Merge branch 'next-general' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/mm.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
25 #include <linux/sched/signal.h>
26
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "trace.h"
31 #include <trace/events/f2fs.h>
32
33 static bool __is_cp_guaranteed(struct page *page)
34 {
35 struct address_space *mapping = page->mapping;
36 struct inode *inode;
37 struct f2fs_sb_info *sbi;
38
39 if (!mapping)
40 return false;
41
42 inode = mapping->host;
43 sbi = F2FS_I_SB(inode);
44
45 if (inode->i_ino == F2FS_META_INO(sbi) ||
46 inode->i_ino == F2FS_NODE_INO(sbi) ||
47 S_ISDIR(inode->i_mode) ||
48 is_cold_data(page))
49 return true;
50 return false;
51 }
52
53 static void f2fs_read_end_io(struct bio *bio)
54 {
55 struct bio_vec *bvec;
56 int i;
57
58 #ifdef CONFIG_F2FS_FAULT_INJECTION
59 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) {
60 f2fs_show_injection_info(FAULT_IO);
61 bio->bi_status = BLK_STS_IOERR;
62 }
63 #endif
64
65 if (f2fs_bio_encrypted(bio)) {
66 if (bio->bi_status) {
67 fscrypt_release_ctx(bio->bi_private);
68 } else {
69 fscrypt_decrypt_bio_pages(bio->bi_private, bio);
70 return;
71 }
72 }
73
74 bio_for_each_segment_all(bvec, bio, i) {
75 struct page *page = bvec->bv_page;
76
77 if (!bio->bi_status) {
78 if (!PageUptodate(page))
79 SetPageUptodate(page);
80 } else {
81 ClearPageUptodate(page);
82 SetPageError(page);
83 }
84 unlock_page(page);
85 }
86 bio_put(bio);
87 }
88
89 static void f2fs_write_end_io(struct bio *bio)
90 {
91 struct f2fs_sb_info *sbi = bio->bi_private;
92 struct bio_vec *bvec;
93 int i;
94
95 bio_for_each_segment_all(bvec, bio, i) {
96 struct page *page = bvec->bv_page;
97 enum count_type type = WB_DATA_TYPE(page);
98
99 if (IS_DUMMY_WRITTEN_PAGE(page)) {
100 set_page_private(page, (unsigned long)NULL);
101 ClearPagePrivate(page);
102 unlock_page(page);
103 mempool_free(page, sbi->write_io_dummy);
104
105 if (unlikely(bio->bi_status))
106 f2fs_stop_checkpoint(sbi, true);
107 continue;
108 }
109
110 fscrypt_pullback_bio_page(&page, true);
111
112 if (unlikely(bio->bi_status)) {
113 mapping_set_error(page->mapping, -EIO);
114 f2fs_stop_checkpoint(sbi, true);
115 }
116 dec_page_count(sbi, type);
117 clear_cold_data(page);
118 end_page_writeback(page);
119 }
120 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
121 wq_has_sleeper(&sbi->cp_wait))
122 wake_up(&sbi->cp_wait);
123
124 bio_put(bio);
125 }
126
127 /*
128 * Return true, if pre_bio's bdev is same as its target device.
129 */
130 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
131 block_t blk_addr, struct bio *bio)
132 {
133 struct block_device *bdev = sbi->sb->s_bdev;
134 int i;
135
136 for (i = 0; i < sbi->s_ndevs; i++) {
137 if (FDEV(i).start_blk <= blk_addr &&
138 FDEV(i).end_blk >= blk_addr) {
139 blk_addr -= FDEV(i).start_blk;
140 bdev = FDEV(i).bdev;
141 break;
142 }
143 }
144 if (bio) {
145 bio_set_dev(bio, bdev);
146 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
147 }
148 return bdev;
149 }
150
151 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
152 {
153 int i;
154
155 for (i = 0; i < sbi->s_ndevs; i++)
156 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
157 return i;
158 return 0;
159 }
160
161 static bool __same_bdev(struct f2fs_sb_info *sbi,
162 block_t blk_addr, struct bio *bio)
163 {
164 struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
165 return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
166 }
167
168 /*
169 * Low-level block read/write IO operations.
170 */
171 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
172 int npages, bool is_read)
173 {
174 struct bio *bio;
175
176 bio = f2fs_bio_alloc(npages);
177
178 f2fs_target_device(sbi, blk_addr, bio);
179 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
180 bio->bi_private = is_read ? NULL : sbi;
181
182 return bio;
183 }
184
185 static inline void __submit_bio(struct f2fs_sb_info *sbi,
186 struct bio *bio, enum page_type type)
187 {
188 if (!is_read_io(bio_op(bio))) {
189 unsigned int start;
190
191 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
192 current->plug && (type == DATA || type == NODE))
193 blk_finish_plug(current->plug);
194
195 if (type != DATA && type != NODE)
196 goto submit_io;
197
198 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
199 start %= F2FS_IO_SIZE(sbi);
200
201 if (start == 0)
202 goto submit_io;
203
204 /* fill dummy pages */
205 for (; start < F2FS_IO_SIZE(sbi); start++) {
206 struct page *page =
207 mempool_alloc(sbi->write_io_dummy,
208 GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
209 f2fs_bug_on(sbi, !page);
210
211 SetPagePrivate(page);
212 set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
213 lock_page(page);
214 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
215 f2fs_bug_on(sbi, 1);
216 }
217 /*
218 * In the NODE case, we lose next block address chain. So, we
219 * need to do checkpoint in f2fs_sync_file.
220 */
221 if (type == NODE)
222 set_sbi_flag(sbi, SBI_NEED_CP);
223 }
224 submit_io:
225 if (is_read_io(bio_op(bio)))
226 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
227 else
228 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
229 submit_bio(bio);
230 }
231
232 static void __submit_merged_bio(struct f2fs_bio_info *io)
233 {
234 struct f2fs_io_info *fio = &io->fio;
235
236 if (!io->bio)
237 return;
238
239 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
240
241 if (is_read_io(fio->op))
242 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
243 else
244 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
245
246 __submit_bio(io->sbi, io->bio, fio->type);
247 io->bio = NULL;
248 }
249
250 static bool __has_merged_page(struct f2fs_bio_info *io,
251 struct inode *inode, nid_t ino, pgoff_t idx)
252 {
253 struct bio_vec *bvec;
254 struct page *target;
255 int i;
256
257 if (!io->bio)
258 return false;
259
260 if (!inode && !ino)
261 return true;
262
263 bio_for_each_segment_all(bvec, io->bio, i) {
264
265 if (bvec->bv_page->mapping)
266 target = bvec->bv_page;
267 else
268 target = fscrypt_control_page(bvec->bv_page);
269
270 if (idx != target->index)
271 continue;
272
273 if (inode && inode == target->mapping->host)
274 return true;
275 if (ino && ino == ino_of_node(target))
276 return true;
277 }
278
279 return false;
280 }
281
282 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
283 nid_t ino, pgoff_t idx, enum page_type type)
284 {
285 enum page_type btype = PAGE_TYPE_OF_BIO(type);
286 enum temp_type temp;
287 struct f2fs_bio_info *io;
288 bool ret = false;
289
290 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
291 io = sbi->write_io[btype] + temp;
292
293 down_read(&io->io_rwsem);
294 ret = __has_merged_page(io, inode, ino, idx);
295 up_read(&io->io_rwsem);
296
297 /* TODO: use HOT temp only for meta pages now. */
298 if (ret || btype == META)
299 break;
300 }
301 return ret;
302 }
303
304 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
305 enum page_type type, enum temp_type temp)
306 {
307 enum page_type btype = PAGE_TYPE_OF_BIO(type);
308 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
309
310 down_write(&io->io_rwsem);
311
312 /* change META to META_FLUSH in the checkpoint procedure */
313 if (type >= META_FLUSH) {
314 io->fio.type = META_FLUSH;
315 io->fio.op = REQ_OP_WRITE;
316 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
317 if (!test_opt(sbi, NOBARRIER))
318 io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
319 }
320 __submit_merged_bio(io);
321 up_write(&io->io_rwsem);
322 }
323
324 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
325 struct inode *inode, nid_t ino, pgoff_t idx,
326 enum page_type type, bool force)
327 {
328 enum temp_type temp;
329
330 if (!force && !has_merged_page(sbi, inode, ino, idx, type))
331 return;
332
333 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
334
335 __f2fs_submit_merged_write(sbi, type, temp);
336
337 /* TODO: use HOT temp only for meta pages now. */
338 if (type >= META)
339 break;
340 }
341 }
342
343 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
344 {
345 __submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
346 }
347
348 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
349 struct inode *inode, nid_t ino, pgoff_t idx,
350 enum page_type type)
351 {
352 __submit_merged_write_cond(sbi, inode, ino, idx, type, false);
353 }
354
355 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
356 {
357 f2fs_submit_merged_write(sbi, DATA);
358 f2fs_submit_merged_write(sbi, NODE);
359 f2fs_submit_merged_write(sbi, META);
360 }
361
362 /*
363 * Fill the locked page with data located in the block address.
364 * A caller needs to unlock the page on failure.
365 */
366 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
367 {
368 struct bio *bio;
369 struct page *page = fio->encrypted_page ?
370 fio->encrypted_page : fio->page;
371
372 trace_f2fs_submit_page_bio(page, fio);
373 f2fs_trace_ios(fio, 0);
374
375 /* Allocate a new bio */
376 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
377
378 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
379 bio_put(bio);
380 return -EFAULT;
381 }
382 bio_set_op_attrs(bio, fio->op, fio->op_flags);
383
384 __submit_bio(fio->sbi, bio, fio->type);
385
386 if (!is_read_io(fio->op))
387 inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
388 return 0;
389 }
390
391 int f2fs_submit_page_write(struct f2fs_io_info *fio)
392 {
393 struct f2fs_sb_info *sbi = fio->sbi;
394 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
395 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
396 struct page *bio_page;
397 int err = 0;
398
399 f2fs_bug_on(sbi, is_read_io(fio->op));
400
401 down_write(&io->io_rwsem);
402 next:
403 if (fio->in_list) {
404 spin_lock(&io->io_lock);
405 if (list_empty(&io->io_list)) {
406 spin_unlock(&io->io_lock);
407 goto out_fail;
408 }
409 fio = list_first_entry(&io->io_list,
410 struct f2fs_io_info, list);
411 list_del(&fio->list);
412 spin_unlock(&io->io_lock);
413 }
414
415 if (fio->old_blkaddr != NEW_ADDR)
416 verify_block_addr(sbi, fio->old_blkaddr);
417 verify_block_addr(sbi, fio->new_blkaddr);
418
419 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
420
421 /* set submitted = 1 as a return value */
422 fio->submitted = 1;
423
424 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
425
426 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
427 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
428 !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
429 __submit_merged_bio(io);
430 alloc_new:
431 if (io->bio == NULL) {
432 if ((fio->type == DATA || fio->type == NODE) &&
433 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
434 err = -EAGAIN;
435 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
436 goto out_fail;
437 }
438 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
439 BIO_MAX_PAGES, false);
440 io->fio = *fio;
441 }
442
443 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
444 __submit_merged_bio(io);
445 goto alloc_new;
446 }
447
448 io->last_block_in_bio = fio->new_blkaddr;
449 f2fs_trace_ios(fio, 0);
450
451 trace_f2fs_submit_page_write(fio->page, fio);
452
453 if (fio->in_list)
454 goto next;
455 out_fail:
456 up_write(&io->io_rwsem);
457 return err;
458 }
459
460 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
461 unsigned nr_pages)
462 {
463 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
464 struct fscrypt_ctx *ctx = NULL;
465 struct bio *bio;
466
467 if (f2fs_encrypted_file(inode)) {
468 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
469 if (IS_ERR(ctx))
470 return ERR_CAST(ctx);
471
472 /* wait the page to be moved by cleaning */
473 f2fs_wait_on_block_writeback(sbi, blkaddr);
474 }
475
476 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
477 if (!bio) {
478 if (ctx)
479 fscrypt_release_ctx(ctx);
480 return ERR_PTR(-ENOMEM);
481 }
482 f2fs_target_device(sbi, blkaddr, bio);
483 bio->bi_end_io = f2fs_read_end_io;
484 bio->bi_private = ctx;
485 bio_set_op_attrs(bio, REQ_OP_READ, 0);
486
487 return bio;
488 }
489
490 /* This can handle encryption stuffs */
491 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
492 block_t blkaddr)
493 {
494 struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1);
495
496 if (IS_ERR(bio))
497 return PTR_ERR(bio);
498
499 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
500 bio_put(bio);
501 return -EFAULT;
502 }
503 __submit_bio(F2FS_I_SB(inode), bio, DATA);
504 return 0;
505 }
506
507 static void __set_data_blkaddr(struct dnode_of_data *dn)
508 {
509 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
510 __le32 *addr_array;
511 int base = 0;
512
513 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
514 base = get_extra_isize(dn->inode);
515
516 /* Get physical address of data block */
517 addr_array = blkaddr_in_node(rn);
518 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
519 }
520
521 /*
522 * Lock ordering for the change of data block address:
523 * ->data_page
524 * ->node_page
525 * update block addresses in the node page
526 */
527 void set_data_blkaddr(struct dnode_of_data *dn)
528 {
529 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
530 __set_data_blkaddr(dn);
531 if (set_page_dirty(dn->node_page))
532 dn->node_changed = true;
533 }
534
535 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
536 {
537 dn->data_blkaddr = blkaddr;
538 set_data_blkaddr(dn);
539 f2fs_update_extent_cache(dn);
540 }
541
542 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
543 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
544 {
545 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
546 int err;
547
548 if (!count)
549 return 0;
550
551 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
552 return -EPERM;
553 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
554 return err;
555
556 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
557 dn->ofs_in_node, count);
558
559 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
560
561 for (; count > 0; dn->ofs_in_node++) {
562 block_t blkaddr = datablock_addr(dn->inode,
563 dn->node_page, dn->ofs_in_node);
564 if (blkaddr == NULL_ADDR) {
565 dn->data_blkaddr = NEW_ADDR;
566 __set_data_blkaddr(dn);
567 count--;
568 }
569 }
570
571 if (set_page_dirty(dn->node_page))
572 dn->node_changed = true;
573 return 0;
574 }
575
576 /* Should keep dn->ofs_in_node unchanged */
577 int reserve_new_block(struct dnode_of_data *dn)
578 {
579 unsigned int ofs_in_node = dn->ofs_in_node;
580 int ret;
581
582 ret = reserve_new_blocks(dn, 1);
583 dn->ofs_in_node = ofs_in_node;
584 return ret;
585 }
586
587 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
588 {
589 bool need_put = dn->inode_page ? false : true;
590 int err;
591
592 err = get_dnode_of_data(dn, index, ALLOC_NODE);
593 if (err)
594 return err;
595
596 if (dn->data_blkaddr == NULL_ADDR)
597 err = reserve_new_block(dn);
598 if (err || need_put)
599 f2fs_put_dnode(dn);
600 return err;
601 }
602
603 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
604 {
605 struct extent_info ei = {0,0,0};
606 struct inode *inode = dn->inode;
607
608 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
609 dn->data_blkaddr = ei.blk + index - ei.fofs;
610 return 0;
611 }
612
613 return f2fs_reserve_block(dn, index);
614 }
615
616 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
617 int op_flags, bool for_write)
618 {
619 struct address_space *mapping = inode->i_mapping;
620 struct dnode_of_data dn;
621 struct page *page;
622 struct extent_info ei = {0,0,0};
623 int err;
624
625 page = f2fs_grab_cache_page(mapping, index, for_write);
626 if (!page)
627 return ERR_PTR(-ENOMEM);
628
629 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
630 dn.data_blkaddr = ei.blk + index - ei.fofs;
631 goto got_it;
632 }
633
634 set_new_dnode(&dn, inode, NULL, NULL, 0);
635 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
636 if (err)
637 goto put_err;
638 f2fs_put_dnode(&dn);
639
640 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
641 err = -ENOENT;
642 goto put_err;
643 }
644 got_it:
645 if (PageUptodate(page)) {
646 unlock_page(page);
647 return page;
648 }
649
650 /*
651 * A new dentry page is allocated but not able to be written, since its
652 * new inode page couldn't be allocated due to -ENOSPC.
653 * In such the case, its blkaddr can be remained as NEW_ADDR.
654 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
655 */
656 if (dn.data_blkaddr == NEW_ADDR) {
657 zero_user_segment(page, 0, PAGE_SIZE);
658 if (!PageUptodate(page))
659 SetPageUptodate(page);
660 unlock_page(page);
661 return page;
662 }
663
664 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
665 if (err)
666 goto put_err;
667 return page;
668
669 put_err:
670 f2fs_put_page(page, 1);
671 return ERR_PTR(err);
672 }
673
674 struct page *find_data_page(struct inode *inode, pgoff_t index)
675 {
676 struct address_space *mapping = inode->i_mapping;
677 struct page *page;
678
679 page = find_get_page(mapping, index);
680 if (page && PageUptodate(page))
681 return page;
682 f2fs_put_page(page, 0);
683
684 page = get_read_data_page(inode, index, 0, false);
685 if (IS_ERR(page))
686 return page;
687
688 if (PageUptodate(page))
689 return page;
690
691 wait_on_page_locked(page);
692 if (unlikely(!PageUptodate(page))) {
693 f2fs_put_page(page, 0);
694 return ERR_PTR(-EIO);
695 }
696 return page;
697 }
698
699 /*
700 * If it tries to access a hole, return an error.
701 * Because, the callers, functions in dir.c and GC, should be able to know
702 * whether this page exists or not.
703 */
704 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
705 bool for_write)
706 {
707 struct address_space *mapping = inode->i_mapping;
708 struct page *page;
709 repeat:
710 page = get_read_data_page(inode, index, 0, for_write);
711 if (IS_ERR(page))
712 return page;
713
714 /* wait for read completion */
715 lock_page(page);
716 if (unlikely(page->mapping != mapping)) {
717 f2fs_put_page(page, 1);
718 goto repeat;
719 }
720 if (unlikely(!PageUptodate(page))) {
721 f2fs_put_page(page, 1);
722 return ERR_PTR(-EIO);
723 }
724 return page;
725 }
726
727 /*
728 * Caller ensures that this data page is never allocated.
729 * A new zero-filled data page is allocated in the page cache.
730 *
731 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
732 * f2fs_unlock_op().
733 * Note that, ipage is set only by make_empty_dir, and if any error occur,
734 * ipage should be released by this function.
735 */
736 struct page *get_new_data_page(struct inode *inode,
737 struct page *ipage, pgoff_t index, bool new_i_size)
738 {
739 struct address_space *mapping = inode->i_mapping;
740 struct page *page;
741 struct dnode_of_data dn;
742 int err;
743
744 page = f2fs_grab_cache_page(mapping, index, true);
745 if (!page) {
746 /*
747 * before exiting, we should make sure ipage will be released
748 * if any error occur.
749 */
750 f2fs_put_page(ipage, 1);
751 return ERR_PTR(-ENOMEM);
752 }
753
754 set_new_dnode(&dn, inode, ipage, NULL, 0);
755 err = f2fs_reserve_block(&dn, index);
756 if (err) {
757 f2fs_put_page(page, 1);
758 return ERR_PTR(err);
759 }
760 if (!ipage)
761 f2fs_put_dnode(&dn);
762
763 if (PageUptodate(page))
764 goto got_it;
765
766 if (dn.data_blkaddr == NEW_ADDR) {
767 zero_user_segment(page, 0, PAGE_SIZE);
768 if (!PageUptodate(page))
769 SetPageUptodate(page);
770 } else {
771 f2fs_put_page(page, 1);
772
773 /* if ipage exists, blkaddr should be NEW_ADDR */
774 f2fs_bug_on(F2FS_I_SB(inode), ipage);
775 page = get_lock_data_page(inode, index, true);
776 if (IS_ERR(page))
777 return page;
778 }
779 got_it:
780 if (new_i_size && i_size_read(inode) <
781 ((loff_t)(index + 1) << PAGE_SHIFT))
782 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
783 return page;
784 }
785
786 static int __allocate_data_block(struct dnode_of_data *dn)
787 {
788 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
789 struct f2fs_summary sum;
790 struct node_info ni;
791 pgoff_t fofs;
792 blkcnt_t count = 1;
793 int err;
794
795 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
796 return -EPERM;
797
798 dn->data_blkaddr = datablock_addr(dn->inode,
799 dn->node_page, dn->ofs_in_node);
800 if (dn->data_blkaddr == NEW_ADDR)
801 goto alloc;
802
803 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
804 return err;
805
806 alloc:
807 get_node_info(sbi, dn->nid, &ni);
808 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
809
810 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
811 &sum, CURSEG_WARM_DATA, NULL, false);
812 set_data_blkaddr(dn);
813
814 /* update i_size */
815 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
816 dn->ofs_in_node;
817 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
818 f2fs_i_size_write(dn->inode,
819 ((loff_t)(fofs + 1) << PAGE_SHIFT));
820 return 0;
821 }
822
823 static inline bool __force_buffered_io(struct inode *inode, int rw)
824 {
825 return (f2fs_encrypted_file(inode) ||
826 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
827 F2FS_I_SB(inode)->s_ndevs);
828 }
829
830 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
831 {
832 struct inode *inode = file_inode(iocb->ki_filp);
833 struct f2fs_map_blocks map;
834 int err = 0;
835
836 if (is_inode_flag_set(inode, FI_NO_PREALLOC))
837 return 0;
838
839 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
840 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
841 if (map.m_len > map.m_lblk)
842 map.m_len -= map.m_lblk;
843 else
844 map.m_len = 0;
845
846 map.m_next_pgofs = NULL;
847
848 if (iocb->ki_flags & IOCB_DIRECT) {
849 err = f2fs_convert_inline_inode(inode);
850 if (err)
851 return err;
852 return f2fs_map_blocks(inode, &map, 1,
853 __force_buffered_io(inode, WRITE) ?
854 F2FS_GET_BLOCK_PRE_AIO :
855 F2FS_GET_BLOCK_PRE_DIO);
856 }
857 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
858 err = f2fs_convert_inline_inode(inode);
859 if (err)
860 return err;
861 }
862 if (!f2fs_has_inline_data(inode))
863 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
864 return err;
865 }
866
867 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
868 {
869 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
870 if (lock)
871 down_read(&sbi->node_change);
872 else
873 up_read(&sbi->node_change);
874 } else {
875 if (lock)
876 f2fs_lock_op(sbi);
877 else
878 f2fs_unlock_op(sbi);
879 }
880 }
881
882 /*
883 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
884 * f2fs_map_blocks structure.
885 * If original data blocks are allocated, then give them to blockdev.
886 * Otherwise,
887 * a. preallocate requested block addresses
888 * b. do not use extent cache for better performance
889 * c. give the block addresses to blockdev
890 */
891 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
892 int create, int flag)
893 {
894 unsigned int maxblocks = map->m_len;
895 struct dnode_of_data dn;
896 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
897 int mode = create ? ALLOC_NODE : LOOKUP_NODE;
898 pgoff_t pgofs, end_offset, end;
899 int err = 0, ofs = 1;
900 unsigned int ofs_in_node, last_ofs_in_node;
901 blkcnt_t prealloc;
902 struct extent_info ei = {0,0,0};
903 block_t blkaddr;
904
905 if (!maxblocks)
906 return 0;
907
908 map->m_len = 0;
909 map->m_flags = 0;
910
911 /* it only supports block size == page size */
912 pgofs = (pgoff_t)map->m_lblk;
913 end = pgofs + maxblocks;
914
915 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
916 map->m_pblk = ei.blk + pgofs - ei.fofs;
917 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
918 map->m_flags = F2FS_MAP_MAPPED;
919 goto out;
920 }
921
922 next_dnode:
923 if (create)
924 __do_map_lock(sbi, flag, true);
925
926 /* When reading holes, we need its node page */
927 set_new_dnode(&dn, inode, NULL, NULL, 0);
928 err = get_dnode_of_data(&dn, pgofs, mode);
929 if (err) {
930 if (flag == F2FS_GET_BLOCK_BMAP)
931 map->m_pblk = 0;
932 if (err == -ENOENT) {
933 err = 0;
934 if (map->m_next_pgofs)
935 *map->m_next_pgofs =
936 get_next_page_offset(&dn, pgofs);
937 }
938 goto unlock_out;
939 }
940
941 prealloc = 0;
942 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
943 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
944
945 next_block:
946 blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
947
948 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
949 if (create) {
950 if (unlikely(f2fs_cp_error(sbi))) {
951 err = -EIO;
952 goto sync_out;
953 }
954 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
955 if (blkaddr == NULL_ADDR) {
956 prealloc++;
957 last_ofs_in_node = dn.ofs_in_node;
958 }
959 } else {
960 err = __allocate_data_block(&dn);
961 if (!err)
962 set_inode_flag(inode, FI_APPEND_WRITE);
963 }
964 if (err)
965 goto sync_out;
966 map->m_flags |= F2FS_MAP_NEW;
967 blkaddr = dn.data_blkaddr;
968 } else {
969 if (flag == F2FS_GET_BLOCK_BMAP) {
970 map->m_pblk = 0;
971 goto sync_out;
972 }
973 if (flag == F2FS_GET_BLOCK_FIEMAP &&
974 blkaddr == NULL_ADDR) {
975 if (map->m_next_pgofs)
976 *map->m_next_pgofs = pgofs + 1;
977 }
978 if (flag != F2FS_GET_BLOCK_FIEMAP ||
979 blkaddr != NEW_ADDR)
980 goto sync_out;
981 }
982 }
983
984 if (flag == F2FS_GET_BLOCK_PRE_AIO)
985 goto skip;
986
987 if (map->m_len == 0) {
988 /* preallocated unwritten block should be mapped for fiemap. */
989 if (blkaddr == NEW_ADDR)
990 map->m_flags |= F2FS_MAP_UNWRITTEN;
991 map->m_flags |= F2FS_MAP_MAPPED;
992
993 map->m_pblk = blkaddr;
994 map->m_len = 1;
995 } else if ((map->m_pblk != NEW_ADDR &&
996 blkaddr == (map->m_pblk + ofs)) ||
997 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
998 flag == F2FS_GET_BLOCK_PRE_DIO) {
999 ofs++;
1000 map->m_len++;
1001 } else {
1002 goto sync_out;
1003 }
1004
1005 skip:
1006 dn.ofs_in_node++;
1007 pgofs++;
1008
1009 /* preallocate blocks in batch for one dnode page */
1010 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1011 (pgofs == end || dn.ofs_in_node == end_offset)) {
1012
1013 dn.ofs_in_node = ofs_in_node;
1014 err = reserve_new_blocks(&dn, prealloc);
1015 if (err)
1016 goto sync_out;
1017
1018 map->m_len += dn.ofs_in_node - ofs_in_node;
1019 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1020 err = -ENOSPC;
1021 goto sync_out;
1022 }
1023 dn.ofs_in_node = end_offset;
1024 }
1025
1026 if (pgofs >= end)
1027 goto sync_out;
1028 else if (dn.ofs_in_node < end_offset)
1029 goto next_block;
1030
1031 f2fs_put_dnode(&dn);
1032
1033 if (create) {
1034 __do_map_lock(sbi, flag, false);
1035 f2fs_balance_fs(sbi, dn.node_changed);
1036 }
1037 goto next_dnode;
1038
1039 sync_out:
1040 f2fs_put_dnode(&dn);
1041 unlock_out:
1042 if (create) {
1043 __do_map_lock(sbi, flag, false);
1044 f2fs_balance_fs(sbi, dn.node_changed);
1045 }
1046 out:
1047 trace_f2fs_map_blocks(inode, map, err);
1048 return err;
1049 }
1050
1051 static int __get_data_block(struct inode *inode, sector_t iblock,
1052 struct buffer_head *bh, int create, int flag,
1053 pgoff_t *next_pgofs)
1054 {
1055 struct f2fs_map_blocks map;
1056 int err;
1057
1058 map.m_lblk = iblock;
1059 map.m_len = bh->b_size >> inode->i_blkbits;
1060 map.m_next_pgofs = next_pgofs;
1061
1062 err = f2fs_map_blocks(inode, &map, create, flag);
1063 if (!err) {
1064 map_bh(bh, inode->i_sb, map.m_pblk);
1065 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1066 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1067 }
1068 return err;
1069 }
1070
1071 static int get_data_block(struct inode *inode, sector_t iblock,
1072 struct buffer_head *bh_result, int create, int flag,
1073 pgoff_t *next_pgofs)
1074 {
1075 return __get_data_block(inode, iblock, bh_result, create,
1076 flag, next_pgofs);
1077 }
1078
1079 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1080 struct buffer_head *bh_result, int create)
1081 {
1082 return __get_data_block(inode, iblock, bh_result, create,
1083 F2FS_GET_BLOCK_DEFAULT, NULL);
1084 }
1085
1086 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1087 struct buffer_head *bh_result, int create)
1088 {
1089 /* Block number less than F2FS MAX BLOCKS */
1090 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1091 return -EFBIG;
1092
1093 return __get_data_block(inode, iblock, bh_result, create,
1094 F2FS_GET_BLOCK_BMAP, NULL);
1095 }
1096
1097 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1098 {
1099 return (offset >> inode->i_blkbits);
1100 }
1101
1102 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1103 {
1104 return (blk << inode->i_blkbits);
1105 }
1106
1107 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1108 u64 start, u64 len)
1109 {
1110 struct buffer_head map_bh;
1111 sector_t start_blk, last_blk;
1112 pgoff_t next_pgofs;
1113 u64 logical = 0, phys = 0, size = 0;
1114 u32 flags = 0;
1115 int ret = 0;
1116
1117 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
1118 if (ret)
1119 return ret;
1120
1121 if (f2fs_has_inline_data(inode)) {
1122 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1123 if (ret != -EAGAIN)
1124 return ret;
1125 }
1126
1127 inode_lock(inode);
1128
1129 if (logical_to_blk(inode, len) == 0)
1130 len = blk_to_logical(inode, 1);
1131
1132 start_blk = logical_to_blk(inode, start);
1133 last_blk = logical_to_blk(inode, start + len - 1);
1134
1135 next:
1136 memset(&map_bh, 0, sizeof(struct buffer_head));
1137 map_bh.b_size = len;
1138
1139 ret = get_data_block(inode, start_blk, &map_bh, 0,
1140 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1141 if (ret)
1142 goto out;
1143
1144 /* HOLE */
1145 if (!buffer_mapped(&map_bh)) {
1146 start_blk = next_pgofs;
1147
1148 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1149 F2FS_I_SB(inode)->max_file_blocks))
1150 goto prep_next;
1151
1152 flags |= FIEMAP_EXTENT_LAST;
1153 }
1154
1155 if (size) {
1156 if (f2fs_encrypted_inode(inode))
1157 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1158
1159 ret = fiemap_fill_next_extent(fieinfo, logical,
1160 phys, size, flags);
1161 }
1162
1163 if (start_blk > last_blk || ret)
1164 goto out;
1165
1166 logical = blk_to_logical(inode, start_blk);
1167 phys = blk_to_logical(inode, map_bh.b_blocknr);
1168 size = map_bh.b_size;
1169 flags = 0;
1170 if (buffer_unwritten(&map_bh))
1171 flags = FIEMAP_EXTENT_UNWRITTEN;
1172
1173 start_blk += logical_to_blk(inode, size);
1174
1175 prep_next:
1176 cond_resched();
1177 if (fatal_signal_pending(current))
1178 ret = -EINTR;
1179 else
1180 goto next;
1181 out:
1182 if (ret == 1)
1183 ret = 0;
1184
1185 inode_unlock(inode);
1186 return ret;
1187 }
1188
1189 /*
1190 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1191 * Major change was from block_size == page_size in f2fs by default.
1192 */
1193 static int f2fs_mpage_readpages(struct address_space *mapping,
1194 struct list_head *pages, struct page *page,
1195 unsigned nr_pages)
1196 {
1197 struct bio *bio = NULL;
1198 unsigned page_idx;
1199 sector_t last_block_in_bio = 0;
1200 struct inode *inode = mapping->host;
1201 const unsigned blkbits = inode->i_blkbits;
1202 const unsigned blocksize = 1 << blkbits;
1203 sector_t block_in_file;
1204 sector_t last_block;
1205 sector_t last_block_in_file;
1206 sector_t block_nr;
1207 struct f2fs_map_blocks map;
1208
1209 map.m_pblk = 0;
1210 map.m_lblk = 0;
1211 map.m_len = 0;
1212 map.m_flags = 0;
1213 map.m_next_pgofs = NULL;
1214
1215 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1216
1217 if (pages) {
1218 page = list_last_entry(pages, struct page, lru);
1219
1220 prefetchw(&page->flags);
1221 list_del(&page->lru);
1222 if (add_to_page_cache_lru(page, mapping,
1223 page->index,
1224 readahead_gfp_mask(mapping)))
1225 goto next_page;
1226 }
1227
1228 block_in_file = (sector_t)page->index;
1229 last_block = block_in_file + nr_pages;
1230 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1231 blkbits;
1232 if (last_block > last_block_in_file)
1233 last_block = last_block_in_file;
1234
1235 /*
1236 * Map blocks using the previous result first.
1237 */
1238 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1239 block_in_file > map.m_lblk &&
1240 block_in_file < (map.m_lblk + map.m_len))
1241 goto got_it;
1242
1243 /*
1244 * Then do more f2fs_map_blocks() calls until we are
1245 * done with this page.
1246 */
1247 map.m_flags = 0;
1248
1249 if (block_in_file < last_block) {
1250 map.m_lblk = block_in_file;
1251 map.m_len = last_block - block_in_file;
1252
1253 if (f2fs_map_blocks(inode, &map, 0,
1254 F2FS_GET_BLOCK_DEFAULT))
1255 goto set_error_page;
1256 }
1257 got_it:
1258 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1259 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1260 SetPageMappedToDisk(page);
1261
1262 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1263 SetPageUptodate(page);
1264 goto confused;
1265 }
1266 } else {
1267 zero_user_segment(page, 0, PAGE_SIZE);
1268 if (!PageUptodate(page))
1269 SetPageUptodate(page);
1270 unlock_page(page);
1271 goto next_page;
1272 }
1273
1274 /*
1275 * This page will go to BIO. Do we need to send this
1276 * BIO off first?
1277 */
1278 if (bio && (last_block_in_bio != block_nr - 1 ||
1279 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1280 submit_and_realloc:
1281 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1282 bio = NULL;
1283 }
1284 if (bio == NULL) {
1285 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages);
1286 if (IS_ERR(bio)) {
1287 bio = NULL;
1288 goto set_error_page;
1289 }
1290 }
1291
1292 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1293 goto submit_and_realloc;
1294
1295 last_block_in_bio = block_nr;
1296 goto next_page;
1297 set_error_page:
1298 SetPageError(page);
1299 zero_user_segment(page, 0, PAGE_SIZE);
1300 unlock_page(page);
1301 goto next_page;
1302 confused:
1303 if (bio) {
1304 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1305 bio = NULL;
1306 }
1307 unlock_page(page);
1308 next_page:
1309 if (pages)
1310 put_page(page);
1311 }
1312 BUG_ON(pages && !list_empty(pages));
1313 if (bio)
1314 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1315 return 0;
1316 }
1317
1318 static int f2fs_read_data_page(struct file *file, struct page *page)
1319 {
1320 struct inode *inode = page->mapping->host;
1321 int ret = -EAGAIN;
1322
1323 trace_f2fs_readpage(page, DATA);
1324
1325 /* If the file has inline data, try to read it directly */
1326 if (f2fs_has_inline_data(inode))
1327 ret = f2fs_read_inline_data(inode, page);
1328 if (ret == -EAGAIN)
1329 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1330 return ret;
1331 }
1332
1333 static int f2fs_read_data_pages(struct file *file,
1334 struct address_space *mapping,
1335 struct list_head *pages, unsigned nr_pages)
1336 {
1337 struct inode *inode = file->f_mapping->host;
1338 struct page *page = list_last_entry(pages, struct page, lru);
1339
1340 trace_f2fs_readpages(inode, page, nr_pages);
1341
1342 /* If the file has inline data, skip readpages */
1343 if (f2fs_has_inline_data(inode))
1344 return 0;
1345
1346 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1347 }
1348
1349 static int encrypt_one_page(struct f2fs_io_info *fio)
1350 {
1351 struct inode *inode = fio->page->mapping->host;
1352 gfp_t gfp_flags = GFP_NOFS;
1353
1354 if (!f2fs_encrypted_file(inode))
1355 return 0;
1356
1357 /* wait for GCed encrypted page writeback */
1358 f2fs_wait_on_block_writeback(fio->sbi, fio->old_blkaddr);
1359
1360 retry_encrypt:
1361 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1362 PAGE_SIZE, 0, fio->page->index, gfp_flags);
1363 if (!IS_ERR(fio->encrypted_page))
1364 return 0;
1365
1366 /* flush pending IOs and wait for a while in the ENOMEM case */
1367 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1368 f2fs_flush_merged_writes(fio->sbi);
1369 congestion_wait(BLK_RW_ASYNC, HZ/50);
1370 gfp_flags |= __GFP_NOFAIL;
1371 goto retry_encrypt;
1372 }
1373 return PTR_ERR(fio->encrypted_page);
1374 }
1375
1376 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1377 {
1378 struct inode *inode = fio->page->mapping->host;
1379
1380 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
1381 return false;
1382 if (is_cold_data(fio->page))
1383 return false;
1384 if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1385 return false;
1386
1387 return need_inplace_update_policy(inode, fio);
1388 }
1389
1390 static inline bool valid_ipu_blkaddr(struct f2fs_io_info *fio)
1391 {
1392 if (fio->old_blkaddr == NEW_ADDR)
1393 return false;
1394 if (fio->old_blkaddr == NULL_ADDR)
1395 return false;
1396 return true;
1397 }
1398
1399 int do_write_data_page(struct f2fs_io_info *fio)
1400 {
1401 struct page *page = fio->page;
1402 struct inode *inode = page->mapping->host;
1403 struct dnode_of_data dn;
1404 struct extent_info ei = {0,0,0};
1405 bool ipu_force = false;
1406 int err = 0;
1407
1408 set_new_dnode(&dn, inode, NULL, NULL, 0);
1409 if (need_inplace_update(fio) &&
1410 f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1411 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1412
1413 if (valid_ipu_blkaddr(fio)) {
1414 ipu_force = true;
1415 fio->need_lock = LOCK_DONE;
1416 goto got_it;
1417 }
1418 }
1419
1420 /* Deadlock due to between page->lock and f2fs_lock_op */
1421 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1422 return -EAGAIN;
1423
1424 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1425 if (err)
1426 goto out;
1427
1428 fio->old_blkaddr = dn.data_blkaddr;
1429
1430 /* This page is already truncated */
1431 if (fio->old_blkaddr == NULL_ADDR) {
1432 ClearPageUptodate(page);
1433 goto out_writepage;
1434 }
1435 got_it:
1436 /*
1437 * If current allocation needs SSR,
1438 * it had better in-place writes for updated data.
1439 */
1440 if (ipu_force || (valid_ipu_blkaddr(fio) && need_inplace_update(fio))) {
1441 err = encrypt_one_page(fio);
1442 if (err)
1443 goto out_writepage;
1444
1445 set_page_writeback(page);
1446 f2fs_put_dnode(&dn);
1447 if (fio->need_lock == LOCK_REQ)
1448 f2fs_unlock_op(fio->sbi);
1449 err = rewrite_data_page(fio);
1450 trace_f2fs_do_write_data_page(fio->page, IPU);
1451 set_inode_flag(inode, FI_UPDATE_WRITE);
1452 return err;
1453 }
1454
1455 if (fio->need_lock == LOCK_RETRY) {
1456 if (!f2fs_trylock_op(fio->sbi)) {
1457 err = -EAGAIN;
1458 goto out_writepage;
1459 }
1460 fio->need_lock = LOCK_REQ;
1461 }
1462
1463 err = encrypt_one_page(fio);
1464 if (err)
1465 goto out_writepage;
1466
1467 set_page_writeback(page);
1468
1469 /* LFS mode write path */
1470 write_data_page(&dn, fio);
1471 trace_f2fs_do_write_data_page(page, OPU);
1472 set_inode_flag(inode, FI_APPEND_WRITE);
1473 if (page->index == 0)
1474 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1475 out_writepage:
1476 f2fs_put_dnode(&dn);
1477 out:
1478 if (fio->need_lock == LOCK_REQ)
1479 f2fs_unlock_op(fio->sbi);
1480 return err;
1481 }
1482
1483 static int __write_data_page(struct page *page, bool *submitted,
1484 struct writeback_control *wbc,
1485 enum iostat_type io_type)
1486 {
1487 struct inode *inode = page->mapping->host;
1488 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1489 loff_t i_size = i_size_read(inode);
1490 const pgoff_t end_index = ((unsigned long long) i_size)
1491 >> PAGE_SHIFT;
1492 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1493 unsigned offset = 0;
1494 bool need_balance_fs = false;
1495 int err = 0;
1496 struct f2fs_io_info fio = {
1497 .sbi = sbi,
1498 .type = DATA,
1499 .op = REQ_OP_WRITE,
1500 .op_flags = wbc_to_write_flags(wbc),
1501 .old_blkaddr = NULL_ADDR,
1502 .page = page,
1503 .encrypted_page = NULL,
1504 .submitted = false,
1505 .need_lock = LOCK_RETRY,
1506 .io_type = io_type,
1507 };
1508
1509 trace_f2fs_writepage(page, DATA);
1510
1511 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1512 goto redirty_out;
1513
1514 if (page->index < end_index)
1515 goto write;
1516
1517 /*
1518 * If the offset is out-of-range of file size,
1519 * this page does not have to be written to disk.
1520 */
1521 offset = i_size & (PAGE_SIZE - 1);
1522 if ((page->index >= end_index + 1) || !offset)
1523 goto out;
1524
1525 zero_user_segment(page, offset, PAGE_SIZE);
1526 write:
1527 if (f2fs_is_drop_cache(inode))
1528 goto out;
1529 /* we should not write 0'th page having journal header */
1530 if (f2fs_is_volatile_file(inode) && (!page->index ||
1531 (!wbc->for_reclaim &&
1532 available_free_memory(sbi, BASE_CHECK))))
1533 goto redirty_out;
1534
1535 /* we should bypass data pages to proceed the kworkder jobs */
1536 if (unlikely(f2fs_cp_error(sbi))) {
1537 mapping_set_error(page->mapping, -EIO);
1538 goto out;
1539 }
1540
1541 /* Dentry blocks are controlled by checkpoint */
1542 if (S_ISDIR(inode->i_mode)) {
1543 fio.need_lock = LOCK_DONE;
1544 err = do_write_data_page(&fio);
1545 goto done;
1546 }
1547
1548 if (!wbc->for_reclaim)
1549 need_balance_fs = true;
1550 else if (has_not_enough_free_secs(sbi, 0, 0))
1551 goto redirty_out;
1552 else
1553 set_inode_flag(inode, FI_HOT_DATA);
1554
1555 err = -EAGAIN;
1556 if (f2fs_has_inline_data(inode)) {
1557 err = f2fs_write_inline_data(inode, page);
1558 if (!err)
1559 goto out;
1560 }
1561
1562 if (err == -EAGAIN) {
1563 err = do_write_data_page(&fio);
1564 if (err == -EAGAIN) {
1565 fio.need_lock = LOCK_REQ;
1566 err = do_write_data_page(&fio);
1567 }
1568 }
1569 if (F2FS_I(inode)->last_disk_size < psize)
1570 F2FS_I(inode)->last_disk_size = psize;
1571
1572 done:
1573 if (err && err != -ENOENT)
1574 goto redirty_out;
1575
1576 out:
1577 inode_dec_dirty_pages(inode);
1578 if (err)
1579 ClearPageUptodate(page);
1580
1581 if (wbc->for_reclaim) {
1582 f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
1583 clear_inode_flag(inode, FI_HOT_DATA);
1584 remove_dirty_inode(inode);
1585 submitted = NULL;
1586 }
1587
1588 unlock_page(page);
1589 if (!S_ISDIR(inode->i_mode))
1590 f2fs_balance_fs(sbi, need_balance_fs);
1591
1592 if (unlikely(f2fs_cp_error(sbi))) {
1593 f2fs_submit_merged_write(sbi, DATA);
1594 submitted = NULL;
1595 }
1596
1597 if (submitted)
1598 *submitted = fio.submitted;
1599
1600 return 0;
1601
1602 redirty_out:
1603 redirty_page_for_writepage(wbc, page);
1604 if (!err)
1605 return AOP_WRITEPAGE_ACTIVATE;
1606 unlock_page(page);
1607 return err;
1608 }
1609
1610 static int f2fs_write_data_page(struct page *page,
1611 struct writeback_control *wbc)
1612 {
1613 return __write_data_page(page, NULL, wbc, FS_DATA_IO);
1614 }
1615
1616 /*
1617 * This function was copied from write_cche_pages from mm/page-writeback.c.
1618 * The major change is making write step of cold data page separately from
1619 * warm/hot data page.
1620 */
1621 static int f2fs_write_cache_pages(struct address_space *mapping,
1622 struct writeback_control *wbc,
1623 enum iostat_type io_type)
1624 {
1625 int ret = 0;
1626 int done = 0;
1627 struct pagevec pvec;
1628 int nr_pages;
1629 pgoff_t uninitialized_var(writeback_index);
1630 pgoff_t index;
1631 pgoff_t end; /* Inclusive */
1632 pgoff_t done_index;
1633 pgoff_t last_idx = ULONG_MAX;
1634 int cycled;
1635 int range_whole = 0;
1636 int tag;
1637
1638 pagevec_init(&pvec, 0);
1639
1640 if (get_dirty_pages(mapping->host) <=
1641 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
1642 set_inode_flag(mapping->host, FI_HOT_DATA);
1643 else
1644 clear_inode_flag(mapping->host, FI_HOT_DATA);
1645
1646 if (wbc->range_cyclic) {
1647 writeback_index = mapping->writeback_index; /* prev offset */
1648 index = writeback_index;
1649 if (index == 0)
1650 cycled = 1;
1651 else
1652 cycled = 0;
1653 end = -1;
1654 } else {
1655 index = wbc->range_start >> PAGE_SHIFT;
1656 end = wbc->range_end >> PAGE_SHIFT;
1657 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1658 range_whole = 1;
1659 cycled = 1; /* ignore range_cyclic tests */
1660 }
1661 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1662 tag = PAGECACHE_TAG_TOWRITE;
1663 else
1664 tag = PAGECACHE_TAG_DIRTY;
1665 retry:
1666 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1667 tag_pages_for_writeback(mapping, index, end);
1668 done_index = index;
1669 while (!done && (index <= end)) {
1670 int i;
1671
1672 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1673 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1674 if (nr_pages == 0)
1675 break;
1676
1677 for (i = 0; i < nr_pages; i++) {
1678 struct page *page = pvec.pages[i];
1679 bool submitted = false;
1680
1681 if (page->index > end) {
1682 done = 1;
1683 break;
1684 }
1685
1686 done_index = page->index;
1687 retry_write:
1688 lock_page(page);
1689
1690 if (unlikely(page->mapping != mapping)) {
1691 continue_unlock:
1692 unlock_page(page);
1693 continue;
1694 }
1695
1696 if (!PageDirty(page)) {
1697 /* someone wrote it for us */
1698 goto continue_unlock;
1699 }
1700
1701 if (PageWriteback(page)) {
1702 if (wbc->sync_mode != WB_SYNC_NONE)
1703 f2fs_wait_on_page_writeback(page,
1704 DATA, true);
1705 else
1706 goto continue_unlock;
1707 }
1708
1709 BUG_ON(PageWriteback(page));
1710 if (!clear_page_dirty_for_io(page))
1711 goto continue_unlock;
1712
1713 ret = __write_data_page(page, &submitted, wbc, io_type);
1714 if (unlikely(ret)) {
1715 /*
1716 * keep nr_to_write, since vfs uses this to
1717 * get # of written pages.
1718 */
1719 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1720 unlock_page(page);
1721 ret = 0;
1722 continue;
1723 } else if (ret == -EAGAIN) {
1724 ret = 0;
1725 if (wbc->sync_mode == WB_SYNC_ALL) {
1726 cond_resched();
1727 congestion_wait(BLK_RW_ASYNC,
1728 HZ/50);
1729 goto retry_write;
1730 }
1731 continue;
1732 }
1733 done_index = page->index + 1;
1734 done = 1;
1735 break;
1736 } else if (submitted) {
1737 last_idx = page->index;
1738 }
1739
1740 /* give a priority to WB_SYNC threads */
1741 if ((atomic_read(&F2FS_M_SB(mapping)->wb_sync_req) ||
1742 --wbc->nr_to_write <= 0) &&
1743 wbc->sync_mode == WB_SYNC_NONE) {
1744 done = 1;
1745 break;
1746 }
1747 }
1748 pagevec_release(&pvec);
1749 cond_resched();
1750 }
1751
1752 if (!cycled && !done) {
1753 cycled = 1;
1754 index = 0;
1755 end = writeback_index - 1;
1756 goto retry;
1757 }
1758 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1759 mapping->writeback_index = done_index;
1760
1761 if (last_idx != ULONG_MAX)
1762 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
1763 0, last_idx, DATA);
1764
1765 return ret;
1766 }
1767
1768 int __f2fs_write_data_pages(struct address_space *mapping,
1769 struct writeback_control *wbc,
1770 enum iostat_type io_type)
1771 {
1772 struct inode *inode = mapping->host;
1773 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1774 struct blk_plug plug;
1775 int ret;
1776
1777 /* deal with chardevs and other special file */
1778 if (!mapping->a_ops->writepage)
1779 return 0;
1780
1781 /* skip writing if there is no dirty page in this inode */
1782 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1783 return 0;
1784
1785 /* during POR, we don't need to trigger writepage at all. */
1786 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1787 goto skip_write;
1788
1789 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1790 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1791 available_free_memory(sbi, DIRTY_DENTS))
1792 goto skip_write;
1793
1794 /* skip writing during file defragment */
1795 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1796 goto skip_write;
1797
1798 trace_f2fs_writepages(mapping->host, wbc, DATA);
1799
1800 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
1801 if (wbc->sync_mode == WB_SYNC_ALL)
1802 atomic_inc(&sbi->wb_sync_req);
1803 else if (atomic_read(&sbi->wb_sync_req))
1804 goto skip_write;
1805
1806 blk_start_plug(&plug);
1807 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
1808 blk_finish_plug(&plug);
1809
1810 if (wbc->sync_mode == WB_SYNC_ALL)
1811 atomic_dec(&sbi->wb_sync_req);
1812 /*
1813 * if some pages were truncated, we cannot guarantee its mapping->host
1814 * to detect pending bios.
1815 */
1816
1817 remove_dirty_inode(inode);
1818 return ret;
1819
1820 skip_write:
1821 wbc->pages_skipped += get_dirty_pages(inode);
1822 trace_f2fs_writepages(mapping->host, wbc, DATA);
1823 return 0;
1824 }
1825
1826 static int f2fs_write_data_pages(struct address_space *mapping,
1827 struct writeback_control *wbc)
1828 {
1829 struct inode *inode = mapping->host;
1830
1831 return __f2fs_write_data_pages(mapping, wbc,
1832 F2FS_I(inode)->cp_task == current ?
1833 FS_CP_DATA_IO : FS_DATA_IO);
1834 }
1835
1836 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1837 {
1838 struct inode *inode = mapping->host;
1839 loff_t i_size = i_size_read(inode);
1840
1841 if (to > i_size) {
1842 down_write(&F2FS_I(inode)->i_mmap_sem);
1843 truncate_pagecache(inode, i_size);
1844 truncate_blocks(inode, i_size, true);
1845 up_write(&F2FS_I(inode)->i_mmap_sem);
1846 }
1847 }
1848
1849 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1850 struct page *page, loff_t pos, unsigned len,
1851 block_t *blk_addr, bool *node_changed)
1852 {
1853 struct inode *inode = page->mapping->host;
1854 pgoff_t index = page->index;
1855 struct dnode_of_data dn;
1856 struct page *ipage;
1857 bool locked = false;
1858 struct extent_info ei = {0,0,0};
1859 int err = 0;
1860
1861 /*
1862 * we already allocated all the blocks, so we don't need to get
1863 * the block addresses when there is no need to fill the page.
1864 */
1865 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
1866 !is_inode_flag_set(inode, FI_NO_PREALLOC))
1867 return 0;
1868
1869 if (f2fs_has_inline_data(inode) ||
1870 (pos & PAGE_MASK) >= i_size_read(inode)) {
1871 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
1872 locked = true;
1873 }
1874 restart:
1875 /* check inline_data */
1876 ipage = get_node_page(sbi, inode->i_ino);
1877 if (IS_ERR(ipage)) {
1878 err = PTR_ERR(ipage);
1879 goto unlock_out;
1880 }
1881
1882 set_new_dnode(&dn, inode, ipage, ipage, 0);
1883
1884 if (f2fs_has_inline_data(inode)) {
1885 if (pos + len <= MAX_INLINE_DATA(inode)) {
1886 read_inline_data(page, ipage);
1887 set_inode_flag(inode, FI_DATA_EXIST);
1888 if (inode->i_nlink)
1889 set_inline_node(ipage);
1890 } else {
1891 err = f2fs_convert_inline_page(&dn, page);
1892 if (err)
1893 goto out;
1894 if (dn.data_blkaddr == NULL_ADDR)
1895 err = f2fs_get_block(&dn, index);
1896 }
1897 } else if (locked) {
1898 err = f2fs_get_block(&dn, index);
1899 } else {
1900 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1901 dn.data_blkaddr = ei.blk + index - ei.fofs;
1902 } else {
1903 /* hole case */
1904 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1905 if (err || dn.data_blkaddr == NULL_ADDR) {
1906 f2fs_put_dnode(&dn);
1907 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
1908 true);
1909 locked = true;
1910 goto restart;
1911 }
1912 }
1913 }
1914
1915 /* convert_inline_page can make node_changed */
1916 *blk_addr = dn.data_blkaddr;
1917 *node_changed = dn.node_changed;
1918 out:
1919 f2fs_put_dnode(&dn);
1920 unlock_out:
1921 if (locked)
1922 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
1923 return err;
1924 }
1925
1926 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1927 loff_t pos, unsigned len, unsigned flags,
1928 struct page **pagep, void **fsdata)
1929 {
1930 struct inode *inode = mapping->host;
1931 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1932 struct page *page = NULL;
1933 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1934 bool need_balance = false;
1935 block_t blkaddr = NULL_ADDR;
1936 int err = 0;
1937
1938 trace_f2fs_write_begin(inode, pos, len, flags);
1939
1940 /*
1941 * We should check this at this moment to avoid deadlock on inode page
1942 * and #0 page. The locking rule for inline_data conversion should be:
1943 * lock_page(page #0) -> lock_page(inode_page)
1944 */
1945 if (index != 0) {
1946 err = f2fs_convert_inline_inode(inode);
1947 if (err)
1948 goto fail;
1949 }
1950 repeat:
1951 /*
1952 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
1953 * wait_for_stable_page. Will wait that below with our IO control.
1954 */
1955 page = pagecache_get_page(mapping, index,
1956 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
1957 if (!page) {
1958 err = -ENOMEM;
1959 goto fail;
1960 }
1961
1962 *pagep = page;
1963
1964 err = prepare_write_begin(sbi, page, pos, len,
1965 &blkaddr, &need_balance);
1966 if (err)
1967 goto fail;
1968
1969 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
1970 unlock_page(page);
1971 f2fs_balance_fs(sbi, true);
1972 lock_page(page);
1973 if (page->mapping != mapping) {
1974 /* The page got truncated from under us */
1975 f2fs_put_page(page, 1);
1976 goto repeat;
1977 }
1978 }
1979
1980 f2fs_wait_on_page_writeback(page, DATA, false);
1981
1982 /* wait for GCed encrypted page writeback */
1983 if (f2fs_encrypted_file(inode))
1984 f2fs_wait_on_block_writeback(sbi, blkaddr);
1985
1986 if (len == PAGE_SIZE || PageUptodate(page))
1987 return 0;
1988
1989 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
1990 zero_user_segment(page, len, PAGE_SIZE);
1991 return 0;
1992 }
1993
1994 if (blkaddr == NEW_ADDR) {
1995 zero_user_segment(page, 0, PAGE_SIZE);
1996 SetPageUptodate(page);
1997 } else {
1998 err = f2fs_submit_page_read(inode, page, blkaddr);
1999 if (err)
2000 goto fail;
2001
2002 lock_page(page);
2003 if (unlikely(page->mapping != mapping)) {
2004 f2fs_put_page(page, 1);
2005 goto repeat;
2006 }
2007 if (unlikely(!PageUptodate(page))) {
2008 err = -EIO;
2009 goto fail;
2010 }
2011 }
2012 return 0;
2013
2014 fail:
2015 f2fs_put_page(page, 1);
2016 f2fs_write_failed(mapping, pos + len);
2017 return err;
2018 }
2019
2020 static int f2fs_write_end(struct file *file,
2021 struct address_space *mapping,
2022 loff_t pos, unsigned len, unsigned copied,
2023 struct page *page, void *fsdata)
2024 {
2025 struct inode *inode = page->mapping->host;
2026
2027 trace_f2fs_write_end(inode, pos, len, copied);
2028
2029 /*
2030 * This should be come from len == PAGE_SIZE, and we expect copied
2031 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2032 * let generic_perform_write() try to copy data again through copied=0.
2033 */
2034 if (!PageUptodate(page)) {
2035 if (unlikely(copied != len))
2036 copied = 0;
2037 else
2038 SetPageUptodate(page);
2039 }
2040 if (!copied)
2041 goto unlock_out;
2042
2043 set_page_dirty(page);
2044
2045 if (pos + copied > i_size_read(inode))
2046 f2fs_i_size_write(inode, pos + copied);
2047 unlock_out:
2048 f2fs_put_page(page, 1);
2049 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2050 return copied;
2051 }
2052
2053 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2054 loff_t offset)
2055 {
2056 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
2057
2058 if (offset & blocksize_mask)
2059 return -EINVAL;
2060
2061 if (iov_iter_alignment(iter) & blocksize_mask)
2062 return -EINVAL;
2063
2064 return 0;
2065 }
2066
2067 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2068 {
2069 struct address_space *mapping = iocb->ki_filp->f_mapping;
2070 struct inode *inode = mapping->host;
2071 size_t count = iov_iter_count(iter);
2072 loff_t offset = iocb->ki_pos;
2073 int rw = iov_iter_rw(iter);
2074 int err;
2075
2076 err = check_direct_IO(inode, iter, offset);
2077 if (err)
2078 return err;
2079
2080 if (__force_buffered_io(inode, rw))
2081 return 0;
2082
2083 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2084
2085 down_read(&F2FS_I(inode)->dio_rwsem[rw]);
2086 err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
2087 up_read(&F2FS_I(inode)->dio_rwsem[rw]);
2088
2089 if (rw == WRITE) {
2090 if (err > 0) {
2091 f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2092 err);
2093 set_inode_flag(inode, FI_UPDATE_WRITE);
2094 } else if (err < 0) {
2095 f2fs_write_failed(mapping, offset + count);
2096 }
2097 }
2098
2099 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2100
2101 return err;
2102 }
2103
2104 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2105 unsigned int length)
2106 {
2107 struct inode *inode = page->mapping->host;
2108 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2109
2110 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2111 (offset % PAGE_SIZE || length != PAGE_SIZE))
2112 return;
2113
2114 if (PageDirty(page)) {
2115 if (inode->i_ino == F2FS_META_INO(sbi)) {
2116 dec_page_count(sbi, F2FS_DIRTY_META);
2117 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2118 dec_page_count(sbi, F2FS_DIRTY_NODES);
2119 } else {
2120 inode_dec_dirty_pages(inode);
2121 remove_dirty_inode(inode);
2122 }
2123 }
2124
2125 /* This is atomic written page, keep Private */
2126 if (IS_ATOMIC_WRITTEN_PAGE(page))
2127 return drop_inmem_page(inode, page);
2128
2129 set_page_private(page, 0);
2130 ClearPagePrivate(page);
2131 }
2132
2133 int f2fs_release_page(struct page *page, gfp_t wait)
2134 {
2135 /* If this is dirty page, keep PagePrivate */
2136 if (PageDirty(page))
2137 return 0;
2138
2139 /* This is atomic written page, keep Private */
2140 if (IS_ATOMIC_WRITTEN_PAGE(page))
2141 return 0;
2142
2143 set_page_private(page, 0);
2144 ClearPagePrivate(page);
2145 return 1;
2146 }
2147
2148 /*
2149 * This was copied from __set_page_dirty_buffers which gives higher performance
2150 * in very high speed storages. (e.g., pmem)
2151 */
2152 void f2fs_set_page_dirty_nobuffers(struct page *page)
2153 {
2154 struct address_space *mapping = page->mapping;
2155 unsigned long flags;
2156
2157 if (unlikely(!mapping))
2158 return;
2159
2160 spin_lock(&mapping->private_lock);
2161 lock_page_memcg(page);
2162 SetPageDirty(page);
2163 spin_unlock(&mapping->private_lock);
2164
2165 spin_lock_irqsave(&mapping->tree_lock, flags);
2166 WARN_ON_ONCE(!PageUptodate(page));
2167 account_page_dirtied(page, mapping);
2168 radix_tree_tag_set(&mapping->page_tree,
2169 page_index(page), PAGECACHE_TAG_DIRTY);
2170 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2171 unlock_page_memcg(page);
2172
2173 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2174 return;
2175 }
2176
2177 static int f2fs_set_data_page_dirty(struct page *page)
2178 {
2179 struct address_space *mapping = page->mapping;
2180 struct inode *inode = mapping->host;
2181
2182 trace_f2fs_set_page_dirty(page, DATA);
2183
2184 if (!PageUptodate(page))
2185 SetPageUptodate(page);
2186
2187 if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2188 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2189 register_inmem_page(inode, page);
2190 return 1;
2191 }
2192 /*
2193 * Previously, this page has been registered, we just
2194 * return here.
2195 */
2196 return 0;
2197 }
2198
2199 if (!PageDirty(page)) {
2200 f2fs_set_page_dirty_nobuffers(page);
2201 update_dirty_page(inode, page);
2202 return 1;
2203 }
2204 return 0;
2205 }
2206
2207 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2208 {
2209 struct inode *inode = mapping->host;
2210
2211 if (f2fs_has_inline_data(inode))
2212 return 0;
2213
2214 /* make sure allocating whole blocks */
2215 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2216 filemap_write_and_wait(mapping);
2217
2218 return generic_block_bmap(mapping, block, get_data_block_bmap);
2219 }
2220
2221 #ifdef CONFIG_MIGRATION
2222 #include <linux/migrate.h>
2223
2224 int f2fs_migrate_page(struct address_space *mapping,
2225 struct page *newpage, struct page *page, enum migrate_mode mode)
2226 {
2227 int rc, extra_count;
2228 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2229 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2230
2231 BUG_ON(PageWriteback(page));
2232
2233 /* migrating an atomic written page is safe with the inmem_lock hold */
2234 if (atomic_written) {
2235 if (mode != MIGRATE_SYNC)
2236 return -EBUSY;
2237 if (!mutex_trylock(&fi->inmem_lock))
2238 return -EAGAIN;
2239 }
2240
2241 /*
2242 * A reference is expected if PagePrivate set when move mapping,
2243 * however F2FS breaks this for maintaining dirty page counts when
2244 * truncating pages. So here adjusting the 'extra_count' make it work.
2245 */
2246 extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2247 rc = migrate_page_move_mapping(mapping, newpage,
2248 page, NULL, mode, extra_count);
2249 if (rc != MIGRATEPAGE_SUCCESS) {
2250 if (atomic_written)
2251 mutex_unlock(&fi->inmem_lock);
2252 return rc;
2253 }
2254
2255 if (atomic_written) {
2256 struct inmem_pages *cur;
2257 list_for_each_entry(cur, &fi->inmem_pages, list)
2258 if (cur->page == page) {
2259 cur->page = newpage;
2260 break;
2261 }
2262 mutex_unlock(&fi->inmem_lock);
2263 put_page(page);
2264 get_page(newpage);
2265 }
2266
2267 if (PagePrivate(page))
2268 SetPagePrivate(newpage);
2269 set_page_private(newpage, page_private(page));
2270
2271 if (mode != MIGRATE_SYNC_NO_COPY)
2272 migrate_page_copy(newpage, page);
2273 else
2274 migrate_page_states(newpage, page);
2275
2276 return MIGRATEPAGE_SUCCESS;
2277 }
2278 #endif
2279
2280 const struct address_space_operations f2fs_dblock_aops = {
2281 .readpage = f2fs_read_data_page,
2282 .readpages = f2fs_read_data_pages,
2283 .writepage = f2fs_write_data_page,
2284 .writepages = f2fs_write_data_pages,
2285 .write_begin = f2fs_write_begin,
2286 .write_end = f2fs_write_end,
2287 .set_page_dirty = f2fs_set_data_page_dirty,
2288 .invalidatepage = f2fs_invalidate_page,
2289 .releasepage = f2fs_release_page,
2290 .direct_IO = f2fs_direct_IO,
2291 .bmap = f2fs_bmap,
2292 #ifdef CONFIG_MIGRATION
2293 .migratepage = f2fs_migrate_page,
2294 #endif
2295 };