f2fs: avoid race condition in handling wait_io
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 sbi->need_fsck = true; \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
51 #define F2FS_MOUNT_NOBARRIER 0x00000800
52
53 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
54 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
55 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
56
57 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
58 typecheck(unsigned long long, b) && \
59 ((long long)((a) - (b)) > 0))
60
61 typedef u32 block_t; /*
62 * should not change u32, since it is the on-disk block
63 * address format, __le32.
64 */
65 typedef u32 nid_t;
66
67 struct f2fs_mount_info {
68 unsigned int opt;
69 };
70
71 #define CRCPOLY_LE 0xedb88320
72
73 static inline __u32 f2fs_crc32(void *buf, size_t len)
74 {
75 unsigned char *p = (unsigned char *)buf;
76 __u32 crc = F2FS_SUPER_MAGIC;
77 int i;
78
79 while (len--) {
80 crc ^= *p++;
81 for (i = 0; i < 8; i++)
82 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
83 }
84 return crc;
85 }
86
87 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
88 {
89 return f2fs_crc32(buf, buf_size) == blk_crc;
90 }
91
92 /*
93 * For checkpoint manager
94 */
95 enum {
96 NAT_BITMAP,
97 SIT_BITMAP
98 };
99
100 enum {
101 CP_UMOUNT,
102 CP_SYNC,
103 CP_DISCARD,
104 };
105
106 struct cp_control {
107 int reason;
108 __u64 trim_start;
109 __u64 trim_end;
110 __u64 trim_minlen;
111 __u64 trimmed;
112 };
113
114 /*
115 * For CP/NAT/SIT/SSA readahead
116 */
117 enum {
118 META_CP,
119 META_NAT,
120 META_SIT,
121 META_SSA,
122 META_POR,
123 };
124
125 /* for the list of ino */
126 enum {
127 ORPHAN_INO, /* for orphan ino list */
128 APPEND_INO, /* for append ino list */
129 UPDATE_INO, /* for update ino list */
130 MAX_INO_ENTRY, /* max. list */
131 };
132
133 struct ino_entry {
134 struct list_head list; /* list head */
135 nid_t ino; /* inode number */
136 };
137
138 /* for the list of directory inodes */
139 struct dir_inode_entry {
140 struct list_head list; /* list head */
141 struct inode *inode; /* vfs inode pointer */
142 };
143
144 /* for the list of blockaddresses to be discarded */
145 struct discard_entry {
146 struct list_head list; /* list head */
147 block_t blkaddr; /* block address to be discarded */
148 int len; /* # of consecutive blocks of the discard */
149 };
150
151 /* for the list of fsync inodes, used only during recovery */
152 struct fsync_inode_entry {
153 struct list_head list; /* list head */
154 struct inode *inode; /* vfs inode pointer */
155 block_t blkaddr; /* block address locating the last fsync */
156 block_t last_dentry; /* block address locating the last dentry */
157 block_t last_inode; /* block address locating the last inode */
158 };
159
160 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
161 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
162
163 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
164 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
165 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
166 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
167
168 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
169 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
170
171 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
172 {
173 int before = nats_in_cursum(rs);
174 rs->n_nats = cpu_to_le16(before + i);
175 return before;
176 }
177
178 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
179 {
180 int before = sits_in_cursum(rs);
181 rs->n_sits = cpu_to_le16(before + i);
182 return before;
183 }
184
185 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
186 int type)
187 {
188 if (type == NAT_JOURNAL)
189 return size <= MAX_NAT_JENTRIES(sum);
190 return size <= MAX_SIT_JENTRIES(sum);
191 }
192
193 /*
194 * ioctl commands
195 */
196 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
197 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
198
199 #define F2FS_IOCTL_MAGIC 0xf5
200 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
201 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
202 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
203
204 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
205 /*
206 * ioctl commands in 32 bit emulation
207 */
208 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
209 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
210 #endif
211
212 /*
213 * For INODE and NODE manager
214 */
215 /* for directory operations */
216 struct f2fs_dentry_ptr {
217 const void *bitmap;
218 struct f2fs_dir_entry *dentry;
219 __u8 (*filename)[F2FS_SLOT_LEN];
220 int max;
221 };
222
223 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
224 void *src, int type)
225 {
226 if (type == 1) {
227 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
228 d->max = NR_DENTRY_IN_BLOCK;
229 d->bitmap = &t->dentry_bitmap;
230 d->dentry = t->dentry;
231 d->filename = t->filename;
232 } else {
233 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
234 d->max = NR_INLINE_DENTRY;
235 d->bitmap = &t->dentry_bitmap;
236 d->dentry = t->dentry;
237 d->filename = t->filename;
238 }
239 }
240
241 /*
242 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
243 * as its node offset to distinguish from index node blocks.
244 * But some bits are used to mark the node block.
245 */
246 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
247 >> OFFSET_BIT_SHIFT)
248 enum {
249 ALLOC_NODE, /* allocate a new node page if needed */
250 LOOKUP_NODE, /* look up a node without readahead */
251 LOOKUP_NODE_RA, /*
252 * look up a node with readahead called
253 * by get_data_block.
254 */
255 };
256
257 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
258
259 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
260
261 /* for in-memory extent cache entry */
262 #define F2FS_MIN_EXTENT_LEN 16 /* minimum extent length */
263
264 struct extent_info {
265 rwlock_t ext_lock; /* rwlock for consistency */
266 unsigned int fofs; /* start offset in a file */
267 u32 blk_addr; /* start block address of the extent */
268 unsigned int len; /* length of the extent */
269 };
270
271 /*
272 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
273 */
274 #define FADVISE_COLD_BIT 0x01
275 #define FADVISE_LOST_PINO_BIT 0x02
276
277 #define DEF_DIR_LEVEL 0
278
279 struct f2fs_inode_info {
280 struct inode vfs_inode; /* serve a vfs inode */
281 unsigned long i_flags; /* keep an inode flags for ioctl */
282 unsigned char i_advise; /* use to give file attribute hints */
283 unsigned char i_dir_level; /* use for dentry level for large dir */
284 unsigned int i_current_depth; /* use only in directory structure */
285 unsigned int i_pino; /* parent inode number */
286 umode_t i_acl_mode; /* keep file acl mode temporarily */
287
288 /* Use below internally in f2fs*/
289 unsigned long flags; /* use to pass per-file flags */
290 struct rw_semaphore i_sem; /* protect fi info */
291 atomic_t dirty_pages; /* # of dirty pages */
292 f2fs_hash_t chash; /* hash value of given file name */
293 unsigned int clevel; /* maximum level of given file name */
294 nid_t i_xattr_nid; /* node id that contains xattrs */
295 unsigned long long xattr_ver; /* cp version of xattr modification */
296 struct extent_info ext; /* in-memory extent cache entry */
297 struct dir_inode_entry *dirty_dir; /* the pointer of dirty dir */
298
299 struct radix_tree_root inmem_root; /* radix tree for inmem pages */
300 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
301 struct mutex inmem_lock; /* lock for inmemory pages */
302 };
303
304 static inline void get_extent_info(struct extent_info *ext,
305 struct f2fs_extent i_ext)
306 {
307 write_lock(&ext->ext_lock);
308 ext->fofs = le32_to_cpu(i_ext.fofs);
309 ext->blk_addr = le32_to_cpu(i_ext.blk_addr);
310 ext->len = le32_to_cpu(i_ext.len);
311 write_unlock(&ext->ext_lock);
312 }
313
314 static inline void set_raw_extent(struct extent_info *ext,
315 struct f2fs_extent *i_ext)
316 {
317 read_lock(&ext->ext_lock);
318 i_ext->fofs = cpu_to_le32(ext->fofs);
319 i_ext->blk_addr = cpu_to_le32(ext->blk_addr);
320 i_ext->len = cpu_to_le32(ext->len);
321 read_unlock(&ext->ext_lock);
322 }
323
324 struct f2fs_nm_info {
325 block_t nat_blkaddr; /* base disk address of NAT */
326 nid_t max_nid; /* maximum possible node ids */
327 nid_t available_nids; /* maximum available node ids */
328 nid_t next_scan_nid; /* the next nid to be scanned */
329 unsigned int ram_thresh; /* control the memory footprint */
330
331 /* NAT cache management */
332 struct radix_tree_root nat_root;/* root of the nat entry cache */
333 struct radix_tree_root nat_set_root;/* root of the nat set cache */
334 rwlock_t nat_tree_lock; /* protect nat_tree_lock */
335 struct list_head nat_entries; /* cached nat entry list (clean) */
336 unsigned int nat_cnt; /* the # of cached nat entries */
337 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
338
339 /* free node ids management */
340 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
341 struct list_head free_nid_list; /* a list for free nids */
342 spinlock_t free_nid_list_lock; /* protect free nid list */
343 unsigned int fcnt; /* the number of free node id */
344 struct mutex build_lock; /* lock for build free nids */
345
346 /* for checkpoint */
347 char *nat_bitmap; /* NAT bitmap pointer */
348 int bitmap_size; /* bitmap size */
349 };
350
351 /*
352 * this structure is used as one of function parameters.
353 * all the information are dedicated to a given direct node block determined
354 * by the data offset in a file.
355 */
356 struct dnode_of_data {
357 struct inode *inode; /* vfs inode pointer */
358 struct page *inode_page; /* its inode page, NULL is possible */
359 struct page *node_page; /* cached direct node page */
360 nid_t nid; /* node id of the direct node block */
361 unsigned int ofs_in_node; /* data offset in the node page */
362 bool inode_page_locked; /* inode page is locked or not */
363 block_t data_blkaddr; /* block address of the node block */
364 };
365
366 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
367 struct page *ipage, struct page *npage, nid_t nid)
368 {
369 memset(dn, 0, sizeof(*dn));
370 dn->inode = inode;
371 dn->inode_page = ipage;
372 dn->node_page = npage;
373 dn->nid = nid;
374 }
375
376 /*
377 * For SIT manager
378 *
379 * By default, there are 6 active log areas across the whole main area.
380 * When considering hot and cold data separation to reduce cleaning overhead,
381 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
382 * respectively.
383 * In the current design, you should not change the numbers intentionally.
384 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
385 * logs individually according to the underlying devices. (default: 6)
386 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
387 * data and 8 for node logs.
388 */
389 #define NR_CURSEG_DATA_TYPE (3)
390 #define NR_CURSEG_NODE_TYPE (3)
391 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
392
393 enum {
394 CURSEG_HOT_DATA = 0, /* directory entry blocks */
395 CURSEG_WARM_DATA, /* data blocks */
396 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
397 CURSEG_HOT_NODE, /* direct node blocks of directory files */
398 CURSEG_WARM_NODE, /* direct node blocks of normal files */
399 CURSEG_COLD_NODE, /* indirect node blocks */
400 NO_CHECK_TYPE
401 };
402
403 struct flush_cmd {
404 struct completion wait;
405 struct llist_node llnode;
406 int ret;
407 };
408
409 struct flush_cmd_control {
410 struct task_struct *f2fs_issue_flush; /* flush thread */
411 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
412 struct llist_head issue_list; /* list for command issue */
413 struct llist_node *dispatch_list; /* list for command dispatch */
414 };
415
416 struct f2fs_sm_info {
417 struct sit_info *sit_info; /* whole segment information */
418 struct free_segmap_info *free_info; /* free segment information */
419 struct dirty_seglist_info *dirty_info; /* dirty segment information */
420 struct curseg_info *curseg_array; /* active segment information */
421
422 block_t seg0_blkaddr; /* block address of 0'th segment */
423 block_t main_blkaddr; /* start block address of main area */
424 block_t ssa_blkaddr; /* start block address of SSA area */
425
426 unsigned int segment_count; /* total # of segments */
427 unsigned int main_segments; /* # of segments in main area */
428 unsigned int reserved_segments; /* # of reserved segments */
429 unsigned int ovp_segments; /* # of overprovision segments */
430
431 /* a threshold to reclaim prefree segments */
432 unsigned int rec_prefree_segments;
433
434 /* for small discard management */
435 struct list_head discard_list; /* 4KB discard list */
436 int nr_discards; /* # of discards in the list */
437 int max_discards; /* max. discards to be issued */
438
439 struct list_head sit_entry_set; /* sit entry set list */
440
441 unsigned int ipu_policy; /* in-place-update policy */
442 unsigned int min_ipu_util; /* in-place-update threshold */
443 unsigned int min_fsync_blocks; /* threshold for fsync */
444
445 /* for flush command control */
446 struct flush_cmd_control *cmd_control_info;
447
448 };
449
450 /*
451 * For superblock
452 */
453 /*
454 * COUNT_TYPE for monitoring
455 *
456 * f2fs monitors the number of several block types such as on-writeback,
457 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
458 */
459 enum count_type {
460 F2FS_WRITEBACK,
461 F2FS_DIRTY_DENTS,
462 F2FS_DIRTY_NODES,
463 F2FS_DIRTY_META,
464 NR_COUNT_TYPE,
465 };
466
467 /*
468 * The below are the page types of bios used in submit_bio().
469 * The available types are:
470 * DATA User data pages. It operates as async mode.
471 * NODE Node pages. It operates as async mode.
472 * META FS metadata pages such as SIT, NAT, CP.
473 * NR_PAGE_TYPE The number of page types.
474 * META_FLUSH Make sure the previous pages are written
475 * with waiting the bio's completion
476 * ... Only can be used with META.
477 */
478 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
479 enum page_type {
480 DATA,
481 NODE,
482 META,
483 NR_PAGE_TYPE,
484 META_FLUSH,
485 };
486
487 struct f2fs_io_info {
488 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
489 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
490 };
491
492 #define is_read_io(rw) (((rw) & 1) == READ)
493 struct f2fs_bio_info {
494 struct f2fs_sb_info *sbi; /* f2fs superblock */
495 struct bio *bio; /* bios to merge */
496 sector_t last_block_in_bio; /* last block number */
497 struct f2fs_io_info fio; /* store buffered io info. */
498 struct rw_semaphore io_rwsem; /* blocking op for bio */
499 };
500
501 struct f2fs_sb_info {
502 struct super_block *sb; /* pointer to VFS super block */
503 struct proc_dir_entry *s_proc; /* proc entry */
504 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
505 struct f2fs_super_block *raw_super; /* raw super block pointer */
506 int s_dirty; /* dirty flag for checkpoint */
507 bool need_fsck; /* need fsck.f2fs to fix */
508
509 /* for node-related operations */
510 struct f2fs_nm_info *nm_info; /* node manager */
511 struct inode *node_inode; /* cache node blocks */
512
513 /* for segment-related operations */
514 struct f2fs_sm_info *sm_info; /* segment manager */
515
516 /* for bio operations */
517 struct f2fs_bio_info read_io; /* for read bios */
518 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
519
520 /* for checkpoint */
521 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
522 struct inode *meta_inode; /* cache meta blocks */
523 struct mutex cp_mutex; /* checkpoint procedure lock */
524 struct rw_semaphore cp_rwsem; /* blocking FS operations */
525 struct rw_semaphore node_write; /* locking node writes */
526 struct mutex writepages; /* mutex for writepages() */
527 bool por_doing; /* recovery is doing or not */
528 wait_queue_head_t cp_wait;
529
530 /* for inode management */
531 struct radix_tree_root ino_root[MAX_INO_ENTRY]; /* ino entry array */
532 spinlock_t ino_lock[MAX_INO_ENTRY]; /* for ino entry lock */
533 struct list_head ino_list[MAX_INO_ENTRY]; /* inode list head */
534
535 /* for orphan inode, use 0'th array */
536 unsigned int n_orphans; /* # of orphan inodes */
537 unsigned int max_orphans; /* max orphan inodes */
538
539 /* for directory inode management */
540 struct list_head dir_inode_list; /* dir inode list */
541 spinlock_t dir_inode_lock; /* for dir inode list lock */
542
543 /* basic filesystem units */
544 unsigned int log_sectors_per_block; /* log2 sectors per block */
545 unsigned int log_blocksize; /* log2 block size */
546 unsigned int blocksize; /* block size */
547 unsigned int root_ino_num; /* root inode number*/
548 unsigned int node_ino_num; /* node inode number*/
549 unsigned int meta_ino_num; /* meta inode number*/
550 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
551 unsigned int blocks_per_seg; /* blocks per segment */
552 unsigned int segs_per_sec; /* segments per section */
553 unsigned int secs_per_zone; /* sections per zone */
554 unsigned int total_sections; /* total section count */
555 unsigned int total_node_count; /* total node block count */
556 unsigned int total_valid_node_count; /* valid node block count */
557 unsigned int total_valid_inode_count; /* valid inode count */
558 int active_logs; /* # of active logs */
559 int dir_level; /* directory level */
560
561 block_t user_block_count; /* # of user blocks */
562 block_t total_valid_block_count; /* # of valid blocks */
563 block_t alloc_valid_block_count; /* # of allocated blocks */
564 block_t last_valid_block_count; /* for recovery */
565 u32 s_next_generation; /* for NFS support */
566 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
567
568 struct f2fs_mount_info mount_opt; /* mount options */
569
570 /* for cleaning operations */
571 struct mutex gc_mutex; /* mutex for GC */
572 struct f2fs_gc_kthread *gc_thread; /* GC thread */
573 unsigned int cur_victim_sec; /* current victim section num */
574
575 /* maximum # of trials to find a victim segment for SSR and GC */
576 unsigned int max_victim_search;
577
578 /*
579 * for stat information.
580 * one is for the LFS mode, and the other is for the SSR mode.
581 */
582 #ifdef CONFIG_F2FS_STAT_FS
583 struct f2fs_stat_info *stat_info; /* FS status information */
584 unsigned int segment_count[2]; /* # of allocated segments */
585 unsigned int block_count[2]; /* # of allocated blocks */
586 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
587 int inline_inode; /* # of inline_data inodes */
588 int inline_dir; /* # of inline_dentry inodes */
589 int bg_gc; /* background gc calls */
590 unsigned int n_dirty_dirs; /* # of dir inodes */
591 #endif
592 unsigned int last_victim[2]; /* last victim segment # */
593 spinlock_t stat_lock; /* lock for stat operations */
594
595 /* For sysfs suppport */
596 struct kobject s_kobj;
597 struct completion s_kobj_unregister;
598 };
599
600 /*
601 * Inline functions
602 */
603 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
604 {
605 return container_of(inode, struct f2fs_inode_info, vfs_inode);
606 }
607
608 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
609 {
610 return sb->s_fs_info;
611 }
612
613 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
614 {
615 return F2FS_SB(inode->i_sb);
616 }
617
618 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
619 {
620 return F2FS_I_SB(mapping->host);
621 }
622
623 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
624 {
625 return F2FS_M_SB(page->mapping);
626 }
627
628 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
629 {
630 return (struct f2fs_super_block *)(sbi->raw_super);
631 }
632
633 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
634 {
635 return (struct f2fs_checkpoint *)(sbi->ckpt);
636 }
637
638 static inline struct f2fs_node *F2FS_NODE(struct page *page)
639 {
640 return (struct f2fs_node *)page_address(page);
641 }
642
643 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
644 {
645 return &((struct f2fs_node *)page_address(page))->i;
646 }
647
648 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
649 {
650 return (struct f2fs_nm_info *)(sbi->nm_info);
651 }
652
653 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
654 {
655 return (struct f2fs_sm_info *)(sbi->sm_info);
656 }
657
658 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
659 {
660 return (struct sit_info *)(SM_I(sbi)->sit_info);
661 }
662
663 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
664 {
665 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
666 }
667
668 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
669 {
670 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
671 }
672
673 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
674 {
675 return sbi->meta_inode->i_mapping;
676 }
677
678 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
679 {
680 return sbi->node_inode->i_mapping;
681 }
682
683 static inline void F2FS_SET_SB_DIRT(struct f2fs_sb_info *sbi)
684 {
685 sbi->s_dirty = 1;
686 }
687
688 static inline void F2FS_RESET_SB_DIRT(struct f2fs_sb_info *sbi)
689 {
690 sbi->s_dirty = 0;
691 }
692
693 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
694 {
695 return le64_to_cpu(cp->checkpoint_ver);
696 }
697
698 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
699 {
700 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
701 return ckpt_flags & f;
702 }
703
704 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
705 {
706 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
707 ckpt_flags |= f;
708 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
709 }
710
711 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
712 {
713 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
714 ckpt_flags &= (~f);
715 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
716 }
717
718 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
719 {
720 down_read(&sbi->cp_rwsem);
721 }
722
723 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
724 {
725 up_read(&sbi->cp_rwsem);
726 }
727
728 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
729 {
730 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
731 }
732
733 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
734 {
735 up_write(&sbi->cp_rwsem);
736 }
737
738 /*
739 * Check whether the given nid is within node id range.
740 */
741 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
742 {
743 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
744 return -EINVAL;
745 if (unlikely(nid >= NM_I(sbi)->max_nid))
746 return -EINVAL;
747 return 0;
748 }
749
750 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
751
752 /*
753 * Check whether the inode has blocks or not
754 */
755 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
756 {
757 if (F2FS_I(inode)->i_xattr_nid)
758 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
759 else
760 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
761 }
762
763 static inline bool f2fs_has_xattr_block(unsigned int ofs)
764 {
765 return ofs == XATTR_NODE_OFFSET;
766 }
767
768 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
769 struct inode *inode, blkcnt_t count)
770 {
771 block_t valid_block_count;
772
773 spin_lock(&sbi->stat_lock);
774 valid_block_count =
775 sbi->total_valid_block_count + (block_t)count;
776 if (unlikely(valid_block_count > sbi->user_block_count)) {
777 spin_unlock(&sbi->stat_lock);
778 return false;
779 }
780 inode->i_blocks += count;
781 sbi->total_valid_block_count = valid_block_count;
782 sbi->alloc_valid_block_count += (block_t)count;
783 spin_unlock(&sbi->stat_lock);
784 return true;
785 }
786
787 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
788 struct inode *inode,
789 blkcnt_t count)
790 {
791 spin_lock(&sbi->stat_lock);
792 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
793 f2fs_bug_on(sbi, inode->i_blocks < count);
794 inode->i_blocks -= count;
795 sbi->total_valid_block_count -= (block_t)count;
796 spin_unlock(&sbi->stat_lock);
797 }
798
799 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
800 {
801 atomic_inc(&sbi->nr_pages[count_type]);
802 F2FS_SET_SB_DIRT(sbi);
803 }
804
805 static inline void inode_inc_dirty_pages(struct inode *inode)
806 {
807 atomic_inc(&F2FS_I(inode)->dirty_pages);
808 if (S_ISDIR(inode->i_mode))
809 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
810 }
811
812 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
813 {
814 atomic_dec(&sbi->nr_pages[count_type]);
815 }
816
817 static inline void inode_dec_dirty_pages(struct inode *inode)
818 {
819 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
820 return;
821
822 atomic_dec(&F2FS_I(inode)->dirty_pages);
823
824 if (S_ISDIR(inode->i_mode))
825 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
826 }
827
828 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
829 {
830 return atomic_read(&sbi->nr_pages[count_type]);
831 }
832
833 static inline int get_dirty_pages(struct inode *inode)
834 {
835 return atomic_read(&F2FS_I(inode)->dirty_pages);
836 }
837
838 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
839 {
840 unsigned int pages_per_sec = sbi->segs_per_sec *
841 (1 << sbi->log_blocks_per_seg);
842 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
843 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
844 }
845
846 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
847 {
848 return sbi->total_valid_block_count;
849 }
850
851 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
852 {
853 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
854
855 /* return NAT or SIT bitmap */
856 if (flag == NAT_BITMAP)
857 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
858 else if (flag == SIT_BITMAP)
859 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
860
861 return 0;
862 }
863
864 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
865 {
866 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
867 int offset;
868
869 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
870 if (flag == NAT_BITMAP)
871 return &ckpt->sit_nat_version_bitmap;
872 else
873 return (unsigned char *)ckpt + F2FS_BLKSIZE;
874 } else {
875 offset = (flag == NAT_BITMAP) ?
876 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
877 return &ckpt->sit_nat_version_bitmap + offset;
878 }
879 }
880
881 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
882 {
883 block_t start_addr;
884 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
885 unsigned long long ckpt_version = cur_cp_version(ckpt);
886
887 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
888
889 /*
890 * odd numbered checkpoint should at cp segment 0
891 * and even segment must be at cp segment 1
892 */
893 if (!(ckpt_version & 1))
894 start_addr += sbi->blocks_per_seg;
895
896 return start_addr;
897 }
898
899 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
900 {
901 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
902 }
903
904 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
905 struct inode *inode)
906 {
907 block_t valid_block_count;
908 unsigned int valid_node_count;
909
910 spin_lock(&sbi->stat_lock);
911
912 valid_block_count = sbi->total_valid_block_count + 1;
913 if (unlikely(valid_block_count > sbi->user_block_count)) {
914 spin_unlock(&sbi->stat_lock);
915 return false;
916 }
917
918 valid_node_count = sbi->total_valid_node_count + 1;
919 if (unlikely(valid_node_count > sbi->total_node_count)) {
920 spin_unlock(&sbi->stat_lock);
921 return false;
922 }
923
924 if (inode)
925 inode->i_blocks++;
926
927 sbi->alloc_valid_block_count++;
928 sbi->total_valid_node_count++;
929 sbi->total_valid_block_count++;
930 spin_unlock(&sbi->stat_lock);
931
932 return true;
933 }
934
935 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
936 struct inode *inode)
937 {
938 spin_lock(&sbi->stat_lock);
939
940 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
941 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
942 f2fs_bug_on(sbi, !inode->i_blocks);
943
944 inode->i_blocks--;
945 sbi->total_valid_node_count--;
946 sbi->total_valid_block_count--;
947
948 spin_unlock(&sbi->stat_lock);
949 }
950
951 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
952 {
953 return sbi->total_valid_node_count;
954 }
955
956 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
957 {
958 spin_lock(&sbi->stat_lock);
959 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
960 sbi->total_valid_inode_count++;
961 spin_unlock(&sbi->stat_lock);
962 }
963
964 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
965 {
966 spin_lock(&sbi->stat_lock);
967 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
968 sbi->total_valid_inode_count--;
969 spin_unlock(&sbi->stat_lock);
970 }
971
972 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
973 {
974 return sbi->total_valid_inode_count;
975 }
976
977 static inline void f2fs_put_page(struct page *page, int unlock)
978 {
979 if (!page)
980 return;
981
982 if (unlock) {
983 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
984 unlock_page(page);
985 }
986 page_cache_release(page);
987 }
988
989 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
990 {
991 if (dn->node_page)
992 f2fs_put_page(dn->node_page, 1);
993 if (dn->inode_page && dn->node_page != dn->inode_page)
994 f2fs_put_page(dn->inode_page, 0);
995 dn->node_page = NULL;
996 dn->inode_page = NULL;
997 }
998
999 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1000 size_t size)
1001 {
1002 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1003 }
1004
1005 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1006 gfp_t flags)
1007 {
1008 void *entry;
1009 retry:
1010 entry = kmem_cache_alloc(cachep, flags);
1011 if (!entry) {
1012 cond_resched();
1013 goto retry;
1014 }
1015
1016 return entry;
1017 }
1018
1019 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1020
1021 static inline bool IS_INODE(struct page *page)
1022 {
1023 struct f2fs_node *p = F2FS_NODE(page);
1024 return RAW_IS_INODE(p);
1025 }
1026
1027 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1028 {
1029 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1030 }
1031
1032 static inline block_t datablock_addr(struct page *node_page,
1033 unsigned int offset)
1034 {
1035 struct f2fs_node *raw_node;
1036 __le32 *addr_array;
1037 raw_node = F2FS_NODE(node_page);
1038 addr_array = blkaddr_in_node(raw_node);
1039 return le32_to_cpu(addr_array[offset]);
1040 }
1041
1042 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1043 {
1044 int mask;
1045
1046 addr += (nr >> 3);
1047 mask = 1 << (7 - (nr & 0x07));
1048 return mask & *addr;
1049 }
1050
1051 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1052 {
1053 int mask;
1054 int ret;
1055
1056 addr += (nr >> 3);
1057 mask = 1 << (7 - (nr & 0x07));
1058 ret = mask & *addr;
1059 *addr |= mask;
1060 return ret;
1061 }
1062
1063 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1064 {
1065 int mask;
1066 int ret;
1067
1068 addr += (nr >> 3);
1069 mask = 1 << (7 - (nr & 0x07));
1070 ret = mask & *addr;
1071 *addr &= ~mask;
1072 return ret;
1073 }
1074
1075 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1076 {
1077 int mask;
1078
1079 addr += (nr >> 3);
1080 mask = 1 << (7 - (nr & 0x07));
1081 *addr ^= mask;
1082 }
1083
1084 /* used for f2fs_inode_info->flags */
1085 enum {
1086 FI_NEW_INODE, /* indicate newly allocated inode */
1087 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1088 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1089 FI_INC_LINK, /* need to increment i_nlink */
1090 FI_ACL_MODE, /* indicate acl mode */
1091 FI_NO_ALLOC, /* should not allocate any blocks */
1092 FI_UPDATE_DIR, /* should update inode block for consistency */
1093 FI_DELAY_IPUT, /* used for the recovery */
1094 FI_NO_EXTENT, /* not to use the extent cache */
1095 FI_INLINE_XATTR, /* used for inline xattr */
1096 FI_INLINE_DATA, /* used for inline data*/
1097 FI_INLINE_DENTRY, /* used for inline dentry */
1098 FI_APPEND_WRITE, /* inode has appended data */
1099 FI_UPDATE_WRITE, /* inode has in-place-update data */
1100 FI_NEED_IPU, /* used for ipu per file */
1101 FI_ATOMIC_FILE, /* indicate atomic file */
1102 FI_VOLATILE_FILE, /* indicate volatile file */
1103 FI_DATA_EXIST, /* indicate data exists */
1104 };
1105
1106 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1107 {
1108 if (!test_bit(flag, &fi->flags))
1109 set_bit(flag, &fi->flags);
1110 }
1111
1112 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1113 {
1114 return test_bit(flag, &fi->flags);
1115 }
1116
1117 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1118 {
1119 if (test_bit(flag, &fi->flags))
1120 clear_bit(flag, &fi->flags);
1121 }
1122
1123 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1124 {
1125 fi->i_acl_mode = mode;
1126 set_inode_flag(fi, FI_ACL_MODE);
1127 }
1128
1129 static inline void get_inline_info(struct f2fs_inode_info *fi,
1130 struct f2fs_inode *ri)
1131 {
1132 if (ri->i_inline & F2FS_INLINE_XATTR)
1133 set_inode_flag(fi, FI_INLINE_XATTR);
1134 if (ri->i_inline & F2FS_INLINE_DATA)
1135 set_inode_flag(fi, FI_INLINE_DATA);
1136 if (ri->i_inline & F2FS_INLINE_DENTRY)
1137 set_inode_flag(fi, FI_INLINE_DENTRY);
1138 if (ri->i_inline & F2FS_DATA_EXIST)
1139 set_inode_flag(fi, FI_DATA_EXIST);
1140 }
1141
1142 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1143 struct f2fs_inode *ri)
1144 {
1145 ri->i_inline = 0;
1146
1147 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1148 ri->i_inline |= F2FS_INLINE_XATTR;
1149 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1150 ri->i_inline |= F2FS_INLINE_DATA;
1151 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1152 ri->i_inline |= F2FS_INLINE_DENTRY;
1153 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1154 ri->i_inline |= F2FS_DATA_EXIST;
1155 }
1156
1157 static inline int f2fs_has_inline_xattr(struct inode *inode)
1158 {
1159 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1160 }
1161
1162 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1163 {
1164 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1165 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1166 return DEF_ADDRS_PER_INODE;
1167 }
1168
1169 static inline void *inline_xattr_addr(struct page *page)
1170 {
1171 struct f2fs_inode *ri = F2FS_INODE(page);
1172 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1173 F2FS_INLINE_XATTR_ADDRS]);
1174 }
1175
1176 static inline int inline_xattr_size(struct inode *inode)
1177 {
1178 if (f2fs_has_inline_xattr(inode))
1179 return F2FS_INLINE_XATTR_ADDRS << 2;
1180 else
1181 return 0;
1182 }
1183
1184 static inline int f2fs_has_inline_data(struct inode *inode)
1185 {
1186 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1187 }
1188
1189 static inline void f2fs_clear_inline_inode(struct inode *inode)
1190 {
1191 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1192 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1193 }
1194
1195 static inline int f2fs_exist_data(struct inode *inode)
1196 {
1197 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1198 }
1199
1200 static inline bool f2fs_is_atomic_file(struct inode *inode)
1201 {
1202 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1203 }
1204
1205 static inline bool f2fs_is_volatile_file(struct inode *inode)
1206 {
1207 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1208 }
1209
1210 static inline void *inline_data_addr(struct page *page)
1211 {
1212 struct f2fs_inode *ri = F2FS_INODE(page);
1213 return (void *)&(ri->i_addr[1]);
1214 }
1215
1216 static inline int f2fs_has_inline_dentry(struct inode *inode)
1217 {
1218 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1219 }
1220
1221 static inline void *inline_dentry_addr(struct page *page)
1222 {
1223 struct f2fs_inode *ri = F2FS_INODE(page);
1224 return (void *)&(ri->i_addr[1]);
1225 }
1226
1227 static inline int f2fs_readonly(struct super_block *sb)
1228 {
1229 return sb->s_flags & MS_RDONLY;
1230 }
1231
1232 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1233 {
1234 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1235 }
1236
1237 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1238 {
1239 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1240 sbi->sb->s_flags |= MS_RDONLY;
1241 }
1242
1243 #define get_inode_mode(i) \
1244 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1245 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1246
1247 /* get offset of first page in next direct node */
1248 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1249 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1250 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1251 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1252
1253 /*
1254 * file.c
1255 */
1256 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1257 void truncate_data_blocks(struct dnode_of_data *);
1258 int truncate_blocks(struct inode *, u64, bool);
1259 void f2fs_truncate(struct inode *);
1260 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1261 int f2fs_setattr(struct dentry *, struct iattr *);
1262 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1263 int truncate_data_blocks_range(struct dnode_of_data *, int);
1264 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1265 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1266
1267 /*
1268 * inode.c
1269 */
1270 void f2fs_set_inode_flags(struct inode *);
1271 struct inode *f2fs_iget(struct super_block *, unsigned long);
1272 int try_to_free_nats(struct f2fs_sb_info *, int);
1273 void update_inode(struct inode *, struct page *);
1274 void update_inode_page(struct inode *);
1275 int f2fs_write_inode(struct inode *, struct writeback_control *);
1276 void f2fs_evict_inode(struct inode *);
1277 void handle_failed_inode(struct inode *);
1278
1279 /*
1280 * namei.c
1281 */
1282 struct dentry *f2fs_get_parent(struct dentry *child);
1283
1284 /*
1285 * dir.c
1286 */
1287 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1288 void set_de_type(struct f2fs_dir_entry *, struct inode *);
1289 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1290 struct f2fs_dentry_ptr *);
1291 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1292 unsigned int);
1293 void do_make_empty_dir(struct inode *, struct inode *,
1294 struct f2fs_dentry_ptr *);
1295 struct page *init_inode_metadata(struct inode *, struct inode *,
1296 const struct qstr *, struct page *);
1297 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1298 int room_for_filename(const void *, int, int);
1299 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1300 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1301 struct page **);
1302 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1303 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1304 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1305 struct page *, struct inode *);
1306 int update_dent_inode(struct inode *, const struct qstr *);
1307 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1308 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1309 struct inode *);
1310 int f2fs_do_tmpfile(struct inode *, struct inode *);
1311 int f2fs_make_empty(struct inode *, struct inode *);
1312 bool f2fs_empty_dir(struct inode *);
1313
1314 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1315 {
1316 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1317 inode);
1318 }
1319
1320 /*
1321 * super.c
1322 */
1323 int f2fs_sync_fs(struct super_block *, int);
1324 extern __printf(3, 4)
1325 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1326
1327 /*
1328 * hash.c
1329 */
1330 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1331
1332 /*
1333 * node.c
1334 */
1335 struct dnode_of_data;
1336 struct node_info;
1337
1338 bool available_free_memory(struct f2fs_sb_info *, int);
1339 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1340 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1341 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1342 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1343 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1344 int truncate_inode_blocks(struct inode *, pgoff_t);
1345 int truncate_xattr_node(struct inode *, struct page *);
1346 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1347 void remove_inode_page(struct inode *);
1348 struct page *new_inode_page(struct inode *);
1349 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1350 void ra_node_page(struct f2fs_sb_info *, nid_t);
1351 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1352 struct page *get_node_page_ra(struct page *, int);
1353 void sync_inode_page(struct dnode_of_data *);
1354 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1355 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1356 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1357 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1358 void recover_inline_xattr(struct inode *, struct page *);
1359 void recover_xattr_data(struct inode *, struct page *, block_t);
1360 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1361 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1362 struct f2fs_summary_block *);
1363 void flush_nat_entries(struct f2fs_sb_info *);
1364 int build_node_manager(struct f2fs_sb_info *);
1365 void destroy_node_manager(struct f2fs_sb_info *);
1366 int __init create_node_manager_caches(void);
1367 void destroy_node_manager_caches(void);
1368
1369 /*
1370 * segment.c
1371 */
1372 void register_inmem_page(struct inode *, struct page *);
1373 void invalidate_inmem_page(struct inode *, struct page *);
1374 void commit_inmem_pages(struct inode *, bool);
1375 void f2fs_balance_fs(struct f2fs_sb_info *);
1376 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1377 int f2fs_issue_flush(struct f2fs_sb_info *);
1378 int create_flush_cmd_control(struct f2fs_sb_info *);
1379 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1380 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1381 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1382 void clear_prefree_segments(struct f2fs_sb_info *);
1383 void release_discard_addrs(struct f2fs_sb_info *);
1384 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1385 int npages_for_summary_flush(struct f2fs_sb_info *);
1386 void allocate_new_segments(struct f2fs_sb_info *);
1387 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1388 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1389 void write_meta_page(struct f2fs_sb_info *, struct page *);
1390 void write_node_page(struct f2fs_sb_info *, struct page *,
1391 struct f2fs_io_info *, unsigned int, block_t, block_t *);
1392 void write_data_page(struct page *, struct dnode_of_data *, block_t *,
1393 struct f2fs_io_info *);
1394 void rewrite_data_page(struct page *, block_t, struct f2fs_io_info *);
1395 void recover_data_page(struct f2fs_sb_info *, struct page *,
1396 struct f2fs_summary *, block_t, block_t);
1397 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1398 block_t, block_t *, struct f2fs_summary *, int);
1399 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1400 void write_data_summaries(struct f2fs_sb_info *, block_t);
1401 void write_node_summaries(struct f2fs_sb_info *, block_t);
1402 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1403 int, unsigned int, int);
1404 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1405 int build_segment_manager(struct f2fs_sb_info *);
1406 void destroy_segment_manager(struct f2fs_sb_info *);
1407 int __init create_segment_manager_caches(void);
1408 void destroy_segment_manager_caches(void);
1409
1410 /*
1411 * checkpoint.c
1412 */
1413 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1414 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1415 struct page *get_meta_page_ra(struct f2fs_sb_info *, pgoff_t);
1416 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1417 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1418 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1419 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1420 void release_dirty_inode(struct f2fs_sb_info *);
1421 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1422 int acquire_orphan_inode(struct f2fs_sb_info *);
1423 void release_orphan_inode(struct f2fs_sb_info *);
1424 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1425 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1426 void recover_orphan_inodes(struct f2fs_sb_info *);
1427 int get_valid_checkpoint(struct f2fs_sb_info *);
1428 void update_dirty_page(struct inode *, struct page *);
1429 void add_dirty_dir_inode(struct inode *);
1430 void remove_dirty_dir_inode(struct inode *);
1431 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1432 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1433 void init_ino_entry_info(struct f2fs_sb_info *);
1434 int __init create_checkpoint_caches(void);
1435 void destroy_checkpoint_caches(void);
1436
1437 /*
1438 * data.c
1439 */
1440 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1441 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *, block_t, int);
1442 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *, block_t,
1443 struct f2fs_io_info *);
1444 int reserve_new_block(struct dnode_of_data *);
1445 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1446 void update_extent_cache(block_t, struct dnode_of_data *);
1447 struct page *find_data_page(struct inode *, pgoff_t, bool);
1448 struct page *get_lock_data_page(struct inode *, pgoff_t);
1449 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1450 int do_write_data_page(struct page *, struct f2fs_io_info *);
1451 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1452
1453 /*
1454 * gc.c
1455 */
1456 int start_gc_thread(struct f2fs_sb_info *);
1457 void stop_gc_thread(struct f2fs_sb_info *);
1458 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1459 int f2fs_gc(struct f2fs_sb_info *);
1460 void build_gc_manager(struct f2fs_sb_info *);
1461 int __init create_gc_caches(void);
1462 void destroy_gc_caches(void);
1463
1464 /*
1465 * recovery.c
1466 */
1467 int recover_fsync_data(struct f2fs_sb_info *);
1468 bool space_for_roll_forward(struct f2fs_sb_info *);
1469
1470 /*
1471 * debug.c
1472 */
1473 #ifdef CONFIG_F2FS_STAT_FS
1474 struct f2fs_stat_info {
1475 struct list_head stat_list;
1476 struct f2fs_sb_info *sbi;
1477 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1478 int main_area_segs, main_area_sections, main_area_zones;
1479 int hit_ext, total_ext;
1480 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1481 int nats, sits, fnids;
1482 int total_count, utilization;
1483 int bg_gc, inline_inode, inline_dir;
1484 unsigned int valid_count, valid_node_count, valid_inode_count;
1485 unsigned int bimodal, avg_vblocks;
1486 int util_free, util_valid, util_invalid;
1487 int rsvd_segs, overp_segs;
1488 int dirty_count, node_pages, meta_pages;
1489 int prefree_count, call_count, cp_count;
1490 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1491 int tot_blks, data_blks, node_blks;
1492 int curseg[NR_CURSEG_TYPE];
1493 int cursec[NR_CURSEG_TYPE];
1494 int curzone[NR_CURSEG_TYPE];
1495
1496 unsigned int segment_count[2];
1497 unsigned int block_count[2];
1498 unsigned base_mem, cache_mem;
1499 };
1500
1501 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1502 {
1503 return (struct f2fs_stat_info *)sbi->stat_info;
1504 }
1505
1506 #define stat_inc_cp_count(si) ((si)->cp_count++)
1507 #define stat_inc_call_count(si) ((si)->call_count++)
1508 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1509 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1510 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1511 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1512 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1513 #define stat_inc_inline_inode(inode) \
1514 do { \
1515 if (f2fs_has_inline_data(inode)) \
1516 ((F2FS_I_SB(inode))->inline_inode++); \
1517 } while (0)
1518 #define stat_dec_inline_inode(inode) \
1519 do { \
1520 if (f2fs_has_inline_data(inode)) \
1521 ((F2FS_I_SB(inode))->inline_inode--); \
1522 } while (0)
1523 #define stat_inc_inline_dir(inode) \
1524 do { \
1525 if (f2fs_has_inline_dentry(inode)) \
1526 ((F2FS_I_SB(inode))->inline_dir++); \
1527 } while (0)
1528 #define stat_dec_inline_dir(inode) \
1529 do { \
1530 if (f2fs_has_inline_dentry(inode)) \
1531 ((F2FS_I_SB(inode))->inline_dir--); \
1532 } while (0)
1533 #define stat_inc_seg_type(sbi, curseg) \
1534 ((sbi)->segment_count[(curseg)->alloc_type]++)
1535 #define stat_inc_block_count(sbi, curseg) \
1536 ((sbi)->block_count[(curseg)->alloc_type]++)
1537
1538 #define stat_inc_seg_count(sbi, type) \
1539 do { \
1540 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1541 (si)->tot_segs++; \
1542 if (type == SUM_TYPE_DATA) \
1543 si->data_segs++; \
1544 else \
1545 si->node_segs++; \
1546 } while (0)
1547
1548 #define stat_inc_tot_blk_count(si, blks) \
1549 (si->tot_blks += (blks))
1550
1551 #define stat_inc_data_blk_count(sbi, blks) \
1552 do { \
1553 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1554 stat_inc_tot_blk_count(si, blks); \
1555 si->data_blks += (blks); \
1556 } while (0)
1557
1558 #define stat_inc_node_blk_count(sbi, blks) \
1559 do { \
1560 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1561 stat_inc_tot_blk_count(si, blks); \
1562 si->node_blks += (blks); \
1563 } while (0)
1564
1565 int f2fs_build_stats(struct f2fs_sb_info *);
1566 void f2fs_destroy_stats(struct f2fs_sb_info *);
1567 void __init f2fs_create_root_stats(void);
1568 void f2fs_destroy_root_stats(void);
1569 #else
1570 #define stat_inc_cp_count(si)
1571 #define stat_inc_call_count(si)
1572 #define stat_inc_bggc_count(si)
1573 #define stat_inc_dirty_dir(sbi)
1574 #define stat_dec_dirty_dir(sbi)
1575 #define stat_inc_total_hit(sb)
1576 #define stat_inc_read_hit(sb)
1577 #define stat_inc_inline_inode(inode)
1578 #define stat_dec_inline_inode(inode)
1579 #define stat_inc_inline_dir(inode)
1580 #define stat_dec_inline_dir(inode)
1581 #define stat_inc_seg_type(sbi, curseg)
1582 #define stat_inc_block_count(sbi, curseg)
1583 #define stat_inc_seg_count(si, type)
1584 #define stat_inc_tot_blk_count(si, blks)
1585 #define stat_inc_data_blk_count(si, blks)
1586 #define stat_inc_node_blk_count(sbi, blks)
1587
1588 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1589 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1590 static inline void __init f2fs_create_root_stats(void) { }
1591 static inline void f2fs_destroy_root_stats(void) { }
1592 #endif
1593
1594 extern const struct file_operations f2fs_dir_operations;
1595 extern const struct file_operations f2fs_file_operations;
1596 extern const struct inode_operations f2fs_file_inode_operations;
1597 extern const struct address_space_operations f2fs_dblock_aops;
1598 extern const struct address_space_operations f2fs_node_aops;
1599 extern const struct address_space_operations f2fs_meta_aops;
1600 extern const struct inode_operations f2fs_dir_inode_operations;
1601 extern const struct inode_operations f2fs_symlink_inode_operations;
1602 extern const struct inode_operations f2fs_special_inode_operations;
1603
1604 /*
1605 * inline.c
1606 */
1607 bool f2fs_may_inline(struct inode *);
1608 void read_inline_data(struct page *, struct page *);
1609 int f2fs_read_inline_data(struct inode *, struct page *);
1610 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1611 int f2fs_convert_inline_inode(struct inode *);
1612 int f2fs_write_inline_data(struct inode *, struct page *);
1613 void truncate_inline_data(struct page *, u64);
1614 bool recover_inline_data(struct inode *, struct page *);
1615 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1616 struct page **);
1617 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1618 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1619 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *);
1620 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1621 struct inode *, struct inode *);
1622 bool f2fs_empty_inline_dir(struct inode *);
1623 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1624 #endif