f2fs: support fast lookup in extent cache
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / f2fs.h
1 /*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #ifndef _LINUX_F2FS_H
12 #define _LINUX_F2FS_H
13
14 #include <linux/types.h>
15 #include <linux/page-flags.h>
16 #include <linux/buffer_head.h>
17 #include <linux/slab.h>
18 #include <linux/crc32.h>
19 #include <linux/magic.h>
20 #include <linux/kobject.h>
21 #include <linux/sched.h>
22
23 #ifdef CONFIG_F2FS_CHECK_FS
24 #define f2fs_bug_on(sbi, condition) BUG_ON(condition)
25 #define f2fs_down_write(x, y) down_write_nest_lock(x, y)
26 #else
27 #define f2fs_bug_on(sbi, condition) \
28 do { \
29 if (unlikely(condition)) { \
30 WARN_ON(1); \
31 set_sbi_flag(sbi, SBI_NEED_FSCK); \
32 } \
33 } while (0)
34 #define f2fs_down_write(x, y) down_write(x)
35 #endif
36
37 /*
38 * For mount options
39 */
40 #define F2FS_MOUNT_BG_GC 0x00000001
41 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD 0x00000002
42 #define F2FS_MOUNT_DISCARD 0x00000004
43 #define F2FS_MOUNT_NOHEAP 0x00000008
44 #define F2FS_MOUNT_XATTR_USER 0x00000010
45 #define F2FS_MOUNT_POSIX_ACL 0x00000020
46 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY 0x00000040
47 #define F2FS_MOUNT_INLINE_XATTR 0x00000080
48 #define F2FS_MOUNT_INLINE_DATA 0x00000100
49 #define F2FS_MOUNT_INLINE_DENTRY 0x00000200
50 #define F2FS_MOUNT_FLUSH_MERGE 0x00000400
51 #define F2FS_MOUNT_NOBARRIER 0x00000800
52 #define F2FS_MOUNT_FASTBOOT 0x00001000
53 #define F2FS_MOUNT_EXTENT_CACHE 0x00002000
54
55 #define clear_opt(sbi, option) (sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
56 #define set_opt(sbi, option) (sbi->mount_opt.opt |= F2FS_MOUNT_##option)
57 #define test_opt(sbi, option) (sbi->mount_opt.opt & F2FS_MOUNT_##option)
58
59 #define ver_after(a, b) (typecheck(unsigned long long, a) && \
60 typecheck(unsigned long long, b) && \
61 ((long long)((a) - (b)) > 0))
62
63 typedef u32 block_t; /*
64 * should not change u32, since it is the on-disk block
65 * address format, __le32.
66 */
67 typedef u32 nid_t;
68
69 struct f2fs_mount_info {
70 unsigned int opt;
71 };
72
73 #define CRCPOLY_LE 0xedb88320
74
75 static inline __u32 f2fs_crc32(void *buf, size_t len)
76 {
77 unsigned char *p = (unsigned char *)buf;
78 __u32 crc = F2FS_SUPER_MAGIC;
79 int i;
80
81 while (len--) {
82 crc ^= *p++;
83 for (i = 0; i < 8; i++)
84 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
85 }
86 return crc;
87 }
88
89 static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
90 {
91 return f2fs_crc32(buf, buf_size) == blk_crc;
92 }
93
94 /*
95 * For checkpoint manager
96 */
97 enum {
98 NAT_BITMAP,
99 SIT_BITMAP
100 };
101
102 enum {
103 CP_UMOUNT,
104 CP_FASTBOOT,
105 CP_SYNC,
106 CP_DISCARD,
107 };
108
109 #define DEF_BATCHED_TRIM_SECTIONS 32
110 #define BATCHED_TRIM_SEGMENTS(sbi) \
111 (SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
112
113 struct cp_control {
114 int reason;
115 __u64 trim_start;
116 __u64 trim_end;
117 __u64 trim_minlen;
118 __u64 trimmed;
119 };
120
121 /*
122 * For CP/NAT/SIT/SSA readahead
123 */
124 enum {
125 META_CP,
126 META_NAT,
127 META_SIT,
128 META_SSA,
129 META_POR,
130 };
131
132 /* for the list of ino */
133 enum {
134 ORPHAN_INO, /* for orphan ino list */
135 APPEND_INO, /* for append ino list */
136 UPDATE_INO, /* for update ino list */
137 MAX_INO_ENTRY, /* max. list */
138 };
139
140 struct ino_entry {
141 struct list_head list; /* list head */
142 nid_t ino; /* inode number */
143 };
144
145 /*
146 * for the list of directory inodes or gc inodes.
147 * NOTE: there are two slab users for this structure, if we add/modify/delete
148 * fields in structure for one of slab users, it may affect fields or size of
149 * other one, in this condition, it's better to split both of slab and related
150 * data structure.
151 */
152 struct inode_entry {
153 struct list_head list; /* list head */
154 struct inode *inode; /* vfs inode pointer */
155 };
156
157 /* for the list of blockaddresses to be discarded */
158 struct discard_entry {
159 struct list_head list; /* list head */
160 block_t blkaddr; /* block address to be discarded */
161 int len; /* # of consecutive blocks of the discard */
162 };
163
164 /* for the list of fsync inodes, used only during recovery */
165 struct fsync_inode_entry {
166 struct list_head list; /* list head */
167 struct inode *inode; /* vfs inode pointer */
168 block_t blkaddr; /* block address locating the last fsync */
169 block_t last_dentry; /* block address locating the last dentry */
170 block_t last_inode; /* block address locating the last inode */
171 };
172
173 #define nats_in_cursum(sum) (le16_to_cpu(sum->n_nats))
174 #define sits_in_cursum(sum) (le16_to_cpu(sum->n_sits))
175
176 #define nat_in_journal(sum, i) (sum->nat_j.entries[i].ne)
177 #define nid_in_journal(sum, i) (sum->nat_j.entries[i].nid)
178 #define sit_in_journal(sum, i) (sum->sit_j.entries[i].se)
179 #define segno_in_journal(sum, i) (sum->sit_j.entries[i].segno)
180
181 #define MAX_NAT_JENTRIES(sum) (NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
182 #define MAX_SIT_JENTRIES(sum) (SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
183
184 static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
185 {
186 int before = nats_in_cursum(rs);
187 rs->n_nats = cpu_to_le16(before + i);
188 return before;
189 }
190
191 static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
192 {
193 int before = sits_in_cursum(rs);
194 rs->n_sits = cpu_to_le16(before + i);
195 return before;
196 }
197
198 static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
199 int type)
200 {
201 if (type == NAT_JOURNAL)
202 return size <= MAX_NAT_JENTRIES(sum);
203 return size <= MAX_SIT_JENTRIES(sum);
204 }
205
206 /*
207 * ioctl commands
208 */
209 #define F2FS_IOC_GETFLAGS FS_IOC_GETFLAGS
210 #define F2FS_IOC_SETFLAGS FS_IOC_SETFLAGS
211 #define F2FS_IOC_GETVERSION FS_IOC_GETVERSION
212
213 #define F2FS_IOCTL_MAGIC 0xf5
214 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
215 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
216 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
217 #define F2FS_IOC_RELEASE_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 4)
218 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
219
220 #if defined(__KERNEL__) && defined(CONFIG_COMPAT)
221 /*
222 * ioctl commands in 32 bit emulation
223 */
224 #define F2FS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
225 #define F2FS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
226 #endif
227
228 /*
229 * For INODE and NODE manager
230 */
231 /* for directory operations */
232 struct f2fs_dentry_ptr {
233 const void *bitmap;
234 struct f2fs_dir_entry *dentry;
235 __u8 (*filename)[F2FS_SLOT_LEN];
236 int max;
237 };
238
239 static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
240 void *src, int type)
241 {
242 if (type == 1) {
243 struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
244 d->max = NR_DENTRY_IN_BLOCK;
245 d->bitmap = &t->dentry_bitmap;
246 d->dentry = t->dentry;
247 d->filename = t->filename;
248 } else {
249 struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
250 d->max = NR_INLINE_DENTRY;
251 d->bitmap = &t->dentry_bitmap;
252 d->dentry = t->dentry;
253 d->filename = t->filename;
254 }
255 }
256
257 /*
258 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
259 * as its node offset to distinguish from index node blocks.
260 * But some bits are used to mark the node block.
261 */
262 #define XATTR_NODE_OFFSET ((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
263 >> OFFSET_BIT_SHIFT)
264 enum {
265 ALLOC_NODE, /* allocate a new node page if needed */
266 LOOKUP_NODE, /* look up a node without readahead */
267 LOOKUP_NODE_RA, /*
268 * look up a node with readahead called
269 * by get_data_block.
270 */
271 };
272
273 #define F2FS_LINK_MAX 32000 /* maximum link count per file */
274
275 #define MAX_DIR_RA_PAGES 4 /* maximum ra pages of dir */
276
277 /* vector size for gang look-up from extent cache that consists of radix tree */
278 #define EXT_TREE_VEC_SIZE 64
279
280 /* for in-memory extent cache entry */
281 #define F2FS_MIN_EXTENT_LEN 64 /* minimum extent length */
282
283 /* number of extent info in extent cache we try to shrink */
284 #define EXTENT_CACHE_SHRINK_NUMBER 128
285
286 struct extent_info {
287 unsigned int fofs; /* start offset in a file */
288 u32 blk; /* start block address of the extent */
289 unsigned int len; /* length of the extent */
290 };
291
292 struct extent_node {
293 struct rb_node rb_node; /* rb node located in rb-tree */
294 struct list_head list; /* node in global extent list of sbi */
295 struct extent_info ei; /* extent info */
296 };
297
298 struct extent_tree {
299 nid_t ino; /* inode number */
300 struct rb_root root; /* root of extent info rb-tree */
301 struct extent_node *cached_en; /* recently accessed extent node */
302 rwlock_t lock; /* protect extent info rb-tree */
303 atomic_t refcount; /* reference count of rb-tree */
304 unsigned int count; /* # of extent node in rb-tree*/
305 };
306
307 /*
308 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
309 */
310 #define FADVISE_COLD_BIT 0x01
311 #define FADVISE_LOST_PINO_BIT 0x02
312
313 #define DEF_DIR_LEVEL 0
314
315 struct f2fs_inode_info {
316 struct inode vfs_inode; /* serve a vfs inode */
317 unsigned long i_flags; /* keep an inode flags for ioctl */
318 unsigned char i_advise; /* use to give file attribute hints */
319 unsigned char i_dir_level; /* use for dentry level for large dir */
320 unsigned int i_current_depth; /* use only in directory structure */
321 unsigned int i_pino; /* parent inode number */
322 umode_t i_acl_mode; /* keep file acl mode temporarily */
323
324 /* Use below internally in f2fs*/
325 unsigned long flags; /* use to pass per-file flags */
326 struct rw_semaphore i_sem; /* protect fi info */
327 atomic_t dirty_pages; /* # of dirty pages */
328 f2fs_hash_t chash; /* hash value of given file name */
329 unsigned int clevel; /* maximum level of given file name */
330 nid_t i_xattr_nid; /* node id that contains xattrs */
331 unsigned long long xattr_ver; /* cp version of xattr modification */
332 struct extent_info ext; /* in-memory extent cache entry */
333 rwlock_t ext_lock; /* rwlock for single extent cache */
334 struct inode_entry *dirty_dir; /* the pointer of dirty dir */
335
336 struct radix_tree_root inmem_root; /* radix tree for inmem pages */
337 struct list_head inmem_pages; /* inmemory pages managed by f2fs */
338 struct mutex inmem_lock; /* lock for inmemory pages */
339 };
340
341 static inline void get_extent_info(struct extent_info *ext,
342 struct f2fs_extent i_ext)
343 {
344 ext->fofs = le32_to_cpu(i_ext.fofs);
345 ext->blk = le32_to_cpu(i_ext.blk);
346 ext->len = le32_to_cpu(i_ext.len);
347 }
348
349 static inline void set_raw_extent(struct extent_info *ext,
350 struct f2fs_extent *i_ext)
351 {
352 i_ext->fofs = cpu_to_le32(ext->fofs);
353 i_ext->blk = cpu_to_le32(ext->blk);
354 i_ext->len = cpu_to_le32(ext->len);
355 }
356
357 static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
358 u32 blk, unsigned int len)
359 {
360 ei->fofs = fofs;
361 ei->blk = blk;
362 ei->len = len;
363 }
364
365 static inline bool __is_extent_mergeable(struct extent_info *back,
366 struct extent_info *front)
367 {
368 return (back->fofs + back->len == front->fofs &&
369 back->blk + back->len == front->blk);
370 }
371
372 static inline bool __is_back_mergeable(struct extent_info *cur,
373 struct extent_info *back)
374 {
375 return __is_extent_mergeable(back, cur);
376 }
377
378 static inline bool __is_front_mergeable(struct extent_info *cur,
379 struct extent_info *front)
380 {
381 return __is_extent_mergeable(cur, front);
382 }
383
384 struct f2fs_nm_info {
385 block_t nat_blkaddr; /* base disk address of NAT */
386 nid_t max_nid; /* maximum possible node ids */
387 nid_t available_nids; /* maximum available node ids */
388 nid_t next_scan_nid; /* the next nid to be scanned */
389 unsigned int ram_thresh; /* control the memory footprint */
390
391 /* NAT cache management */
392 struct radix_tree_root nat_root;/* root of the nat entry cache */
393 struct radix_tree_root nat_set_root;/* root of the nat set cache */
394 struct rw_semaphore nat_tree_lock; /* protect nat_tree_lock */
395 struct list_head nat_entries; /* cached nat entry list (clean) */
396 unsigned int nat_cnt; /* the # of cached nat entries */
397 unsigned int dirty_nat_cnt; /* total num of nat entries in set */
398
399 /* free node ids management */
400 struct radix_tree_root free_nid_root;/* root of the free_nid cache */
401 struct list_head free_nid_list; /* a list for free nids */
402 spinlock_t free_nid_list_lock; /* protect free nid list */
403 unsigned int fcnt; /* the number of free node id */
404 struct mutex build_lock; /* lock for build free nids */
405
406 /* for checkpoint */
407 char *nat_bitmap; /* NAT bitmap pointer */
408 int bitmap_size; /* bitmap size */
409 };
410
411 /*
412 * this structure is used as one of function parameters.
413 * all the information are dedicated to a given direct node block determined
414 * by the data offset in a file.
415 */
416 struct dnode_of_data {
417 struct inode *inode; /* vfs inode pointer */
418 struct page *inode_page; /* its inode page, NULL is possible */
419 struct page *node_page; /* cached direct node page */
420 nid_t nid; /* node id of the direct node block */
421 unsigned int ofs_in_node; /* data offset in the node page */
422 bool inode_page_locked; /* inode page is locked or not */
423 block_t data_blkaddr; /* block address of the node block */
424 };
425
426 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
427 struct page *ipage, struct page *npage, nid_t nid)
428 {
429 memset(dn, 0, sizeof(*dn));
430 dn->inode = inode;
431 dn->inode_page = ipage;
432 dn->node_page = npage;
433 dn->nid = nid;
434 }
435
436 /*
437 * For SIT manager
438 *
439 * By default, there are 6 active log areas across the whole main area.
440 * When considering hot and cold data separation to reduce cleaning overhead,
441 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
442 * respectively.
443 * In the current design, you should not change the numbers intentionally.
444 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
445 * logs individually according to the underlying devices. (default: 6)
446 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
447 * data and 8 for node logs.
448 */
449 #define NR_CURSEG_DATA_TYPE (3)
450 #define NR_CURSEG_NODE_TYPE (3)
451 #define NR_CURSEG_TYPE (NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
452
453 enum {
454 CURSEG_HOT_DATA = 0, /* directory entry blocks */
455 CURSEG_WARM_DATA, /* data blocks */
456 CURSEG_COLD_DATA, /* multimedia or GCed data blocks */
457 CURSEG_HOT_NODE, /* direct node blocks of directory files */
458 CURSEG_WARM_NODE, /* direct node blocks of normal files */
459 CURSEG_COLD_NODE, /* indirect node blocks */
460 NO_CHECK_TYPE,
461 CURSEG_DIRECT_IO, /* to use for the direct IO path */
462 };
463
464 struct flush_cmd {
465 struct completion wait;
466 struct llist_node llnode;
467 int ret;
468 };
469
470 struct flush_cmd_control {
471 struct task_struct *f2fs_issue_flush; /* flush thread */
472 wait_queue_head_t flush_wait_queue; /* waiting queue for wake-up */
473 struct llist_head issue_list; /* list for command issue */
474 struct llist_node *dispatch_list; /* list for command dispatch */
475 };
476
477 struct f2fs_sm_info {
478 struct sit_info *sit_info; /* whole segment information */
479 struct free_segmap_info *free_info; /* free segment information */
480 struct dirty_seglist_info *dirty_info; /* dirty segment information */
481 struct curseg_info *curseg_array; /* active segment information */
482
483 block_t seg0_blkaddr; /* block address of 0'th segment */
484 block_t main_blkaddr; /* start block address of main area */
485 block_t ssa_blkaddr; /* start block address of SSA area */
486
487 unsigned int segment_count; /* total # of segments */
488 unsigned int main_segments; /* # of segments in main area */
489 unsigned int reserved_segments; /* # of reserved segments */
490 unsigned int ovp_segments; /* # of overprovision segments */
491
492 /* a threshold to reclaim prefree segments */
493 unsigned int rec_prefree_segments;
494
495 /* for small discard management */
496 struct list_head discard_list; /* 4KB discard list */
497 int nr_discards; /* # of discards in the list */
498 int max_discards; /* max. discards to be issued */
499
500 /* for batched trimming */
501 unsigned int trim_sections; /* # of sections to trim */
502
503 struct list_head sit_entry_set; /* sit entry set list */
504
505 unsigned int ipu_policy; /* in-place-update policy */
506 unsigned int min_ipu_util; /* in-place-update threshold */
507 unsigned int min_fsync_blocks; /* threshold for fsync */
508
509 /* for flush command control */
510 struct flush_cmd_control *cmd_control_info;
511
512 };
513
514 /*
515 * For superblock
516 */
517 /*
518 * COUNT_TYPE for monitoring
519 *
520 * f2fs monitors the number of several block types such as on-writeback,
521 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
522 */
523 enum count_type {
524 F2FS_WRITEBACK,
525 F2FS_DIRTY_DENTS,
526 F2FS_DIRTY_NODES,
527 F2FS_DIRTY_META,
528 F2FS_INMEM_PAGES,
529 NR_COUNT_TYPE,
530 };
531
532 /*
533 * The below are the page types of bios used in submit_bio().
534 * The available types are:
535 * DATA User data pages. It operates as async mode.
536 * NODE Node pages. It operates as async mode.
537 * META FS metadata pages such as SIT, NAT, CP.
538 * NR_PAGE_TYPE The number of page types.
539 * META_FLUSH Make sure the previous pages are written
540 * with waiting the bio's completion
541 * ... Only can be used with META.
542 */
543 #define PAGE_TYPE_OF_BIO(type) ((type) > META ? META : (type))
544 enum page_type {
545 DATA,
546 NODE,
547 META,
548 NR_PAGE_TYPE,
549 META_FLUSH,
550 };
551
552 struct f2fs_io_info {
553 enum page_type type; /* contains DATA/NODE/META/META_FLUSH */
554 int rw; /* contains R/RS/W/WS with REQ_META/REQ_PRIO */
555 block_t blk_addr; /* block address to be written */
556 };
557
558 #define is_read_io(rw) (((rw) & 1) == READ)
559 struct f2fs_bio_info {
560 struct f2fs_sb_info *sbi; /* f2fs superblock */
561 struct bio *bio; /* bios to merge */
562 sector_t last_block_in_bio; /* last block number */
563 struct f2fs_io_info fio; /* store buffered io info. */
564 struct rw_semaphore io_rwsem; /* blocking op for bio */
565 };
566
567 /* for inner inode cache management */
568 struct inode_management {
569 struct radix_tree_root ino_root; /* ino entry array */
570 spinlock_t ino_lock; /* for ino entry lock */
571 struct list_head ino_list; /* inode list head */
572 unsigned long ino_num; /* number of entries */
573 };
574
575 /* For s_flag in struct f2fs_sb_info */
576 enum {
577 SBI_IS_DIRTY, /* dirty flag for checkpoint */
578 SBI_IS_CLOSE, /* specify unmounting */
579 SBI_NEED_FSCK, /* need fsck.f2fs to fix */
580 SBI_POR_DOING, /* recovery is doing or not */
581 };
582
583 struct f2fs_sb_info {
584 struct super_block *sb; /* pointer to VFS super block */
585 struct proc_dir_entry *s_proc; /* proc entry */
586 struct buffer_head *raw_super_buf; /* buffer head of raw sb */
587 struct f2fs_super_block *raw_super; /* raw super block pointer */
588 int s_flag; /* flags for sbi */
589
590 /* for node-related operations */
591 struct f2fs_nm_info *nm_info; /* node manager */
592 struct inode *node_inode; /* cache node blocks */
593
594 /* for segment-related operations */
595 struct f2fs_sm_info *sm_info; /* segment manager */
596
597 /* for bio operations */
598 struct f2fs_bio_info read_io; /* for read bios */
599 struct f2fs_bio_info write_io[NR_PAGE_TYPE]; /* for write bios */
600
601 /* for checkpoint */
602 struct f2fs_checkpoint *ckpt; /* raw checkpoint pointer */
603 struct inode *meta_inode; /* cache meta blocks */
604 struct mutex cp_mutex; /* checkpoint procedure lock */
605 struct rw_semaphore cp_rwsem; /* blocking FS operations */
606 struct rw_semaphore node_write; /* locking node writes */
607 struct mutex writepages; /* mutex for writepages() */
608 wait_queue_head_t cp_wait;
609
610 struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
611
612 /* for orphan inode, use 0'th array */
613 unsigned int max_orphans; /* max orphan inodes */
614
615 /* for directory inode management */
616 struct list_head dir_inode_list; /* dir inode list */
617 spinlock_t dir_inode_lock; /* for dir inode list lock */
618
619 /* for extent tree cache */
620 struct radix_tree_root extent_tree_root;/* cache extent cache entries */
621 struct rw_semaphore extent_tree_lock; /* locking extent radix tree */
622 struct list_head extent_list; /* lru list for shrinker */
623 spinlock_t extent_lock; /* locking extent lru list */
624 int total_ext_tree; /* extent tree count */
625 atomic_t total_ext_node; /* extent info count */
626
627 /* basic filesystem units */
628 unsigned int log_sectors_per_block; /* log2 sectors per block */
629 unsigned int log_blocksize; /* log2 block size */
630 unsigned int blocksize; /* block size */
631 unsigned int root_ino_num; /* root inode number*/
632 unsigned int node_ino_num; /* node inode number*/
633 unsigned int meta_ino_num; /* meta inode number*/
634 unsigned int log_blocks_per_seg; /* log2 blocks per segment */
635 unsigned int blocks_per_seg; /* blocks per segment */
636 unsigned int segs_per_sec; /* segments per section */
637 unsigned int secs_per_zone; /* sections per zone */
638 unsigned int total_sections; /* total section count */
639 unsigned int total_node_count; /* total node block count */
640 unsigned int total_valid_node_count; /* valid node block count */
641 unsigned int total_valid_inode_count; /* valid inode count */
642 int active_logs; /* # of active logs */
643 int dir_level; /* directory level */
644
645 block_t user_block_count; /* # of user blocks */
646 block_t total_valid_block_count; /* # of valid blocks */
647 block_t alloc_valid_block_count; /* # of allocated blocks */
648 block_t last_valid_block_count; /* for recovery */
649 u32 s_next_generation; /* for NFS support */
650 atomic_t nr_pages[NR_COUNT_TYPE]; /* # of pages, see count_type */
651
652 struct f2fs_mount_info mount_opt; /* mount options */
653
654 /* for cleaning operations */
655 struct mutex gc_mutex; /* mutex for GC */
656 struct f2fs_gc_kthread *gc_thread; /* GC thread */
657 unsigned int cur_victim_sec; /* current victim section num */
658
659 /* maximum # of trials to find a victim segment for SSR and GC */
660 unsigned int max_victim_search;
661
662 /*
663 * for stat information.
664 * one is for the LFS mode, and the other is for the SSR mode.
665 */
666 #ifdef CONFIG_F2FS_STAT_FS
667 struct f2fs_stat_info *stat_info; /* FS status information */
668 unsigned int segment_count[2]; /* # of allocated segments */
669 unsigned int block_count[2]; /* # of allocated blocks */
670 atomic_t inplace_count; /* # of inplace update */
671 int total_hit_ext, read_hit_ext; /* extent cache hit ratio */
672 atomic_t inline_inode; /* # of inline_data inodes */
673 atomic_t inline_dir; /* # of inline_dentry inodes */
674 int bg_gc; /* background gc calls */
675 unsigned int n_dirty_dirs; /* # of dir inodes */
676 #endif
677 unsigned int last_victim[2]; /* last victim segment # */
678 spinlock_t stat_lock; /* lock for stat operations */
679
680 /* For sysfs suppport */
681 struct kobject s_kobj;
682 struct completion s_kobj_unregister;
683 };
684
685 /*
686 * Inline functions
687 */
688 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
689 {
690 return container_of(inode, struct f2fs_inode_info, vfs_inode);
691 }
692
693 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
694 {
695 return sb->s_fs_info;
696 }
697
698 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
699 {
700 return F2FS_SB(inode->i_sb);
701 }
702
703 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
704 {
705 return F2FS_I_SB(mapping->host);
706 }
707
708 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
709 {
710 return F2FS_M_SB(page->mapping);
711 }
712
713 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
714 {
715 return (struct f2fs_super_block *)(sbi->raw_super);
716 }
717
718 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
719 {
720 return (struct f2fs_checkpoint *)(sbi->ckpt);
721 }
722
723 static inline struct f2fs_node *F2FS_NODE(struct page *page)
724 {
725 return (struct f2fs_node *)page_address(page);
726 }
727
728 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
729 {
730 return &((struct f2fs_node *)page_address(page))->i;
731 }
732
733 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
734 {
735 return (struct f2fs_nm_info *)(sbi->nm_info);
736 }
737
738 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
739 {
740 return (struct f2fs_sm_info *)(sbi->sm_info);
741 }
742
743 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
744 {
745 return (struct sit_info *)(SM_I(sbi)->sit_info);
746 }
747
748 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
749 {
750 return (struct free_segmap_info *)(SM_I(sbi)->free_info);
751 }
752
753 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
754 {
755 return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
756 }
757
758 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
759 {
760 return sbi->meta_inode->i_mapping;
761 }
762
763 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
764 {
765 return sbi->node_inode->i_mapping;
766 }
767
768 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
769 {
770 return sbi->s_flag & (0x01 << type);
771 }
772
773 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
774 {
775 sbi->s_flag |= (0x01 << type);
776 }
777
778 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
779 {
780 sbi->s_flag &= ~(0x01 << type);
781 }
782
783 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
784 {
785 return le64_to_cpu(cp->checkpoint_ver);
786 }
787
788 static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
789 {
790 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
791 return ckpt_flags & f;
792 }
793
794 static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
795 {
796 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
797 ckpt_flags |= f;
798 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
799 }
800
801 static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
802 {
803 unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
804 ckpt_flags &= (~f);
805 cp->ckpt_flags = cpu_to_le32(ckpt_flags);
806 }
807
808 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
809 {
810 down_read(&sbi->cp_rwsem);
811 }
812
813 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
814 {
815 up_read(&sbi->cp_rwsem);
816 }
817
818 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
819 {
820 f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
821 }
822
823 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
824 {
825 up_write(&sbi->cp_rwsem);
826 }
827
828 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
829 {
830 int reason = CP_SYNC;
831
832 if (test_opt(sbi, FASTBOOT))
833 reason = CP_FASTBOOT;
834 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
835 reason = CP_UMOUNT;
836 return reason;
837 }
838
839 static inline bool __remain_node_summaries(int reason)
840 {
841 return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
842 }
843
844 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
845 {
846 return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
847 is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
848 }
849
850 /*
851 * Check whether the given nid is within node id range.
852 */
853 static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
854 {
855 if (unlikely(nid < F2FS_ROOT_INO(sbi)))
856 return -EINVAL;
857 if (unlikely(nid >= NM_I(sbi)->max_nid))
858 return -EINVAL;
859 return 0;
860 }
861
862 #define F2FS_DEFAULT_ALLOCATED_BLOCKS 1
863
864 /*
865 * Check whether the inode has blocks or not
866 */
867 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
868 {
869 if (F2FS_I(inode)->i_xattr_nid)
870 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
871 else
872 return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
873 }
874
875 static inline bool f2fs_has_xattr_block(unsigned int ofs)
876 {
877 return ofs == XATTR_NODE_OFFSET;
878 }
879
880 static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
881 struct inode *inode, blkcnt_t count)
882 {
883 block_t valid_block_count;
884
885 spin_lock(&sbi->stat_lock);
886 valid_block_count =
887 sbi->total_valid_block_count + (block_t)count;
888 if (unlikely(valid_block_count > sbi->user_block_count)) {
889 spin_unlock(&sbi->stat_lock);
890 return false;
891 }
892 inode->i_blocks += count;
893 sbi->total_valid_block_count = valid_block_count;
894 sbi->alloc_valid_block_count += (block_t)count;
895 spin_unlock(&sbi->stat_lock);
896 return true;
897 }
898
899 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
900 struct inode *inode,
901 blkcnt_t count)
902 {
903 spin_lock(&sbi->stat_lock);
904 f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
905 f2fs_bug_on(sbi, inode->i_blocks < count);
906 inode->i_blocks -= count;
907 sbi->total_valid_block_count -= (block_t)count;
908 spin_unlock(&sbi->stat_lock);
909 }
910
911 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
912 {
913 atomic_inc(&sbi->nr_pages[count_type]);
914 set_sbi_flag(sbi, SBI_IS_DIRTY);
915 }
916
917 static inline void inode_inc_dirty_pages(struct inode *inode)
918 {
919 atomic_inc(&F2FS_I(inode)->dirty_pages);
920 if (S_ISDIR(inode->i_mode))
921 inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
922 }
923
924 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
925 {
926 atomic_dec(&sbi->nr_pages[count_type]);
927 }
928
929 static inline void inode_dec_dirty_pages(struct inode *inode)
930 {
931 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
932 return;
933
934 atomic_dec(&F2FS_I(inode)->dirty_pages);
935
936 if (S_ISDIR(inode->i_mode))
937 dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
938 }
939
940 static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
941 {
942 return atomic_read(&sbi->nr_pages[count_type]);
943 }
944
945 static inline int get_dirty_pages(struct inode *inode)
946 {
947 return atomic_read(&F2FS_I(inode)->dirty_pages);
948 }
949
950 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
951 {
952 unsigned int pages_per_sec = sbi->segs_per_sec *
953 (1 << sbi->log_blocks_per_seg);
954 return ((get_pages(sbi, block_type) + pages_per_sec - 1)
955 >> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
956 }
957
958 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
959 {
960 return sbi->total_valid_block_count;
961 }
962
963 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
964 {
965 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
966
967 /* return NAT or SIT bitmap */
968 if (flag == NAT_BITMAP)
969 return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
970 else if (flag == SIT_BITMAP)
971 return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
972
973 return 0;
974 }
975
976 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
977 {
978 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
979 int offset;
980
981 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload) > 0) {
982 if (flag == NAT_BITMAP)
983 return &ckpt->sit_nat_version_bitmap;
984 else
985 return (unsigned char *)ckpt + F2FS_BLKSIZE;
986 } else {
987 offset = (flag == NAT_BITMAP) ?
988 le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
989 return &ckpt->sit_nat_version_bitmap + offset;
990 }
991 }
992
993 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
994 {
995 block_t start_addr;
996 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
997 unsigned long long ckpt_version = cur_cp_version(ckpt);
998
999 start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1000
1001 /*
1002 * odd numbered checkpoint should at cp segment 0
1003 * and even segment must be at cp segment 1
1004 */
1005 if (!(ckpt_version & 1))
1006 start_addr += sbi->blocks_per_seg;
1007
1008 return start_addr;
1009 }
1010
1011 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1012 {
1013 return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1014 }
1015
1016 static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1017 struct inode *inode)
1018 {
1019 block_t valid_block_count;
1020 unsigned int valid_node_count;
1021
1022 spin_lock(&sbi->stat_lock);
1023
1024 valid_block_count = sbi->total_valid_block_count + 1;
1025 if (unlikely(valid_block_count > sbi->user_block_count)) {
1026 spin_unlock(&sbi->stat_lock);
1027 return false;
1028 }
1029
1030 valid_node_count = sbi->total_valid_node_count + 1;
1031 if (unlikely(valid_node_count > sbi->total_node_count)) {
1032 spin_unlock(&sbi->stat_lock);
1033 return false;
1034 }
1035
1036 if (inode)
1037 inode->i_blocks++;
1038
1039 sbi->alloc_valid_block_count++;
1040 sbi->total_valid_node_count++;
1041 sbi->total_valid_block_count++;
1042 spin_unlock(&sbi->stat_lock);
1043
1044 return true;
1045 }
1046
1047 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1048 struct inode *inode)
1049 {
1050 spin_lock(&sbi->stat_lock);
1051
1052 f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1053 f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1054 f2fs_bug_on(sbi, !inode->i_blocks);
1055
1056 inode->i_blocks--;
1057 sbi->total_valid_node_count--;
1058 sbi->total_valid_block_count--;
1059
1060 spin_unlock(&sbi->stat_lock);
1061 }
1062
1063 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1064 {
1065 return sbi->total_valid_node_count;
1066 }
1067
1068 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1069 {
1070 spin_lock(&sbi->stat_lock);
1071 f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1072 sbi->total_valid_inode_count++;
1073 spin_unlock(&sbi->stat_lock);
1074 }
1075
1076 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1077 {
1078 spin_lock(&sbi->stat_lock);
1079 f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1080 sbi->total_valid_inode_count--;
1081 spin_unlock(&sbi->stat_lock);
1082 }
1083
1084 static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1085 {
1086 return sbi->total_valid_inode_count;
1087 }
1088
1089 static inline void f2fs_put_page(struct page *page, int unlock)
1090 {
1091 if (!page)
1092 return;
1093
1094 if (unlock) {
1095 f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1096 unlock_page(page);
1097 }
1098 page_cache_release(page);
1099 }
1100
1101 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1102 {
1103 if (dn->node_page)
1104 f2fs_put_page(dn->node_page, 1);
1105 if (dn->inode_page && dn->node_page != dn->inode_page)
1106 f2fs_put_page(dn->inode_page, 0);
1107 dn->node_page = NULL;
1108 dn->inode_page = NULL;
1109 }
1110
1111 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1112 size_t size)
1113 {
1114 return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1115 }
1116
1117 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1118 gfp_t flags)
1119 {
1120 void *entry;
1121 retry:
1122 entry = kmem_cache_alloc(cachep, flags);
1123 if (!entry) {
1124 cond_resched();
1125 goto retry;
1126 }
1127
1128 return entry;
1129 }
1130
1131 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1132 unsigned long index, void *item)
1133 {
1134 while (radix_tree_insert(root, index, item))
1135 cond_resched();
1136 }
1137
1138 #define RAW_IS_INODE(p) ((p)->footer.nid == (p)->footer.ino)
1139
1140 static inline bool IS_INODE(struct page *page)
1141 {
1142 struct f2fs_node *p = F2FS_NODE(page);
1143 return RAW_IS_INODE(p);
1144 }
1145
1146 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1147 {
1148 return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1149 }
1150
1151 static inline block_t datablock_addr(struct page *node_page,
1152 unsigned int offset)
1153 {
1154 struct f2fs_node *raw_node;
1155 __le32 *addr_array;
1156 raw_node = F2FS_NODE(node_page);
1157 addr_array = blkaddr_in_node(raw_node);
1158 return le32_to_cpu(addr_array[offset]);
1159 }
1160
1161 static inline int f2fs_test_bit(unsigned int nr, char *addr)
1162 {
1163 int mask;
1164
1165 addr += (nr >> 3);
1166 mask = 1 << (7 - (nr & 0x07));
1167 return mask & *addr;
1168 }
1169
1170 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1171 {
1172 int mask;
1173 int ret;
1174
1175 addr += (nr >> 3);
1176 mask = 1 << (7 - (nr & 0x07));
1177 ret = mask & *addr;
1178 *addr |= mask;
1179 return ret;
1180 }
1181
1182 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1183 {
1184 int mask;
1185 int ret;
1186
1187 addr += (nr >> 3);
1188 mask = 1 << (7 - (nr & 0x07));
1189 ret = mask & *addr;
1190 *addr &= ~mask;
1191 return ret;
1192 }
1193
1194 static inline void f2fs_change_bit(unsigned int nr, char *addr)
1195 {
1196 int mask;
1197
1198 addr += (nr >> 3);
1199 mask = 1 << (7 - (nr & 0x07));
1200 *addr ^= mask;
1201 }
1202
1203 /* used for f2fs_inode_info->flags */
1204 enum {
1205 FI_NEW_INODE, /* indicate newly allocated inode */
1206 FI_DIRTY_INODE, /* indicate inode is dirty or not */
1207 FI_DIRTY_DIR, /* indicate directory has dirty pages */
1208 FI_INC_LINK, /* need to increment i_nlink */
1209 FI_ACL_MODE, /* indicate acl mode */
1210 FI_NO_ALLOC, /* should not allocate any blocks */
1211 FI_UPDATE_DIR, /* should update inode block for consistency */
1212 FI_DELAY_IPUT, /* used for the recovery */
1213 FI_NO_EXTENT, /* not to use the extent cache */
1214 FI_INLINE_XATTR, /* used for inline xattr */
1215 FI_INLINE_DATA, /* used for inline data*/
1216 FI_INLINE_DENTRY, /* used for inline dentry */
1217 FI_APPEND_WRITE, /* inode has appended data */
1218 FI_UPDATE_WRITE, /* inode has in-place-update data */
1219 FI_NEED_IPU, /* used for ipu per file */
1220 FI_ATOMIC_FILE, /* indicate atomic file */
1221 FI_VOLATILE_FILE, /* indicate volatile file */
1222 FI_DROP_CACHE, /* drop dirty page cache */
1223 FI_DATA_EXIST, /* indicate data exists */
1224 };
1225
1226 static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1227 {
1228 if (!test_bit(flag, &fi->flags))
1229 set_bit(flag, &fi->flags);
1230 }
1231
1232 static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1233 {
1234 return test_bit(flag, &fi->flags);
1235 }
1236
1237 static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1238 {
1239 if (test_bit(flag, &fi->flags))
1240 clear_bit(flag, &fi->flags);
1241 }
1242
1243 static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1244 {
1245 fi->i_acl_mode = mode;
1246 set_inode_flag(fi, FI_ACL_MODE);
1247 }
1248
1249 static inline void get_inline_info(struct f2fs_inode_info *fi,
1250 struct f2fs_inode *ri)
1251 {
1252 if (ri->i_inline & F2FS_INLINE_XATTR)
1253 set_inode_flag(fi, FI_INLINE_XATTR);
1254 if (ri->i_inline & F2FS_INLINE_DATA)
1255 set_inode_flag(fi, FI_INLINE_DATA);
1256 if (ri->i_inline & F2FS_INLINE_DENTRY)
1257 set_inode_flag(fi, FI_INLINE_DENTRY);
1258 if (ri->i_inline & F2FS_DATA_EXIST)
1259 set_inode_flag(fi, FI_DATA_EXIST);
1260 }
1261
1262 static inline void set_raw_inline(struct f2fs_inode_info *fi,
1263 struct f2fs_inode *ri)
1264 {
1265 ri->i_inline = 0;
1266
1267 if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1268 ri->i_inline |= F2FS_INLINE_XATTR;
1269 if (is_inode_flag_set(fi, FI_INLINE_DATA))
1270 ri->i_inline |= F2FS_INLINE_DATA;
1271 if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1272 ri->i_inline |= F2FS_INLINE_DENTRY;
1273 if (is_inode_flag_set(fi, FI_DATA_EXIST))
1274 ri->i_inline |= F2FS_DATA_EXIST;
1275 }
1276
1277 static inline int f2fs_has_inline_xattr(struct inode *inode)
1278 {
1279 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1280 }
1281
1282 static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1283 {
1284 if (f2fs_has_inline_xattr(&fi->vfs_inode))
1285 return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1286 return DEF_ADDRS_PER_INODE;
1287 }
1288
1289 static inline void *inline_xattr_addr(struct page *page)
1290 {
1291 struct f2fs_inode *ri = F2FS_INODE(page);
1292 return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1293 F2FS_INLINE_XATTR_ADDRS]);
1294 }
1295
1296 static inline int inline_xattr_size(struct inode *inode)
1297 {
1298 if (f2fs_has_inline_xattr(inode))
1299 return F2FS_INLINE_XATTR_ADDRS << 2;
1300 else
1301 return 0;
1302 }
1303
1304 static inline int f2fs_has_inline_data(struct inode *inode)
1305 {
1306 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1307 }
1308
1309 static inline void f2fs_clear_inline_inode(struct inode *inode)
1310 {
1311 clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1312 clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1313 }
1314
1315 static inline int f2fs_exist_data(struct inode *inode)
1316 {
1317 return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1318 }
1319
1320 static inline bool f2fs_is_atomic_file(struct inode *inode)
1321 {
1322 return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1323 }
1324
1325 static inline bool f2fs_is_volatile_file(struct inode *inode)
1326 {
1327 return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1328 }
1329
1330 static inline bool f2fs_is_drop_cache(struct inode *inode)
1331 {
1332 return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1333 }
1334
1335 static inline void *inline_data_addr(struct page *page)
1336 {
1337 struct f2fs_inode *ri = F2FS_INODE(page);
1338 return (void *)&(ri->i_addr[1]);
1339 }
1340
1341 static inline int f2fs_has_inline_dentry(struct inode *inode)
1342 {
1343 return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1344 }
1345
1346 static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1347 {
1348 if (!f2fs_has_inline_dentry(dir))
1349 kunmap(page);
1350 }
1351
1352 static inline int f2fs_readonly(struct super_block *sb)
1353 {
1354 return sb->s_flags & MS_RDONLY;
1355 }
1356
1357 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1358 {
1359 return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1360 }
1361
1362 static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1363 {
1364 set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1365 sbi->sb->s_flags |= MS_RDONLY;
1366 }
1367
1368 #define get_inode_mode(i) \
1369 ((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1370 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1371
1372 /* get offset of first page in next direct node */
1373 #define PGOFS_OF_NEXT_DNODE(pgofs, fi) \
1374 ((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) : \
1375 (pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) / \
1376 ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1377
1378 /*
1379 * file.c
1380 */
1381 int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1382 void truncate_data_blocks(struct dnode_of_data *);
1383 int truncate_blocks(struct inode *, u64, bool);
1384 void f2fs_truncate(struct inode *);
1385 int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1386 int f2fs_setattr(struct dentry *, struct iattr *);
1387 int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1388 int truncate_data_blocks_range(struct dnode_of_data *, int);
1389 long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1390 long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1391
1392 /*
1393 * inode.c
1394 */
1395 void f2fs_set_inode_flags(struct inode *);
1396 struct inode *f2fs_iget(struct super_block *, unsigned long);
1397 int try_to_free_nats(struct f2fs_sb_info *, int);
1398 void update_inode(struct inode *, struct page *);
1399 void update_inode_page(struct inode *);
1400 int f2fs_write_inode(struct inode *, struct writeback_control *);
1401 void f2fs_evict_inode(struct inode *);
1402 void handle_failed_inode(struct inode *);
1403
1404 /*
1405 * namei.c
1406 */
1407 struct dentry *f2fs_get_parent(struct dentry *child);
1408
1409 /*
1410 * dir.c
1411 */
1412 extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1413 void set_de_type(struct f2fs_dir_entry *, struct inode *);
1414 struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1415 struct f2fs_dentry_ptr *);
1416 bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1417 unsigned int);
1418 void do_make_empty_dir(struct inode *, struct inode *,
1419 struct f2fs_dentry_ptr *);
1420 struct page *init_inode_metadata(struct inode *, struct inode *,
1421 const struct qstr *, struct page *);
1422 void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1423 int room_for_filename(const void *, int, int);
1424 void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1425 struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1426 struct page **);
1427 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1428 ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1429 void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1430 struct page *, struct inode *);
1431 int update_dent_inode(struct inode *, const struct qstr *);
1432 void f2fs_update_dentry(struct inode *, struct f2fs_dentry_ptr *,
1433 const struct qstr *, f2fs_hash_t , unsigned int);
1434 int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *);
1435 void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1436 struct inode *);
1437 int f2fs_do_tmpfile(struct inode *, struct inode *);
1438 int f2fs_make_empty(struct inode *, struct inode *);
1439 bool f2fs_empty_dir(struct inode *);
1440
1441 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1442 {
1443 return __f2fs_add_link(dentry->d_parent->d_inode, &dentry->d_name,
1444 inode);
1445 }
1446
1447 /*
1448 * super.c
1449 */
1450 int f2fs_sync_fs(struct super_block *, int);
1451 extern __printf(3, 4)
1452 void f2fs_msg(struct super_block *, const char *, const char *, ...);
1453
1454 /*
1455 * hash.c
1456 */
1457 f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1458
1459 /*
1460 * node.c
1461 */
1462 struct dnode_of_data;
1463 struct node_info;
1464
1465 bool available_free_memory(struct f2fs_sb_info *, int);
1466 bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1467 bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1468 bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1469 void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1470 int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1471 int truncate_inode_blocks(struct inode *, pgoff_t);
1472 int truncate_xattr_node(struct inode *, struct page *);
1473 int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1474 void remove_inode_page(struct inode *);
1475 struct page *new_inode_page(struct inode *);
1476 struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1477 void ra_node_page(struct f2fs_sb_info *, nid_t);
1478 struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1479 struct page *get_node_page_ra(struct page *, int);
1480 void sync_inode_page(struct dnode_of_data *);
1481 int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1482 bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1483 void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1484 void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1485 void recover_inline_xattr(struct inode *, struct page *);
1486 void recover_xattr_data(struct inode *, struct page *, block_t);
1487 int recover_inode_page(struct f2fs_sb_info *, struct page *);
1488 int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1489 struct f2fs_summary_block *);
1490 void flush_nat_entries(struct f2fs_sb_info *);
1491 int build_node_manager(struct f2fs_sb_info *);
1492 void destroy_node_manager(struct f2fs_sb_info *);
1493 int __init create_node_manager_caches(void);
1494 void destroy_node_manager_caches(void);
1495
1496 /*
1497 * segment.c
1498 */
1499 void register_inmem_page(struct inode *, struct page *);
1500 void commit_inmem_pages(struct inode *, bool);
1501 void f2fs_balance_fs(struct f2fs_sb_info *);
1502 void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1503 int f2fs_issue_flush(struct f2fs_sb_info *);
1504 int create_flush_cmd_control(struct f2fs_sb_info *);
1505 void destroy_flush_cmd_control(struct f2fs_sb_info *);
1506 void invalidate_blocks(struct f2fs_sb_info *, block_t);
1507 void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1508 void clear_prefree_segments(struct f2fs_sb_info *);
1509 void release_discard_addrs(struct f2fs_sb_info *);
1510 void discard_next_dnode(struct f2fs_sb_info *, block_t);
1511 int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1512 void allocate_new_segments(struct f2fs_sb_info *);
1513 int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1514 struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1515 void write_meta_page(struct f2fs_sb_info *, struct page *);
1516 void write_node_page(struct f2fs_sb_info *, struct page *,
1517 unsigned int, struct f2fs_io_info *);
1518 void write_data_page(struct page *, struct dnode_of_data *,
1519 struct f2fs_io_info *);
1520 void rewrite_data_page(struct page *, struct f2fs_io_info *);
1521 void recover_data_page(struct f2fs_sb_info *, struct page *,
1522 struct f2fs_summary *, block_t, block_t);
1523 void allocate_data_block(struct f2fs_sb_info *, struct page *,
1524 block_t, block_t *, struct f2fs_summary *, int);
1525 void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1526 void write_data_summaries(struct f2fs_sb_info *, block_t);
1527 void write_node_summaries(struct f2fs_sb_info *, block_t);
1528 int lookup_journal_in_cursum(struct f2fs_summary_block *,
1529 int, unsigned int, int);
1530 void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1531 int build_segment_manager(struct f2fs_sb_info *);
1532 void destroy_segment_manager(struct f2fs_sb_info *);
1533 int __init create_segment_manager_caches(void);
1534 void destroy_segment_manager_caches(void);
1535
1536 /*
1537 * checkpoint.c
1538 */
1539 struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1540 struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1541 int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1542 void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1543 long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1544 void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1545 void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1546 void release_dirty_inode(struct f2fs_sb_info *);
1547 bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1548 int acquire_orphan_inode(struct f2fs_sb_info *);
1549 void release_orphan_inode(struct f2fs_sb_info *);
1550 void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1551 void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1552 void recover_orphan_inodes(struct f2fs_sb_info *);
1553 int get_valid_checkpoint(struct f2fs_sb_info *);
1554 void update_dirty_page(struct inode *, struct page *);
1555 void add_dirty_dir_inode(struct inode *);
1556 void remove_dirty_dir_inode(struct inode *);
1557 void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1558 void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1559 void init_ino_entry_info(struct f2fs_sb_info *);
1560 int __init create_checkpoint_caches(void);
1561 void destroy_checkpoint_caches(void);
1562
1563 /*
1564 * data.c
1565 */
1566 void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1567 int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *,
1568 struct f2fs_io_info *);
1569 void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *,
1570 struct f2fs_io_info *);
1571 int reserve_new_block(struct dnode_of_data *);
1572 int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1573 void f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
1574 void f2fs_destroy_extent_tree(struct inode *);
1575 void f2fs_update_extent_cache(struct dnode_of_data *);
1576 struct page *find_data_page(struct inode *, pgoff_t, bool);
1577 struct page *get_lock_data_page(struct inode *, pgoff_t);
1578 struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1579 int do_write_data_page(struct page *, struct f2fs_io_info *);
1580 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1581 void init_extent_cache_info(struct f2fs_sb_info *);
1582 int __init create_extent_cache(void);
1583 void destroy_extent_cache(void);
1584 void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1585 int f2fs_release_page(struct page *, gfp_t);
1586
1587 /*
1588 * gc.c
1589 */
1590 int start_gc_thread(struct f2fs_sb_info *);
1591 void stop_gc_thread(struct f2fs_sb_info *);
1592 block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1593 int f2fs_gc(struct f2fs_sb_info *);
1594 void build_gc_manager(struct f2fs_sb_info *);
1595
1596 /*
1597 * recovery.c
1598 */
1599 int recover_fsync_data(struct f2fs_sb_info *);
1600 bool space_for_roll_forward(struct f2fs_sb_info *);
1601
1602 /*
1603 * debug.c
1604 */
1605 #ifdef CONFIG_F2FS_STAT_FS
1606 struct f2fs_stat_info {
1607 struct list_head stat_list;
1608 struct f2fs_sb_info *sbi;
1609 int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1610 int main_area_segs, main_area_sections, main_area_zones;
1611 int hit_ext, total_ext, ext_tree, ext_node;
1612 int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1613 int nats, dirty_nats, sits, dirty_sits, fnids;
1614 int total_count, utilization;
1615 int bg_gc, inline_inode, inline_dir, inmem_pages, wb_pages;
1616 unsigned int valid_count, valid_node_count, valid_inode_count;
1617 unsigned int bimodal, avg_vblocks;
1618 int util_free, util_valid, util_invalid;
1619 int rsvd_segs, overp_segs;
1620 int dirty_count, node_pages, meta_pages;
1621 int prefree_count, call_count, cp_count;
1622 int tot_segs, node_segs, data_segs, free_segs, free_secs;
1623 int tot_blks, data_blks, node_blks;
1624 int curseg[NR_CURSEG_TYPE];
1625 int cursec[NR_CURSEG_TYPE];
1626 int curzone[NR_CURSEG_TYPE];
1627
1628 unsigned int segment_count[2];
1629 unsigned int block_count[2];
1630 unsigned int inplace_count;
1631 unsigned base_mem, cache_mem, page_mem;
1632 };
1633
1634 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1635 {
1636 return (struct f2fs_stat_info *)sbi->stat_info;
1637 }
1638
1639 #define stat_inc_cp_count(si) ((si)->cp_count++)
1640 #define stat_inc_call_count(si) ((si)->call_count++)
1641 #define stat_inc_bggc_count(sbi) ((sbi)->bg_gc++)
1642 #define stat_inc_dirty_dir(sbi) ((sbi)->n_dirty_dirs++)
1643 #define stat_dec_dirty_dir(sbi) ((sbi)->n_dirty_dirs--)
1644 #define stat_inc_total_hit(sb) ((F2FS_SB(sb))->total_hit_ext++)
1645 #define stat_inc_read_hit(sb) ((F2FS_SB(sb))->read_hit_ext++)
1646 #define stat_inc_inline_inode(inode) \
1647 do { \
1648 if (f2fs_has_inline_data(inode)) \
1649 (atomic_inc(&F2FS_I_SB(inode)->inline_inode)); \
1650 } while (0)
1651 #define stat_dec_inline_inode(inode) \
1652 do { \
1653 if (f2fs_has_inline_data(inode)) \
1654 (atomic_dec(&F2FS_I_SB(inode)->inline_inode)); \
1655 } while (0)
1656 #define stat_inc_inline_dir(inode) \
1657 do { \
1658 if (f2fs_has_inline_dentry(inode)) \
1659 (atomic_inc(&F2FS_I_SB(inode)->inline_dir)); \
1660 } while (0)
1661 #define stat_dec_inline_dir(inode) \
1662 do { \
1663 if (f2fs_has_inline_dentry(inode)) \
1664 (atomic_dec(&F2FS_I_SB(inode)->inline_dir)); \
1665 } while (0)
1666 #define stat_inc_seg_type(sbi, curseg) \
1667 ((sbi)->segment_count[(curseg)->alloc_type]++)
1668 #define stat_inc_block_count(sbi, curseg) \
1669 ((sbi)->block_count[(curseg)->alloc_type]++)
1670 #define stat_inc_inplace_blocks(sbi) \
1671 (atomic_inc(&(sbi)->inplace_count))
1672 #define stat_inc_seg_count(sbi, type) \
1673 do { \
1674 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1675 (si)->tot_segs++; \
1676 if (type == SUM_TYPE_DATA) \
1677 si->data_segs++; \
1678 else \
1679 si->node_segs++; \
1680 } while (0)
1681
1682 #define stat_inc_tot_blk_count(si, blks) \
1683 (si->tot_blks += (blks))
1684
1685 #define stat_inc_data_blk_count(sbi, blks) \
1686 do { \
1687 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1688 stat_inc_tot_blk_count(si, blks); \
1689 si->data_blks += (blks); \
1690 } while (0)
1691
1692 #define stat_inc_node_blk_count(sbi, blks) \
1693 do { \
1694 struct f2fs_stat_info *si = F2FS_STAT(sbi); \
1695 stat_inc_tot_blk_count(si, blks); \
1696 si->node_blks += (blks); \
1697 } while (0)
1698
1699 int f2fs_build_stats(struct f2fs_sb_info *);
1700 void f2fs_destroy_stats(struct f2fs_sb_info *);
1701 void __init f2fs_create_root_stats(void);
1702 void f2fs_destroy_root_stats(void);
1703 #else
1704 #define stat_inc_cp_count(si)
1705 #define stat_inc_call_count(si)
1706 #define stat_inc_bggc_count(si)
1707 #define stat_inc_dirty_dir(sbi)
1708 #define stat_dec_dirty_dir(sbi)
1709 #define stat_inc_total_hit(sb)
1710 #define stat_inc_read_hit(sb)
1711 #define stat_inc_inline_inode(inode)
1712 #define stat_dec_inline_inode(inode)
1713 #define stat_inc_inline_dir(inode)
1714 #define stat_dec_inline_dir(inode)
1715 #define stat_inc_seg_type(sbi, curseg)
1716 #define stat_inc_block_count(sbi, curseg)
1717 #define stat_inc_inplace_blocks(sbi)
1718 #define stat_inc_seg_count(si, type)
1719 #define stat_inc_tot_blk_count(si, blks)
1720 #define stat_inc_data_blk_count(si, blks)
1721 #define stat_inc_node_blk_count(sbi, blks)
1722
1723 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1724 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1725 static inline void __init f2fs_create_root_stats(void) { }
1726 static inline void f2fs_destroy_root_stats(void) { }
1727 #endif
1728
1729 extern const struct file_operations f2fs_dir_operations;
1730 extern const struct file_operations f2fs_file_operations;
1731 extern const struct inode_operations f2fs_file_inode_operations;
1732 extern const struct address_space_operations f2fs_dblock_aops;
1733 extern const struct address_space_operations f2fs_node_aops;
1734 extern const struct address_space_operations f2fs_meta_aops;
1735 extern const struct inode_operations f2fs_dir_inode_operations;
1736 extern const struct inode_operations f2fs_symlink_inode_operations;
1737 extern const struct inode_operations f2fs_special_inode_operations;
1738 extern struct kmem_cache *inode_entry_slab;
1739
1740 /*
1741 * inline.c
1742 */
1743 bool f2fs_may_inline(struct inode *);
1744 void read_inline_data(struct page *, struct page *);
1745 int f2fs_read_inline_data(struct inode *, struct page *);
1746 int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1747 int f2fs_convert_inline_inode(struct inode *);
1748 int f2fs_write_inline_data(struct inode *, struct page *);
1749 bool recover_inline_data(struct inode *, struct page *);
1750 struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1751 struct page **);
1752 struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1753 int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1754 int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *);
1755 void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1756 struct inode *, struct inode *);
1757 bool f2fs_empty_inline_dir(struct inode *);
1758 int f2fs_read_inline_dir(struct file *, struct dir_context *);
1759 #endif