f2fs: add a mount option for rb-tree extent cache
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/aio.h>
16 #include <linux/writeback.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include "trace.h"
26 #include <trace/events/f2fs.h>
27
28 static struct kmem_cache *extent_tree_slab;
29 static struct kmem_cache *extent_node_slab;
30
31 static void f2fs_read_end_io(struct bio *bio, int err)
32 {
33 struct bio_vec *bvec;
34 int i;
35
36 bio_for_each_segment_all(bvec, bio, i) {
37 struct page *page = bvec->bv_page;
38
39 if (!err) {
40 SetPageUptodate(page);
41 } else {
42 ClearPageUptodate(page);
43 SetPageError(page);
44 }
45 unlock_page(page);
46 }
47 bio_put(bio);
48 }
49
50 static void f2fs_write_end_io(struct bio *bio, int err)
51 {
52 struct f2fs_sb_info *sbi = bio->bi_private;
53 struct bio_vec *bvec;
54 int i;
55
56 bio_for_each_segment_all(bvec, bio, i) {
57 struct page *page = bvec->bv_page;
58
59 if (unlikely(err)) {
60 set_page_dirty(page);
61 set_bit(AS_EIO, &page->mapping->flags);
62 f2fs_stop_checkpoint(sbi);
63 }
64 end_page_writeback(page);
65 dec_page_count(sbi, F2FS_WRITEBACK);
66 }
67
68 if (!get_pages(sbi, F2FS_WRITEBACK) &&
69 !list_empty(&sbi->cp_wait.task_list))
70 wake_up(&sbi->cp_wait);
71
72 bio_put(bio);
73 }
74
75 /*
76 * Low-level block read/write IO operations.
77 */
78 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
79 int npages, bool is_read)
80 {
81 struct bio *bio;
82
83 /* No failure on bio allocation */
84 bio = bio_alloc(GFP_NOIO, npages);
85
86 bio->bi_bdev = sbi->sb->s_bdev;
87 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
88 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
89 bio->bi_private = sbi;
90
91 return bio;
92 }
93
94 static void __submit_merged_bio(struct f2fs_bio_info *io)
95 {
96 struct f2fs_io_info *fio = &io->fio;
97
98 if (!io->bio)
99 return;
100
101 if (is_read_io(fio->rw))
102 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
103 else
104 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
105
106 submit_bio(fio->rw, io->bio);
107 io->bio = NULL;
108 }
109
110 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
111 enum page_type type, int rw)
112 {
113 enum page_type btype = PAGE_TYPE_OF_BIO(type);
114 struct f2fs_bio_info *io;
115
116 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
117
118 down_write(&io->io_rwsem);
119
120 /* change META to META_FLUSH in the checkpoint procedure */
121 if (type >= META_FLUSH) {
122 io->fio.type = META_FLUSH;
123 if (test_opt(sbi, NOBARRIER))
124 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
125 else
126 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
127 }
128 __submit_merged_bio(io);
129 up_write(&io->io_rwsem);
130 }
131
132 /*
133 * Fill the locked page with data located in the block address.
134 * Return unlocked page.
135 */
136 int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
137 struct f2fs_io_info *fio)
138 {
139 struct bio *bio;
140
141 trace_f2fs_submit_page_bio(page, fio);
142 f2fs_trace_ios(page, fio, 0);
143
144 /* Allocate a new bio */
145 bio = __bio_alloc(sbi, fio->blk_addr, 1, is_read_io(fio->rw));
146
147 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
148 bio_put(bio);
149 f2fs_put_page(page, 1);
150 return -EFAULT;
151 }
152
153 submit_bio(fio->rw, bio);
154 return 0;
155 }
156
157 void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
158 struct f2fs_io_info *fio)
159 {
160 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
161 struct f2fs_bio_info *io;
162 bool is_read = is_read_io(fio->rw);
163
164 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
165
166 verify_block_addr(sbi, fio->blk_addr);
167
168 down_write(&io->io_rwsem);
169
170 if (!is_read)
171 inc_page_count(sbi, F2FS_WRITEBACK);
172
173 if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
174 io->fio.rw != fio->rw))
175 __submit_merged_bio(io);
176 alloc_new:
177 if (io->bio == NULL) {
178 int bio_blocks = MAX_BIO_BLOCKS(sbi);
179
180 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
181 io->fio = *fio;
182 }
183
184 if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
185 PAGE_CACHE_SIZE) {
186 __submit_merged_bio(io);
187 goto alloc_new;
188 }
189
190 io->last_block_in_bio = fio->blk_addr;
191 f2fs_trace_ios(page, fio, 0);
192
193 up_write(&io->io_rwsem);
194 trace_f2fs_submit_page_mbio(page, fio);
195 }
196
197 /*
198 * Lock ordering for the change of data block address:
199 * ->data_page
200 * ->node_page
201 * update block addresses in the node page
202 */
203 static void __set_data_blkaddr(struct dnode_of_data *dn)
204 {
205 struct f2fs_node *rn;
206 __le32 *addr_array;
207 struct page *node_page = dn->node_page;
208 unsigned int ofs_in_node = dn->ofs_in_node;
209
210 f2fs_wait_on_page_writeback(node_page, NODE);
211
212 rn = F2FS_NODE(node_page);
213
214 /* Get physical address of data block */
215 addr_array = blkaddr_in_node(rn);
216 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
217 set_page_dirty(node_page);
218 }
219
220 int reserve_new_block(struct dnode_of_data *dn)
221 {
222 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
223
224 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
225 return -EPERM;
226 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
227 return -ENOSPC;
228
229 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
230
231 dn->data_blkaddr = NEW_ADDR;
232 __set_data_blkaddr(dn);
233 mark_inode_dirty(dn->inode);
234 sync_inode_page(dn);
235 return 0;
236 }
237
238 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
239 {
240 bool need_put = dn->inode_page ? false : true;
241 int err;
242
243 err = get_dnode_of_data(dn, index, ALLOC_NODE);
244 if (err)
245 return err;
246
247 if (dn->data_blkaddr == NULL_ADDR)
248 err = reserve_new_block(dn);
249 if (err || need_put)
250 f2fs_put_dnode(dn);
251 return err;
252 }
253
254 static void f2fs_map_bh(struct super_block *sb, pgoff_t pgofs,
255 struct extent_info *ei, struct buffer_head *bh_result)
256 {
257 unsigned int blkbits = sb->s_blocksize_bits;
258 size_t count;
259
260 set_buffer_new(bh_result);
261 map_bh(bh_result, sb, ei->blk + pgofs - ei->fofs);
262 count = ei->fofs + ei->len - pgofs;
263 if (count < (UINT_MAX >> blkbits))
264 bh_result->b_size = (count << blkbits);
265 else
266 bh_result->b_size = UINT_MAX;
267 }
268
269 static bool lookup_extent_info(struct inode *inode, pgoff_t pgofs,
270 struct extent_info *ei)
271 {
272 struct f2fs_inode_info *fi = F2FS_I(inode);
273 pgoff_t start_fofs, end_fofs;
274 block_t start_blkaddr;
275
276 if (is_inode_flag_set(fi, FI_NO_EXTENT))
277 return false;
278
279 read_lock(&fi->ext_lock);
280 if (fi->ext.len == 0) {
281 read_unlock(&fi->ext_lock);
282 return false;
283 }
284
285 stat_inc_total_hit(inode->i_sb);
286
287 start_fofs = fi->ext.fofs;
288 end_fofs = fi->ext.fofs + fi->ext.len - 1;
289 start_blkaddr = fi->ext.blk;
290
291 if (pgofs >= start_fofs && pgofs <= end_fofs) {
292 *ei = fi->ext;
293 stat_inc_read_hit(inode->i_sb);
294 read_unlock(&fi->ext_lock);
295 return true;
296 }
297 read_unlock(&fi->ext_lock);
298 return false;
299 }
300
301 static bool update_extent_info(struct inode *inode, pgoff_t fofs,
302 block_t blkaddr)
303 {
304 struct f2fs_inode_info *fi = F2FS_I(inode);
305 pgoff_t start_fofs, end_fofs;
306 block_t start_blkaddr, end_blkaddr;
307 int need_update = true;
308
309 if (is_inode_flag_set(fi, FI_NO_EXTENT))
310 return false;
311
312 write_lock(&fi->ext_lock);
313
314 start_fofs = fi->ext.fofs;
315 end_fofs = fi->ext.fofs + fi->ext.len - 1;
316 start_blkaddr = fi->ext.blk;
317 end_blkaddr = fi->ext.blk + fi->ext.len - 1;
318
319 /* Drop and initialize the matched extent */
320 if (fi->ext.len == 1 && fofs == start_fofs)
321 fi->ext.len = 0;
322
323 /* Initial extent */
324 if (fi->ext.len == 0) {
325 if (blkaddr != NULL_ADDR) {
326 fi->ext.fofs = fofs;
327 fi->ext.blk = blkaddr;
328 fi->ext.len = 1;
329 }
330 goto end_update;
331 }
332
333 /* Front merge */
334 if (fofs == start_fofs - 1 && blkaddr == start_blkaddr - 1) {
335 fi->ext.fofs--;
336 fi->ext.blk--;
337 fi->ext.len++;
338 goto end_update;
339 }
340
341 /* Back merge */
342 if (fofs == end_fofs + 1 && blkaddr == end_blkaddr + 1) {
343 fi->ext.len++;
344 goto end_update;
345 }
346
347 /* Split the existing extent */
348 if (fi->ext.len > 1 &&
349 fofs >= start_fofs && fofs <= end_fofs) {
350 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
351 fi->ext.len = fofs - start_fofs;
352 } else {
353 fi->ext.fofs = fofs + 1;
354 fi->ext.blk = start_blkaddr + fofs - start_fofs + 1;
355 fi->ext.len -= fofs - start_fofs + 1;
356 }
357 } else {
358 need_update = false;
359 }
360
361 /* Finally, if the extent is very fragmented, let's drop the cache. */
362 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
363 fi->ext.len = 0;
364 set_inode_flag(fi, FI_NO_EXTENT);
365 need_update = true;
366 }
367 end_update:
368 write_unlock(&fi->ext_lock);
369 return need_update;
370 }
371
372 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
373 struct extent_tree *et, struct extent_info *ei,
374 struct rb_node *parent, struct rb_node **p)
375 {
376 struct extent_node *en;
377
378 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
379 if (!en)
380 return NULL;
381
382 en->ei = *ei;
383 INIT_LIST_HEAD(&en->list);
384
385 rb_link_node(&en->rb_node, parent, p);
386 rb_insert_color(&en->rb_node, &et->root);
387 et->count++;
388 atomic_inc(&sbi->total_ext_node);
389 return en;
390 }
391
392 static void __detach_extent_node(struct f2fs_sb_info *sbi,
393 struct extent_tree *et, struct extent_node *en)
394 {
395 rb_erase(&en->rb_node, &et->root);
396 et->count--;
397 atomic_dec(&sbi->total_ext_node);
398 }
399
400 static struct extent_node *__lookup_extent_tree(struct extent_tree *et,
401 unsigned int fofs)
402 {
403 struct rb_node *node = et->root.rb_node;
404 struct extent_node *en;
405
406 while (node) {
407 en = rb_entry(node, struct extent_node, rb_node);
408
409 if (fofs < en->ei.fofs)
410 node = node->rb_left;
411 else if (fofs >= en->ei.fofs + en->ei.len)
412 node = node->rb_right;
413 else
414 return en;
415 }
416 return NULL;
417 }
418
419 static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
420 struct extent_tree *et, struct extent_node *en)
421 {
422 struct extent_node *prev;
423 struct rb_node *node;
424
425 node = rb_prev(&en->rb_node);
426 if (!node)
427 return NULL;
428
429 prev = rb_entry(node, struct extent_node, rb_node);
430 if (__is_back_mergeable(&en->ei, &prev->ei)) {
431 en->ei.fofs = prev->ei.fofs;
432 en->ei.blk = prev->ei.blk;
433 en->ei.len += prev->ei.len;
434 __detach_extent_node(sbi, et, prev);
435 return prev;
436 }
437 return NULL;
438 }
439
440 static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
441 struct extent_tree *et, struct extent_node *en)
442 {
443 struct extent_node *next;
444 struct rb_node *node;
445
446 node = rb_next(&en->rb_node);
447 if (!node)
448 return NULL;
449
450 next = rb_entry(node, struct extent_node, rb_node);
451 if (__is_front_mergeable(&en->ei, &next->ei)) {
452 en->ei.len += next->ei.len;
453 __detach_extent_node(sbi, et, next);
454 return next;
455 }
456 return NULL;
457 }
458
459 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
460 struct extent_tree *et, struct extent_info *ei,
461 struct extent_node **den)
462 {
463 struct rb_node **p = &et->root.rb_node;
464 struct rb_node *parent = NULL;
465 struct extent_node *en;
466
467 while (*p) {
468 parent = *p;
469 en = rb_entry(parent, struct extent_node, rb_node);
470
471 if (ei->fofs < en->ei.fofs) {
472 if (__is_front_mergeable(ei, &en->ei)) {
473 f2fs_bug_on(sbi, !den);
474 en->ei.fofs = ei->fofs;
475 en->ei.blk = ei->blk;
476 en->ei.len += ei->len;
477 *den = __try_back_merge(sbi, et, en);
478 return en;
479 }
480 p = &(*p)->rb_left;
481 } else if (ei->fofs >= en->ei.fofs + en->ei.len) {
482 if (__is_back_mergeable(ei, &en->ei)) {
483 f2fs_bug_on(sbi, !den);
484 en->ei.len += ei->len;
485 *den = __try_front_merge(sbi, et, en);
486 return en;
487 }
488 p = &(*p)->rb_right;
489 } else {
490 f2fs_bug_on(sbi, 1);
491 }
492 }
493
494 return __attach_extent_node(sbi, et, ei, parent, p);
495 }
496
497 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
498 struct extent_tree *et, bool free_all)
499 {
500 struct rb_node *node, *next;
501 struct extent_node *en;
502 unsigned int count = et->count;
503
504 node = rb_first(&et->root);
505 while (node) {
506 next = rb_next(node);
507 en = rb_entry(node, struct extent_node, rb_node);
508
509 if (free_all) {
510 spin_lock(&sbi->extent_lock);
511 if (!list_empty(&en->list))
512 list_del_init(&en->list);
513 spin_unlock(&sbi->extent_lock);
514 }
515
516 if (free_all || list_empty(&en->list)) {
517 __detach_extent_node(sbi, et, en);
518 kmem_cache_free(extent_node_slab, en);
519 }
520 node = next;
521 }
522
523 return count - et->count;
524 }
525
526 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
527 struct extent_info *ei)
528 {
529 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
530 struct extent_tree *et;
531 struct extent_node *en;
532
533 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
534 return false;
535
536 down_read(&sbi->extent_tree_lock);
537 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
538 if (!et) {
539 up_read(&sbi->extent_tree_lock);
540 return false;
541 }
542 atomic_inc(&et->refcount);
543 up_read(&sbi->extent_tree_lock);
544
545 read_lock(&et->lock);
546 en = __lookup_extent_tree(et, pgofs);
547 if (en) {
548 *ei = en->ei;
549 spin_lock(&sbi->extent_lock);
550 if (!list_empty(&en->list))
551 list_move_tail(&en->list, &sbi->extent_list);
552 spin_unlock(&sbi->extent_lock);
553 stat_inc_read_hit(sbi->sb);
554 }
555 stat_inc_total_hit(sbi->sb);
556 read_unlock(&et->lock);
557
558 atomic_dec(&et->refcount);
559 return en ? true : false;
560 }
561
562 static void f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
563 block_t blkaddr)
564 {
565 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
566 nid_t ino = inode->i_ino;
567 struct extent_tree *et;
568 struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
569 struct extent_node *den = NULL;
570 struct extent_info ei, dei;
571 unsigned int endofs;
572
573 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
574 return;
575
576 down_write(&sbi->extent_tree_lock);
577 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
578 if (!et) {
579 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
580 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
581 memset(et, 0, sizeof(struct extent_tree));
582 et->ino = ino;
583 et->root = RB_ROOT;
584 rwlock_init(&et->lock);
585 atomic_set(&et->refcount, 0);
586 et->count = 0;
587 sbi->total_ext_tree++;
588 }
589 atomic_inc(&et->refcount);
590 up_write(&sbi->extent_tree_lock);
591
592 write_lock(&et->lock);
593
594 /* 1. lookup and remove existing extent info in cache */
595 en = __lookup_extent_tree(et, fofs);
596 if (!en)
597 goto update_extent;
598
599 dei = en->ei;
600 __detach_extent_node(sbi, et, en);
601
602 /* 2. if extent can be split more, split and insert the left part */
603 if (dei.len > 1) {
604 /* insert left part of split extent into cache */
605 if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
606 set_extent_info(&ei, dei.fofs, dei.blk,
607 fofs - dei.fofs);
608 en1 = __insert_extent_tree(sbi, et, &ei, NULL);
609 }
610
611 /* insert right part of split extent into cache */
612 endofs = dei.fofs + dei.len - 1;
613 if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
614 set_extent_info(&ei, fofs + 1,
615 fofs - dei.fofs + dei.blk, endofs - fofs);
616 en2 = __insert_extent_tree(sbi, et, &ei, NULL);
617 }
618 }
619
620 update_extent:
621 /* 3. update extent in extent cache */
622 if (blkaddr) {
623 set_extent_info(&ei, fofs, blkaddr, 1);
624 en3 = __insert_extent_tree(sbi, et, &ei, &den);
625 }
626
627 /* 4. update in global extent list */
628 spin_lock(&sbi->extent_lock);
629 if (en && !list_empty(&en->list))
630 list_del(&en->list);
631 /*
632 * en1 and en2 split from en, they will become more and more smaller
633 * fragments after splitting several times. So if the length is smaller
634 * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
635 */
636 if (en1)
637 list_add_tail(&en1->list, &sbi->extent_list);
638 if (en2)
639 list_add_tail(&en2->list, &sbi->extent_list);
640 if (en3) {
641 if (list_empty(&en3->list))
642 list_add_tail(&en3->list, &sbi->extent_list);
643 else
644 list_move_tail(&en3->list, &sbi->extent_list);
645 }
646 if (den && !list_empty(&den->list))
647 list_del(&den->list);
648 spin_unlock(&sbi->extent_lock);
649
650 /* 5. release extent node */
651 if (en)
652 kmem_cache_free(extent_node_slab, en);
653 if (den)
654 kmem_cache_free(extent_node_slab, den);
655
656 write_unlock(&et->lock);
657 atomic_dec(&et->refcount);
658 }
659
660 void f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
661 {
662 struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
663 struct extent_node *en, *tmp;
664 unsigned long ino = F2FS_ROOT_INO(sbi);
665 struct radix_tree_iter iter;
666 void **slot;
667 unsigned int found;
668
669 if (available_free_memory(sbi, EXTENT_CACHE))
670 return;
671
672 spin_lock(&sbi->extent_lock);
673 list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
674 if (!nr_shrink--)
675 break;
676 list_del_init(&en->list);
677 }
678 spin_unlock(&sbi->extent_lock);
679
680 down_read(&sbi->extent_tree_lock);
681 while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root,
682 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
683 unsigned i;
684
685 ino = treevec[found - 1]->ino + 1;
686 for (i = 0; i < found; i++) {
687 struct extent_tree *et = treevec[i];
688
689 atomic_inc(&et->refcount);
690 write_lock(&et->lock);
691 __free_extent_tree(sbi, et, false);
692 write_unlock(&et->lock);
693 atomic_dec(&et->refcount);
694 }
695 }
696 up_read(&sbi->extent_tree_lock);
697
698 down_write(&sbi->extent_tree_lock);
699 radix_tree_for_each_slot(slot, &sbi->extent_tree_root, &iter,
700 F2FS_ROOT_INO(sbi)) {
701 struct extent_tree *et = (struct extent_tree *)*slot;
702
703 if (!atomic_read(&et->refcount) && !et->count) {
704 radix_tree_delete(&sbi->extent_tree_root, et->ino);
705 kmem_cache_free(extent_tree_slab, et);
706 sbi->total_ext_tree--;
707 }
708 }
709 up_write(&sbi->extent_tree_lock);
710 }
711
712 void f2fs_destroy_extent_tree(struct inode *inode)
713 {
714 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
715 struct extent_tree *et;
716
717 down_read(&sbi->extent_tree_lock);
718 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
719 if (!et) {
720 up_read(&sbi->extent_tree_lock);
721 goto out;
722 }
723 atomic_inc(&et->refcount);
724 up_read(&sbi->extent_tree_lock);
725
726 /* free all extent info belong to this extent tree */
727 write_lock(&et->lock);
728 __free_extent_tree(sbi, et, true);
729 write_unlock(&et->lock);
730
731 atomic_dec(&et->refcount);
732
733 /* try to find and delete extent tree entry in radix tree */
734 down_write(&sbi->extent_tree_lock);
735 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
736 if (!et) {
737 up_write(&sbi->extent_tree_lock);
738 goto out;
739 }
740 f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
741 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
742 kmem_cache_free(extent_tree_slab, et);
743 sbi->total_ext_tree--;
744 up_write(&sbi->extent_tree_lock);
745 out:
746 return;
747 }
748
749 static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
750 struct extent_info *ei)
751 {
752 return lookup_extent_info(inode, pgofs, ei);
753 }
754
755 void f2fs_update_extent_cache(struct dnode_of_data *dn)
756 {
757 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
758 pgoff_t fofs;
759
760 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
761
762 /* Update the page address in the parent node */
763 __set_data_blkaddr(dn);
764
765 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
766 dn->ofs_in_node;
767
768 if (update_extent_info(dn->inode, fofs, dn->data_blkaddr))
769 sync_inode_page(dn);
770 }
771
772 struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
773 {
774 struct address_space *mapping = inode->i_mapping;
775 struct dnode_of_data dn;
776 struct page *page;
777 int err;
778 struct f2fs_io_info fio = {
779 .type = DATA,
780 .rw = sync ? READ_SYNC : READA,
781 };
782
783 page = find_get_page(mapping, index);
784 if (page && PageUptodate(page))
785 return page;
786 f2fs_put_page(page, 0);
787
788 set_new_dnode(&dn, inode, NULL, NULL, 0);
789 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
790 if (err)
791 return ERR_PTR(err);
792 f2fs_put_dnode(&dn);
793
794 if (dn.data_blkaddr == NULL_ADDR)
795 return ERR_PTR(-ENOENT);
796
797 /* By fallocate(), there is no cached page, but with NEW_ADDR */
798 if (unlikely(dn.data_blkaddr == NEW_ADDR))
799 return ERR_PTR(-EINVAL);
800
801 page = grab_cache_page(mapping, index);
802 if (!page)
803 return ERR_PTR(-ENOMEM);
804
805 if (PageUptodate(page)) {
806 unlock_page(page);
807 return page;
808 }
809
810 fio.blk_addr = dn.data_blkaddr;
811 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
812 if (err)
813 return ERR_PTR(err);
814
815 if (sync) {
816 wait_on_page_locked(page);
817 if (unlikely(!PageUptodate(page))) {
818 f2fs_put_page(page, 0);
819 return ERR_PTR(-EIO);
820 }
821 }
822 return page;
823 }
824
825 /*
826 * If it tries to access a hole, return an error.
827 * Because, the callers, functions in dir.c and GC, should be able to know
828 * whether this page exists or not.
829 */
830 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
831 {
832 struct address_space *mapping = inode->i_mapping;
833 struct dnode_of_data dn;
834 struct page *page;
835 int err;
836 struct f2fs_io_info fio = {
837 .type = DATA,
838 .rw = READ_SYNC,
839 };
840 repeat:
841 page = grab_cache_page(mapping, index);
842 if (!page)
843 return ERR_PTR(-ENOMEM);
844
845 set_new_dnode(&dn, inode, NULL, NULL, 0);
846 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
847 if (err) {
848 f2fs_put_page(page, 1);
849 return ERR_PTR(err);
850 }
851 f2fs_put_dnode(&dn);
852
853 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
854 f2fs_put_page(page, 1);
855 return ERR_PTR(-ENOENT);
856 }
857
858 if (PageUptodate(page))
859 return page;
860
861 /*
862 * A new dentry page is allocated but not able to be written, since its
863 * new inode page couldn't be allocated due to -ENOSPC.
864 * In such the case, its blkaddr can be remained as NEW_ADDR.
865 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
866 */
867 if (dn.data_blkaddr == NEW_ADDR) {
868 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
869 SetPageUptodate(page);
870 return page;
871 }
872
873 fio.blk_addr = dn.data_blkaddr;
874 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
875 if (err)
876 return ERR_PTR(err);
877
878 lock_page(page);
879 if (unlikely(!PageUptodate(page))) {
880 f2fs_put_page(page, 1);
881 return ERR_PTR(-EIO);
882 }
883 if (unlikely(page->mapping != mapping)) {
884 f2fs_put_page(page, 1);
885 goto repeat;
886 }
887 return page;
888 }
889
890 /*
891 * Caller ensures that this data page is never allocated.
892 * A new zero-filled data page is allocated in the page cache.
893 *
894 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
895 * f2fs_unlock_op().
896 * Note that, ipage is set only by make_empty_dir.
897 */
898 struct page *get_new_data_page(struct inode *inode,
899 struct page *ipage, pgoff_t index, bool new_i_size)
900 {
901 struct address_space *mapping = inode->i_mapping;
902 struct page *page;
903 struct dnode_of_data dn;
904 int err;
905
906 set_new_dnode(&dn, inode, ipage, NULL, 0);
907 err = f2fs_reserve_block(&dn, index);
908 if (err)
909 return ERR_PTR(err);
910 repeat:
911 page = grab_cache_page(mapping, index);
912 if (!page) {
913 err = -ENOMEM;
914 goto put_err;
915 }
916
917 if (PageUptodate(page))
918 return page;
919
920 if (dn.data_blkaddr == NEW_ADDR) {
921 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
922 SetPageUptodate(page);
923 } else {
924 struct f2fs_io_info fio = {
925 .type = DATA,
926 .rw = READ_SYNC,
927 .blk_addr = dn.data_blkaddr,
928 };
929 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
930 if (err)
931 goto put_err;
932
933 lock_page(page);
934 if (unlikely(!PageUptodate(page))) {
935 f2fs_put_page(page, 1);
936 err = -EIO;
937 goto put_err;
938 }
939 if (unlikely(page->mapping != mapping)) {
940 f2fs_put_page(page, 1);
941 goto repeat;
942 }
943 }
944
945 if (new_i_size &&
946 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
947 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
948 /* Only the directory inode sets new_i_size */
949 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
950 }
951 return page;
952
953 put_err:
954 f2fs_put_dnode(&dn);
955 return ERR_PTR(err);
956 }
957
958 static int __allocate_data_block(struct dnode_of_data *dn)
959 {
960 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
961 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
962 struct f2fs_summary sum;
963 struct node_info ni;
964 int seg = CURSEG_WARM_DATA;
965 pgoff_t fofs;
966
967 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
968 return -EPERM;
969 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
970 return -ENOSPC;
971
972 get_node_info(sbi, dn->nid, &ni);
973 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
974
975 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
976 seg = CURSEG_DIRECT_IO;
977
978 allocate_data_block(sbi, NULL, NULL_ADDR, &dn->data_blkaddr, &sum, seg);
979
980 /* direct IO doesn't use extent cache to maximize the performance */
981 __set_data_blkaddr(dn);
982
983 /* update i_size */
984 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
985 dn->ofs_in_node;
986 if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
987 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
988
989 return 0;
990 }
991
992 static void __allocate_data_blocks(struct inode *inode, loff_t offset,
993 size_t count)
994 {
995 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
996 struct dnode_of_data dn;
997 u64 start = F2FS_BYTES_TO_BLK(offset);
998 u64 len = F2FS_BYTES_TO_BLK(count);
999 bool allocated;
1000 u64 end_offset;
1001
1002 while (len) {
1003 f2fs_balance_fs(sbi);
1004 f2fs_lock_op(sbi);
1005
1006 /* When reading holes, we need its node page */
1007 set_new_dnode(&dn, inode, NULL, NULL, 0);
1008 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
1009 goto out;
1010
1011 allocated = false;
1012 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1013
1014 while (dn.ofs_in_node < end_offset && len) {
1015 if (dn.data_blkaddr == NULL_ADDR) {
1016 if (__allocate_data_block(&dn))
1017 goto sync_out;
1018 allocated = true;
1019 }
1020 len--;
1021 start++;
1022 dn.ofs_in_node++;
1023 }
1024
1025 if (allocated)
1026 sync_inode_page(&dn);
1027
1028 f2fs_put_dnode(&dn);
1029 f2fs_unlock_op(sbi);
1030 }
1031 return;
1032
1033 sync_out:
1034 if (allocated)
1035 sync_inode_page(&dn);
1036 f2fs_put_dnode(&dn);
1037 out:
1038 f2fs_unlock_op(sbi);
1039 return;
1040 }
1041
1042 /*
1043 * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
1044 * If original data blocks are allocated, then give them to blockdev.
1045 * Otherwise,
1046 * a. preallocate requested block addresses
1047 * b. do not use extent cache for better performance
1048 * c. give the block addresses to blockdev
1049 */
1050 static int __get_data_block(struct inode *inode, sector_t iblock,
1051 struct buffer_head *bh_result, int create, bool fiemap)
1052 {
1053 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
1054 unsigned maxblocks = bh_result->b_size >> blkbits;
1055 struct dnode_of_data dn;
1056 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
1057 pgoff_t pgofs, end_offset;
1058 int err = 0, ofs = 1;
1059 struct extent_info ei;
1060 bool allocated = false;
1061
1062 /* Get the page offset from the block offset(iblock) */
1063 pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
1064
1065 if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1066 f2fs_map_bh(inode->i_sb, pgofs, &ei, bh_result);
1067 goto out;
1068 }
1069
1070 if (create)
1071 f2fs_lock_op(F2FS_I_SB(inode));
1072
1073 /* When reading holes, we need its node page */
1074 set_new_dnode(&dn, inode, NULL, NULL, 0);
1075 err = get_dnode_of_data(&dn, pgofs, mode);
1076 if (err) {
1077 if (err == -ENOENT)
1078 err = 0;
1079 goto unlock_out;
1080 }
1081 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1082 goto put_out;
1083
1084 if (dn.data_blkaddr != NULL_ADDR) {
1085 set_buffer_new(bh_result);
1086 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
1087 } else if (create) {
1088 err = __allocate_data_block(&dn);
1089 if (err)
1090 goto put_out;
1091 allocated = true;
1092 set_buffer_new(bh_result);
1093 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
1094 } else {
1095 goto put_out;
1096 }
1097
1098 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1099 bh_result->b_size = (((size_t)1) << blkbits);
1100 dn.ofs_in_node++;
1101 pgofs++;
1102
1103 get_next:
1104 if (dn.ofs_in_node >= end_offset) {
1105 if (allocated)
1106 sync_inode_page(&dn);
1107 allocated = false;
1108 f2fs_put_dnode(&dn);
1109
1110 set_new_dnode(&dn, inode, NULL, NULL, 0);
1111 err = get_dnode_of_data(&dn, pgofs, mode);
1112 if (err) {
1113 if (err == -ENOENT)
1114 err = 0;
1115 goto unlock_out;
1116 }
1117 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1118 goto put_out;
1119
1120 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1121 }
1122
1123 if (maxblocks > (bh_result->b_size >> blkbits)) {
1124 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1125 if (blkaddr == NULL_ADDR && create) {
1126 err = __allocate_data_block(&dn);
1127 if (err)
1128 goto sync_out;
1129 allocated = true;
1130 blkaddr = dn.data_blkaddr;
1131 }
1132 /* Give more consecutive addresses for the readahead */
1133 if (blkaddr == (bh_result->b_blocknr + ofs)) {
1134 ofs++;
1135 dn.ofs_in_node++;
1136 pgofs++;
1137 bh_result->b_size += (((size_t)1) << blkbits);
1138 goto get_next;
1139 }
1140 }
1141 sync_out:
1142 if (allocated)
1143 sync_inode_page(&dn);
1144 put_out:
1145 f2fs_put_dnode(&dn);
1146 unlock_out:
1147 if (create)
1148 f2fs_unlock_op(F2FS_I_SB(inode));
1149 out:
1150 trace_f2fs_get_data_block(inode, iblock, bh_result, err);
1151 return err;
1152 }
1153
1154 static int get_data_block(struct inode *inode, sector_t iblock,
1155 struct buffer_head *bh_result, int create)
1156 {
1157 return __get_data_block(inode, iblock, bh_result, create, false);
1158 }
1159
1160 static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
1161 struct buffer_head *bh_result, int create)
1162 {
1163 return __get_data_block(inode, iblock, bh_result, create, true);
1164 }
1165
1166 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1167 u64 start, u64 len)
1168 {
1169 return generic_block_fiemap(inode, fieinfo,
1170 start, len, get_data_block_fiemap);
1171 }
1172
1173 static int f2fs_read_data_page(struct file *file, struct page *page)
1174 {
1175 struct inode *inode = page->mapping->host;
1176 int ret = -EAGAIN;
1177
1178 trace_f2fs_readpage(page, DATA);
1179
1180 /* If the file has inline data, try to read it directly */
1181 if (f2fs_has_inline_data(inode))
1182 ret = f2fs_read_inline_data(inode, page);
1183 if (ret == -EAGAIN)
1184 ret = mpage_readpage(page, get_data_block);
1185
1186 return ret;
1187 }
1188
1189 static int f2fs_read_data_pages(struct file *file,
1190 struct address_space *mapping,
1191 struct list_head *pages, unsigned nr_pages)
1192 {
1193 struct inode *inode = file->f_mapping->host;
1194
1195 /* If the file has inline data, skip readpages */
1196 if (f2fs_has_inline_data(inode))
1197 return 0;
1198
1199 return mpage_readpages(mapping, pages, nr_pages, get_data_block);
1200 }
1201
1202 int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
1203 {
1204 struct inode *inode = page->mapping->host;
1205 struct dnode_of_data dn;
1206 int err = 0;
1207
1208 set_new_dnode(&dn, inode, NULL, NULL, 0);
1209 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1210 if (err)
1211 return err;
1212
1213 fio->blk_addr = dn.data_blkaddr;
1214
1215 /* This page is already truncated */
1216 if (fio->blk_addr == NULL_ADDR)
1217 goto out_writepage;
1218
1219 set_page_writeback(page);
1220
1221 /*
1222 * If current allocation needs SSR,
1223 * it had better in-place writes for updated data.
1224 */
1225 if (unlikely(fio->blk_addr != NEW_ADDR &&
1226 !is_cold_data(page) &&
1227 need_inplace_update(inode))) {
1228 rewrite_data_page(page, fio);
1229 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
1230 } else {
1231 write_data_page(page, &dn, fio);
1232 f2fs_update_extent_cache(&dn);
1233 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
1234 }
1235 out_writepage:
1236 f2fs_put_dnode(&dn);
1237 return err;
1238 }
1239
1240 static int f2fs_write_data_page(struct page *page,
1241 struct writeback_control *wbc)
1242 {
1243 struct inode *inode = page->mapping->host;
1244 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1245 loff_t i_size = i_size_read(inode);
1246 const pgoff_t end_index = ((unsigned long long) i_size)
1247 >> PAGE_CACHE_SHIFT;
1248 unsigned offset = 0;
1249 bool need_balance_fs = false;
1250 int err = 0;
1251 struct f2fs_io_info fio = {
1252 .type = DATA,
1253 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1254 };
1255
1256 trace_f2fs_writepage(page, DATA);
1257
1258 if (page->index < end_index)
1259 goto write;
1260
1261 /*
1262 * If the offset is out-of-range of file size,
1263 * this page does not have to be written to disk.
1264 */
1265 offset = i_size & (PAGE_CACHE_SIZE - 1);
1266 if ((page->index >= end_index + 1) || !offset)
1267 goto out;
1268
1269 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1270 write:
1271 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1272 goto redirty_out;
1273 if (f2fs_is_drop_cache(inode))
1274 goto out;
1275 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1276 available_free_memory(sbi, BASE_CHECK))
1277 goto redirty_out;
1278
1279 /* Dentry blocks are controlled by checkpoint */
1280 if (S_ISDIR(inode->i_mode)) {
1281 if (unlikely(f2fs_cp_error(sbi)))
1282 goto redirty_out;
1283 err = do_write_data_page(page, &fio);
1284 goto done;
1285 }
1286
1287 /* we should bypass data pages to proceed the kworkder jobs */
1288 if (unlikely(f2fs_cp_error(sbi))) {
1289 SetPageError(page);
1290 goto out;
1291 }
1292
1293 if (!wbc->for_reclaim)
1294 need_balance_fs = true;
1295 else if (has_not_enough_free_secs(sbi, 0))
1296 goto redirty_out;
1297
1298 err = -EAGAIN;
1299 f2fs_lock_op(sbi);
1300 if (f2fs_has_inline_data(inode))
1301 err = f2fs_write_inline_data(inode, page);
1302 if (err == -EAGAIN)
1303 err = do_write_data_page(page, &fio);
1304 f2fs_unlock_op(sbi);
1305 done:
1306 if (err && err != -ENOENT)
1307 goto redirty_out;
1308
1309 clear_cold_data(page);
1310 out:
1311 inode_dec_dirty_pages(inode);
1312 unlock_page(page);
1313 if (need_balance_fs)
1314 f2fs_balance_fs(sbi);
1315 if (wbc->for_reclaim)
1316 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1317 return 0;
1318
1319 redirty_out:
1320 redirty_page_for_writepage(wbc, page);
1321 return AOP_WRITEPAGE_ACTIVATE;
1322 }
1323
1324 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1325 void *data)
1326 {
1327 struct address_space *mapping = data;
1328 int ret = mapping->a_ops->writepage(page, wbc);
1329 mapping_set_error(mapping, ret);
1330 return ret;
1331 }
1332
1333 static int f2fs_write_data_pages(struct address_space *mapping,
1334 struct writeback_control *wbc)
1335 {
1336 struct inode *inode = mapping->host;
1337 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1338 bool locked = false;
1339 int ret;
1340 long diff;
1341
1342 trace_f2fs_writepages(mapping->host, wbc, DATA);
1343
1344 /* deal with chardevs and other special file */
1345 if (!mapping->a_ops->writepage)
1346 return 0;
1347
1348 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1349 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1350 available_free_memory(sbi, DIRTY_DENTS))
1351 goto skip_write;
1352
1353 diff = nr_pages_to_write(sbi, DATA, wbc);
1354
1355 if (!S_ISDIR(inode->i_mode)) {
1356 mutex_lock(&sbi->writepages);
1357 locked = true;
1358 }
1359 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
1360 if (locked)
1361 mutex_unlock(&sbi->writepages);
1362
1363 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1364
1365 remove_dirty_dir_inode(inode);
1366
1367 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1368 return ret;
1369
1370 skip_write:
1371 wbc->pages_skipped += get_dirty_pages(inode);
1372 return 0;
1373 }
1374
1375 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1376 {
1377 struct inode *inode = mapping->host;
1378
1379 if (to > inode->i_size) {
1380 truncate_pagecache(inode, inode->i_size);
1381 truncate_blocks(inode, inode->i_size, true);
1382 }
1383 }
1384
1385 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1386 loff_t pos, unsigned len, unsigned flags,
1387 struct page **pagep, void **fsdata)
1388 {
1389 struct inode *inode = mapping->host;
1390 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1391 struct page *page, *ipage;
1392 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1393 struct dnode_of_data dn;
1394 int err = 0;
1395
1396 trace_f2fs_write_begin(inode, pos, len, flags);
1397
1398 f2fs_balance_fs(sbi);
1399
1400 /*
1401 * We should check this at this moment to avoid deadlock on inode page
1402 * and #0 page. The locking rule for inline_data conversion should be:
1403 * lock_page(page #0) -> lock_page(inode_page)
1404 */
1405 if (index != 0) {
1406 err = f2fs_convert_inline_inode(inode);
1407 if (err)
1408 goto fail;
1409 }
1410 repeat:
1411 page = grab_cache_page_write_begin(mapping, index, flags);
1412 if (!page) {
1413 err = -ENOMEM;
1414 goto fail;
1415 }
1416
1417 *pagep = page;
1418
1419 f2fs_lock_op(sbi);
1420
1421 /* check inline_data */
1422 ipage = get_node_page(sbi, inode->i_ino);
1423 if (IS_ERR(ipage)) {
1424 err = PTR_ERR(ipage);
1425 goto unlock_fail;
1426 }
1427
1428 set_new_dnode(&dn, inode, ipage, ipage, 0);
1429
1430 if (f2fs_has_inline_data(inode)) {
1431 if (pos + len <= MAX_INLINE_DATA) {
1432 read_inline_data(page, ipage);
1433 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1434 sync_inode_page(&dn);
1435 goto put_next;
1436 }
1437 err = f2fs_convert_inline_page(&dn, page);
1438 if (err)
1439 goto put_fail;
1440 }
1441 err = f2fs_reserve_block(&dn, index);
1442 if (err)
1443 goto put_fail;
1444 put_next:
1445 f2fs_put_dnode(&dn);
1446 f2fs_unlock_op(sbi);
1447
1448 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
1449 return 0;
1450
1451 f2fs_wait_on_page_writeback(page, DATA);
1452
1453 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1454 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1455 unsigned end = start + len;
1456
1457 /* Reading beyond i_size is simple: memset to zero */
1458 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
1459 goto out;
1460 }
1461
1462 if (dn.data_blkaddr == NEW_ADDR) {
1463 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1464 } else {
1465 struct f2fs_io_info fio = {
1466 .type = DATA,
1467 .rw = READ_SYNC,
1468 .blk_addr = dn.data_blkaddr,
1469 };
1470 err = f2fs_submit_page_bio(sbi, page, &fio);
1471 if (err)
1472 goto fail;
1473
1474 lock_page(page);
1475 if (unlikely(!PageUptodate(page))) {
1476 f2fs_put_page(page, 1);
1477 err = -EIO;
1478 goto fail;
1479 }
1480 if (unlikely(page->mapping != mapping)) {
1481 f2fs_put_page(page, 1);
1482 goto repeat;
1483 }
1484 }
1485 out:
1486 SetPageUptodate(page);
1487 clear_cold_data(page);
1488 return 0;
1489
1490 put_fail:
1491 f2fs_put_dnode(&dn);
1492 unlock_fail:
1493 f2fs_unlock_op(sbi);
1494 f2fs_put_page(page, 1);
1495 fail:
1496 f2fs_write_failed(mapping, pos + len);
1497 return err;
1498 }
1499
1500 static int f2fs_write_end(struct file *file,
1501 struct address_space *mapping,
1502 loff_t pos, unsigned len, unsigned copied,
1503 struct page *page, void *fsdata)
1504 {
1505 struct inode *inode = page->mapping->host;
1506
1507 trace_f2fs_write_end(inode, pos, len, copied);
1508
1509 set_page_dirty(page);
1510
1511 if (pos + copied > i_size_read(inode)) {
1512 i_size_write(inode, pos + copied);
1513 mark_inode_dirty(inode);
1514 update_inode_page(inode);
1515 }
1516
1517 f2fs_put_page(page, 1);
1518 return copied;
1519 }
1520
1521 static int check_direct_IO(struct inode *inode, int rw,
1522 struct iov_iter *iter, loff_t offset)
1523 {
1524 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1525
1526 if (rw == READ)
1527 return 0;
1528
1529 if (offset & blocksize_mask)
1530 return -EINVAL;
1531
1532 if (iov_iter_alignment(iter) & blocksize_mask)
1533 return -EINVAL;
1534
1535 return 0;
1536 }
1537
1538 static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
1539 struct iov_iter *iter, loff_t offset)
1540 {
1541 struct file *file = iocb->ki_filp;
1542 struct address_space *mapping = file->f_mapping;
1543 struct inode *inode = mapping->host;
1544 size_t count = iov_iter_count(iter);
1545 int err;
1546
1547 /* we don't need to use inline_data strictly */
1548 if (f2fs_has_inline_data(inode)) {
1549 err = f2fs_convert_inline_inode(inode);
1550 if (err)
1551 return err;
1552 }
1553
1554 if (check_direct_IO(inode, rw, iter, offset))
1555 return 0;
1556
1557 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1558
1559 if (rw & WRITE)
1560 __allocate_data_blocks(inode, offset, count);
1561
1562 err = blockdev_direct_IO(rw, iocb, inode, iter, offset, get_data_block);
1563 if (err < 0 && (rw & WRITE))
1564 f2fs_write_failed(mapping, offset + count);
1565
1566 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1567
1568 return err;
1569 }
1570
1571 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1572 unsigned int length)
1573 {
1574 struct inode *inode = page->mapping->host;
1575 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1576
1577 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1578 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
1579 return;
1580
1581 if (PageDirty(page)) {
1582 if (inode->i_ino == F2FS_META_INO(sbi))
1583 dec_page_count(sbi, F2FS_DIRTY_META);
1584 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1585 dec_page_count(sbi, F2FS_DIRTY_NODES);
1586 else
1587 inode_dec_dirty_pages(inode);
1588 }
1589 ClearPagePrivate(page);
1590 }
1591
1592 int f2fs_release_page(struct page *page, gfp_t wait)
1593 {
1594 /* If this is dirty page, keep PagePrivate */
1595 if (PageDirty(page))
1596 return 0;
1597
1598 ClearPagePrivate(page);
1599 return 1;
1600 }
1601
1602 static int f2fs_set_data_page_dirty(struct page *page)
1603 {
1604 struct address_space *mapping = page->mapping;
1605 struct inode *inode = mapping->host;
1606
1607 trace_f2fs_set_page_dirty(page, DATA);
1608
1609 SetPageUptodate(page);
1610
1611 if (f2fs_is_atomic_file(inode)) {
1612 register_inmem_page(inode, page);
1613 return 1;
1614 }
1615
1616 mark_inode_dirty(inode);
1617
1618 if (!PageDirty(page)) {
1619 __set_page_dirty_nobuffers(page);
1620 update_dirty_page(inode, page);
1621 return 1;
1622 }
1623 return 0;
1624 }
1625
1626 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1627 {
1628 struct inode *inode = mapping->host;
1629
1630 /* we don't need to use inline_data strictly */
1631 if (f2fs_has_inline_data(inode)) {
1632 int err = f2fs_convert_inline_inode(inode);
1633 if (err)
1634 return err;
1635 }
1636 return generic_block_bmap(mapping, block, get_data_block);
1637 }
1638
1639 void init_extent_cache_info(struct f2fs_sb_info *sbi)
1640 {
1641 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
1642 init_rwsem(&sbi->extent_tree_lock);
1643 INIT_LIST_HEAD(&sbi->extent_list);
1644 spin_lock_init(&sbi->extent_lock);
1645 sbi->total_ext_tree = 0;
1646 atomic_set(&sbi->total_ext_node, 0);
1647 }
1648
1649 int __init create_extent_cache(void)
1650 {
1651 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
1652 sizeof(struct extent_tree));
1653 if (!extent_tree_slab)
1654 return -ENOMEM;
1655 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
1656 sizeof(struct extent_node));
1657 if (!extent_node_slab) {
1658 kmem_cache_destroy(extent_tree_slab);
1659 return -ENOMEM;
1660 }
1661 return 0;
1662 }
1663
1664 void destroy_extent_cache(void)
1665 {
1666 kmem_cache_destroy(extent_node_slab);
1667 kmem_cache_destroy(extent_tree_slab);
1668 }
1669
1670 const struct address_space_operations f2fs_dblock_aops = {
1671 .readpage = f2fs_read_data_page,
1672 .readpages = f2fs_read_data_pages,
1673 .writepage = f2fs_write_data_page,
1674 .writepages = f2fs_write_data_pages,
1675 .write_begin = f2fs_write_begin,
1676 .write_end = f2fs_write_end,
1677 .set_page_dirty = f2fs_set_data_page_dirty,
1678 .invalidatepage = f2fs_invalidate_page,
1679 .releasepage = f2fs_release_page,
1680 .direct_IO = f2fs_direct_IO,
1681 .bmap = f2fs_bmap,
1682 };