f2fs: change get_new_data_page to pass a locked node page
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20
21 /*
22 * For mount options
23 */
24 #define F2FS_MOUNT_BG_GC 0x00000001
25 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
26 #define F2FS_MOUNT_DISCARD 0x00000004
27 #define F2FS_MOUNT_NOHEAP 0x00000008
28 #define F2FS_MOUNT_XATTR_USER 0x00000010
29 #define F2FS_MOUNT_POSIX_ACL 0x00000020
30 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
31
32 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
33 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
34 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
35
36 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
37 typecheck(unsigned long long, b) && \
38 ((long long)((a) - (b)) > 0))
39
40 typedef u64 block_t;
41 typedef u32 nid_t;
42
43 struct f2fs_mount_info {
44 unsigned int opt;
45 };
46
47 static inline __u32 f2fs_crc32(void *buff, size_t len)
48 {
49 return crc32_le(F2FS_SUPER_MAGIC, buff, len);
50 }
51
52 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buff, size_t buff_size)
53 {
54 return f2fs_crc32(buff, buff_size) == blk_crc;
55 }
56
57 /*
58 * For checkpoint manager
59 */
60 enum {
61 NAT_BITMAP,
62 SIT_BITMAP
63 };
64
65 /* for the list of orphan inodes */
66 struct orphan_inode_entry {
67 struct list_head list; /* list head */
68 nid_t ino; /* inode number */
69 };
70
71 /* for the list of directory inodes */
72 struct dir_inode_entry {
73 struct list_head list; /* list head */
74 struct inode *inode; /* vfs inode pointer */
75 };
76
77 /* for the list of fsync inodes, used only during recovery */
78 struct fsync_inode_entry {
79 struct list_head list; /* list head */
80 struct inode *inode; /* vfs inode pointer */
81 block_t blkaddr; /* block address locating the last inode */
82 };
83
84 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
85 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
86
87 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
88 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
89 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
90 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
91
92 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
93 {
94 int before = nats_in_cursum(rs);
95 rs->n_nats = cpu_to_le16(before + i);
96 return before;
97 }
98
99 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
100 {
101 int before = sits_in_cursum(rs);
102 rs->n_sits = cpu_to_le16(before + i);
103 return before;
104 }
105
106 /*
107 * ioctl commands
108 */
109 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
110 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
111
112 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
113 /*
114 * ioctl commands in 32 bit emulation
115 */
116 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
117 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
118 #endif
119
120 /*
121 * For INODE and NODE manager
122 */
123 #define XATTR_NODE_OFFSET (-1) /*
124 * store xattrs to one node block per
125 * file keeping -1 as its node offset to
126 * distinguish from index node blocks.
127 */
128 enum {
129 ALLOC_NODE, /* allocate a new node page if needed */
130 LOOKUP_NODE, /* look up a node without readahead */
131 LOOKUP_NODE_RA, /*
132 * look up a node with readahead called
133 * by get_datablock_ro.
134 */
135 };
136
137 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
138
139 /* for in-memory extent cache entry */
140 struct extent_info {
141 rwlock_t ext_lock; /* rwlock for consistency */
142 unsigned int fofs; /* start offset in a file */
143 u32 blk_addr; /* start block address of the extent */
144 unsigned int len; /* length of the extent */
145 };
146
147 /*
148 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
149 */
150 #define FADVISE_COLD_BIT 0x01
151 #define FADVISE_CP_BIT 0x02
152
153 struct f2fs_inode_info {
154 struct inode vfs_inode; /* serve a vfs inode */
155 unsigned long i_flags; /* keep an inode flags for ioctl */
156 unsigned char i_advise; /* use to give file attribute hints */
157 unsigned int i_current_depth; /* use only in directory structure */
158 unsigned int i_pino; /* parent inode number */
159 umode_t i_acl_mode; /* keep file acl mode temporarily */
160
161 /* Use below internally in f2fs*/
162 unsigned long flags; /* use to pass per-file flags */
163 atomic_t dirty_dents; /* # of dirty dentry pages */
164 f2fs_hash_t chash; /* hash value of given file name */
165 unsigned int clevel; /* maximum level of given file name */
166 nid_t i_xattr_nid; /* node id that contains xattrs */
167 struct extent_info ext; /* in-memory extent cache entry */
168 };
169
170 static inline void get_extent_info(struct extent_info *ext,
171 struct f2fs_extent i_ext)
172 {
173 write_lock(&ext->ext_lock);
174 ext->fofs = le32_to_cpu(i_ext.fofs);
175 ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
176 ext->len = le32_to_cpu(i_ext.len);
177 write_unlock(&ext->ext_lock);
178 }
179
180 static inline void set_raw_extent(struct extent_info *ext,
181 struct f2fs_extent *i_ext)
182 {
183 read_lock(&ext->ext_lock);
184 i_ext->fofs = cpu_to_le32(ext->fofs);
185 i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
186 i_ext->len = cpu_to_le32(ext->len);
187 read_unlock(&ext->ext_lock);
188 }
189
190 struct f2fs_nm_info {
191 block_t nat_blkaddr; /* base disk address of NAT */
192 nid_t max_nid; /* maximum possible node ids */
193 nid_t next_scan_nid; /* the next nid to be scanned */
194
195 /* NAT cache management */
196 struct radix_tree_root nat_root;/* root of the nat entry cache */
197 rwlock_t nat_tree_lock; /* protect nat_tree_lock */
198 unsigned int nat_cnt; /* the # of cached nat entries */
199 struct list_head nat_entries; /* cached nat entry list (clean) */
200 struct list_head dirty_nat_entries; /* cached nat entry list (dirty) */
201
202 /* free node ids management */
203 struct list_head free_nid_list; /* a list for free nids */
204 spinlock_t free_nid_list_lock; /* protect free nid list */
205 unsigned int fcnt; /* the number of free node id */
206 struct mutex build_lock; /* lock for build free nids */
207
208 /* for checkpoint */
209 char *nat_bitmap; /* NAT bitmap pointer */
210 int bitmap_size; /* bitmap size */
211 };
212
213 /*
214 * this structure is used as one of function parameters.
215 * all the information are dedicated to a given direct node block determined
216 * by the data offset in a file.
217 */
218 struct dnode_of_data {
219 struct inode *inode; /* vfs inode pointer */
220 struct page *inode_page; /* its inode page, NULL is possible */
221 struct page *node_page; /* cached direct node page */
222 nid_t nid; /* node id of the direct node block */
223 unsigned int ofs_in_node; /* data offset in the node page */
224 bool inode_page_locked; /* inode page is locked or not */
225 block_t data_blkaddr; /* block address of the node block */
226 };
227
228 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
229 struct page *ipage, struct page *npage, nid_t nid)
230 {
231 memset(dn, 0, sizeof(*dn));
232 dn->inode = inode;
233 dn->inode_page = ipage;
234 dn->node_page = npage;
235 dn->nid = nid;
236 }
237
238 /*
239 * For SIT manager
240 *
241 * By default, there are 6 active log areas across the whole main area.
242 * When considering hot and cold data separation to reduce cleaning overhead,
243 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
244 * respectively.
245 * In the current design, you should not change the numbers intentionally.
246 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
247 * logs individually according to the underlying devices. (default: 6)
248 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
249 * data and 8 for node logs.
250 */
251 #define NR_CURSEG_DATA_TYPE (3)
252 #define NR_CURSEG_NODE_TYPE (3)
253 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
254
255 enum {
256 CURSEG_HOT_DATA = 0, /* directory entry blocks */
257 CURSEG_WARM_DATA, /* data blocks */
258 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
259 CURSEG_HOT_NODE, /* direct node blocks of directory files */
260 CURSEG_WARM_NODE, /* direct node blocks of normal files */
261 CURSEG_COLD_NODE, /* indirect node blocks */
262 NO_CHECK_TYPE
263 };
264
265 struct f2fs_sm_info {
266 struct sit_info *sit_info; /* whole segment information */
267 struct free_segmap_info *free_info; /* free segment information */
268 struct dirty_seglist_info *dirty_info; /* dirty segment information */
269 struct curseg_info *curseg_array; /* active segment information */
270
271 struct list_head wblist_head; /* list of under-writeback pages */
272 spinlock_t wblist_lock; /* lock for checkpoint */
273
274 block_t seg0_blkaddr; /* block address of 0'th segment */
275 block_t main_blkaddr; /* start block address of main area */
276 block_t ssa_blkaddr; /* start block address of SSA area */
277
278 unsigned int segment_count; /* total # of segments */
279 unsigned int main_segments; /* # of segments in main area */
280 unsigned int reserved_segments; /* # of reserved segments */
281 unsigned int ovp_segments; /* # of overprovision segments */
282 };
283
284 /*
285 * For directory operation
286 */
287 #define NODE_DIR1_BLOCK (ADDRS_PER_INODE + 1)
288 #define NODE_DIR2_BLOCK (ADDRS_PER_INODE + 2)
289 #define NODE_IND1_BLOCK (ADDRS_PER_INODE + 3)
290 #define NODE_IND2_BLOCK (ADDRS_PER_INODE + 4)
291 #define NODE_DIND_BLOCK (ADDRS_PER_INODE + 5)
292
293 /*
294 * For superblock
295 */
296 /*
297 * COUNT_TYPE for monitoring
298 *
299 * f2fs monitors the number of several block types such as on-writeback,
300 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
301 */
302 enum count_type {
303 F2FS_WRITEBACK,
304 F2FS_DIRTY_DENTS,
305 F2FS_DIRTY_NODES,
306 F2FS_DIRTY_META,
307 NR_COUNT_TYPE,
308 };
309
310 /*
311 * Uses as sbi->fs_lock[NR_GLOBAL_LOCKS].
312 * The checkpoint procedure blocks all the locks in this fs_lock array.
313 * Some FS operations grab free locks, and if there is no free lock,
314 * then wait to grab a lock in a round-robin manner.
315 */
316 #define NR_GLOBAL_LOCKS 8
317
318 /*
319 * The below are the page types of bios used in submti_bio().
320 * The available types are:
321 * DATA User data pages. It operates as async mode.
322 * NODE Node pages. It operates as async mode.
323 * META FS metadata pages such as SIT, NAT, CP.
324 * NR_PAGE_TYPE The number of page types.
325 * META_FLUSH Make sure the previous pages are written
326 * with waiting the bio's completion
327 * ... Only can be used with META.
328 */
329 enum page_type {
330 DATA,
331 NODE,
332 META,
333 NR_PAGE_TYPE,
334 META_FLUSH,
335 };
336
337 struct f2fs_sb_info {
338 struct super_block *sb; /* pointer to VFS super block */
339 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
340 struct f2fs_super_block *raw_super; /* raw super block pointer */
341 int s_dirty; /* dirty flag for checkpoint */
342
343 /* for node-related operations */
344 struct f2fs_nm_info *nm_info; /* node manager */
345 struct inode *node_inode; /* cache node blocks */
346
347 /* for segment-related operations */
348 struct f2fs_sm_info *sm_info; /* segment manager */
349 struct bio *bio[NR_PAGE_TYPE]; /* bios to merge */
350 sector_t last_block_in_bio[NR_PAGE_TYPE]; /* last block number */
351 struct rw_semaphore bio_sem; /* IO semaphore */
352
353 /* for checkpoint */
354 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
355 struct inode *meta_inode; /* cache meta blocks */
356 struct mutex cp_mutex; /* checkpoint procedure lock */
357 struct mutex fs_lock[NR_GLOBAL_LOCKS]; /* blocking FS operations */
358 struct mutex node_write; /* locking node writes */
359 struct mutex writepages; /* mutex for writepages() */
360 unsigned char next_lock_num; /* round-robin global locks */
361 int por_doing; /* recovery is doing or not */
362 int on_build_free_nids; /* build_free_nids is doing */
363
364 /* for orphan inode management */
365 struct list_head orphan_inode_list; /* orphan inode list */
366 struct mutex orphan_inode_mutex; /* for orphan inode list */
367 unsigned int n_orphans; /* # of orphan inodes */
368
369 /* for directory inode management */
370 struct list_head dir_inode_list; /* dir inode list */
371 spinlock_t dir_inode_lock; /* for dir inode list lock */
372 unsigned int n_dirty_dirs; /* # of dir inodes */
373
374 /* basic file system units */
375 unsigned int log_sectors_per_block; /* log2 sectors per block */
376 unsigned int log_blocksize; /* log2 block size */
377 unsigned int blocksize; /* block size */
378 unsigned int root_ino_num; /* root inode number*/
379 unsigned int node_ino_num; /* node inode number*/
380 unsigned int meta_ino_num; /* meta inode number*/
381 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
382 unsigned int blocks_per_seg; /* blocks per segment */
383 unsigned int segs_per_sec; /* segments per section */
384 unsigned int secs_per_zone; /* sections per zone */
385 unsigned int total_sections; /* total section count */
386 unsigned int total_node_count; /* total node block count */
387 unsigned int total_valid_node_count; /* valid node block count */
388 unsigned int total_valid_inode_count; /* valid inode count */
389 int active_logs; /* # of active logs */
390
391 block_t user_block_count; /* # of user blocks */
392 block_t total_valid_block_count; /* # of valid blocks */
393 block_t alloc_valid_block_count; /* # of allocated blocks */
394 block_t last_valid_block_count; /* for recovery */
395 u32 s_next_generation; /* for NFS support */
396 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
397
398 struct f2fs_mount_info mount_opt; /* mount options */
399
400 /* for cleaning operations */
401 struct mutex gc_mutex; /* mutex for GC */
402 struct f2fs_gc_kthread *gc_thread; /* GC thread */
403 unsigned int cur_victim_sec; /* current victim section num */
404
405 /*
406 * for stat information.
407 * one is for the LFS mode, and the other is for the SSR mode.
408 */
409 struct f2fs_stat_info *stat_info; /* FS status information */
410 unsigned int segment_count[2]; /* # of allocated segments */
411 unsigned int block_count[2]; /* # of allocated blocks */
412 unsigned int last_victim[2]; /* last victim segment # */
413 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
414 int bg_gc; /* background gc calls */
415 spinlock_t stat_lock; /* lock for stat operations */
416 };
417
418 /*
419 * Inline functions
420 */
421 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
422 {
423 return container_of(inode, struct f2fs_inode_info, vfs_inode);
424 }
425
426 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
427 {
428 return sb->s_fs_info;
429 }
430
431 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
432 {
433 return (struct f2fs_super_block *)(sbi->raw_super);
434 }
435
436 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
437 {
438 return (struct f2fs_checkpoint *)(sbi->ckpt);
439 }
440
441 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
442 {
443 return (struct f2fs_nm_info *)(sbi->nm_info);
444 }
445
446 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
447 {
448 return (struct f2fs_sm_info *)(sbi->sm_info);
449 }
450
451 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
452 {
453 return (struct sit_info *)(SM_I(sbi)->sit_info);
454 }
455
456 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
457 {
458 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
459 }
460
461 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
462 {
463 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
464 }
465
466 static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi)
467 {
468 sbi->s_dirty = 1;
469 }
470
471 static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi)
472 {
473 sbi->s_dirty = 0;
474 }
475
476 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
477 {
478 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
479 return ckpt_flags & f;
480 }
481
482 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
483 {
484 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
485 ckpt_flags |= f;
486 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
487 }
488
489 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
490 {
491 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
492 ckpt_flags &= (~f);
493 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
494 }
495
496 static inline void mutex_lock_all(struct f2fs_sb_info *sbi)
497 {
498 int i = 0;
499 for (; i < NR_GLOBAL_LOCKS; i++)
500 mutex_lock(&sbi->fs_lock[i]);
501 }
502
503 static inline void mutex_unlock_all(struct f2fs_sb_info *sbi)
504 {
505 int i = 0;
506 for (; i < NR_GLOBAL_LOCKS; i++)
507 mutex_unlock(&sbi->fs_lock[i]);
508 }
509
510 static inline int mutex_lock_op(struct f2fs_sb_info *sbi)
511 {
512 unsigned char next_lock = sbi->next_lock_num % NR_GLOBAL_LOCKS;
513 int i = 0;
514
515 for (; i < NR_GLOBAL_LOCKS; i++)
516 if (mutex_trylock(&sbi->fs_lock[i]))
517 return i;
518
519 mutex_lock(&sbi->fs_lock[next_lock]);
520 sbi->next_lock_num++;
521 return next_lock;
522 }
523
524 static inline void mutex_unlock_op(struct f2fs_sb_info *sbi, int ilock)
525 {
526 if (ilock < 0)
527 return;
528 BUG_ON(ilock >= NR_GLOBAL_LOCKS);
529 mutex_unlock(&sbi->fs_lock[ilock]);
530 }
531
532 /*
533 * Check whether the given nid is within node id range.
534 */
535 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
536 {
537 WARN_ON((nid >= NM_I(sbi)->max_nid));
538 if (nid >= NM_I(sbi)->max_nid)
539 return -EINVAL;
540 return 0;
541 }
542
543 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
544
545 /*
546 * Check whether the inode has blocks or not
547 */
548 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
549 {
550 if (F2FS_I(inode)->i_xattr_nid)
551 return (inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1);
552 else
553 return (inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS);
554 }
555
556 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
557 struct inode *inode, blkcnt_t count)
558 {
559 block_t valid_block_count;
560
561 spin_lock(&sbi->stat_lock);
562 valid_block_count =
563 sbi->total_valid_block_count + (block_t)count;
564 if (valid_block_count > sbi->user_block_count) {
565 spin_unlock(&sbi->stat_lock);
566 return false;
567 }
568 inode->i_blocks += count;
569 sbi->total_valid_block_count = valid_block_count;
570 sbi->alloc_valid_block_count += (block_t)count;
571 spin_unlock(&sbi->stat_lock);
572 return true;
573 }
574
575 static inline int dec_valid_block_count(struct f2fs_sb_info *sbi,
576 struct inode *inode,
577 blkcnt_t count)
578 {
579 spin_lock(&sbi->stat_lock);
580 BUG_ON(sbi->total_valid_block_count < (block_t) count);
581 BUG_ON(inode->i_blocks < count);
582 inode->i_blocks -= count;
583 sbi->total_valid_block_count -= (block_t)count;
584 spin_unlock(&sbi->stat_lock);
585 return 0;
586 }
587
588 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
589 {
590 atomic_inc(&sbi->nr_pages[count_type]);
591 F2FS_SET_SB_DIRT(sbi);
592 }
593
594 static inline void inode_inc_dirty_dents(struct inode *inode)
595 {
596 atomic_inc(&F2FS_I(inode)->dirty_dents);
597 }
598
599 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
600 {
601 atomic_dec(&sbi->nr_pages[count_type]);
602 }
603
604 static inline void inode_dec_dirty_dents(struct inode *inode)
605 {
606 atomic_dec(&F2FS_I(inode)->dirty_dents);
607 }
608
609 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
610 {
611 return atomic_read(&sbi->nr_pages[count_type]);
612 }
613
614 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
615 {
616 unsigned int pages_per_sec = sbi->segs_per_sec *
617 (1 << sbi->log_blocks_per_seg);
618 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
619 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
620 }
621
622 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
623 {
624 block_t ret;
625 spin_lock(&sbi->stat_lock);
626 ret = sbi->total_valid_block_count;
627 spin_unlock(&sbi->stat_lock);
628 return ret;
629 }
630
631 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
632 {
633 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
634
635 /* return NAT or SIT bitmap */
636 if (flag == NAT_BITMAP)
637 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
638 else if (flag == SIT_BITMAP)
639 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
640
641 return 0;
642 }
643
644 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
645 {
646 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
647 int offset = (flag == NAT_BITMAP) ?
648 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
649 return &ckpt->sit_nat_version_bitmap + offset;
650 }
651
652 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
653 {
654 block_t start_addr;
655 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
656 unsigned long long ckpt_version = le64_to_cpu(ckpt->checkpoint_ver);
657
658 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
659
660 /*
661 * odd numbered checkpoint should at cp segment 0
662 * and even segent must be at cp segment 1
663 */
664 if (!(ckpt_version & 1))
665 start_addr += sbi->blocks_per_seg;
666
667 return start_addr;
668 }
669
670 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
671 {
672 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
673 }
674
675 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
676 struct inode *inode,
677 unsigned int count)
678 {
679 block_t valid_block_count;
680 unsigned int valid_node_count;
681
682 spin_lock(&sbi->stat_lock);
683
684 valid_block_count = sbi->total_valid_block_count + (block_t)count;
685 sbi->alloc_valid_block_count += (block_t)count;
686 valid_node_count = sbi->total_valid_node_count + count;
687
688 if (valid_block_count > sbi->user_block_count) {
689 spin_unlock(&sbi->stat_lock);
690 return false;
691 }
692
693 if (valid_node_count > sbi->total_node_count) {
694 spin_unlock(&sbi->stat_lock);
695 return false;
696 }
697
698 if (inode)
699 inode->i_blocks += count;
700 sbi->total_valid_node_count = valid_node_count;
701 sbi->total_valid_block_count = valid_block_count;
702 spin_unlock(&sbi->stat_lock);
703
704 return true;
705 }
706
707 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
708 struct inode *inode,
709 unsigned int count)
710 {
711 spin_lock(&sbi->stat_lock);
712
713 BUG_ON(sbi->total_valid_block_count < count);
714 BUG_ON(sbi->total_valid_node_count < count);
715 BUG_ON(inode->i_blocks < count);
716
717 inode->i_blocks -= count;
718 sbi->total_valid_node_count -= count;
719 sbi->total_valid_block_count -= (block_t)count;
720
721 spin_unlock(&sbi->stat_lock);
722 }
723
724 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
725 {
726 unsigned int ret;
727 spin_lock(&sbi->stat_lock);
728 ret = sbi->total_valid_node_count;
729 spin_unlock(&sbi->stat_lock);
730 return ret;
731 }
732
733 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
734 {
735 spin_lock(&sbi->stat_lock);
736 BUG_ON(sbi->total_valid_inode_count == sbi->total_node_count);
737 sbi->total_valid_inode_count++;
738 spin_unlock(&sbi->stat_lock);
739 }
740
741 static inline int dec_valid_inode_count(struct f2fs_sb_info *sbi)
742 {
743 spin_lock(&sbi->stat_lock);
744 BUG_ON(!sbi->total_valid_inode_count);
745 sbi->total_valid_inode_count--;
746 spin_unlock(&sbi->stat_lock);
747 return 0;
748 }
749
750 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
751 {
752 unsigned int ret;
753 spin_lock(&sbi->stat_lock);
754 ret = sbi->total_valid_inode_count;
755 spin_unlock(&sbi->stat_lock);
756 return ret;
757 }
758
759 static inline void f2fs_put_page(struct page *page, int unlock)
760 {
761 if (!page || IS_ERR(page))
762 return;
763
764 if (unlock) {
765 BUG_ON(!PageLocked(page));
766 unlock_page(page);
767 }
768 page_cache_release(page);
769 }
770
771 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
772 {
773 if (dn->node_page)
774 f2fs_put_page(dn->node_page, 1);
775 if (dn->inode_page && dn->node_page != dn->inode_page)
776 f2fs_put_page(dn->inode_page, 0);
777 dn->node_page = NULL;
778 dn->inode_page = NULL;
779 }
780
781 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
782 size_t size, void (*ctor)(void *))
783 {
784 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, ctor);
785 }
786
787 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
788
789 static inline bool IS_INODE(struct page *page)
790 {
791 struct f2fs_node *p = (struct f2fs_node *)page_address(page);
792 return RAW_IS_INODE(p);
793 }
794
795 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
796 {
797 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
798 }
799
800 static inline block_t datablock_addr(struct page *node_page,
801 unsigned int offset)
802 {
803 struct f2fs_node *raw_node;
804 __le32 *addr_array;
805 raw_node = (struct f2fs_node *)page_address(node_page);
806 addr_array = blkaddr_in_node(raw_node);
807 return le32_to_cpu(addr_array[offset]);
808 }
809
810 static inline int f2fs_test_bit(unsigned int nr, char *addr)
811 {
812 int mask;
813
814 addr += (nr >> 3);
815 mask = 1 << (7 - (nr & 0x07));
816 return mask & *addr;
817 }
818
819 static inline int f2fs_set_bit(unsigned int nr, char *addr)
820 {
821 int mask;
822 int ret;
823
824 addr += (nr >> 3);
825 mask = 1 << (7 - (nr & 0x07));
826 ret = mask & *addr;
827 *addr |= mask;
828 return ret;
829 }
830
831 static inline int f2fs_clear_bit(unsigned int nr, char *addr)
832 {
833 int mask;
834 int ret;
835
836 addr += (nr >> 3);
837 mask = 1 << (7 - (nr & 0x07));
838 ret = mask & *addr;
839 *addr &= ~mask;
840 return ret;
841 }
842
843 /* used for f2fs_inode_info->flags */
844 enum {
845 FI_NEW_INODE, /* indicate newly allocated inode */
846 FI_INC_LINK, /* need to increment i_nlink */
847 FI_ACL_MODE, /* indicate acl mode */
848 FI_NO_ALLOC, /* should not allocate any blocks */
849 FI_DELAY_IPUT, /* used for the recovery */
850 };
851
852 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
853 {
854 set_bit(flag, &fi->flags);
855 }
856
857 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
858 {
859 return test_bit(flag, &fi->flags);
860 }
861
862 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
863 {
864 clear_bit(flag, &fi->flags);
865 }
866
867 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
868 {
869 fi->i_acl_mode = mode;
870 set_inode_flag(fi, FI_ACL_MODE);
871 }
872
873 static inline int cond_clear_inode_flag(struct f2fs_inode_info *fi, int flag)
874 {
875 if (is_inode_flag_set(fi, FI_ACL_MODE)) {
876 clear_inode_flag(fi, FI_ACL_MODE);
877 return 1;
878 }
879 return 0;
880 }
881
882 /*
883 * file.c
884 */
885 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
886 void truncate_data_blocks(struct dnode_of_data *);
887 void f2fs_truncate(struct inode *);
888 int f2fs_setattr(struct dentry *, struct iattr *);
889 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
890 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
891 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
892
893 /*
894 * inode.c
895 */
896 void f2fs_set_inode_flags(struct inode *);
897 struct inode *f2fs_iget(struct super_block *, unsigned long);
898 void update_inode(struct inode *, struct page *);
899 int update_inode_page(struct inode *);
900 int f2fs_write_inode(struct inode *, struct writeback_control *);
901 void f2fs_evict_inode(struct inode *);
902
903 /*
904 * namei.c
905 */
906 struct dentry *f2fs_get_parent(struct dentry *child);
907
908 /*
909 * dir.c
910 */
911 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
912 struct page **);
913 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
914 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
915 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
916 struct page *, struct inode *);
917 void init_dent_inode(const struct qstr *, struct page *);
918 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
919 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *);
920 int f2fs_make_empty(struct inode *, struct inode *);
921 bool f2fs_empty_dir(struct inode *);
922
923 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
924 {
925 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
926 inode);
927 }
928
929 /*
930 * super.c
931 */
932 int f2fs_sync_fs(struct super_block *, int);
933 extern __printf(3, 4)
934 void f2fs_msg(struct super_block *, const char *, const char *, ...);
935
936 /*
937 * hash.c
938 */
939 f2fs_hash_t f2fs_dentry_hash(const char *, size_t);
940
941 /*
942 * node.c
943 */
944 struct dnode_of_data;
945 struct node_info;
946
947 int is_checkpointed_node(struct f2fs_sb_info *, nid_t);
948 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
949 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
950 int truncate_inode_blocks(struct inode *, pgoff_t);
951 int remove_inode_page(struct inode *);
952 int new_inode_page(struct inode *, const struct qstr *);
953 struct page *new_node_page(struct dnode_of_data *, unsigned int);
954 void ra_node_page(struct f2fs_sb_info *, nid_t);
955 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
956 struct page *get_node_page_ra(struct page *, int);
957 void sync_inode_page(struct dnode_of_data *);
958 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
959 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
960 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
961 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
962 void recover_node_page(struct f2fs_sb_info *, struct page *,
963 struct f2fs_summary *, struct node_info *, block_t);
964 int recover_inode_page(struct f2fs_sb_info *, struct page *);
965 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
966 struct f2fs_summary_block *);
967 void flush_nat_entries(struct f2fs_sb_info *);
968 int build_node_manager(struct f2fs_sb_info *);
969 void destroy_node_manager(struct f2fs_sb_info *);
970 int __init create_node_manager_caches(void);
971 void destroy_node_manager_caches(void);
972
973 /*
974 * segment.c
975 */
976 void f2fs_balance_fs(struct f2fs_sb_info *);
977 void invalidate_blocks(struct f2fs_sb_info *, block_t);
978 void locate_dirty_segment(struct f2fs_sb_info *, unsigned int);
979 void clear_prefree_segments(struct f2fs_sb_info *);
980 int npages_for_summary_flush(struct f2fs_sb_info *);
981 void allocate_new_segments(struct f2fs_sb_info *);
982 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
983 struct bio *f2fs_bio_alloc(struct block_device *, int);
984 void f2fs_submit_bio(struct f2fs_sb_info *, enum page_type, bool sync);
985 void write_meta_page(struct f2fs_sb_info *, struct page *);
986 void write_node_page(struct f2fs_sb_info *, struct page *, unsigned int,
987 block_t, block_t *);
988 void write_data_page(struct inode *, struct page *, struct dnode_of_data*,
989 block_t, block_t *);
990 void rewrite_data_page(struct f2fs_sb_info *, struct page *, block_t);
991 void recover_data_page(struct f2fs_sb_info *, struct page *,
992 struct f2fs_summary *, block_t, block_t);
993 void rewrite_node_page(struct f2fs_sb_info *, struct page *,
994 struct f2fs_summary *, block_t, block_t);
995 void write_data_summaries(struct f2fs_sb_info *, block_t);
996 void write_node_summaries(struct f2fs_sb_info *, block_t);
997 int lookup_journal_in_cursum(struct f2fs_summary_block *,
998 int, unsigned int, int);
999 void flush_sit_entries(struct f2fs_sb_info *);
1000 int build_segment_manager(struct f2fs_sb_info *);
1001 void destroy_segment_manager(struct f2fs_sb_info *);
1002
1003 /*
1004 * checkpoint.c
1005 */
1006 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1007 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1008 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1009 int check_orphan_space(struct f2fs_sb_info *);
1010 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1011 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1012 int recover_orphan_inodes(struct f2fs_sb_info *);
1013 int get_valid_checkpoint(struct f2fs_sb_info *);
1014 void set_dirty_dir_page(struct inode *, struct page *);
1015 void remove_dirty_dir_inode(struct inode *);
1016 struct inode *check_dirty_dir_inode(struct f2fs_sb_info *, nid_t);
1017 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1018 void write_checkpoint(struct f2fs_sb_info *, bool);
1019 void init_orphan_info(struct f2fs_sb_info *);
1020 int __init create_checkpoint_caches(void);
1021 void destroy_checkpoint_caches(void);
1022
1023 /*
1024 * data.c
1025 */
1026 int reserve_new_block(struct dnode_of_data *);
1027 void update_extent_cache(block_t, struct dnode_of_data *);
1028 struct page *find_data_page(struct inode *, pgoff_t, bool);
1029 struct page *get_lock_data_page(struct inode *, pgoff_t);
1030 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1031 int f2fs_readpage(struct f2fs_sb_info *, struct page *, block_t, int);
1032 int do_write_data_page(struct page *);
1033
1034 /*
1035 * gc.c
1036 */
1037 int start_gc_thread(struct f2fs_sb_info *);
1038 void stop_gc_thread(struct f2fs_sb_info *);
1039 block_t start_bidx_of_node(unsigned int);
1040 int f2fs_gc(struct f2fs_sb_info *);
1041 void build_gc_manager(struct f2fs_sb_info *);
1042 int __init create_gc_caches(void);
1043 void destroy_gc_caches(void);
1044
1045 /*
1046 * recovery.c
1047 */
1048 int recover_fsync_data(struct f2fs_sb_info *);
1049 bool space_for_roll_forward(struct f2fs_sb_info *);
1050
1051 /*
1052 * debug.c
1053 */
1054 #ifdef CONFIG_F2FS_STAT_FS
1055 struct f2fs_stat_info {
1056 struct list_head stat_list;
1057 struct f2fs_sb_info *sbi;
1058 struct mutex stat_lock;
1059 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1060 int main_area_segs, main_area_sections, main_area_zones;
1061 int hit_ext, total_ext;
1062 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1063 int nats, sits, fnids;
1064 int total_count, utilization;
1065 int bg_gc;
1066 unsigned int valid_count, valid_node_count, valid_inode_count;
1067 unsigned int bimodal, avg_vblocks;
1068 int util_free, util_valid, util_invalid;
1069 int rsvd_segs, overp_segs;
1070 int dirty_count, node_pages, meta_pages;
1071 int prefree_count, call_count;
1072 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1073 int tot_blks, data_blks, node_blks;
1074 int curseg[NR_CURSEG_TYPE];
1075 int cursec[NR_CURSEG_TYPE];
1076 int curzone[NR_CURSEG_TYPE];
1077
1078 unsigned int segment_count[2];
1079 unsigned int block_count[2];
1080 unsigned base_mem, cache_mem;
1081 };
1082
1083 #define stat_inc_call_count(si) ((si)->call_count++)
1084
1085 #define stat_inc_seg_count(sbi, type) \
1086 do { \
1087 struct f2fs_stat_info *si = sbi->stat_info; \
1088 (si)->tot_segs++; \
1089 if (type == SUM_TYPE_DATA) \
1090 si->data_segs++; \
1091 else \
1092 si->node_segs++; \
1093 } while (0)
1094
1095 #define stat_inc_tot_blk_count(si, blks) \
1096 (si->tot_blks += (blks))
1097
1098 #define stat_inc_data_blk_count(sbi, blks) \
1099 do { \
1100 struct f2fs_stat_info *si = sbi->stat_info; \
1101 stat_inc_tot_blk_count(si, blks); \
1102 si->data_blks += (blks); \
1103 } while (0)
1104
1105 #define stat_inc_node_blk_count(sbi, blks) \
1106 do { \
1107 struct f2fs_stat_info *si = sbi->stat_info; \
1108 stat_inc_tot_blk_count(si, blks); \
1109 si->node_blks += (blks); \
1110 } while (0)
1111
1112 int f2fs_build_stats(struct f2fs_sb_info *);
1113 void f2fs_destroy_stats(struct f2fs_sb_info *);
1114 void __init f2fs_create_root_stats(void);
1115 void f2fs_destroy_root_stats(void);
1116 #else
1117 #define stat_inc_call_count(si)
1118 #define stat_inc_seg_count(si, type)
1119 #define stat_inc_tot_blk_count(si, blks)
1120 #define stat_inc_data_blk_count(si, blks)
1121 #define stat_inc_node_blk_count(sbi, blks)
1122
1123 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1124 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1125 static inline void __init f2fs_create_root_stats(void) { }
1126 static inline void f2fs_destroy_root_stats(void) { }
1127 #endif
1128
1129 extern const struct file_operations f2fs_dir_operations;
1130 extern const struct file_operations f2fs_file_operations;
1131 extern const struct inode_operations f2fs_file_inode_operations;
1132 extern const struct address_space_operations f2fs_dblock_aops;
1133 extern const struct address_space_operations f2fs_node_aops;
1134 extern const struct address_space_operations f2fs_meta_aops;
1135 extern const struct inode_operations f2fs_dir_inode_operations;
1136 extern const struct inode_operations f2fs_symlink_inode_operations;
1137 extern const struct inode_operations f2fs_special_inode_operations;
1138 #endif