f2fs: check return value of f2fs_readpage in find_data_page
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/aio.h>
16 #include <linux/writeback.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include <trace/events/f2fs.h>
26
27 /*
28 * Lock ordering for the change of data block address:
29 * ->data_page
30 * ->node_page
31 * update block addresses in the node page
32 */
33 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
34 {
35 struct f2fs_node *rn;
36 __le32 *addr_array;
37 struct page *node_page = dn->node_page;
38 unsigned int ofs_in_node = dn->ofs_in_node;
39
40 f2fs_wait_on_page_writeback(node_page, NODE, false);
41
42 rn = F2FS_NODE(node_page);
43
44 /* Get physical address of data block */
45 addr_array = blkaddr_in_node(rn);
46 addr_array[ofs_in_node] = cpu_to_le32(new_addr);
47 set_page_dirty(node_page);
48 }
49
50 int reserve_new_block(struct dnode_of_data *dn)
51 {
52 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
53
54 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
55 return -EPERM;
56 if (!inc_valid_block_count(sbi, dn->inode, 1))
57 return -ENOSPC;
58
59 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
60
61 __set_data_blkaddr(dn, NEW_ADDR);
62 dn->data_blkaddr = NEW_ADDR;
63 sync_inode_page(dn);
64 return 0;
65 }
66
67 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
68 {
69 bool need_put = dn->inode_page ? false : true;
70 int err;
71
72 err = get_dnode_of_data(dn, index, ALLOC_NODE);
73 if (err)
74 return err;
75 if (dn->data_blkaddr == NULL_ADDR)
76 err = reserve_new_block(dn);
77
78 if (need_put)
79 f2fs_put_dnode(dn);
80 return err;
81 }
82
83 static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
84 struct buffer_head *bh_result)
85 {
86 struct f2fs_inode_info *fi = F2FS_I(inode);
87 pgoff_t start_fofs, end_fofs;
88 block_t start_blkaddr;
89
90 if (is_inode_flag_set(fi, FI_NO_EXTENT))
91 return 0;
92
93 read_lock(&fi->ext.ext_lock);
94 if (fi->ext.len == 0) {
95 read_unlock(&fi->ext.ext_lock);
96 return 0;
97 }
98
99 stat_inc_total_hit(inode->i_sb);
100
101 start_fofs = fi->ext.fofs;
102 end_fofs = fi->ext.fofs + fi->ext.len - 1;
103 start_blkaddr = fi->ext.blk_addr;
104
105 if (pgofs >= start_fofs && pgofs <= end_fofs) {
106 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
107 size_t count;
108
109 clear_buffer_new(bh_result);
110 map_bh(bh_result, inode->i_sb,
111 start_blkaddr + pgofs - start_fofs);
112 count = end_fofs - pgofs + 1;
113 if (count < (UINT_MAX >> blkbits))
114 bh_result->b_size = (count << blkbits);
115 else
116 bh_result->b_size = UINT_MAX;
117
118 stat_inc_read_hit(inode->i_sb);
119 read_unlock(&fi->ext.ext_lock);
120 return 1;
121 }
122 read_unlock(&fi->ext.ext_lock);
123 return 0;
124 }
125
126 void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
127 {
128 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
129 pgoff_t fofs, start_fofs, end_fofs;
130 block_t start_blkaddr, end_blkaddr;
131 int need_update = true;
132
133 f2fs_bug_on(blk_addr == NEW_ADDR);
134 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
135 dn->ofs_in_node;
136
137 /* Update the page address in the parent node */
138 __set_data_blkaddr(dn, blk_addr);
139
140 if (is_inode_flag_set(fi, FI_NO_EXTENT))
141 return;
142
143 write_lock(&fi->ext.ext_lock);
144
145 start_fofs = fi->ext.fofs;
146 end_fofs = fi->ext.fofs + fi->ext.len - 1;
147 start_blkaddr = fi->ext.blk_addr;
148 end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
149
150 /* Drop and initialize the matched extent */
151 if (fi->ext.len == 1 && fofs == start_fofs)
152 fi->ext.len = 0;
153
154 /* Initial extent */
155 if (fi->ext.len == 0) {
156 if (blk_addr != NULL_ADDR) {
157 fi->ext.fofs = fofs;
158 fi->ext.blk_addr = blk_addr;
159 fi->ext.len = 1;
160 }
161 goto end_update;
162 }
163
164 /* Front merge */
165 if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
166 fi->ext.fofs--;
167 fi->ext.blk_addr--;
168 fi->ext.len++;
169 goto end_update;
170 }
171
172 /* Back merge */
173 if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
174 fi->ext.len++;
175 goto end_update;
176 }
177
178 /* Split the existing extent */
179 if (fi->ext.len > 1 &&
180 fofs >= start_fofs && fofs <= end_fofs) {
181 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
182 fi->ext.len = fofs - start_fofs;
183 } else {
184 fi->ext.fofs = fofs + 1;
185 fi->ext.blk_addr = start_blkaddr +
186 fofs - start_fofs + 1;
187 fi->ext.len -= fofs - start_fofs + 1;
188 }
189 } else {
190 need_update = false;
191 }
192
193 /* Finally, if the extent is very fragmented, let's drop the cache. */
194 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
195 fi->ext.len = 0;
196 set_inode_flag(fi, FI_NO_EXTENT);
197 need_update = true;
198 }
199 end_update:
200 write_unlock(&fi->ext.ext_lock);
201 if (need_update)
202 sync_inode_page(dn);
203 return;
204 }
205
206 struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
207 {
208 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
209 struct address_space *mapping = inode->i_mapping;
210 struct dnode_of_data dn;
211 struct page *page;
212 int err;
213
214 page = find_get_page(mapping, index);
215 if (page && PageUptodate(page))
216 return page;
217 f2fs_put_page(page, 0);
218
219 set_new_dnode(&dn, inode, NULL, NULL, 0);
220 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
221 if (err)
222 return ERR_PTR(err);
223 f2fs_put_dnode(&dn);
224
225 if (dn.data_blkaddr == NULL_ADDR)
226 return ERR_PTR(-ENOENT);
227
228 /* By fallocate(), there is no cached page, but with NEW_ADDR */
229 if (dn.data_blkaddr == NEW_ADDR)
230 return ERR_PTR(-EINVAL);
231
232 page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
233 if (!page)
234 return ERR_PTR(-ENOMEM);
235
236 if (PageUptodate(page)) {
237 unlock_page(page);
238 return page;
239 }
240
241 err = f2fs_readpage(sbi, page, dn.data_blkaddr,
242 sync ? READ_SYNC : READA);
243 if (err)
244 return ERR_PTR(err);
245
246 if (sync) {
247 wait_on_page_locked(page);
248 if (!PageUptodate(page)) {
249 f2fs_put_page(page, 0);
250 return ERR_PTR(-EIO);
251 }
252 }
253 return page;
254 }
255
256 /*
257 * If it tries to access a hole, return an error.
258 * Because, the callers, functions in dir.c and GC, should be able to know
259 * whether this page exists or not.
260 */
261 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
262 {
263 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
264 struct address_space *mapping = inode->i_mapping;
265 struct dnode_of_data dn;
266 struct page *page;
267 int err;
268
269 repeat:
270 page = grab_cache_page_write_begin(mapping, index, AOP_FLAG_NOFS);
271 if (!page)
272 return ERR_PTR(-ENOMEM);
273
274 set_new_dnode(&dn, inode, NULL, NULL, 0);
275 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
276 if (err) {
277 f2fs_put_page(page, 1);
278 return ERR_PTR(err);
279 }
280 f2fs_put_dnode(&dn);
281
282 if (dn.data_blkaddr == NULL_ADDR) {
283 f2fs_put_page(page, 1);
284 return ERR_PTR(-ENOENT);
285 }
286
287 if (PageUptodate(page))
288 return page;
289
290 /*
291 * A new dentry page is allocated but not able to be written, since its
292 * new inode page couldn't be allocated due to -ENOSPC.
293 * In such the case, its blkaddr can be remained as NEW_ADDR.
294 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
295 */
296 if (dn.data_blkaddr == NEW_ADDR) {
297 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
298 SetPageUptodate(page);
299 return page;
300 }
301
302 err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
303 if (err)
304 return ERR_PTR(err);
305
306 lock_page(page);
307 if (!PageUptodate(page)) {
308 f2fs_put_page(page, 1);
309 return ERR_PTR(-EIO);
310 }
311 if (page->mapping != mapping) {
312 f2fs_put_page(page, 1);
313 goto repeat;
314 }
315 return page;
316 }
317
318 /*
319 * Caller ensures that this data page is never allocated.
320 * A new zero-filled data page is allocated in the page cache.
321 *
322 * Also, caller should grab and release a mutex by calling mutex_lock_op() and
323 * mutex_unlock_op().
324 * Note that, npage is set only by make_empty_dir.
325 */
326 struct page *get_new_data_page(struct inode *inode,
327 struct page *npage, pgoff_t index, bool new_i_size)
328 {
329 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
330 struct address_space *mapping = inode->i_mapping;
331 struct page *page;
332 struct dnode_of_data dn;
333 int err;
334
335 set_new_dnode(&dn, inode, npage, npage, 0);
336 err = f2fs_reserve_block(&dn, index);
337 if (err)
338 return ERR_PTR(err);
339
340 repeat:
341 page = grab_cache_page(mapping, index);
342 if (!page)
343 return ERR_PTR(-ENOMEM);
344
345 if (PageUptodate(page))
346 return page;
347
348 if (dn.data_blkaddr == NEW_ADDR) {
349 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
350 SetPageUptodate(page);
351 } else {
352 err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
353 if (err)
354 return ERR_PTR(err);
355 lock_page(page);
356 if (!PageUptodate(page)) {
357 f2fs_put_page(page, 1);
358 return ERR_PTR(-EIO);
359 }
360 if (page->mapping != mapping) {
361 f2fs_put_page(page, 1);
362 goto repeat;
363 }
364 }
365
366 if (new_i_size &&
367 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
368 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
369 /* Only the directory inode sets new_i_size */
370 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
371 mark_inode_dirty_sync(inode);
372 }
373 return page;
374 }
375
376 static void read_end_io(struct bio *bio, int err)
377 {
378 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
379 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
380
381 do {
382 struct page *page = bvec->bv_page;
383
384 if (--bvec >= bio->bi_io_vec)
385 prefetchw(&bvec->bv_page->flags);
386
387 if (uptodate) {
388 SetPageUptodate(page);
389 } else {
390 ClearPageUptodate(page);
391 SetPageError(page);
392 }
393 unlock_page(page);
394 } while (bvec >= bio->bi_io_vec);
395 bio_put(bio);
396 }
397
398 /*
399 * Fill the locked page with data located in the block address.
400 * Return unlocked page.
401 */
402 int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page,
403 block_t blk_addr, int type)
404 {
405 struct block_device *bdev = sbi->sb->s_bdev;
406 struct bio *bio;
407
408 trace_f2fs_readpage(page, blk_addr, type);
409
410 /* Allocate a new bio */
411 bio = f2fs_bio_alloc(bdev, 1);
412
413 /* Initialize the bio */
414 bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
415 bio->bi_end_io = read_end_io;
416
417 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
418 bio_put(bio);
419 f2fs_put_page(page, 1);
420 return -EFAULT;
421 }
422
423 submit_bio(type, bio);
424 return 0;
425 }
426
427 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, int rw)
428 {
429 struct f2fs_bio_info *io = &sbi->read_io;
430
431 if (!io->bio)
432 return;
433
434 trace_f2fs_submit_read_bio(sbi->sb, rw, META, io->bio);
435
436 mutex_lock(&io->io_mutex);
437 if (io->bio) {
438 submit_bio(rw, io->bio);
439 io->bio = NULL;
440 }
441 mutex_unlock(&io->io_mutex);
442 }
443
444 void submit_read_page(struct f2fs_sb_info *sbi, struct page *page,
445 block_t blk_addr, int rw)
446 {
447 struct block_device *bdev = sbi->sb->s_bdev;
448 struct f2fs_bio_info *io = &sbi->read_io;
449 int bio_blocks;
450
451 verify_block_addr(sbi, blk_addr);
452
453 mutex_lock(&io->io_mutex);
454
455 if (io->bio && io->last_block_in_bio != blk_addr - 1) {
456 submit_bio(rw, io->bio);
457 io->bio = NULL;
458 }
459 alloc_new:
460 if (io->bio == NULL) {
461 bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
462 io->bio = f2fs_bio_alloc(bdev, bio_blocks);
463 io->bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
464 io->bio->bi_end_io = read_end_io;
465 }
466
467 if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
468 PAGE_CACHE_SIZE) {
469 submit_bio(rw, io->bio);
470 io->bio = NULL;
471 goto alloc_new;
472 }
473
474 io->last_block_in_bio = blk_addr;
475
476 mutex_unlock(&io->io_mutex);
477 trace_f2fs_submit_read_page(page, rw, META, blk_addr);
478 }
479
480 /*
481 * This function should be used by the data read flow only where it
482 * does not check the "create" flag that indicates block allocation.
483 * The reason for this special functionality is to exploit VFS readahead
484 * mechanism.
485 */
486 static int get_data_block_ro(struct inode *inode, sector_t iblock,
487 struct buffer_head *bh_result, int create)
488 {
489 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
490 unsigned maxblocks = bh_result->b_size >> blkbits;
491 struct dnode_of_data dn;
492 pgoff_t pgofs;
493 int err;
494
495 /* Get the page offset from the block offset(iblock) */
496 pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
497
498 if (check_extent_cache(inode, pgofs, bh_result)) {
499 trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
500 return 0;
501 }
502
503 /* When reading holes, we need its node page */
504 set_new_dnode(&dn, inode, NULL, NULL, 0);
505 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
506 if (err) {
507 trace_f2fs_get_data_block(inode, iblock, bh_result, err);
508 return (err == -ENOENT) ? 0 : err;
509 }
510
511 /* It does not support data allocation */
512 f2fs_bug_on(create);
513
514 if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) {
515 int i;
516 unsigned int end_offset;
517
518 end_offset = IS_INODE(dn.node_page) ?
519 ADDRS_PER_INODE(F2FS_I(inode)) :
520 ADDRS_PER_BLOCK;
521
522 clear_buffer_new(bh_result);
523
524 /* Give more consecutive addresses for the read ahead */
525 for (i = 0; i < end_offset - dn.ofs_in_node; i++)
526 if (((datablock_addr(dn.node_page,
527 dn.ofs_in_node + i))
528 != (dn.data_blkaddr + i)) || maxblocks == i)
529 break;
530 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
531 bh_result->b_size = (((size_t)i) << blkbits);
532 }
533 f2fs_put_dnode(&dn);
534 trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
535 return 0;
536 }
537
538 static int f2fs_read_data_page(struct file *file, struct page *page)
539 {
540 return mpage_readpage(page, get_data_block_ro);
541 }
542
543 static int f2fs_read_data_pages(struct file *file,
544 struct address_space *mapping,
545 struct list_head *pages, unsigned nr_pages)
546 {
547 return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro);
548 }
549
550 int do_write_data_page(struct page *page)
551 {
552 struct inode *inode = page->mapping->host;
553 block_t old_blk_addr, new_blk_addr;
554 struct dnode_of_data dn;
555 int err = 0;
556
557 set_new_dnode(&dn, inode, NULL, NULL, 0);
558 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
559 if (err)
560 return err;
561
562 old_blk_addr = dn.data_blkaddr;
563
564 /* This page is already truncated */
565 if (old_blk_addr == NULL_ADDR)
566 goto out_writepage;
567
568 set_page_writeback(page);
569
570 /*
571 * If current allocation needs SSR,
572 * it had better in-place writes for updated data.
573 */
574 if (unlikely(old_blk_addr != NEW_ADDR &&
575 !is_cold_data(page) &&
576 need_inplace_update(inode))) {
577 rewrite_data_page(F2FS_SB(inode->i_sb), page,
578 old_blk_addr);
579 } else {
580 write_data_page(inode, page, &dn,
581 old_blk_addr, &new_blk_addr);
582 update_extent_cache(new_blk_addr, &dn);
583 }
584 out_writepage:
585 f2fs_put_dnode(&dn);
586 return err;
587 }
588
589 static int f2fs_write_data_page(struct page *page,
590 struct writeback_control *wbc)
591 {
592 struct inode *inode = page->mapping->host;
593 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
594 loff_t i_size = i_size_read(inode);
595 const pgoff_t end_index = ((unsigned long long) i_size)
596 >> PAGE_CACHE_SHIFT;
597 unsigned offset;
598 bool need_balance_fs = false;
599 int err = 0;
600
601 if (page->index < end_index)
602 goto write;
603
604 /*
605 * If the offset is out-of-range of file size,
606 * this page does not have to be written to disk.
607 */
608 offset = i_size & (PAGE_CACHE_SIZE - 1);
609 if ((page->index >= end_index + 1) || !offset) {
610 if (S_ISDIR(inode->i_mode)) {
611 dec_page_count(sbi, F2FS_DIRTY_DENTS);
612 inode_dec_dirty_dents(inode);
613 }
614 goto out;
615 }
616
617 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
618 write:
619 if (sbi->por_doing) {
620 err = AOP_WRITEPAGE_ACTIVATE;
621 goto redirty_out;
622 }
623
624 /* Dentry blocks are controlled by checkpoint */
625 if (S_ISDIR(inode->i_mode)) {
626 dec_page_count(sbi, F2FS_DIRTY_DENTS);
627 inode_dec_dirty_dents(inode);
628 err = do_write_data_page(page);
629 } else {
630 f2fs_lock_op(sbi);
631 err = do_write_data_page(page);
632 f2fs_unlock_op(sbi);
633 need_balance_fs = true;
634 }
635 if (err == -ENOENT)
636 goto out;
637 else if (err)
638 goto redirty_out;
639
640 if (wbc->for_reclaim)
641 f2fs_submit_bio(sbi, DATA, true);
642
643 clear_cold_data(page);
644 out:
645 unlock_page(page);
646 if (need_balance_fs)
647 f2fs_balance_fs(sbi);
648 return 0;
649
650 redirty_out:
651 wbc->pages_skipped++;
652 set_page_dirty(page);
653 return err;
654 }
655
656 #define MAX_DESIRED_PAGES_WP 4096
657
658 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
659 void *data)
660 {
661 struct address_space *mapping = data;
662 int ret = mapping->a_ops->writepage(page, wbc);
663 mapping_set_error(mapping, ret);
664 return ret;
665 }
666
667 static int f2fs_write_data_pages(struct address_space *mapping,
668 struct writeback_control *wbc)
669 {
670 struct inode *inode = mapping->host;
671 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
672 bool locked = false;
673 int ret;
674 long excess_nrtw = 0, desired_nrtw;
675
676 /* deal with chardevs and other special file */
677 if (!mapping->a_ops->writepage)
678 return 0;
679
680 if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) {
681 desired_nrtw = MAX_DESIRED_PAGES_WP;
682 excess_nrtw = desired_nrtw - wbc->nr_to_write;
683 wbc->nr_to_write = desired_nrtw;
684 }
685
686 if (!S_ISDIR(inode->i_mode)) {
687 mutex_lock(&sbi->writepages);
688 locked = true;
689 }
690 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
691 if (locked)
692 mutex_unlock(&sbi->writepages);
693 f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL));
694
695 remove_dirty_dir_inode(inode);
696
697 wbc->nr_to_write -= excess_nrtw;
698 return ret;
699 }
700
701 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
702 loff_t pos, unsigned len, unsigned flags,
703 struct page **pagep, void **fsdata)
704 {
705 struct inode *inode = mapping->host;
706 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
707 struct page *page;
708 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
709 struct dnode_of_data dn;
710 int err = 0;
711
712 f2fs_balance_fs(sbi);
713 repeat:
714 page = grab_cache_page_write_begin(mapping, index, flags);
715 if (!page)
716 return -ENOMEM;
717 *pagep = page;
718
719 f2fs_lock_op(sbi);
720 set_new_dnode(&dn, inode, NULL, NULL, 0);
721 err = f2fs_reserve_block(&dn, index);
722 f2fs_unlock_op(sbi);
723
724 if (err) {
725 f2fs_put_page(page, 1);
726 return err;
727 }
728
729 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
730 return 0;
731
732 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
733 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
734 unsigned end = start + len;
735
736 /* Reading beyond i_size is simple: memset to zero */
737 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
738 goto out;
739 }
740
741 if (dn.data_blkaddr == NEW_ADDR) {
742 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
743 } else {
744 err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
745 if (err)
746 return err;
747 lock_page(page);
748 if (!PageUptodate(page)) {
749 f2fs_put_page(page, 1);
750 return -EIO;
751 }
752 if (page->mapping != mapping) {
753 f2fs_put_page(page, 1);
754 goto repeat;
755 }
756 }
757 out:
758 SetPageUptodate(page);
759 clear_cold_data(page);
760 return 0;
761 }
762
763 static int f2fs_write_end(struct file *file,
764 struct address_space *mapping,
765 loff_t pos, unsigned len, unsigned copied,
766 struct page *page, void *fsdata)
767 {
768 struct inode *inode = page->mapping->host;
769
770 SetPageUptodate(page);
771 set_page_dirty(page);
772
773 if (pos + copied > i_size_read(inode)) {
774 i_size_write(inode, pos + copied);
775 mark_inode_dirty(inode);
776 update_inode_page(inode);
777 }
778
779 f2fs_put_page(page, 1);
780 return copied;
781 }
782
783 static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
784 const struct iovec *iov, loff_t offset, unsigned long nr_segs)
785 {
786 struct file *file = iocb->ki_filp;
787 struct inode *inode = file->f_mapping->host;
788
789 if (rw == WRITE)
790 return 0;
791
792 /* Needs synchronization with the cleaner */
793 return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
794 get_data_block_ro);
795 }
796
797 static void f2fs_invalidate_data_page(struct page *page, unsigned int offset,
798 unsigned int length)
799 {
800 struct inode *inode = page->mapping->host;
801 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
802 if (S_ISDIR(inode->i_mode) && PageDirty(page)) {
803 dec_page_count(sbi, F2FS_DIRTY_DENTS);
804 inode_dec_dirty_dents(inode);
805 }
806 ClearPagePrivate(page);
807 }
808
809 static int f2fs_release_data_page(struct page *page, gfp_t wait)
810 {
811 ClearPagePrivate(page);
812 return 1;
813 }
814
815 static int f2fs_set_data_page_dirty(struct page *page)
816 {
817 struct address_space *mapping = page->mapping;
818 struct inode *inode = mapping->host;
819
820 trace_f2fs_set_page_dirty(page, DATA);
821
822 SetPageUptodate(page);
823 if (!PageDirty(page)) {
824 __set_page_dirty_nobuffers(page);
825 set_dirty_dir_page(inode, page);
826 return 1;
827 }
828 return 0;
829 }
830
831 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
832 {
833 return generic_block_bmap(mapping, block, get_data_block_ro);
834 }
835
836 const struct address_space_operations f2fs_dblock_aops = {
837 .readpage = f2fs_read_data_page,
838 .readpages = f2fs_read_data_pages,
839 .writepage = f2fs_write_data_page,
840 .writepages = f2fs_write_data_pages,
841 .write_begin = f2fs_write_begin,
842 .write_end = f2fs_write_end,
843 .set_page_dirty = f2fs_set_data_page_dirty,
844 .invalidatepage = f2fs_invalidate_data_page,
845 .releasepage = f2fs_release_data_page,
846 .direct_IO = f2fs_direct_IO,
847 .bmap = f2fs_bmap,
848 };