f2fs: fix a problem of using memory after free
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/mm.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
25
26 #include "f2fs.h"
27 #include "node.h"
28 #include "segment.h"
29 #include "trace.h"
30 #include <trace/events/f2fs.h>
31 #include <trace/events/android_fs.h>
32
33 static bool __is_cp_guaranteed(struct page *page)
34 {
35 struct address_space *mapping = page->mapping;
36 struct inode *inode;
37 struct f2fs_sb_info *sbi;
38
39 if (!mapping)
40 return false;
41
42 inode = mapping->host;
43 sbi = F2FS_I_SB(inode);
44
45 if (inode->i_ino == F2FS_META_INO(sbi) ||
46 inode->i_ino == F2FS_NODE_INO(sbi) ||
47 S_ISDIR(inode->i_mode) ||
48 is_cold_data(page))
49 return true;
50 return false;
51 }
52
53 static void f2fs_read_end_io(struct bio *bio)
54 {
55 struct bio_vec *bvec;
56 int i;
57
58 #ifdef CONFIG_F2FS_FAULT_INJECTION
59 if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO))
60 bio->bi_error = -EIO;
61 #endif
62
63 if (f2fs_bio_encrypted(bio)) {
64 if (bio->bi_error) {
65 fscrypt_release_ctx(bio->bi_private);
66 } else {
67 fscrypt_decrypt_bio_pages(bio->bi_private, bio);
68 return;
69 }
70 }
71
72 bio_for_each_segment_all(bvec, bio, i) {
73 struct page *page = bvec->bv_page;
74
75 if (!bio->bi_error) {
76 if (!PageUptodate(page))
77 SetPageUptodate(page);
78 } else {
79 ClearPageUptodate(page);
80 SetPageError(page);
81 }
82 unlock_page(page);
83 }
84 bio_put(bio);
85 }
86
87 static void f2fs_write_end_io(struct bio *bio)
88 {
89 struct f2fs_sb_info *sbi = bio->bi_private;
90 struct bio_vec *bvec;
91 int i;
92
93 bio_for_each_segment_all(bvec, bio, i) {
94 struct page *page = bvec->bv_page;
95 enum count_type type = WB_DATA_TYPE(page);
96
97 fscrypt_pullback_bio_page(&page, true);
98
99 if (unlikely(bio->bi_error)) {
100 set_bit(AS_EIO, &page->mapping->flags);
101 f2fs_stop_checkpoint(sbi, true);
102 }
103 dec_page_count(sbi, type);
104 clear_cold_data(page);
105 end_page_writeback(page);
106 }
107 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
108 wq_has_sleeper(&sbi->cp_wait))
109 wake_up(&sbi->cp_wait);
110
111 bio_put(bio);
112 }
113
114 /*
115 * Return true, if pre_bio's bdev is same as its target device.
116 */
117 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
118 block_t blk_addr, struct bio *bio)
119 {
120 struct block_device *bdev = sbi->sb->s_bdev;
121 int i;
122
123 for (i = 0; i < sbi->s_ndevs; i++) {
124 if (FDEV(i).start_blk <= blk_addr &&
125 FDEV(i).end_blk >= blk_addr) {
126 blk_addr -= FDEV(i).start_blk;
127 bdev = FDEV(i).bdev;
128 break;
129 }
130 }
131 if (bio) {
132 bio->bi_bdev = bdev;
133 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
134 }
135 return bdev;
136 }
137
138 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
139 {
140 int i;
141
142 for (i = 0; i < sbi->s_ndevs; i++)
143 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
144 return i;
145 return 0;
146 }
147
148 static bool __same_bdev(struct f2fs_sb_info *sbi,
149 block_t blk_addr, struct bio *bio)
150 {
151 return f2fs_target_device(sbi, blk_addr, NULL) == bio->bi_bdev;
152 }
153
154 /*
155 * Low-level block read/write IO operations.
156 */
157 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
158 int npages, bool is_read)
159 {
160 struct bio *bio;
161
162 bio = f2fs_bio_alloc(npages);
163
164 f2fs_target_device(sbi, blk_addr, bio);
165 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
166 bio->bi_private = is_read ? NULL : sbi;
167
168 return bio;
169 }
170
171 static inline void __submit_bio(struct f2fs_sb_info *sbi,
172 struct bio *bio, enum page_type type)
173 {
174 if (!is_read_io(bio_op(bio))) {
175 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
176 current->plug && (type == DATA || type == NODE))
177 blk_finish_plug(current->plug);
178 }
179 submit_bio(0, bio);
180 }
181
182 static void __submit_merged_bio(struct f2fs_bio_info *io)
183 {
184 struct f2fs_io_info *fio = &io->fio;
185
186 if (!io->bio)
187 return;
188
189 if (is_read_io(fio->op))
190 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
191 else
192 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
193
194 bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
195
196 __submit_bio(io->sbi, io->bio, fio->type);
197 io->bio = NULL;
198 }
199
200 static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
201 struct page *page, nid_t ino)
202 {
203 struct bio_vec *bvec;
204 struct page *target;
205 int i;
206
207 if (!io->bio)
208 return false;
209
210 if (!inode && !page && !ino)
211 return true;
212
213 bio_for_each_segment_all(bvec, io->bio, i) {
214
215 if (bvec->bv_page->mapping)
216 target = bvec->bv_page;
217 else
218 target = fscrypt_control_page(bvec->bv_page);
219
220 if (inode && inode == target->mapping->host)
221 return true;
222 if (page && page == target)
223 return true;
224 if (ino && ino == ino_of_node(target))
225 return true;
226 }
227
228 return false;
229 }
230
231 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
232 struct page *page, nid_t ino,
233 enum page_type type)
234 {
235 enum page_type btype = PAGE_TYPE_OF_BIO(type);
236 struct f2fs_bio_info *io = &sbi->write_io[btype];
237 bool ret;
238
239 down_read(&io->io_rwsem);
240 ret = __has_merged_page(io, inode, page, ino);
241 up_read(&io->io_rwsem);
242 return ret;
243 }
244
245 static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
246 struct inode *inode, struct page *page,
247 nid_t ino, enum page_type type, int rw)
248 {
249 enum page_type btype = PAGE_TYPE_OF_BIO(type);
250 struct f2fs_bio_info *io;
251
252 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
253
254 down_write(&io->io_rwsem);
255
256 if (!__has_merged_page(io, inode, page, ino))
257 goto out;
258
259 /* change META to META_FLUSH in the checkpoint procedure */
260 if (type >= META_FLUSH) {
261 io->fio.type = META_FLUSH;
262 io->fio.op = REQ_OP_WRITE;
263 io->fio.op_flags = WRITE_FLUSH | REQ_META | REQ_PRIO;
264 if (!test_opt(sbi, NOBARRIER))
265 io->fio.op_flags |= REQ_FUA;
266 }
267 __submit_merged_bio(io);
268 out:
269 up_write(&io->io_rwsem);
270 }
271
272 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
273 int rw)
274 {
275 __f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
276 }
277
278 void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
279 struct inode *inode, struct page *page,
280 nid_t ino, enum page_type type, int rw)
281 {
282 if (has_merged_page(sbi, inode, page, ino, type))
283 __f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
284 }
285
286 void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
287 {
288 f2fs_submit_merged_bio(sbi, DATA, WRITE);
289 f2fs_submit_merged_bio(sbi, NODE, WRITE);
290 f2fs_submit_merged_bio(sbi, META, WRITE);
291 }
292
293 /*
294 * Fill the locked page with data located in the block address.
295 * Return unlocked page.
296 */
297 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
298 {
299 struct bio *bio;
300 struct page *page = fio->encrypted_page ?
301 fio->encrypted_page : fio->page;
302
303 trace_f2fs_submit_page_bio(page, fio);
304 f2fs_trace_ios(fio, 0);
305
306 /* Allocate a new bio */
307 bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
308
309 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
310 bio_put(bio);
311 return -EFAULT;
312 }
313 bio_set_op_attrs(bio, fio->op, fio->op_flags);
314
315 __submit_bio(fio->sbi, bio, fio->type);
316 return 0;
317 }
318
319 void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
320 {
321 struct f2fs_sb_info *sbi = fio->sbi;
322 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
323 struct f2fs_bio_info *io;
324 bool is_read = is_read_io(fio->op);
325 struct page *bio_page;
326
327 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
328
329 if (fio->old_blkaddr != NEW_ADDR)
330 verify_block_addr(sbi, fio->old_blkaddr);
331 verify_block_addr(sbi, fio->new_blkaddr);
332
333 bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
334
335 if (!is_read)
336 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
337
338 down_write(&io->io_rwsem);
339
340 if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
341 (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
342 !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
343 __submit_merged_bio(io);
344 alloc_new:
345 if (io->bio == NULL) {
346 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
347 BIO_MAX_PAGES, is_read);
348 io->fio = *fio;
349 }
350
351 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
352 PAGE_SIZE) {
353 __submit_merged_bio(io);
354 goto alloc_new;
355 }
356
357 io->last_block_in_bio = fio->new_blkaddr;
358 f2fs_trace_ios(fio, 0);
359
360 up_write(&io->io_rwsem);
361 trace_f2fs_submit_page_mbio(fio->page, fio);
362 }
363
364 static void __set_data_blkaddr(struct dnode_of_data *dn)
365 {
366 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
367 __le32 *addr_array;
368
369 /* Get physical address of data block */
370 addr_array = blkaddr_in_node(rn);
371 addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
372 }
373
374 /*
375 * Lock ordering for the change of data block address:
376 * ->data_page
377 * ->node_page
378 * update block addresses in the node page
379 */
380 void set_data_blkaddr(struct dnode_of_data *dn)
381 {
382 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
383 __set_data_blkaddr(dn);
384 if (set_page_dirty(dn->node_page))
385 dn->node_changed = true;
386 }
387
388 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
389 {
390 dn->data_blkaddr = blkaddr;
391 set_data_blkaddr(dn);
392 f2fs_update_extent_cache(dn);
393 }
394
395 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
396 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
397 {
398 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
399
400 if (!count)
401 return 0;
402
403 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
404 return -EPERM;
405 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
406 return -ENOSPC;
407
408 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
409 dn->ofs_in_node, count);
410
411 f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
412
413 for (; count > 0; dn->ofs_in_node++) {
414 block_t blkaddr =
415 datablock_addr(dn->node_page, dn->ofs_in_node);
416 if (blkaddr == NULL_ADDR) {
417 dn->data_blkaddr = NEW_ADDR;
418 __set_data_blkaddr(dn);
419 count--;
420 }
421 }
422
423 if (set_page_dirty(dn->node_page))
424 dn->node_changed = true;
425 return 0;
426 }
427
428 /* Should keep dn->ofs_in_node unchanged */
429 int reserve_new_block(struct dnode_of_data *dn)
430 {
431 unsigned int ofs_in_node = dn->ofs_in_node;
432 int ret;
433
434 ret = reserve_new_blocks(dn, 1);
435 dn->ofs_in_node = ofs_in_node;
436 return ret;
437 }
438
439 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
440 {
441 bool need_put = dn->inode_page ? false : true;
442 int err;
443
444 err = get_dnode_of_data(dn, index, ALLOC_NODE);
445 if (err)
446 return err;
447
448 if (dn->data_blkaddr == NULL_ADDR)
449 err = reserve_new_block(dn);
450 if (err || need_put)
451 f2fs_put_dnode(dn);
452 return err;
453 }
454
455 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
456 {
457 struct extent_info ei;
458 struct inode *inode = dn->inode;
459
460 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
461 dn->data_blkaddr = ei.blk + index - ei.fofs;
462 return 0;
463 }
464
465 return f2fs_reserve_block(dn, index);
466 }
467
468 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
469 int op_flags, bool for_write)
470 {
471 struct address_space *mapping = inode->i_mapping;
472 struct dnode_of_data dn;
473 struct page *page;
474 struct extent_info ei;
475 int err;
476 struct f2fs_io_info fio = {
477 .sbi = F2FS_I_SB(inode),
478 .type = DATA,
479 .op = REQ_OP_READ,
480 .op_flags = op_flags,
481 .encrypted_page = NULL,
482 };
483
484 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
485 return read_mapping_page(mapping, index, NULL);
486
487 page = f2fs_grab_cache_page(mapping, index, for_write);
488 if (!page)
489 return ERR_PTR(-ENOMEM);
490
491 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
492 dn.data_blkaddr = ei.blk + index - ei.fofs;
493 goto got_it;
494 }
495
496 set_new_dnode(&dn, inode, NULL, NULL, 0);
497 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
498 if (err)
499 goto put_err;
500 f2fs_put_dnode(&dn);
501
502 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
503 err = -ENOENT;
504 goto put_err;
505 }
506 got_it:
507 if (PageUptodate(page)) {
508 unlock_page(page);
509 return page;
510 }
511
512 /*
513 * A new dentry page is allocated but not able to be written, since its
514 * new inode page couldn't be allocated due to -ENOSPC.
515 * In such the case, its blkaddr can be remained as NEW_ADDR.
516 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
517 */
518 if (dn.data_blkaddr == NEW_ADDR) {
519 zero_user_segment(page, 0, PAGE_SIZE);
520 if (!PageUptodate(page))
521 SetPageUptodate(page);
522 unlock_page(page);
523 return page;
524 }
525
526 fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
527 fio.page = page;
528 err = f2fs_submit_page_bio(&fio);
529 if (err)
530 goto put_err;
531 return page;
532
533 put_err:
534 f2fs_put_page(page, 1);
535 return ERR_PTR(err);
536 }
537
538 struct page *find_data_page(struct inode *inode, pgoff_t index)
539 {
540 struct address_space *mapping = inode->i_mapping;
541 struct page *page;
542
543 page = find_get_page(mapping, index);
544 if (page && PageUptodate(page))
545 return page;
546 f2fs_put_page(page, 0);
547
548 page = get_read_data_page(inode, index, REQ_SYNC, false);
549 if (IS_ERR(page))
550 return page;
551
552 if (PageUptodate(page))
553 return page;
554
555 wait_on_page_locked(page);
556 if (unlikely(!PageUptodate(page))) {
557 f2fs_put_page(page, 0);
558 return ERR_PTR(-EIO);
559 }
560 return page;
561 }
562
563 /*
564 * If it tries to access a hole, return an error.
565 * Because, the callers, functions in dir.c and GC, should be able to know
566 * whether this page exists or not.
567 */
568 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
569 bool for_write)
570 {
571 struct address_space *mapping = inode->i_mapping;
572 struct page *page;
573 repeat:
574 page = get_read_data_page(inode, index, REQ_SYNC, for_write);
575 if (IS_ERR(page))
576 return page;
577
578 /* wait for read completion */
579 lock_page(page);
580 if (unlikely(page->mapping != mapping)) {
581 f2fs_put_page(page, 1);
582 goto repeat;
583 }
584 if (unlikely(!PageUptodate(page))) {
585 f2fs_put_page(page, 1);
586 return ERR_PTR(-EIO);
587 }
588 return page;
589 }
590
591 /*
592 * Caller ensures that this data page is never allocated.
593 * A new zero-filled data page is allocated in the page cache.
594 *
595 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
596 * f2fs_unlock_op().
597 * Note that, ipage is set only by make_empty_dir, and if any error occur,
598 * ipage should be released by this function.
599 */
600 struct page *get_new_data_page(struct inode *inode,
601 struct page *ipage, pgoff_t index, bool new_i_size)
602 {
603 struct address_space *mapping = inode->i_mapping;
604 struct page *page;
605 struct dnode_of_data dn;
606 int err;
607
608 page = f2fs_grab_cache_page(mapping, index, true);
609 if (!page) {
610 /*
611 * before exiting, we should make sure ipage will be released
612 * if any error occur.
613 */
614 f2fs_put_page(ipage, 1);
615 return ERR_PTR(-ENOMEM);
616 }
617
618 set_new_dnode(&dn, inode, ipage, NULL, 0);
619 err = f2fs_reserve_block(&dn, index);
620 if (err) {
621 f2fs_put_page(page, 1);
622 return ERR_PTR(err);
623 }
624 if (!ipage)
625 f2fs_put_dnode(&dn);
626
627 if (PageUptodate(page))
628 goto got_it;
629
630 if (dn.data_blkaddr == NEW_ADDR) {
631 zero_user_segment(page, 0, PAGE_SIZE);
632 if (!PageUptodate(page))
633 SetPageUptodate(page);
634 } else {
635 f2fs_put_page(page, 1);
636
637 /* if ipage exists, blkaddr should be NEW_ADDR */
638 f2fs_bug_on(F2FS_I_SB(inode), ipage);
639 page = get_lock_data_page(inode, index, true);
640 if (IS_ERR(page))
641 return page;
642 }
643 got_it:
644 if (new_i_size && i_size_read(inode) <
645 ((loff_t)(index + 1) << PAGE_SHIFT))
646 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
647 return page;
648 }
649
650 static int __allocate_data_block(struct dnode_of_data *dn)
651 {
652 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
653 struct f2fs_summary sum;
654 struct node_info ni;
655 pgoff_t fofs;
656 blkcnt_t count = 1;
657
658 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
659 return -EPERM;
660
661 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
662 if (dn->data_blkaddr == NEW_ADDR)
663 goto alloc;
664
665 if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
666 return -ENOSPC;
667
668 alloc:
669 get_node_info(sbi, dn->nid, &ni);
670 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
671
672 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
673 &sum, CURSEG_WARM_DATA);
674 set_data_blkaddr(dn);
675
676 /* update i_size */
677 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
678 dn->ofs_in_node;
679 if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
680 f2fs_i_size_write(dn->inode,
681 ((loff_t)(fofs + 1) << PAGE_SHIFT));
682 return 0;
683 }
684
685 static inline bool __force_buffered_io(struct inode *inode, int rw)
686 {
687 return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) ||
688 (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
689 F2FS_I_SB(inode)->s_ndevs);
690 }
691
692 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
693 {
694 struct inode *inode = file_inode(iocb->ki_filp);
695 struct f2fs_map_blocks map;
696 int err = 0;
697
698 map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
699 map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
700 if (map.m_len > map.m_lblk)
701 map.m_len -= map.m_lblk;
702 else
703 map.m_len = 0;
704
705 map.m_next_pgofs = NULL;
706
707 if (iocb->ki_flags & IOCB_DIRECT) {
708 err = f2fs_convert_inline_inode(inode);
709 if (err)
710 return err;
711 return f2fs_map_blocks(inode, &map, 1,
712 __force_buffered_io(inode, WRITE) ?
713 F2FS_GET_BLOCK_PRE_AIO :
714 F2FS_GET_BLOCK_PRE_DIO);
715 }
716 if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
717 err = f2fs_convert_inline_inode(inode);
718 if (err)
719 return err;
720 }
721 if (!f2fs_has_inline_data(inode))
722 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
723 return err;
724 }
725
726 /*
727 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
728 * f2fs_map_blocks structure.
729 * If original data blocks are allocated, then give them to blockdev.
730 * Otherwise,
731 * a. preallocate requested block addresses
732 * b. do not use extent cache for better performance
733 * c. give the block addresses to blockdev
734 */
735 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
736 int create, int flag)
737 {
738 unsigned int maxblocks = map->m_len;
739 struct dnode_of_data dn;
740 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
741 int mode = create ? ALLOC_NODE : LOOKUP_NODE;
742 pgoff_t pgofs, end_offset, end;
743 int err = 0, ofs = 1;
744 unsigned int ofs_in_node, last_ofs_in_node;
745 blkcnt_t prealloc;
746 struct extent_info ei;
747 block_t blkaddr;
748
749 if (!maxblocks)
750 return 0;
751
752 map->m_len = 0;
753 map->m_flags = 0;
754
755 /* it only supports block size == page size */
756 pgofs = (pgoff_t)map->m_lblk;
757 end = pgofs + maxblocks;
758
759 if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
760 map->m_pblk = ei.blk + pgofs - ei.fofs;
761 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
762 map->m_flags = F2FS_MAP_MAPPED;
763 goto out;
764 }
765
766 next_dnode:
767 if (create)
768 f2fs_lock_op(sbi);
769
770 /* When reading holes, we need its node page */
771 set_new_dnode(&dn, inode, NULL, NULL, 0);
772 err = get_dnode_of_data(&dn, pgofs, mode);
773 if (err) {
774 if (flag == F2FS_GET_BLOCK_BMAP)
775 map->m_pblk = 0;
776 if (err == -ENOENT) {
777 err = 0;
778 if (map->m_next_pgofs)
779 *map->m_next_pgofs =
780 get_next_page_offset(&dn, pgofs);
781 }
782 goto unlock_out;
783 }
784
785 prealloc = 0;
786 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
787 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
788
789 next_block:
790 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
791
792 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
793 if (create) {
794 if (unlikely(f2fs_cp_error(sbi))) {
795 err = -EIO;
796 goto sync_out;
797 }
798 if (flag == F2FS_GET_BLOCK_PRE_AIO) {
799 if (blkaddr == NULL_ADDR) {
800 prealloc++;
801 last_ofs_in_node = dn.ofs_in_node;
802 }
803 } else {
804 err = __allocate_data_block(&dn);
805 if (!err)
806 set_inode_flag(inode, FI_APPEND_WRITE);
807 }
808 if (err)
809 goto sync_out;
810 map->m_flags = F2FS_MAP_NEW;
811 blkaddr = dn.data_blkaddr;
812 } else {
813 if (flag == F2FS_GET_BLOCK_BMAP) {
814 map->m_pblk = 0;
815 goto sync_out;
816 }
817 if (flag == F2FS_GET_BLOCK_FIEMAP &&
818 blkaddr == NULL_ADDR) {
819 if (map->m_next_pgofs)
820 *map->m_next_pgofs = pgofs + 1;
821 }
822 if (flag != F2FS_GET_BLOCK_FIEMAP ||
823 blkaddr != NEW_ADDR)
824 goto sync_out;
825 }
826 }
827
828 if (flag == F2FS_GET_BLOCK_PRE_AIO)
829 goto skip;
830
831 if (map->m_len == 0) {
832 /* preallocated unwritten block should be mapped for fiemap. */
833 if (blkaddr == NEW_ADDR)
834 map->m_flags |= F2FS_MAP_UNWRITTEN;
835 map->m_flags |= F2FS_MAP_MAPPED;
836
837 map->m_pblk = blkaddr;
838 map->m_len = 1;
839 } else if ((map->m_pblk != NEW_ADDR &&
840 blkaddr == (map->m_pblk + ofs)) ||
841 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
842 flag == F2FS_GET_BLOCK_PRE_DIO) {
843 ofs++;
844 map->m_len++;
845 } else {
846 goto sync_out;
847 }
848
849 skip:
850 dn.ofs_in_node++;
851 pgofs++;
852
853 /* preallocate blocks in batch for one dnode page */
854 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
855 (pgofs == end || dn.ofs_in_node == end_offset)) {
856
857 dn.ofs_in_node = ofs_in_node;
858 err = reserve_new_blocks(&dn, prealloc);
859 if (err)
860 goto sync_out;
861
862 map->m_len += dn.ofs_in_node - ofs_in_node;
863 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
864 err = -ENOSPC;
865 goto sync_out;
866 }
867 dn.ofs_in_node = end_offset;
868 }
869
870 if (pgofs >= end)
871 goto sync_out;
872 else if (dn.ofs_in_node < end_offset)
873 goto next_block;
874
875 f2fs_put_dnode(&dn);
876
877 if (create) {
878 f2fs_unlock_op(sbi);
879 f2fs_balance_fs(sbi, dn.node_changed);
880 }
881 goto next_dnode;
882
883 sync_out:
884 f2fs_put_dnode(&dn);
885 unlock_out:
886 if (create) {
887 f2fs_unlock_op(sbi);
888 f2fs_balance_fs(sbi, dn.node_changed);
889 }
890 out:
891 trace_f2fs_map_blocks(inode, map, err);
892 return err;
893 }
894
895 static int __get_data_block(struct inode *inode, sector_t iblock,
896 struct buffer_head *bh, int create, int flag,
897 pgoff_t *next_pgofs)
898 {
899 struct f2fs_map_blocks map;
900 int err;
901
902 map.m_lblk = iblock;
903 map.m_len = bh->b_size >> inode->i_blkbits;
904 map.m_next_pgofs = next_pgofs;
905
906 err = f2fs_map_blocks(inode, &map, create, flag);
907 if (!err) {
908 map_bh(bh, inode->i_sb, map.m_pblk);
909 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
910 bh->b_size = map.m_len << inode->i_blkbits;
911 }
912 return err;
913 }
914
915 static int get_data_block(struct inode *inode, sector_t iblock,
916 struct buffer_head *bh_result, int create, int flag,
917 pgoff_t *next_pgofs)
918 {
919 return __get_data_block(inode, iblock, bh_result, create,
920 flag, next_pgofs);
921 }
922
923 static int get_data_block_dio(struct inode *inode, sector_t iblock,
924 struct buffer_head *bh_result, int create)
925 {
926 return __get_data_block(inode, iblock, bh_result, create,
927 F2FS_GET_BLOCK_DIO, NULL);
928 }
929
930 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
931 struct buffer_head *bh_result, int create)
932 {
933 /* Block number less than F2FS MAX BLOCKS */
934 if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
935 return -EFBIG;
936
937 return __get_data_block(inode, iblock, bh_result, create,
938 F2FS_GET_BLOCK_BMAP, NULL);
939 }
940
941 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
942 {
943 return (offset >> inode->i_blkbits);
944 }
945
946 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
947 {
948 return (blk << inode->i_blkbits);
949 }
950
951 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
952 u64 start, u64 len)
953 {
954 struct buffer_head map_bh;
955 sector_t start_blk, last_blk;
956 pgoff_t next_pgofs;
957 u64 logical = 0, phys = 0, size = 0;
958 u32 flags = 0;
959 int ret = 0;
960
961 ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
962 if (ret)
963 return ret;
964
965 if (f2fs_has_inline_data(inode)) {
966 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
967 if (ret != -EAGAIN)
968 return ret;
969 }
970
971 inode_lock(inode);
972
973 if (logical_to_blk(inode, len) == 0)
974 len = blk_to_logical(inode, 1);
975
976 start_blk = logical_to_blk(inode, start);
977 last_blk = logical_to_blk(inode, start + len - 1);
978
979 next:
980 memset(&map_bh, 0, sizeof(struct buffer_head));
981 map_bh.b_size = len;
982
983 ret = get_data_block(inode, start_blk, &map_bh, 0,
984 F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
985 if (ret)
986 goto out;
987
988 /* HOLE */
989 if (!buffer_mapped(&map_bh)) {
990 start_blk = next_pgofs;
991
992 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
993 F2FS_I_SB(inode)->max_file_blocks))
994 goto prep_next;
995
996 flags |= FIEMAP_EXTENT_LAST;
997 }
998
999 if (size) {
1000 if (f2fs_encrypted_inode(inode))
1001 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1002
1003 ret = fiemap_fill_next_extent(fieinfo, logical,
1004 phys, size, flags);
1005 }
1006
1007 if (start_blk > last_blk || ret)
1008 goto out;
1009
1010 logical = blk_to_logical(inode, start_blk);
1011 phys = blk_to_logical(inode, map_bh.b_blocknr);
1012 size = map_bh.b_size;
1013 flags = 0;
1014 if (buffer_unwritten(&map_bh))
1015 flags = FIEMAP_EXTENT_UNWRITTEN;
1016
1017 start_blk += logical_to_blk(inode, size);
1018
1019 prep_next:
1020 cond_resched();
1021 if (fatal_signal_pending(current))
1022 ret = -EINTR;
1023 else
1024 goto next;
1025 out:
1026 if (ret == 1)
1027 ret = 0;
1028
1029 inode_unlock(inode);
1030 return ret;
1031 }
1032
1033 static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
1034 unsigned nr_pages)
1035 {
1036 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1037 struct fscrypt_ctx *ctx = NULL;
1038 struct bio *bio;
1039
1040 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1041 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1042 if (IS_ERR(ctx))
1043 return ERR_CAST(ctx);
1044
1045 /* wait the page to be moved by cleaning */
1046 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1047 }
1048
1049 bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
1050 if (!bio) {
1051 if (ctx)
1052 fscrypt_release_ctx(ctx);
1053 return ERR_PTR(-ENOMEM);
1054 }
1055 f2fs_target_device(sbi, blkaddr, bio);
1056 bio->bi_end_io = f2fs_read_end_io;
1057 bio->bi_private = ctx;
1058
1059 return bio;
1060 }
1061
1062 /*
1063 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1064 * Major change was from block_size == page_size in f2fs by default.
1065 */
1066 static int f2fs_mpage_readpages(struct address_space *mapping,
1067 struct list_head *pages, struct page *page,
1068 unsigned nr_pages)
1069 {
1070 struct bio *bio = NULL;
1071 unsigned page_idx;
1072 sector_t last_block_in_bio = 0;
1073 struct inode *inode = mapping->host;
1074 const unsigned blkbits = inode->i_blkbits;
1075 const unsigned blocksize = 1 << blkbits;
1076 sector_t block_in_file;
1077 sector_t last_block;
1078 sector_t last_block_in_file;
1079 sector_t block_nr;
1080 struct f2fs_map_blocks map;
1081
1082 map.m_pblk = 0;
1083 map.m_lblk = 0;
1084 map.m_len = 0;
1085 map.m_flags = 0;
1086 map.m_next_pgofs = NULL;
1087
1088 for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1089
1090 prefetchw(&page->flags);
1091 if (pages) {
1092 page = list_entry(pages->prev, struct page, lru);
1093 list_del(&page->lru);
1094 if (add_to_page_cache_lru(page, mapping,
1095 page->index, GFP_KERNEL))
1096 goto next_page;
1097 }
1098
1099 block_in_file = (sector_t)page->index;
1100 last_block = block_in_file + nr_pages;
1101 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1102 blkbits;
1103 if (last_block > last_block_in_file)
1104 last_block = last_block_in_file;
1105
1106 /*
1107 * Map blocks using the previous result first.
1108 */
1109 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1110 block_in_file > map.m_lblk &&
1111 block_in_file < (map.m_lblk + map.m_len))
1112 goto got_it;
1113
1114 /*
1115 * Then do more f2fs_map_blocks() calls until we are
1116 * done with this page.
1117 */
1118 map.m_flags = 0;
1119
1120 if (block_in_file < last_block) {
1121 map.m_lblk = block_in_file;
1122 map.m_len = last_block - block_in_file;
1123
1124 if (f2fs_map_blocks(inode, &map, 0,
1125 F2FS_GET_BLOCK_READ))
1126 goto set_error_page;
1127 }
1128 got_it:
1129 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1130 block_nr = map.m_pblk + block_in_file - map.m_lblk;
1131 SetPageMappedToDisk(page);
1132
1133 if (!PageUptodate(page) && !cleancache_get_page(page)) {
1134 SetPageUptodate(page);
1135 goto confused;
1136 }
1137 } else {
1138 zero_user_segment(page, 0, PAGE_SIZE);
1139 if (!PageUptodate(page))
1140 SetPageUptodate(page);
1141 unlock_page(page);
1142 goto next_page;
1143 }
1144
1145 /*
1146 * This page will go to BIO. Do we need to send this
1147 * BIO off first?
1148 */
1149 if (bio && (last_block_in_bio != block_nr - 1 ||
1150 !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1151 submit_and_realloc:
1152 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1153 bio = NULL;
1154 }
1155 if (bio == NULL) {
1156 bio = f2fs_grab_bio(inode, block_nr, nr_pages);
1157 if (IS_ERR(bio)) {
1158 bio = NULL;
1159 goto set_error_page;
1160 }
1161 bio_set_op_attrs(bio, REQ_OP_READ, 0);
1162 }
1163
1164 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1165 goto submit_and_realloc;
1166
1167 last_block_in_bio = block_nr;
1168 goto next_page;
1169 set_error_page:
1170 SetPageError(page);
1171 zero_user_segment(page, 0, PAGE_SIZE);
1172 unlock_page(page);
1173 goto next_page;
1174 confused:
1175 if (bio) {
1176 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1177 bio = NULL;
1178 }
1179 unlock_page(page);
1180 next_page:
1181 if (pages)
1182 put_page(page);
1183 }
1184 BUG_ON(pages && !list_empty(pages));
1185 if (bio)
1186 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1187 return 0;
1188 }
1189
1190 static int f2fs_read_data_page(struct file *file, struct page *page)
1191 {
1192 struct inode *inode = page->mapping->host;
1193 int ret = -EAGAIN;
1194
1195 trace_f2fs_readpage(page, DATA);
1196
1197 /* If the file has inline data, try to read it directly */
1198 if (f2fs_has_inline_data(inode))
1199 ret = f2fs_read_inline_data(inode, page);
1200 if (ret == -EAGAIN)
1201 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1202 return ret;
1203 }
1204
1205 static int f2fs_read_data_pages(struct file *file,
1206 struct address_space *mapping,
1207 struct list_head *pages, unsigned nr_pages)
1208 {
1209 struct inode *inode = file->f_mapping->host;
1210 struct page *page = list_entry(pages->prev, struct page, lru);
1211
1212 trace_f2fs_readpages(inode, page, nr_pages);
1213
1214 /* If the file has inline data, skip readpages */
1215 if (f2fs_has_inline_data(inode))
1216 return 0;
1217
1218 return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1219 }
1220
1221 int do_write_data_page(struct f2fs_io_info *fio)
1222 {
1223 struct page *page = fio->page;
1224 struct inode *inode = page->mapping->host;
1225 struct dnode_of_data dn;
1226 int err = 0;
1227
1228 set_new_dnode(&dn, inode, NULL, NULL, 0);
1229 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1230 if (err)
1231 return err;
1232
1233 fio->old_blkaddr = dn.data_blkaddr;
1234
1235 /* This page is already truncated */
1236 if (fio->old_blkaddr == NULL_ADDR) {
1237 ClearPageUptodate(page);
1238 goto out_writepage;
1239 }
1240
1241 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1242 gfp_t gfp_flags = GFP_NOFS;
1243
1244 /* wait for GCed encrypted page writeback */
1245 f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1246 fio->old_blkaddr);
1247 retry_encrypt:
1248 fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1249 gfp_flags);
1250 if (IS_ERR(fio->encrypted_page)) {
1251 err = PTR_ERR(fio->encrypted_page);
1252 if (err == -ENOMEM) {
1253 /* flush pending ios and wait for a while */
1254 f2fs_flush_merged_bios(F2FS_I_SB(inode));
1255 congestion_wait(BLK_RW_ASYNC, HZ/50);
1256 gfp_flags |= __GFP_NOFAIL;
1257 err = 0;
1258 goto retry_encrypt;
1259 }
1260 goto out_writepage;
1261 }
1262 }
1263
1264 set_page_writeback(page);
1265
1266 /*
1267 * If current allocation needs SSR,
1268 * it had better in-place writes for updated data.
1269 */
1270 if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1271 !is_cold_data(page) &&
1272 !IS_ATOMIC_WRITTEN_PAGE(page) &&
1273 need_inplace_update(inode))) {
1274 rewrite_data_page(fio);
1275 set_inode_flag(inode, FI_UPDATE_WRITE);
1276 trace_f2fs_do_write_data_page(page, IPU);
1277 } else {
1278 write_data_page(&dn, fio);
1279 trace_f2fs_do_write_data_page(page, OPU);
1280 set_inode_flag(inode, FI_APPEND_WRITE);
1281 if (page->index == 0)
1282 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1283 }
1284 out_writepage:
1285 f2fs_put_dnode(&dn);
1286 return err;
1287 }
1288
1289 static int f2fs_write_data_page(struct page *page,
1290 struct writeback_control *wbc)
1291 {
1292 struct inode *inode = page->mapping->host;
1293 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1294 loff_t i_size = i_size_read(inode);
1295 const pgoff_t end_index = ((unsigned long long) i_size)
1296 >> PAGE_SHIFT;
1297 loff_t psize = (page->index + 1) << PAGE_SHIFT;
1298 unsigned offset = 0;
1299 bool need_balance_fs = false;
1300 int err = 0;
1301 struct f2fs_io_info fio = {
1302 .sbi = sbi,
1303 .type = DATA,
1304 .op = REQ_OP_WRITE,
1305 .op_flags = wbc_to_write_flags(wbc),
1306 .page = page,
1307 .encrypted_page = NULL,
1308 };
1309
1310 trace_f2fs_writepage(page, DATA);
1311
1312 if (page->index < end_index)
1313 goto write;
1314
1315 /*
1316 * If the offset is out-of-range of file size,
1317 * this page does not have to be written to disk.
1318 */
1319 offset = i_size & (PAGE_SIZE - 1);
1320 if ((page->index >= end_index + 1) || !offset)
1321 goto out;
1322
1323 zero_user_segment(page, offset, PAGE_SIZE);
1324 write:
1325 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1326 goto redirty_out;
1327 if (f2fs_is_drop_cache(inode))
1328 goto out;
1329 /* we should not write 0'th page having journal header */
1330 if (f2fs_is_volatile_file(inode) && (!page->index ||
1331 (!wbc->for_reclaim &&
1332 available_free_memory(sbi, BASE_CHECK))))
1333 goto redirty_out;
1334
1335 /* we should bypass data pages to proceed the kworkder jobs */
1336 if (unlikely(f2fs_cp_error(sbi))) {
1337 mapping_set_error(page->mapping, -EIO);
1338 goto out;
1339 }
1340
1341 /* Dentry blocks are controlled by checkpoint */
1342 if (S_ISDIR(inode->i_mode)) {
1343 err = do_write_data_page(&fio);
1344 goto done;
1345 }
1346
1347 if (!wbc->for_reclaim)
1348 need_balance_fs = true;
1349 else if (has_not_enough_free_secs(sbi, 0, 0))
1350 goto redirty_out;
1351
1352 err = -EAGAIN;
1353 f2fs_lock_op(sbi);
1354 if (f2fs_has_inline_data(inode))
1355 err = f2fs_write_inline_data(inode, page);
1356 if (err == -EAGAIN)
1357 err = do_write_data_page(&fio);
1358 if (F2FS_I(inode)->last_disk_size < psize)
1359 F2FS_I(inode)->last_disk_size = psize;
1360 f2fs_unlock_op(sbi);
1361 done:
1362 if (err && err != -ENOENT)
1363 goto redirty_out;
1364
1365 out:
1366 inode_dec_dirty_pages(inode);
1367 if (err)
1368 ClearPageUptodate(page);
1369
1370 if (wbc->for_reclaim) {
1371 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
1372 remove_dirty_inode(inode);
1373 }
1374
1375 unlock_page(page);
1376 f2fs_balance_fs(sbi, need_balance_fs);
1377
1378 if (unlikely(f2fs_cp_error(sbi)))
1379 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1380
1381 return 0;
1382
1383 redirty_out:
1384 redirty_page_for_writepage(wbc, page);
1385 if (!err)
1386 return AOP_WRITEPAGE_ACTIVATE;
1387 unlock_page(page);
1388 return err;
1389 }
1390
1391 /*
1392 * This function was copied from write_cche_pages from mm/page-writeback.c.
1393 * The major change is making write step of cold data page separately from
1394 * warm/hot data page.
1395 */
1396 static int f2fs_write_cache_pages(struct address_space *mapping,
1397 struct writeback_control *wbc)
1398 {
1399 int ret = 0;
1400 int done = 0;
1401 struct pagevec pvec;
1402 int nr_pages;
1403 pgoff_t uninitialized_var(writeback_index);
1404 pgoff_t index;
1405 pgoff_t end; /* Inclusive */
1406 pgoff_t done_index;
1407 int cycled;
1408 int range_whole = 0;
1409 int tag;
1410 int nwritten = 0;
1411
1412 pagevec_init(&pvec, 0);
1413
1414 if (wbc->range_cyclic) {
1415 writeback_index = mapping->writeback_index; /* prev offset */
1416 index = writeback_index;
1417 if (index == 0)
1418 cycled = 1;
1419 else
1420 cycled = 0;
1421 end = -1;
1422 } else {
1423 index = wbc->range_start >> PAGE_SHIFT;
1424 end = wbc->range_end >> PAGE_SHIFT;
1425 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1426 range_whole = 1;
1427 cycled = 1; /* ignore range_cyclic tests */
1428 }
1429 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1430 tag = PAGECACHE_TAG_TOWRITE;
1431 else
1432 tag = PAGECACHE_TAG_DIRTY;
1433 retry:
1434 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1435 tag_pages_for_writeback(mapping, index, end);
1436 done_index = index;
1437 while (!done && (index <= end)) {
1438 int i;
1439
1440 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1441 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1442 if (nr_pages == 0)
1443 break;
1444
1445 for (i = 0; i < nr_pages; i++) {
1446 struct page *page = pvec.pages[i];
1447
1448 if (page->index > end) {
1449 done = 1;
1450 break;
1451 }
1452
1453 done_index = page->index;
1454
1455 lock_page(page);
1456
1457 if (unlikely(page->mapping != mapping)) {
1458 continue_unlock:
1459 unlock_page(page);
1460 continue;
1461 }
1462
1463 if (!PageDirty(page)) {
1464 /* someone wrote it for us */
1465 goto continue_unlock;
1466 }
1467
1468 if (PageWriteback(page)) {
1469 if (wbc->sync_mode != WB_SYNC_NONE)
1470 f2fs_wait_on_page_writeback(page,
1471 DATA, true);
1472 else
1473 goto continue_unlock;
1474 }
1475
1476 BUG_ON(PageWriteback(page));
1477 if (!clear_page_dirty_for_io(page))
1478 goto continue_unlock;
1479
1480 ret = mapping->a_ops->writepage(page, wbc);
1481 if (unlikely(ret)) {
1482 /*
1483 * keep nr_to_write, since vfs uses this to
1484 * get # of written pages.
1485 */
1486 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1487 unlock_page(page);
1488 ret = 0;
1489 continue;
1490 }
1491 done_index = page->index + 1;
1492 done = 1;
1493 break;
1494 } else {
1495 nwritten++;
1496 }
1497
1498 if (--wbc->nr_to_write <= 0 &&
1499 wbc->sync_mode == WB_SYNC_NONE) {
1500 done = 1;
1501 break;
1502 }
1503 }
1504 pagevec_release(&pvec);
1505 cond_resched();
1506 }
1507
1508 if (!cycled && !done) {
1509 cycled = 1;
1510 index = 0;
1511 end = writeback_index - 1;
1512 goto retry;
1513 }
1514 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1515 mapping->writeback_index = done_index;
1516
1517 if (nwritten)
1518 f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host,
1519 NULL, 0, DATA, WRITE);
1520
1521 return ret;
1522 }
1523
1524 static int f2fs_write_data_pages(struct address_space *mapping,
1525 struct writeback_control *wbc)
1526 {
1527 struct inode *inode = mapping->host;
1528 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1529 struct blk_plug plug;
1530 int ret;
1531
1532 /* deal with chardevs and other special file */
1533 if (!mapping->a_ops->writepage)
1534 return 0;
1535
1536 /* skip writing if there is no dirty page in this inode */
1537 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1538 return 0;
1539
1540 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1541 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1542 available_free_memory(sbi, DIRTY_DENTS))
1543 goto skip_write;
1544
1545 /* skip writing during file defragment */
1546 if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1547 goto skip_write;
1548
1549 /* during POR, we don't need to trigger writepage at all. */
1550 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1551 goto skip_write;
1552
1553 trace_f2fs_writepages(mapping->host, wbc, DATA);
1554
1555 blk_start_plug(&plug);
1556 ret = f2fs_write_cache_pages(mapping, wbc);
1557 blk_finish_plug(&plug);
1558 /*
1559 * if some pages were truncated, we cannot guarantee its mapping->host
1560 * to detect pending bios.
1561 */
1562
1563 remove_dirty_inode(inode);
1564 return ret;
1565
1566 skip_write:
1567 wbc->pages_skipped += get_dirty_pages(inode);
1568 trace_f2fs_writepages(mapping->host, wbc, DATA);
1569 return 0;
1570 }
1571
1572 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1573 {
1574 struct inode *inode = mapping->host;
1575 loff_t i_size = i_size_read(inode);
1576
1577 if (to > i_size) {
1578 truncate_pagecache(inode, i_size);
1579 truncate_blocks(inode, i_size, true);
1580 }
1581 }
1582
1583 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1584 struct page *page, loff_t pos, unsigned len,
1585 block_t *blk_addr, bool *node_changed)
1586 {
1587 struct inode *inode = page->mapping->host;
1588 pgoff_t index = page->index;
1589 struct dnode_of_data dn;
1590 struct page *ipage;
1591 bool locked = false;
1592 struct extent_info ei;
1593 int err = 0;
1594
1595 /*
1596 * we already allocated all the blocks, so we don't need to get
1597 * the block addresses when there is no need to fill the page.
1598 */
1599 if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE)
1600 return 0;
1601
1602 if (f2fs_has_inline_data(inode) ||
1603 (pos & PAGE_MASK) >= i_size_read(inode)) {
1604 f2fs_lock_op(sbi);
1605 locked = true;
1606 }
1607 restart:
1608 /* check inline_data */
1609 ipage = get_node_page(sbi, inode->i_ino);
1610 if (IS_ERR(ipage)) {
1611 err = PTR_ERR(ipage);
1612 goto unlock_out;
1613 }
1614
1615 set_new_dnode(&dn, inode, ipage, ipage, 0);
1616
1617 if (f2fs_has_inline_data(inode)) {
1618 if (pos + len <= MAX_INLINE_DATA) {
1619 read_inline_data(page, ipage);
1620 set_inode_flag(inode, FI_DATA_EXIST);
1621 if (inode->i_nlink)
1622 set_inline_node(ipage);
1623 } else {
1624 err = f2fs_convert_inline_page(&dn, page);
1625 if (err)
1626 goto out;
1627 if (dn.data_blkaddr == NULL_ADDR)
1628 err = f2fs_get_block(&dn, index);
1629 }
1630 } else if (locked) {
1631 err = f2fs_get_block(&dn, index);
1632 } else {
1633 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1634 dn.data_blkaddr = ei.blk + index - ei.fofs;
1635 } else {
1636 /* hole case */
1637 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1638 if (err || dn.data_blkaddr == NULL_ADDR) {
1639 f2fs_put_dnode(&dn);
1640 f2fs_lock_op(sbi);
1641 locked = true;
1642 goto restart;
1643 }
1644 }
1645 }
1646
1647 /* convert_inline_page can make node_changed */
1648 *blk_addr = dn.data_blkaddr;
1649 *node_changed = dn.node_changed;
1650 out:
1651 f2fs_put_dnode(&dn);
1652 unlock_out:
1653 if (locked)
1654 f2fs_unlock_op(sbi);
1655 return err;
1656 }
1657
1658 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1659 loff_t pos, unsigned len, unsigned flags,
1660 struct page **pagep, void **fsdata)
1661 {
1662 struct inode *inode = mapping->host;
1663 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1664 struct page *page = NULL;
1665 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1666 bool need_balance = false;
1667 block_t blkaddr = NULL_ADDR;
1668 int err = 0;
1669
1670 if (trace_android_fs_datawrite_start_enabled()) {
1671 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
1672
1673 path = android_fstrace_get_pathname(pathbuf,
1674 MAX_TRACE_PATHBUF_LEN,
1675 inode);
1676 trace_android_fs_datawrite_start(inode, pos, len,
1677 current->pid, path,
1678 current->comm);
1679 }
1680 trace_f2fs_write_begin(inode, pos, len, flags);
1681
1682 /*
1683 * We should check this at this moment to avoid deadlock on inode page
1684 * and #0 page. The locking rule for inline_data conversion should be:
1685 * lock_page(page #0) -> lock_page(inode_page)
1686 */
1687 if (index != 0) {
1688 err = f2fs_convert_inline_inode(inode);
1689 if (err)
1690 goto fail;
1691 }
1692 repeat:
1693 page = grab_cache_page_write_begin(mapping, index, flags);
1694 if (!page) {
1695 err = -ENOMEM;
1696 goto fail;
1697 }
1698
1699 *pagep = page;
1700
1701 err = prepare_write_begin(sbi, page, pos, len,
1702 &blkaddr, &need_balance);
1703 if (err)
1704 goto fail;
1705
1706 if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
1707 unlock_page(page);
1708 f2fs_balance_fs(sbi, true);
1709 lock_page(page);
1710 if (page->mapping != mapping) {
1711 /* The page got truncated from under us */
1712 f2fs_put_page(page, 1);
1713 goto repeat;
1714 }
1715 }
1716
1717 f2fs_wait_on_page_writeback(page, DATA, false);
1718
1719 /* wait for GCed encrypted page writeback */
1720 if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1721 f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1722
1723 if (len == PAGE_SIZE || PageUptodate(page))
1724 return 0;
1725
1726 if (blkaddr == NEW_ADDR) {
1727 zero_user_segment(page, 0, PAGE_SIZE);
1728 SetPageUptodate(page);
1729 } else {
1730 struct bio *bio;
1731
1732 bio = f2fs_grab_bio(inode, blkaddr, 1);
1733 if (IS_ERR(bio)) {
1734 err = PTR_ERR(bio);
1735 goto fail;
1736 }
1737 bio->bi_rw = READ_SYNC;
1738 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1739 bio_put(bio);
1740 err = -EFAULT;
1741 goto fail;
1742 }
1743
1744 __submit_bio(sbi, bio, DATA);
1745
1746 lock_page(page);
1747 if (unlikely(page->mapping != mapping)) {
1748 f2fs_put_page(page, 1);
1749 goto repeat;
1750 }
1751 if (unlikely(!PageUptodate(page))) {
1752 err = -EIO;
1753 goto fail;
1754 }
1755 }
1756 return 0;
1757
1758 fail:
1759 f2fs_put_page(page, 1);
1760 f2fs_write_failed(mapping, pos + len);
1761 return err;
1762 }
1763
1764 static int f2fs_write_end(struct file *file,
1765 struct address_space *mapping,
1766 loff_t pos, unsigned len, unsigned copied,
1767 struct page *page, void *fsdata)
1768 {
1769 struct inode *inode = page->mapping->host;
1770
1771 trace_android_fs_datawrite_end(inode, pos, len);
1772 trace_f2fs_write_end(inode, pos, len, copied);
1773
1774 /*
1775 * This should be come from len == PAGE_SIZE, and we expect copied
1776 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
1777 * let generic_perform_write() try to copy data again through copied=0.
1778 */
1779 if (!PageUptodate(page)) {
1780 if (unlikely(copied != PAGE_SIZE))
1781 copied = 0;
1782 else
1783 SetPageUptodate(page);
1784 }
1785 if (!copied)
1786 goto unlock_out;
1787
1788 set_page_dirty(page);
1789
1790 if (pos + copied > i_size_read(inode))
1791 f2fs_i_size_write(inode, pos + copied);
1792 unlock_out:
1793 f2fs_put_page(page, 1);
1794 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1795 return copied;
1796 }
1797
1798 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1799 loff_t offset)
1800 {
1801 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1802
1803 if (offset & blocksize_mask)
1804 return -EINVAL;
1805
1806 if (iov_iter_alignment(iter) & blocksize_mask)
1807 return -EINVAL;
1808
1809 return 0;
1810 }
1811
1812 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1813 loff_t offset)
1814 {
1815 struct address_space *mapping = iocb->ki_filp->f_mapping;
1816 struct inode *inode = mapping->host;
1817 size_t count = iov_iter_count(iter);
1818 int rw = iov_iter_rw(iter);
1819 int err;
1820
1821 err = check_direct_IO(inode, iter, offset);
1822 if (err)
1823 return err;
1824
1825 if (__force_buffered_io(inode, rw))
1826 return 0;
1827
1828 if (trace_android_fs_dataread_start_enabled() &&
1829 (iov_iter_rw(iter) == READ)) {
1830 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
1831
1832 path = android_fstrace_get_pathname(pathbuf,
1833 MAX_TRACE_PATHBUF_LEN,
1834 inode);
1835 trace_android_fs_dataread_start(inode, offset,
1836 count, current->pid, path,
1837 current->comm);
1838 }
1839 if (trace_android_fs_datawrite_start_enabled() &&
1840 (iov_iter_rw(iter) == WRITE)) {
1841 char *path, pathbuf[MAX_TRACE_PATHBUF_LEN];
1842
1843 path = android_fstrace_get_pathname(pathbuf,
1844 MAX_TRACE_PATHBUF_LEN,
1845 inode);
1846 trace_android_fs_datawrite_start(inode, offset, count,
1847 current->pid, path,
1848 current->comm);
1849 }
1850 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1851
1852 down_read(&F2FS_I(inode)->dio_rwsem[rw]);
1853 err = blockdev_direct_IO(iocb, inode, iter, offset, get_data_block_dio);
1854 up_read(&F2FS_I(inode)->dio_rwsem[rw]);
1855
1856 if (rw == WRITE) {
1857 if (err > 0)
1858 set_inode_flag(inode, FI_UPDATE_WRITE);
1859 else if (err < 0)
1860 f2fs_write_failed(mapping, offset + count);
1861 }
1862
1863 if (trace_android_fs_dataread_start_enabled() &&
1864 (iov_iter_rw(iter) == READ))
1865 trace_android_fs_dataread_end(inode, offset, count);
1866 if (trace_android_fs_datawrite_start_enabled() &&
1867 (iov_iter_rw(iter) == WRITE))
1868 trace_android_fs_datawrite_end(inode, offset, count);
1869
1870 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1871
1872 return err;
1873 }
1874
1875 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1876 unsigned int length)
1877 {
1878 struct inode *inode = page->mapping->host;
1879 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1880
1881 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1882 (offset % PAGE_SIZE || length != PAGE_SIZE))
1883 return;
1884
1885 if (PageDirty(page)) {
1886 if (inode->i_ino == F2FS_META_INO(sbi)) {
1887 dec_page_count(sbi, F2FS_DIRTY_META);
1888 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
1889 dec_page_count(sbi, F2FS_DIRTY_NODES);
1890 } else {
1891 inode_dec_dirty_pages(inode);
1892 remove_dirty_inode(inode);
1893 }
1894 }
1895
1896 /* This is atomic written page, keep Private */
1897 if (IS_ATOMIC_WRITTEN_PAGE(page))
1898 return;
1899
1900 set_page_private(page, 0);
1901 ClearPagePrivate(page);
1902 }
1903
1904 int f2fs_release_page(struct page *page, gfp_t wait)
1905 {
1906 /* If this is dirty page, keep PagePrivate */
1907 if (PageDirty(page))
1908 return 0;
1909
1910 /* This is atomic written page, keep Private */
1911 if (IS_ATOMIC_WRITTEN_PAGE(page))
1912 return 0;
1913
1914 set_page_private(page, 0);
1915 ClearPagePrivate(page);
1916 return 1;
1917 }
1918
1919 /*
1920 * This was copied from __set_page_dirty_buffers which gives higher performance
1921 * in very high speed storages. (e.g., pmem)
1922 */
1923 void f2fs_set_page_dirty_nobuffers(struct page *page)
1924 {
1925 struct address_space *mapping = page->mapping;
1926 struct mem_cgroup *memcg;
1927 unsigned long flags;
1928
1929 if (unlikely(!mapping))
1930 return;
1931
1932 spin_lock(&mapping->private_lock);
1933 memcg = mem_cgroup_begin_page_stat(page);
1934 SetPageDirty(page);
1935 spin_unlock(&mapping->private_lock);
1936
1937 spin_lock_irqsave(&mapping->tree_lock, flags);
1938 WARN_ON_ONCE(!PageUptodate(page));
1939 account_page_dirtied(page, mapping, memcg);
1940 radix_tree_tag_set(&mapping->page_tree,
1941 page_index(page), PAGECACHE_TAG_DIRTY);
1942 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1943
1944 mem_cgroup_end_page_stat(memcg);
1945
1946 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1947 return;
1948 }
1949
1950 static int f2fs_set_data_page_dirty(struct page *page)
1951 {
1952 struct address_space *mapping = page->mapping;
1953 struct inode *inode = mapping->host;
1954
1955 trace_f2fs_set_page_dirty(page, DATA);
1956
1957 if (!PageUptodate(page))
1958 SetPageUptodate(page);
1959
1960 if (f2fs_is_atomic_file(inode)) {
1961 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1962 register_inmem_page(inode, page);
1963 return 1;
1964 }
1965 /*
1966 * Previously, this page has been registered, we just
1967 * return here.
1968 */
1969 return 0;
1970 }
1971
1972 if (!PageDirty(page)) {
1973 f2fs_set_page_dirty_nobuffers(page);
1974 update_dirty_page(inode, page);
1975 return 1;
1976 }
1977 return 0;
1978 }
1979
1980 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1981 {
1982 struct inode *inode = mapping->host;
1983
1984 if (f2fs_has_inline_data(inode))
1985 return 0;
1986
1987 /* make sure allocating whole blocks */
1988 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1989 filemap_write_and_wait(mapping);
1990
1991 return generic_block_bmap(mapping, block, get_data_block_bmap);
1992 }
1993
1994 #ifdef CONFIG_MIGRATION
1995 #include <linux/migrate.h>
1996
1997 int f2fs_migrate_page(struct address_space *mapping,
1998 struct page *newpage, struct page *page, enum migrate_mode mode)
1999 {
2000 int rc, extra_count;
2001 struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2002 bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2003
2004 BUG_ON(PageWriteback(page));
2005
2006 /* migrating an atomic written page is safe with the inmem_lock hold */
2007 if (atomic_written && !mutex_trylock(&fi->inmem_lock))
2008 return -EAGAIN;
2009
2010 /*
2011 * A reference is expected if PagePrivate set when move mapping,
2012 * however F2FS breaks this for maintaining dirty page counts when
2013 * truncating pages. So here adjusting the 'extra_count' make it work.
2014 */
2015 extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2016 rc = migrate_page_move_mapping(mapping, newpage,
2017 page, NULL, mode, extra_count);
2018 if (rc != MIGRATEPAGE_SUCCESS) {
2019 if (atomic_written)
2020 mutex_unlock(&fi->inmem_lock);
2021 return rc;
2022 }
2023
2024 if (atomic_written) {
2025 struct inmem_pages *cur;
2026 list_for_each_entry(cur, &fi->inmem_pages, list)
2027 if (cur->page == page) {
2028 cur->page = newpage;
2029 break;
2030 }
2031 mutex_unlock(&fi->inmem_lock);
2032 put_page(page);
2033 get_page(newpage);
2034 }
2035
2036 if (PagePrivate(page))
2037 SetPagePrivate(newpage);
2038 set_page_private(newpage, page_private(page));
2039
2040 migrate_page_copy(newpage, page);
2041
2042 return MIGRATEPAGE_SUCCESS;
2043 }
2044 #endif
2045
2046 const struct address_space_operations f2fs_dblock_aops = {
2047 .readpage = f2fs_read_data_page,
2048 .readpages = f2fs_read_data_pages,
2049 .writepage = f2fs_write_data_page,
2050 .writepages = f2fs_write_data_pages,
2051 .write_begin = f2fs_write_begin,
2052 .write_end = f2fs_write_end,
2053 .set_page_dirty = f2fs_set_data_page_dirty,
2054 .invalidatepage = f2fs_invalidate_page,
2055 .releasepage = f2fs_release_page,
2056 .direct_IO = f2fs_direct_IO,
2057 .bmap = f2fs_bmap,
2058 #ifdef CONFIG_MIGRATION
2059 .migratepage = f2fs_migrate_page,
2060 #endif
2061 };