202 ret = mask & *addr;
1203 *addr &= ~mask;
1204 return ret;
1205 }
1206
1207 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1208 {
1209 int mask;
1210
1211 addr += (nr >> 3);
1212 mask = 1 << (7 - (nr & 0x07));
1213 *addr ^= mask;
1214 }
1215
1216 /* used for f2fs_inode_info->flags */
1217 enum {
1218 FI_NEW_INODE, /* indicate newly allocated inode */
1219 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1220 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1221 FI_INC_LINK, /* need to increment i_nlink */
1222 FI_ACL_MODE, /* indicate acl mode */
1223 FI_NO_ALLOC, /* should not allocate any blocks */
1224 FI_UPDATE_DIR, /* should update inode block for consistency */
1225 FI_DELAY_IPUT, /* used for the recovery */
1226 FI_NO_EXTENT, /* not to use the extent cache */
1227 FI_INLINE_XATTR, /* used for inline xattr */
1228 FI_INLINE_DATA, /* used for inline data*/
1229 FI_INLINE_DENTRY, /* used for inline dentry */
1230 FI_APPEND_WRITE, /* inode has appended data */
1231 FI_UPDATE_WRITE, /* inode has in-place-update data */
1232 FI_NEED_IPU, /* used for ipu per file */
1233 FI_ATOMIC_FILE, /* indicate atomic file */
1234 FI_VOLATILE_FILE, /* indicate volatile file */
1235 FI_DROP_CACHE, /* drop dirty page cache */
1236 FI_DATA_EXIST, /* indicate data exists */
1237 };
1238
1239 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1240 {
1241 if (!test_bit(flag, &fi->flags))
1242 set_bit(flag, &fi->flags);
1243 }
1244
1245 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1246 {
1247 return test_bit(flag, &fi->flags);
1248 }
1249
1250 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1251 {
1252 if (test_bit(flag, &fi->flags))
1253 clear_bit(flag, &fi->flags);
1254 }
1255
1256 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1257 {
1258 fi->i_acl_mode = mode;
1259 set_inode_flag(fi, FI_ACL_MODE);
1260 }
1261
1262 static inline void get_inline_info(struct f2fs_inode_info *fi,
1263 struct f2fs_inode *ri)
1264 {
1265 if (ri->i_inline & F2FS_INLINE_XATTR)
1266 set_inode_flag(fi, FI_INLINE_XATTR);
1267 if (ri->i_inline & F2FS_INLINE_DATA)
1268 set_inode_flag(fi, FI_INLINE_DATA);
1269 if (ri->i_inline & F2FS_INLINE_DENTRY)
1270 set_inode_flag(fi, FI_INLINE_DENTRY);
1271 if (ri->i_inline & F2FS_DATA_EXIST)
1272 set_inode_flag(fi, FI_DATA_EXIST);
1273 }
1274
1275 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1276 struct f2fs_inode *ri)
1277 {
1278 ri->i_inline = 0;
1279
1280 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1281 ri->i_inline |= F2FS_INLINE_XATTR;
1282 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1283 ri->i_inline |= F2FS_INLINE_DATA;
1284 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1285 ri->i_inline |= F2FS_INLINE_DENTRY;
1286 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1287 ri->i_inline |= F2FS_DATA_EXIST;
1288 }
1289
1290 static inline int f2fs_has_inline_xattr(struct inode *inode)
1291 {
1292 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1293 }
1294
1295 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1296 {
1297 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1298 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1299 return DEF_ADDRS_PER_INODE;
1300 }
1301
1302 static inline void *inline_xattr_addr(struct page *page)
1303 {
1304 struct f2fs_inode *ri = F2FS_INODE(page);
1305 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1306 F2FS_INLINE_XATTR_ADDRS]);
1307 }
1308
1309 static inline int inline_xattr_size(struct inode *inode)
1310 {
1311 if (f2fs_has_inline_xattr(inode))
1312 return F2FS_INLINE_XATTR_ADDRS << 2;
1313 else
1314 return 0;
1315 }
1316
1317 static inline int f2fs_has_inline_data(struct inode *inode)
1318 {
1319 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1320 }
1321
1322 static inline void f2fs_clear_inline_inode(struct inode *inode)
1323 {
1324 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1325 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1326 }
1327
1328 static inline int f2fs_exist_data(struct inode *inode)
1329 {
1330 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1331 }
1332
1333 static inline bool f2fs_is_atomic_file(struct inode *inode)
1334 {
1335 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1336 }
1337
1338 static inline bool f2fs_is_volatile_file(struct inode *inode)
1339 {
1340 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1341 }
1342
1343 static inline bool f2fs_is_drop_cache(struct inode *inode)
1344 {
1345 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1346 }
1347
1348 static inline void *inline_data_addr(struct page *page)
1349 {
1350 struct f2fs_inode *ri = F2FS_INODE(page);
1351 return (void *)&(ri->i_addr[1]);
1352 }
1353
1354 static inline int f2fs_has_inline_dentry(struct inode *inode)
1355 {
1356 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1357 }
1358
1359 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1360 {
1361 if (!f2fs_has_inline_dentry(dir))
1362 kunmap(page);
1363 }
1364
1365 static inline int f2fs_readonly(struct super_block *sb)
1366 {
1367 return sb->s_flags & MS_RDONLY;
1368 }
1369
1370 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1371 {
1372 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1373 }
1374
1375 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1376 {
1377 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1378 sbi->sb->s_flags |= MS_RDONLY;
1379 }
1380
1381 #define get_inode_mode(i) \
1382 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1383 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1384
1385 /* get offset of first page in next direct node */
1386 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1387 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1388 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1389 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1390
1391 /*
1392 * file.c
1393 */
1394 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1395 void truncate_data_blocks(struct dnode_of_data *);
1396 int truncate_blocks(struct inode *, u64, bool);
1397 void f2fs_truncate(struct inode *);
1398 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1399 int f2fs_setattr(struct dentry *, struct iattr *);
1400 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1401 int truncate_data_blocks_range(struct dnode_of_data *, int);
1402 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1403 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1404
1405 /*
1406 * inode.c
1407 */
1408 void f2fs_set_inode_flags(struct inode *);
1409 struct inode *f2fs_iget(struct super_block *, unsigned long);
1410 int try_to_free_nats(struct f2fs_sb_info *, int);
1411 void update_inode(struct inode *, struct page *);
1412 void update_inode_page(struct inode *);
1413 int f2fs_write_inode(struct inode *, struct writeback_control *);
1414 void f2fs_evict_inode(struct inode *);
1415 void handle_failed_inode(struct inode *);
1416
1417 /*
1418 * namei.c
1419 */
1420 struct dentry *f2fs_get_parent(struct dentry *child);
1421
1422 /*
1423 * dir.c
1424 */
1425 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1426 void set_de_type(struct f2fs_dir_entry *, struct inode *);
1427 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1428 struct f2fs_dentry_ptr *);
1429 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1430 unsigned int);
1431 void do_make_empty_dir(struct inode *, struct inode *,
1432 struct f2fs_dentry_ptr *);
1433 struct page *init_inode_metadata(struct inode *, struct inode *,
1434 const struct qstr *, struct page *);
1435 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1436 int room_for_filename(const void *, int, int);
1437 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1438 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1439 struct page **);
1440 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1441 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1442 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1443 struct page *, struct inode *);
1444 int update_dent_inode(struct inode *, const struct qstr *);
1445 void f2fs_update_dentry(struct inode *, struct f2fs_dentry_ptr *,
1446 const struct qstr *, f2fs_hash_t , unsigned int);
1447 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1448 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1449 struct inode *);
1450 int f2fs_do_tmpfile(struct inode *, struct inode *);
1451 int f2fs_make_empty(struct inode *, struct inode *);
1452 bool f2fs_empty_dir(struct inode *);
1453
1454 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1455 {
1456 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1457 inode);
1458 }
1459
1460 /*
1461 * super.c
1462 */
1463 int f2fs_sync_fs(struct super_block *, int);
1464 extern __printf(3, 4)
1465 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1466
1467 /*
1468 * hash.c
1469 */
1470 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1471
1472 /*
1473 * node.c
1474 */
1475 struct dnode_of_data;
1476 struct node_info;
1477
1478 bool available_free_memory(struct f2fs_sb_info *, int);
1479 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1480 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1481 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1482 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1483 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1484 int truncate_inode_blocks(struct inode *, pgoff_t);
1485 int truncate_xattr_node(struct inode *, struct page *);
1486 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1487 void remove_inode_page(struct inode *);
1488 struct page *new_inode_page(struct inode *);
1489 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1490 void ra_node_page(struct f2fs_sb_info *, nid_t);
1491 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1492 struct page *get_node_page_ra(struct page *, int);
1493 void sync_inode_page(struct dnode_of_data *);
1494 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1495 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1496 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1497 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1498 void recover_inline_xattr(struct inode *, struct page *);
1499 void recover_xattr_data(struct inode *, struct page *, block_t);
1500 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1501 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1502 struct f2fs_summary_block *);
1503 void flush_nat_entries(struct f2fs_sb_info *);
1504 int build_node_manager(struct f2fs_sb_info *);
1505 void destroy_node_manager(struct f2fs_sb_info *);
1506 int __init create_node_manager_caches(void);
1507 void destroy_node_manager_caches(void);
1508
1509 /*
1510 * segment.c
1511 */
1512 void register_inmem_page(struct inode *, struct page *);
1513 void commit_inmem_pages(struct inode *, bool);
1514 void f2fs_balance_fs(struct f2fs_sb_info *);
1515 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1516 int f2fs_issue_flush(struct f2fs_sb_info *);
1517 int create_flush_cmd_control(struct f2fs_sb_info *);
1518 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1519 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1520 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1521 void clear_prefree_segments(struct f2fs_sb_info *);
1522 void release_discard_addrs(struct f2fs_sb_info *);
1523 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1524 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1525 void allocate_new_segments(struct f2fs_sb_info *);
1526 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1527 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1528 void write_meta_page(struct f2fs_sb_info *, struct page *);
1529 void write_node_page(struct f2fs_sb_info *, struct page *,
1530 unsigned int, struct f2fs_io_info *);
1531 void write_data_page(struct page *, struct dnode_of_data *,
1532 struct f2fs_io_info *);
1533 void rewrite_data_page(struct page *, struct f2fs_io_info *);
1534 void recover_data_page(struct f2fs_sb_info *, struct page *,
1535 struct f2fs_summary *, block_t, block_t);
1536 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1537 block_t, block_t *, struct f2fs_summary *, int);
1538 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1539 void write_data_summaries(struct f2fs_sb_info *, block_t);
1540 void write_node_summaries(struct f2fs_sb_info *, block_t);
1541 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1542 int, unsigned int, int);
1543 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1544 int build_segment_manager(struct f2fs_sb_info *);
1545 void destroy_segment_manager(struct f2fs_sb_info *);
1546 int __init create_segment_manager_caches(void);
1547 void destroy_segment_manager_caches(void);
1548
1549 /*
1550 * checkpoint.c
1551 */
1552 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1553 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1554 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1555 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1556 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1557 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1558 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1559 void release_dirty_inode(struct f2fs_sb_info *);
1560 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1561 int acquire_orphan_inode(struct f2fs_sb_info *);
1562 void release_orphan_inode(struct f2fs_sb_info *);
1563 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1564 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1565 void recover_orphan_inodes(struct f2fs_sb_info *);
1566 int get_valid_checkpoint(struct f2fs_sb_info *);
1567 void update_dirty_page(struct inode *, struct page *);
1568 void add_dirty_dir_inode(struct inode *);
1569 void remove_dirty_dir_inode(struct inode *);
1570 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1571 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1572 void init_ino_entry_info(struct f2fs_sb_info *);
1573 int __init create_checkpoint_caches(void);
1574 void destroy_checkpoint_caches(void);
1575
1576 /*
1577 * data.c
1578 */
1579 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1580 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *,
1581 struct f2fs_io_info *);
1582 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *,
1583 struct f2fs_io_info *);
1584 int reserve_new_block(struct dnode_of_data *);
1585 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1586 void f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
1587 void f2fs_destroy_extent_tree(struct inode *);
1588 void f2fs_update_extent_cache(struct dnode_of_data *);
1589 struct page *find_data_page(struct inode *, pgoff_t, bool);
1590 struct page *get_lock_data_page(struct inode *, pgoff_t);
1591 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1592 int do_write_data_page(struct page *, struct f2fs_io_info *);
1593 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1594 void init_extent_cache_info(struct f2fs_sb_info *);
1595 int __init create_extent_cache(void);
1596 void destroy_extent_cache(void);
1597 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1598 int f2fs_release_page(struct page *, gfp_t);
1599
1600 /*
1601 * gc.c
1602 */
1603 int start_gc_thread(struct f2fs_sb_info *);
1604 void stop_gc_thread(struct f2fs_sb_info *);
1605 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1606 int f2fs_gc(struct f2fs_sb_info *);
1607 void build_gc_manager(struct f2fs_sb_info *);
1608
1609 /*
1610 * recovery.c
1611 */
1612 int recover_fsync_data(struct f2fs_sb_info *);
1613 bool space_for_roll_forward(struct f2fs_sb_info *);
1614
1615 /*
1616 * debug.c
1617 */
1618 #ifdef CONFIG_F2FS_STAT_FS
1619 struct f2fs_stat_info {
1620 struct list_head stat_list;
1621 struct f2fs_sb_info *sbi;
1622 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1623 int main_area_segs, main_area_sections, main_area_zones;
1624 int hit_ext, total_ext, ext_tree, ext_node;
1625 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1626 int nats, dirty_nats, sits, dirty_sits, fnids;
1627 int total_count, utilization;
1628 int bg_gc, inline_inode, inline_dir, inmem_pages, wb_pages;
1629 unsigned int valid_count, valid_node_count, valid_inode_count;
1630 unsigned int bimodal, avg_vblocks;
1631 int util_free, util_valid, util_invalid;
1632 int rsvd_segs, overp_segs;
1633 int dirty_count, node_pages, meta_pages;
1634 int prefree_count, call_count, cp_count;
1635 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1636 int bg_node_segs, bg_data_segs;
1637 int tot_blks, data_blks, node_blks;
1638 int bg_data_blks, bg_node_blks;
1639 int curseg[NR_CURSEG_TYPE];
1640 int cursec[NR_CURSEG_TYPE];
1641 int curzone[NR_CURSEG_TYPE];
1642
1643 unsigned int segment_count[2];
1644 unsigned int block_count[2];
1645 unsigned int inplace_count;
1646 unsigned base_mem, cache_mem, page_mem;
1647 };
1648
1649 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1650 {
1651 return (struct f2fs_stat_info *)sbi->stat_info;
1652 }
1653
1654 #define stat_inc_cp_count(si) ((si)->cp_count++)
1655 #define stat_inc_call_count(si) ((si)->call_count++)
1656 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1657 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1658 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1659 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1660 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1661 #define stat_inc_inline_inode(inode) \
1662 do { \
1663 if (f2fs_has_inline_data(inode)) \
1664 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1665 } while (0)
1666 #define stat_dec_inline_inode(inode) \
1667 do { \
1668 if (f2fs_has_inline_data(inode)) \
1669 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1670 } while (0)
1671 #define stat_inc_inline_dir(inode) \
1672 do { \
1673 if (f2fs_has_inline_dentry(inode)) \
1674 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1675 } while (0)
1676 #define stat_dec_inline_dir(inode) \
1677 do { \
1678 if (f2fs_has_inline_dentry(inode)) \
1679 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1680 } while (0)
1681 #define stat_inc_seg_type(sbi, curseg) \
1682 ((sbi)->segment_count[(curseg)->alloc_type]++)
1683 #define stat_inc_block_count(sbi, curseg) \
1684 ((sbi)->block_count[(curseg)->alloc_type]++)
1685 #define stat_inc_inplace_blocks(sbi) \
1686 (atomic_inc(&(sbi)->inplace_count))
1687 #define stat_inc_seg_count(sbi, type, gc_type) \
1688 do { \
1689 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1690 (si)->tot_segs++; \
1691 if (type == SUM_TYPE_DATA) { \
1692 si->data_segs++; \
1693 si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0; \
1694 } else { \
1695 si->node_segs++; \
1696 si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0; \
1697 } \
1698 } while (0)
1699
1700 #define stat_inc_tot_blk_count(si, blks) \
1701 (si->tot_blks += (blks))
1702
1703 #define stat_inc_data_blk_count(sbi, blks, gc_type) \
1704 do { \
1705 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1706 stat_inc_tot_blk_count(si, blks); \
1707 si->data_blks += (blks); \
1708 si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0; \
1709 } while (0)
1710
1711 #define stat_inc_node_blk_count(sbi, blks, gc_type) \
1712 do { \
1713 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1714 stat_inc_tot_blk_count(si, blks); \
1715 si->node_blks += (blks); \
1716 si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0; \
1717 } while (0)
1718
1719 int f2fs_build_stats(struct f2fs_sb_info *);
1720 void f2fs_destroy_stats(struct f2fs_sb_info *);
1721 void __init f2fs_create_root_stats(void);
1722 void f2fs_destroy_root_stats(void);
1723 #else
1724 #define stat_inc_cp_count(si)
1725 #define stat_inc_call_count(si)
1726 #define stat_inc_bggc_count(si)
1727 #define stat_inc_dirty_dir(sbi)
1728 #define stat_dec_dirty_dir(sbi)
1729 #define stat_inc_total_hit(sb)
1730 #define stat_inc_read_hit(sb)
1731 #define stat_inc_inline_inode(inode)
1732 #define stat_dec_inline_inode(inode)
1733 #define stat_inc_inline_dir(inode)
1734 #define stat_dec_inline_dir(inode)
1735 #define stat_inc_seg_type(sbi, curseg)
1736 #define stat_inc_block_count(sbi, curseg)
1737 #define stat_inc_inplace_blocks(sbi)
1738 #define stat_inc_seg_count(sbi, type, gc_type)
1739 #define stat_inc_tot_blk_count(si, blks)
1740 #define stat_inc_data_blk_count(sbi, blks, gc_type)
1741 #define stat_inc_node_blk_count(sbi, blks, gc_type)
1742
1743 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1744 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1745 static inline void __init f2fs_create_root_stats(void) { }
1746 static inline void f2fs_destroy_root_stats(void) { }
1747 #endif
1748
1749 extern const struct file_operations f2fs_dir_operations;
1750 extern const struct file_operations f2fs_file_operations;
1751 extern const struct inode_operations f2fs_file_inode_operations;
1752 extern const struct address_space_operations f2fs_dblock_aops;
1753 extern const struct address_space_operations f2fs_node_aops;
1754 extern const struct address_space_operations f2fs_meta_aops;
1755 extern const struct inode_operations f2fs_dir_inode_operations;
1756 extern const struct inode_operations f2fs_symlink_inode_operations;
1757 extern const struct inode_operations f2fs_special_inode_operations;
1758 extern struct kmem_cache *inode_entry_slab;
1759
1760 /*
1761 * inline.c
1762 */
1763 bool f2fs_may_inline(struct inode *);
1764 void read_inline_data(struct page *, struct page *);
1765 bool truncate_inline_inode(struct page *, u64);
1766 int f2fs_read_inline_data(struct inode *, struct page *);
1767 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1768 int f2fs_convert_inline_inode(struct inode *);
1769 int f2fs_write_inline_data(struct inode *, struct page *);
1770 bool recover_inline_data(struct inode *, struct page *);
1771 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1772 struct page **);
1773 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1774 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1775 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *);
1776 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1777 struct inode *, struct inode *);
1778 bool f2fs_empty_inline_dir(struct inode *);
1779 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1780 #endif