93aae548cf804d8ae9269f489a5f6b37a0f0f52c
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/aio.h>
16 #include <linux/writeback.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include "trace.h"
26 #include <trace/events/f2fs.h>
27
28 static struct kmem_cache *extent_tree_slab;
29 static struct kmem_cache *extent_node_slab;
30
31 static void f2fs_read_end_io(struct bio *bio, int err)
32 {
33 struct bio_vec *bvec;
34 int i;
35
36 bio_for_each_segment_all(bvec, bio, i) {
37 struct page *page = bvec->bv_page;
38
39 if (!err) {
40 SetPageUptodate(page);
41 } else {
42 ClearPageUptodate(page);
43 SetPageError(page);
44 }
45 unlock_page(page);
46 }
47 bio_put(bio);
48 }
49
50 static void f2fs_write_end_io(struct bio *bio, int err)
51 {
52 struct f2fs_sb_info *sbi = bio->bi_private;
53 struct bio_vec *bvec;
54 int i;
55
56 bio_for_each_segment_all(bvec, bio, i) {
57 struct page *page = bvec->bv_page;
58
59 if (unlikely(err)) {
60 set_page_dirty(page);
61 set_bit(AS_EIO, &page->mapping->flags);
62 f2fs_stop_checkpoint(sbi);
63 }
64 end_page_writeback(page);
65 dec_page_count(sbi, F2FS_WRITEBACK);
66 }
67
68 if (!get_pages(sbi, F2FS_WRITEBACK) &&
69 !list_empty(&sbi->cp_wait.task_list))
70 wake_up(&sbi->cp_wait);
71
72 bio_put(bio);
73 }
74
75 /*
76 * Low-level block read/write IO operations.
77 */
78 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
79 int npages, bool is_read)
80 {
81 struct bio *bio;
82
83 /* No failure on bio allocation */
84 bio = bio_alloc(GFP_NOIO, npages);
85
86 bio->bi_bdev = sbi->sb->s_bdev;
87 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
88 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
89 bio->bi_private = sbi;
90
91 return bio;
92 }
93
94 static void __submit_merged_bio(struct f2fs_bio_info *io)
95 {
96 struct f2fs_io_info *fio = &io->fio;
97
98 if (!io->bio)
99 return;
100
101 if (is_read_io(fio->rw))
102 trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
103 else
104 trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
105
106 submit_bio(fio->rw, io->bio);
107 io->bio = NULL;
108 }
109
110 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
111 enum page_type type, int rw)
112 {
113 enum page_type btype = PAGE_TYPE_OF_BIO(type);
114 struct f2fs_bio_info *io;
115
116 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
117
118 down_write(&io->io_rwsem);
119
120 /* change META to META_FLUSH in the checkpoint procedure */
121 if (type >= META_FLUSH) {
122 io->fio.type = META_FLUSH;
123 if (test_opt(sbi, NOBARRIER))
124 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
125 else
126 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
127 }
128 __submit_merged_bio(io);
129 up_write(&io->io_rwsem);
130 }
131
132 /*
133 * Fill the locked page with data located in the block address.
134 * Return unlocked page.
135 */
136 int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
137 struct f2fs_io_info *fio)
138 {
139 struct bio *bio;
140
141 trace_f2fs_submit_page_bio(page, fio);
142 f2fs_trace_ios(page, fio, 0);
143
144 /* Allocate a new bio */
145 bio = __bio_alloc(sbi, fio->blk_addr, 1, is_read_io(fio->rw));
146
147 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
148 bio_put(bio);
149 f2fs_put_page(page, 1);
150 return -EFAULT;
151 }
152
153 submit_bio(fio->rw, bio);
154 return 0;
155 }
156
157 void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
158 struct f2fs_io_info *fio)
159 {
160 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
161 struct f2fs_bio_info *io;
162 bool is_read = is_read_io(fio->rw);
163
164 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
165
166 verify_block_addr(sbi, fio->blk_addr);
167
168 down_write(&io->io_rwsem);
169
170 if (!is_read)
171 inc_page_count(sbi, F2FS_WRITEBACK);
172
173 if (io->bio && (io->last_block_in_bio != fio->blk_addr - 1 ||
174 io->fio.rw != fio->rw))
175 __submit_merged_bio(io);
176 alloc_new:
177 if (io->bio == NULL) {
178 int bio_blocks = MAX_BIO_BLOCKS(sbi);
179
180 io->bio = __bio_alloc(sbi, fio->blk_addr, bio_blocks, is_read);
181 io->fio = *fio;
182 }
183
184 if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
185 PAGE_CACHE_SIZE) {
186 __submit_merged_bio(io);
187 goto alloc_new;
188 }
189
190 io->last_block_in_bio = fio->blk_addr;
191 f2fs_trace_ios(page, fio, 0);
192
193 up_write(&io->io_rwsem);
194 trace_f2fs_submit_page_mbio(page, fio);
195 }
196
197 /*
198 * Lock ordering for the change of data block address:
199 * ->data_page
200 * ->node_page
201 * update block addresses in the node page
202 */
203 void set_data_blkaddr(struct dnode_of_data *dn)
204 {
205 struct f2fs_node *rn;
206 __le32 *addr_array;
207 struct page *node_page = dn->node_page;
208 unsigned int ofs_in_node = dn->ofs_in_node;
209
210 f2fs_wait_on_page_writeback(node_page, NODE);
211
212 rn = F2FS_NODE(node_page);
213
214 /* Get physical address of data block */
215 addr_array = blkaddr_in_node(rn);
216 addr_array[ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
217 set_page_dirty(node_page);
218 }
219
220 int reserve_new_block(struct dnode_of_data *dn)
221 {
222 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
223
224 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
225 return -EPERM;
226 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
227 return -ENOSPC;
228
229 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
230
231 dn->data_blkaddr = NEW_ADDR;
232 set_data_blkaddr(dn);
233 mark_inode_dirty(dn->inode);
234 sync_inode_page(dn);
235 return 0;
236 }
237
238 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
239 {
240 bool need_put = dn->inode_page ? false : true;
241 int err;
242
243 err = get_dnode_of_data(dn, index, ALLOC_NODE);
244 if (err)
245 return err;
246
247 if (dn->data_blkaddr == NULL_ADDR)
248 err = reserve_new_block(dn);
249 if (err || need_put)
250 f2fs_put_dnode(dn);
251 return err;
252 }
253
254 static void f2fs_map_bh(struct super_block *sb, pgoff_t pgofs,
255 struct extent_info *ei, struct buffer_head *bh_result)
256 {
257 unsigned int blkbits = sb->s_blocksize_bits;
258 size_t max_size = bh_result->b_size;
259 size_t mapped_size;
260
261 clear_buffer_new(bh_result);
262 map_bh(bh_result, sb, ei->blk + pgofs - ei->fofs);
263 mapped_size = (ei->fofs + ei->len - pgofs) << blkbits;
264 bh_result->b_size = min(max_size, mapped_size);
265 }
266
267 static bool lookup_extent_info(struct inode *inode, pgoff_t pgofs,
268 struct extent_info *ei)
269 {
270 struct f2fs_inode_info *fi = F2FS_I(inode);
271 pgoff_t start_fofs, end_fofs;
272 block_t start_blkaddr;
273
274 read_lock(&fi->ext_lock);
275 if (fi->ext.len == 0) {
276 read_unlock(&fi->ext_lock);
277 return false;
278 }
279
280 stat_inc_total_hit(inode->i_sb);
281
282 start_fofs = fi->ext.fofs;
283 end_fofs = fi->ext.fofs + fi->ext.len - 1;
284 start_blkaddr = fi->ext.blk;
285
286 if (pgofs >= start_fofs && pgofs <= end_fofs) {
287 *ei = fi->ext;
288 stat_inc_read_hit(inode->i_sb);
289 read_unlock(&fi->ext_lock);
290 return true;
291 }
292 read_unlock(&fi->ext_lock);
293 return false;
294 }
295
296 static bool update_extent_info(struct inode *inode, pgoff_t fofs,
297 block_t blkaddr)
298 {
299 struct f2fs_inode_info *fi = F2FS_I(inode);
300 pgoff_t start_fofs, end_fofs;
301 block_t start_blkaddr, end_blkaddr;
302 int need_update = true;
303
304 write_lock(&fi->ext_lock);
305
306 start_fofs = fi->ext.fofs;
307 end_fofs = fi->ext.fofs + fi->ext.len - 1;
308 start_blkaddr = fi->ext.blk;
309 end_blkaddr = fi->ext.blk + fi->ext.len - 1;
310
311 /* Drop and initialize the matched extent */
312 if (fi->ext.len == 1 && fofs == start_fofs)
313 fi->ext.len = 0;
314
315 /* Initial extent */
316 if (fi->ext.len == 0) {
317 if (blkaddr != NULL_ADDR) {
318 fi->ext.fofs = fofs;
319 fi->ext.blk = blkaddr;
320 fi->ext.len = 1;
321 }
322 goto end_update;
323 }
324
325 /* Front merge */
326 if (fofs == start_fofs - 1 && blkaddr == start_blkaddr - 1) {
327 fi->ext.fofs--;
328 fi->ext.blk--;
329 fi->ext.len++;
330 goto end_update;
331 }
332
333 /* Back merge */
334 if (fofs == end_fofs + 1 && blkaddr == end_blkaddr + 1) {
335 fi->ext.len++;
336 goto end_update;
337 }
338
339 /* Split the existing extent */
340 if (fi->ext.len > 1 &&
341 fofs >= start_fofs && fofs <= end_fofs) {
342 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
343 fi->ext.len = fofs - start_fofs;
344 } else {
345 fi->ext.fofs = fofs + 1;
346 fi->ext.blk = start_blkaddr + fofs - start_fofs + 1;
347 fi->ext.len -= fofs - start_fofs + 1;
348 }
349 } else {
350 need_update = false;
351 }
352
353 /* Finally, if the extent is very fragmented, let's drop the cache. */
354 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
355 fi->ext.len = 0;
356 set_inode_flag(fi, FI_NO_EXTENT);
357 need_update = true;
358 }
359 end_update:
360 write_unlock(&fi->ext_lock);
361 return need_update;
362 }
363
364 static struct extent_node *__attach_extent_node(struct f2fs_sb_info *sbi,
365 struct extent_tree *et, struct extent_info *ei,
366 struct rb_node *parent, struct rb_node **p)
367 {
368 struct extent_node *en;
369
370 en = kmem_cache_alloc(extent_node_slab, GFP_ATOMIC);
371 if (!en)
372 return NULL;
373
374 en->ei = *ei;
375 INIT_LIST_HEAD(&en->list);
376
377 rb_link_node(&en->rb_node, parent, p);
378 rb_insert_color(&en->rb_node, &et->root);
379 et->count++;
380 atomic_inc(&sbi->total_ext_node);
381 return en;
382 }
383
384 static void __detach_extent_node(struct f2fs_sb_info *sbi,
385 struct extent_tree *et, struct extent_node *en)
386 {
387 rb_erase(&en->rb_node, &et->root);
388 et->count--;
389 atomic_dec(&sbi->total_ext_node);
390
391 if (et->cached_en == en)
392 et->cached_en = NULL;
393 }
394
395 static struct extent_tree *__find_extent_tree(struct f2fs_sb_info *sbi,
396 nid_t ino)
397 {
398 struct extent_tree *et;
399
400 down_read(&sbi->extent_tree_lock);
401 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
402 if (!et) {
403 up_read(&sbi->extent_tree_lock);
404 return NULL;
405 }
406 atomic_inc(&et->refcount);
407 up_read(&sbi->extent_tree_lock);
408
409 return et;
410 }
411
412 static struct extent_tree *__grab_extent_tree(struct inode *inode)
413 {
414 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
415 struct extent_tree *et;
416 nid_t ino = inode->i_ino;
417
418 down_write(&sbi->extent_tree_lock);
419 et = radix_tree_lookup(&sbi->extent_tree_root, ino);
420 if (!et) {
421 et = f2fs_kmem_cache_alloc(extent_tree_slab, GFP_NOFS);
422 f2fs_radix_tree_insert(&sbi->extent_tree_root, ino, et);
423 memset(et, 0, sizeof(struct extent_tree));
424 et->ino = ino;
425 et->root = RB_ROOT;
426 et->cached_en = NULL;
427 rwlock_init(&et->lock);
428 atomic_set(&et->refcount, 0);
429 et->count = 0;
430 sbi->total_ext_tree++;
431 }
432 atomic_inc(&et->refcount);
433 up_write(&sbi->extent_tree_lock);
434
435 return et;
436 }
437
438 static struct extent_node *__lookup_extent_tree(struct extent_tree *et,
439 unsigned int fofs)
440 {
441 struct rb_node *node = et->root.rb_node;
442 struct extent_node *en;
443
444 if (et->cached_en) {
445 struct extent_info *cei = &et->cached_en->ei;
446
447 if (cei->fofs <= fofs && cei->fofs + cei->len > fofs)
448 return et->cached_en;
449 }
450
451 while (node) {
452 en = rb_entry(node, struct extent_node, rb_node);
453
454 if (fofs < en->ei.fofs) {
455 node = node->rb_left;
456 } else if (fofs >= en->ei.fofs + en->ei.len) {
457 node = node->rb_right;
458 } else {
459 et->cached_en = en;
460 return en;
461 }
462 }
463 return NULL;
464 }
465
466 static struct extent_node *__try_back_merge(struct f2fs_sb_info *sbi,
467 struct extent_tree *et, struct extent_node *en)
468 {
469 struct extent_node *prev;
470 struct rb_node *node;
471
472 node = rb_prev(&en->rb_node);
473 if (!node)
474 return NULL;
475
476 prev = rb_entry(node, struct extent_node, rb_node);
477 if (__is_back_mergeable(&en->ei, &prev->ei)) {
478 en->ei.fofs = prev->ei.fofs;
479 en->ei.blk = prev->ei.blk;
480 en->ei.len += prev->ei.len;
481 __detach_extent_node(sbi, et, prev);
482 return prev;
483 }
484 return NULL;
485 }
486
487 static struct extent_node *__try_front_merge(struct f2fs_sb_info *sbi,
488 struct extent_tree *et, struct extent_node *en)
489 {
490 struct extent_node *next;
491 struct rb_node *node;
492
493 node = rb_next(&en->rb_node);
494 if (!node)
495 return NULL;
496
497 next = rb_entry(node, struct extent_node, rb_node);
498 if (__is_front_mergeable(&en->ei, &next->ei)) {
499 en->ei.len += next->ei.len;
500 __detach_extent_node(sbi, et, next);
501 return next;
502 }
503 return NULL;
504 }
505
506 static struct extent_node *__insert_extent_tree(struct f2fs_sb_info *sbi,
507 struct extent_tree *et, struct extent_info *ei,
508 struct extent_node **den)
509 {
510 struct rb_node **p = &et->root.rb_node;
511 struct rb_node *parent = NULL;
512 struct extent_node *en;
513
514 while (*p) {
515 parent = *p;
516 en = rb_entry(parent, struct extent_node, rb_node);
517
518 if (ei->fofs < en->ei.fofs) {
519 if (__is_front_mergeable(ei, &en->ei)) {
520 f2fs_bug_on(sbi, !den);
521 en->ei.fofs = ei->fofs;
522 en->ei.blk = ei->blk;
523 en->ei.len += ei->len;
524 *den = __try_back_merge(sbi, et, en);
525 return en;
526 }
527 p = &(*p)->rb_left;
528 } else if (ei->fofs >= en->ei.fofs + en->ei.len) {
529 if (__is_back_mergeable(ei, &en->ei)) {
530 f2fs_bug_on(sbi, !den);
531 en->ei.len += ei->len;
532 *den = __try_front_merge(sbi, et, en);
533 return en;
534 }
535 p = &(*p)->rb_right;
536 } else {
537 f2fs_bug_on(sbi, 1);
538 }
539 }
540
541 return __attach_extent_node(sbi, et, ei, parent, p);
542 }
543
544 static unsigned int __free_extent_tree(struct f2fs_sb_info *sbi,
545 struct extent_tree *et, bool free_all)
546 {
547 struct rb_node *node, *next;
548 struct extent_node *en;
549 unsigned int count = et->count;
550
551 node = rb_first(&et->root);
552 while (node) {
553 next = rb_next(node);
554 en = rb_entry(node, struct extent_node, rb_node);
555
556 if (free_all) {
557 spin_lock(&sbi->extent_lock);
558 if (!list_empty(&en->list))
559 list_del_init(&en->list);
560 spin_unlock(&sbi->extent_lock);
561 }
562
563 if (free_all || list_empty(&en->list)) {
564 __detach_extent_node(sbi, et, en);
565 kmem_cache_free(extent_node_slab, en);
566 }
567 node = next;
568 }
569
570 return count - et->count;
571 }
572
573 static void f2fs_init_extent_tree(struct inode *inode,
574 struct f2fs_extent *i_ext)
575 {
576 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
577 struct extent_tree *et;
578 struct extent_node *en;
579 struct extent_info ei;
580
581 if (le32_to_cpu(i_ext->len) < F2FS_MIN_EXTENT_LEN)
582 return;
583
584 et = __grab_extent_tree(inode);
585
586 write_lock(&et->lock);
587 if (et->count)
588 goto out;
589
590 set_extent_info(&ei, le32_to_cpu(i_ext->fofs),
591 le32_to_cpu(i_ext->blk), le32_to_cpu(i_ext->len));
592
593 en = __insert_extent_tree(sbi, et, &ei, NULL);
594 if (en) {
595 et->cached_en = en;
596
597 spin_lock(&sbi->extent_lock);
598 list_add_tail(&en->list, &sbi->extent_list);
599 spin_unlock(&sbi->extent_lock);
600 }
601 out:
602 write_unlock(&et->lock);
603 atomic_dec(&et->refcount);
604 }
605
606 static bool f2fs_lookup_extent_tree(struct inode *inode, pgoff_t pgofs,
607 struct extent_info *ei)
608 {
609 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
610 struct extent_tree *et;
611 struct extent_node *en;
612
613 trace_f2fs_lookup_extent_tree_start(inode, pgofs);
614
615 et = __find_extent_tree(sbi, inode->i_ino);
616 if (!et)
617 return false;
618
619 read_lock(&et->lock);
620 en = __lookup_extent_tree(et, pgofs);
621 if (en) {
622 *ei = en->ei;
623 spin_lock(&sbi->extent_lock);
624 if (!list_empty(&en->list))
625 list_move_tail(&en->list, &sbi->extent_list);
626 spin_unlock(&sbi->extent_lock);
627 stat_inc_read_hit(sbi->sb);
628 }
629 stat_inc_total_hit(sbi->sb);
630 read_unlock(&et->lock);
631
632 trace_f2fs_lookup_extent_tree_end(inode, pgofs, en);
633
634 atomic_dec(&et->refcount);
635 return en ? true : false;
636 }
637
638 static void f2fs_update_extent_tree(struct inode *inode, pgoff_t fofs,
639 block_t blkaddr)
640 {
641 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
642 struct extent_tree *et;
643 struct extent_node *en = NULL, *en1 = NULL, *en2 = NULL, *en3 = NULL;
644 struct extent_node *den = NULL;
645 struct extent_info ei, dei;
646 unsigned int endofs;
647
648 trace_f2fs_update_extent_tree(inode, fofs, blkaddr);
649
650 et = __grab_extent_tree(inode);
651
652 write_lock(&et->lock);
653
654 /* 1. lookup and remove existing extent info in cache */
655 en = __lookup_extent_tree(et, fofs);
656 if (!en)
657 goto update_extent;
658
659 dei = en->ei;
660 __detach_extent_node(sbi, et, en);
661
662 /* 2. if extent can be split more, split and insert the left part */
663 if (dei.len > 1) {
664 /* insert left part of split extent into cache */
665 if (fofs - dei.fofs >= F2FS_MIN_EXTENT_LEN) {
666 set_extent_info(&ei, dei.fofs, dei.blk,
667 fofs - dei.fofs);
668 en1 = __insert_extent_tree(sbi, et, &ei, NULL);
669 }
670
671 /* insert right part of split extent into cache */
672 endofs = dei.fofs + dei.len - 1;
673 if (endofs - fofs >= F2FS_MIN_EXTENT_LEN) {
674 set_extent_info(&ei, fofs + 1,
675 fofs - dei.fofs + dei.blk, endofs - fofs);
676 en2 = __insert_extent_tree(sbi, et, &ei, NULL);
677 }
678 }
679
680 update_extent:
681 /* 3. update extent in extent cache */
682 if (blkaddr) {
683 set_extent_info(&ei, fofs, blkaddr, 1);
684 en3 = __insert_extent_tree(sbi, et, &ei, &den);
685 }
686
687 /* 4. update in global extent list */
688 spin_lock(&sbi->extent_lock);
689 if (en && !list_empty(&en->list))
690 list_del(&en->list);
691 /*
692 * en1 and en2 split from en, they will become more and more smaller
693 * fragments after splitting several times. So if the length is smaller
694 * than F2FS_MIN_EXTENT_LEN, we will not add them into extent tree.
695 */
696 if (en1)
697 list_add_tail(&en1->list, &sbi->extent_list);
698 if (en2)
699 list_add_tail(&en2->list, &sbi->extent_list);
700 if (en3) {
701 if (list_empty(&en3->list))
702 list_add_tail(&en3->list, &sbi->extent_list);
703 else
704 list_move_tail(&en3->list, &sbi->extent_list);
705 }
706 if (den && !list_empty(&den->list))
707 list_del(&den->list);
708 spin_unlock(&sbi->extent_lock);
709
710 /* 5. release extent node */
711 if (en)
712 kmem_cache_free(extent_node_slab, en);
713 if (den)
714 kmem_cache_free(extent_node_slab, den);
715
716 write_unlock(&et->lock);
717 atomic_dec(&et->refcount);
718 }
719
720 void f2fs_preserve_extent_tree(struct inode *inode)
721 {
722 struct extent_tree *et;
723 struct extent_info *ext = &F2FS_I(inode)->ext;
724 bool sync = false;
725
726 if (!test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
727 return;
728
729 et = __find_extent_tree(F2FS_I_SB(inode), inode->i_ino);
730 if (!et) {
731 if (ext->len) {
732 ext->len = 0;
733 update_inode_page(inode);
734 }
735 return;
736 }
737
738 read_lock(&et->lock);
739 if (et->count) {
740 struct extent_node *en;
741
742 if (et->cached_en) {
743 en = et->cached_en;
744 } else {
745 struct rb_node *node = rb_first(&et->root);
746
747 if (!node)
748 node = rb_last(&et->root);
749 en = rb_entry(node, struct extent_node, rb_node);
750 }
751
752 if (__is_extent_same(ext, &en->ei))
753 goto out;
754
755 *ext = en->ei;
756 sync = true;
757 } else if (ext->len) {
758 ext->len = 0;
759 sync = true;
760 }
761 out:
762 read_unlock(&et->lock);
763 atomic_dec(&et->refcount);
764
765 if (sync)
766 update_inode_page(inode);
767 }
768
769 void f2fs_shrink_extent_tree(struct f2fs_sb_info *sbi, int nr_shrink)
770 {
771 struct extent_tree *treevec[EXT_TREE_VEC_SIZE];
772 struct extent_node *en, *tmp;
773 unsigned long ino = F2FS_ROOT_INO(sbi);
774 struct radix_tree_iter iter;
775 void **slot;
776 unsigned int found;
777 unsigned int node_cnt = 0, tree_cnt = 0;
778
779 if (!test_opt(sbi, EXTENT_CACHE))
780 return;
781
782 if (available_free_memory(sbi, EXTENT_CACHE))
783 return;
784
785 spin_lock(&sbi->extent_lock);
786 list_for_each_entry_safe(en, tmp, &sbi->extent_list, list) {
787 if (!nr_shrink--)
788 break;
789 list_del_init(&en->list);
790 }
791 spin_unlock(&sbi->extent_lock);
792
793 down_read(&sbi->extent_tree_lock);
794 while ((found = radix_tree_gang_lookup(&sbi->extent_tree_root,
795 (void **)treevec, ino, EXT_TREE_VEC_SIZE))) {
796 unsigned i;
797
798 ino = treevec[found - 1]->ino + 1;
799 for (i = 0; i < found; i++) {
800 struct extent_tree *et = treevec[i];
801
802 atomic_inc(&et->refcount);
803 write_lock(&et->lock);
804 node_cnt += __free_extent_tree(sbi, et, false);
805 write_unlock(&et->lock);
806 atomic_dec(&et->refcount);
807 }
808 }
809 up_read(&sbi->extent_tree_lock);
810
811 down_write(&sbi->extent_tree_lock);
812 radix_tree_for_each_slot(slot, &sbi->extent_tree_root, &iter,
813 F2FS_ROOT_INO(sbi)) {
814 struct extent_tree *et = (struct extent_tree *)*slot;
815
816 if (!atomic_read(&et->refcount) && !et->count) {
817 radix_tree_delete(&sbi->extent_tree_root, et->ino);
818 kmem_cache_free(extent_tree_slab, et);
819 sbi->total_ext_tree--;
820 tree_cnt++;
821 }
822 }
823 up_write(&sbi->extent_tree_lock);
824
825 trace_f2fs_shrink_extent_tree(sbi, node_cnt, tree_cnt);
826 }
827
828 void f2fs_destroy_extent_tree(struct inode *inode)
829 {
830 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
831 struct extent_tree *et;
832 unsigned int node_cnt = 0;
833
834 if (!test_opt(sbi, EXTENT_CACHE))
835 return;
836
837 et = __find_extent_tree(sbi, inode->i_ino);
838 if (!et)
839 goto out;
840
841 /* free all extent info belong to this extent tree */
842 write_lock(&et->lock);
843 node_cnt = __free_extent_tree(sbi, et, true);
844 write_unlock(&et->lock);
845
846 atomic_dec(&et->refcount);
847
848 /* try to find and delete extent tree entry in radix tree */
849 down_write(&sbi->extent_tree_lock);
850 et = radix_tree_lookup(&sbi->extent_tree_root, inode->i_ino);
851 if (!et) {
852 up_write(&sbi->extent_tree_lock);
853 goto out;
854 }
855 f2fs_bug_on(sbi, atomic_read(&et->refcount) || et->count);
856 radix_tree_delete(&sbi->extent_tree_root, inode->i_ino);
857 kmem_cache_free(extent_tree_slab, et);
858 sbi->total_ext_tree--;
859 up_write(&sbi->extent_tree_lock);
860 out:
861 trace_f2fs_destroy_extent_tree(inode, node_cnt);
862 return;
863 }
864
865 void f2fs_init_extent_cache(struct inode *inode, struct f2fs_extent *i_ext)
866 {
867 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
868 f2fs_init_extent_tree(inode, i_ext);
869
870 write_lock(&F2FS_I(inode)->ext_lock);
871 get_extent_info(&F2FS_I(inode)->ext, *i_ext);
872 write_unlock(&F2FS_I(inode)->ext_lock);
873 }
874
875 static bool f2fs_lookup_extent_cache(struct inode *inode, pgoff_t pgofs,
876 struct extent_info *ei)
877 {
878 if (is_inode_flag_set(F2FS_I(inode), FI_NO_EXTENT))
879 return false;
880
881 if (test_opt(F2FS_I_SB(inode), EXTENT_CACHE))
882 return f2fs_lookup_extent_tree(inode, pgofs, ei);
883
884 return lookup_extent_info(inode, pgofs, ei);
885 }
886
887 void f2fs_update_extent_cache(struct dnode_of_data *dn)
888 {
889 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
890 pgoff_t fofs;
891
892 f2fs_bug_on(F2FS_I_SB(dn->inode), dn->data_blkaddr == NEW_ADDR);
893
894 if (is_inode_flag_set(fi, FI_NO_EXTENT))
895 return;
896
897 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
898 dn->ofs_in_node;
899
900 if (test_opt(F2FS_I_SB(dn->inode), EXTENT_CACHE))
901 return f2fs_update_extent_tree(dn->inode, fofs,
902 dn->data_blkaddr);
903
904 if (update_extent_info(dn->inode, fofs, dn->data_blkaddr))
905 sync_inode_page(dn);
906 }
907
908 struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
909 {
910 struct address_space *mapping = inode->i_mapping;
911 struct dnode_of_data dn;
912 struct page *page;
913 struct extent_info ei;
914 int err;
915 struct f2fs_io_info fio = {
916 .type = DATA,
917 .rw = sync ? READ_SYNC : READA,
918 };
919
920 /*
921 * If sync is false, it needs to check its block allocation.
922 * This is need and triggered by two flows:
923 * gc and truncate_partial_data_page.
924 */
925 if (!sync)
926 goto search;
927
928 page = find_get_page(mapping, index);
929 if (page && PageUptodate(page))
930 return page;
931 f2fs_put_page(page, 0);
932 search:
933 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
934 dn.data_blkaddr = ei.blk + index - ei.fofs;
935 goto got_it;
936 }
937
938 set_new_dnode(&dn, inode, NULL, NULL, 0);
939 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
940 if (err)
941 return ERR_PTR(err);
942 f2fs_put_dnode(&dn);
943
944 if (dn.data_blkaddr == NULL_ADDR)
945 return ERR_PTR(-ENOENT);
946
947 /* By fallocate(), there is no cached page, but with NEW_ADDR */
948 if (unlikely(dn.data_blkaddr == NEW_ADDR))
949 return ERR_PTR(-EINVAL);
950
951 got_it:
952 page = grab_cache_page(mapping, index);
953 if (!page)
954 return ERR_PTR(-ENOMEM);
955
956 if (PageUptodate(page)) {
957 unlock_page(page);
958 return page;
959 }
960
961 fio.blk_addr = dn.data_blkaddr;
962 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
963 if (err)
964 return ERR_PTR(err);
965
966 if (sync) {
967 wait_on_page_locked(page);
968 if (unlikely(!PageUptodate(page))) {
969 f2fs_put_page(page, 0);
970 return ERR_PTR(-EIO);
971 }
972 }
973 return page;
974 }
975
976 /*
977 * If it tries to access a hole, return an error.
978 * Because, the callers, functions in dir.c and GC, should be able to know
979 * whether this page exists or not.
980 */
981 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
982 {
983 struct address_space *mapping = inode->i_mapping;
984 struct dnode_of_data dn;
985 struct page *page;
986 struct extent_info ei;
987 int err;
988 struct f2fs_io_info fio = {
989 .type = DATA,
990 .rw = READ_SYNC,
991 };
992 repeat:
993 page = grab_cache_page(mapping, index);
994 if (!page)
995 return ERR_PTR(-ENOMEM);
996
997 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
998 dn.data_blkaddr = ei.blk + index - ei.fofs;
999 goto got_it;
1000 }
1001
1002 set_new_dnode(&dn, inode, NULL, NULL, 0);
1003 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1004 if (err) {
1005 f2fs_put_page(page, 1);
1006 return ERR_PTR(err);
1007 }
1008 f2fs_put_dnode(&dn);
1009
1010 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1011 f2fs_put_page(page, 1);
1012 return ERR_PTR(-ENOENT);
1013 }
1014
1015 got_it:
1016 if (PageUptodate(page))
1017 return page;
1018
1019 /*
1020 * A new dentry page is allocated but not able to be written, since its
1021 * new inode page couldn't be allocated due to -ENOSPC.
1022 * In such the case, its blkaddr can be remained as NEW_ADDR.
1023 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
1024 */
1025 if (dn.data_blkaddr == NEW_ADDR) {
1026 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1027 SetPageUptodate(page);
1028 return page;
1029 }
1030
1031 fio.blk_addr = dn.data_blkaddr;
1032 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
1033 if (err)
1034 return ERR_PTR(err);
1035
1036 lock_page(page);
1037 if (unlikely(!PageUptodate(page))) {
1038 f2fs_put_page(page, 1);
1039 return ERR_PTR(-EIO);
1040 }
1041 if (unlikely(page->mapping != mapping)) {
1042 f2fs_put_page(page, 1);
1043 goto repeat;
1044 }
1045 return page;
1046 }
1047
1048 /*
1049 * Caller ensures that this data page is never allocated.
1050 * A new zero-filled data page is allocated in the page cache.
1051 *
1052 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1053 * f2fs_unlock_op().
1054 * Note that, ipage is set only by make_empty_dir.
1055 */
1056 struct page *get_new_data_page(struct inode *inode,
1057 struct page *ipage, pgoff_t index, bool new_i_size)
1058 {
1059 struct address_space *mapping = inode->i_mapping;
1060 struct page *page;
1061 struct dnode_of_data dn;
1062 int err;
1063
1064 set_new_dnode(&dn, inode, ipage, NULL, 0);
1065 err = f2fs_reserve_block(&dn, index);
1066 if (err)
1067 return ERR_PTR(err);
1068 repeat:
1069 page = grab_cache_page(mapping, index);
1070 if (!page) {
1071 err = -ENOMEM;
1072 goto put_err;
1073 }
1074
1075 if (PageUptodate(page))
1076 return page;
1077
1078 if (dn.data_blkaddr == NEW_ADDR) {
1079 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1080 SetPageUptodate(page);
1081 } else {
1082 struct f2fs_io_info fio = {
1083 .type = DATA,
1084 .rw = READ_SYNC,
1085 .blk_addr = dn.data_blkaddr,
1086 };
1087 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, &fio);
1088 if (err)
1089 goto put_err;
1090
1091 lock_page(page);
1092 if (unlikely(!PageUptodate(page))) {
1093 f2fs_put_page(page, 1);
1094 err = -EIO;
1095 goto put_err;
1096 }
1097 if (unlikely(page->mapping != mapping)) {
1098 f2fs_put_page(page, 1);
1099 goto repeat;
1100 }
1101 }
1102
1103 if (new_i_size &&
1104 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
1105 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
1106 /* Only the directory inode sets new_i_size */
1107 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
1108 }
1109 return page;
1110
1111 put_err:
1112 f2fs_put_dnode(&dn);
1113 return ERR_PTR(err);
1114 }
1115
1116 static int __allocate_data_block(struct dnode_of_data *dn)
1117 {
1118 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1119 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
1120 struct f2fs_summary sum;
1121 struct node_info ni;
1122 int seg = CURSEG_WARM_DATA;
1123 pgoff_t fofs;
1124
1125 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
1126 return -EPERM;
1127
1128 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
1129 if (dn->data_blkaddr == NEW_ADDR)
1130 goto alloc;
1131
1132 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
1133 return -ENOSPC;
1134
1135 alloc:
1136 get_node_info(sbi, dn->nid, &ni);
1137 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1138
1139 if (dn->ofs_in_node == 0 && dn->inode_page == dn->node_page)
1140 seg = CURSEG_DIRECT_IO;
1141
1142 allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
1143 &sum, seg);
1144
1145 /* direct IO doesn't use extent cache to maximize the performance */
1146 set_data_blkaddr(dn);
1147
1148 /* update i_size */
1149 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
1150 dn->ofs_in_node;
1151 if (i_size_read(dn->inode) < ((fofs + 1) << PAGE_CACHE_SHIFT))
1152 i_size_write(dn->inode, ((fofs + 1) << PAGE_CACHE_SHIFT));
1153
1154 return 0;
1155 }
1156
1157 static void __allocate_data_blocks(struct inode *inode, loff_t offset,
1158 size_t count)
1159 {
1160 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1161 struct dnode_of_data dn;
1162 u64 start = F2FS_BYTES_TO_BLK(offset);
1163 u64 len = F2FS_BYTES_TO_BLK(count);
1164 bool allocated;
1165 u64 end_offset;
1166
1167 while (len) {
1168 f2fs_balance_fs(sbi);
1169 f2fs_lock_op(sbi);
1170
1171 /* When reading holes, we need its node page */
1172 set_new_dnode(&dn, inode, NULL, NULL, 0);
1173 if (get_dnode_of_data(&dn, start, ALLOC_NODE))
1174 goto out;
1175
1176 allocated = false;
1177 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1178
1179 while (dn.ofs_in_node < end_offset && len) {
1180 block_t blkaddr;
1181
1182 blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1183 if (blkaddr == NULL_ADDR || blkaddr == NEW_ADDR) {
1184 if (__allocate_data_block(&dn))
1185 goto sync_out;
1186 allocated = true;
1187 }
1188 len--;
1189 start++;
1190 dn.ofs_in_node++;
1191 }
1192
1193 if (allocated)
1194 sync_inode_page(&dn);
1195
1196 f2fs_put_dnode(&dn);
1197 f2fs_unlock_op(sbi);
1198 }
1199 return;
1200
1201 sync_out:
1202 if (allocated)
1203 sync_inode_page(&dn);
1204 f2fs_put_dnode(&dn);
1205 out:
1206 f2fs_unlock_op(sbi);
1207 return;
1208 }
1209
1210 /*
1211 * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
1212 * If original data blocks are allocated, then give them to blockdev.
1213 * Otherwise,
1214 * a. preallocate requested block addresses
1215 * b. do not use extent cache for better performance
1216 * c. give the block addresses to blockdev
1217 */
1218 static int __get_data_block(struct inode *inode, sector_t iblock,
1219 struct buffer_head *bh_result, int create, bool fiemap)
1220 {
1221 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
1222 unsigned maxblocks = bh_result->b_size >> blkbits;
1223 struct dnode_of_data dn;
1224 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
1225 pgoff_t pgofs, end_offset;
1226 int err = 0, ofs = 1;
1227 struct extent_info ei;
1228 bool allocated = false;
1229
1230 /* Get the page offset from the block offset(iblock) */
1231 pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
1232
1233 if (f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1234 f2fs_map_bh(inode->i_sb, pgofs, &ei, bh_result);
1235 goto out;
1236 }
1237
1238 if (create)
1239 f2fs_lock_op(F2FS_I_SB(inode));
1240
1241 /* When reading holes, we need its node page */
1242 set_new_dnode(&dn, inode, NULL, NULL, 0);
1243 err = get_dnode_of_data(&dn, pgofs, mode);
1244 if (err) {
1245 if (err == -ENOENT)
1246 err = 0;
1247 goto unlock_out;
1248 }
1249 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1250 goto put_out;
1251
1252 if (dn.data_blkaddr != NULL_ADDR) {
1253 clear_buffer_new(bh_result);
1254 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
1255 } else if (create) {
1256 err = __allocate_data_block(&dn);
1257 if (err)
1258 goto put_out;
1259 allocated = true;
1260 set_buffer_new(bh_result);
1261 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
1262 } else {
1263 goto put_out;
1264 }
1265
1266 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1267 bh_result->b_size = (((size_t)1) << blkbits);
1268 dn.ofs_in_node++;
1269 pgofs++;
1270
1271 get_next:
1272 if (dn.ofs_in_node >= end_offset) {
1273 if (allocated)
1274 sync_inode_page(&dn);
1275 allocated = false;
1276 f2fs_put_dnode(&dn);
1277
1278 set_new_dnode(&dn, inode, NULL, NULL, 0);
1279 err = get_dnode_of_data(&dn, pgofs, mode);
1280 if (err) {
1281 if (err == -ENOENT)
1282 err = 0;
1283 goto unlock_out;
1284 }
1285 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
1286 goto put_out;
1287
1288 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
1289 }
1290
1291 if (maxblocks > (bh_result->b_size >> blkbits)) {
1292 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
1293 if (blkaddr == NULL_ADDR && create) {
1294 err = __allocate_data_block(&dn);
1295 if (err)
1296 goto sync_out;
1297 allocated = true;
1298 set_buffer_new(bh_result);
1299 blkaddr = dn.data_blkaddr;
1300 }
1301 /* Give more consecutive addresses for the readahead */
1302 if (blkaddr == (bh_result->b_blocknr + ofs)) {
1303 ofs++;
1304 dn.ofs_in_node++;
1305 pgofs++;
1306 bh_result->b_size += (((size_t)1) << blkbits);
1307 goto get_next;
1308 }
1309 }
1310 sync_out:
1311 if (allocated)
1312 sync_inode_page(&dn);
1313 put_out:
1314 f2fs_put_dnode(&dn);
1315 unlock_out:
1316 if (create)
1317 f2fs_unlock_op(F2FS_I_SB(inode));
1318 out:
1319 trace_f2fs_get_data_block(inode, iblock, bh_result, err);
1320 return err;
1321 }
1322
1323 static int get_data_block(struct inode *inode, sector_t iblock,
1324 struct buffer_head *bh_result, int create)
1325 {
1326 return __get_data_block(inode, iblock, bh_result, create, false);
1327 }
1328
1329 static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
1330 struct buffer_head *bh_result, int create)
1331 {
1332 return __get_data_block(inode, iblock, bh_result, create, true);
1333 }
1334
1335 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1336 u64 start, u64 len)
1337 {
1338 return generic_block_fiemap(inode, fieinfo,
1339 start, len, get_data_block_fiemap);
1340 }
1341
1342 static int f2fs_read_data_page(struct file *file, struct page *page)
1343 {
1344 struct inode *inode = page->mapping->host;
1345 int ret = -EAGAIN;
1346
1347 trace_f2fs_readpage(page, DATA);
1348
1349 /* If the file has inline data, try to read it directly */
1350 if (f2fs_has_inline_data(inode))
1351 ret = f2fs_read_inline_data(inode, page);
1352 if (ret == -EAGAIN)
1353 ret = mpage_readpage(page, get_data_block);
1354
1355 return ret;
1356 }
1357
1358 static int f2fs_read_data_pages(struct file *file,
1359 struct address_space *mapping,
1360 struct list_head *pages, unsigned nr_pages)
1361 {
1362 struct inode *inode = file->f_mapping->host;
1363
1364 /* If the file has inline data, skip readpages */
1365 if (f2fs_has_inline_data(inode))
1366 return 0;
1367
1368 return mpage_readpages(mapping, pages, nr_pages, get_data_block);
1369 }
1370
1371 int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
1372 {
1373 struct inode *inode = page->mapping->host;
1374 struct dnode_of_data dn;
1375 int err = 0;
1376
1377 set_new_dnode(&dn, inode, NULL, NULL, 0);
1378 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1379 if (err)
1380 return err;
1381
1382 fio->blk_addr = dn.data_blkaddr;
1383
1384 /* This page is already truncated */
1385 if (fio->blk_addr == NULL_ADDR) {
1386 ClearPageUptodate(page);
1387 goto out_writepage;
1388 }
1389
1390 set_page_writeback(page);
1391
1392 /*
1393 * If current allocation needs SSR,
1394 * it had better in-place writes for updated data.
1395 */
1396 if (unlikely(fio->blk_addr != NEW_ADDR &&
1397 !is_cold_data(page) &&
1398 need_inplace_update(inode))) {
1399 rewrite_data_page(page, fio);
1400 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
1401 trace_f2fs_do_write_data_page(page, IPU);
1402 } else {
1403 write_data_page(page, &dn, fio);
1404 set_data_blkaddr(&dn);
1405 f2fs_update_extent_cache(&dn);
1406 trace_f2fs_do_write_data_page(page, OPU);
1407 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
1408 if (page->index == 0)
1409 set_inode_flag(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1410 }
1411 out_writepage:
1412 f2fs_put_dnode(&dn);
1413 return err;
1414 }
1415
1416 static int f2fs_write_data_page(struct page *page,
1417 struct writeback_control *wbc)
1418 {
1419 struct inode *inode = page->mapping->host;
1420 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1421 loff_t i_size = i_size_read(inode);
1422 const pgoff_t end_index = ((unsigned long long) i_size)
1423 >> PAGE_CACHE_SHIFT;
1424 unsigned offset = 0;
1425 bool need_balance_fs = false;
1426 int err = 0;
1427 struct f2fs_io_info fio = {
1428 .type = DATA,
1429 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1430 };
1431
1432 trace_f2fs_writepage(page, DATA);
1433
1434 if (page->index < end_index)
1435 goto write;
1436
1437 /*
1438 * If the offset is out-of-range of file size,
1439 * this page does not have to be written to disk.
1440 */
1441 offset = i_size & (PAGE_CACHE_SIZE - 1);
1442 if ((page->index >= end_index + 1) || !offset)
1443 goto out;
1444
1445 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1446 write:
1447 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1448 goto redirty_out;
1449 if (f2fs_is_drop_cache(inode))
1450 goto out;
1451 if (f2fs_is_volatile_file(inode) && !wbc->for_reclaim &&
1452 available_free_memory(sbi, BASE_CHECK))
1453 goto redirty_out;
1454
1455 /* Dentry blocks are controlled by checkpoint */
1456 if (S_ISDIR(inode->i_mode)) {
1457 if (unlikely(f2fs_cp_error(sbi)))
1458 goto redirty_out;
1459 err = do_write_data_page(page, &fio);
1460 goto done;
1461 }
1462
1463 /* we should bypass data pages to proceed the kworkder jobs */
1464 if (unlikely(f2fs_cp_error(sbi))) {
1465 SetPageError(page);
1466 goto out;
1467 }
1468
1469 if (!wbc->for_reclaim)
1470 need_balance_fs = true;
1471 else if (has_not_enough_free_secs(sbi, 0))
1472 goto redirty_out;
1473
1474 err = -EAGAIN;
1475 f2fs_lock_op(sbi);
1476 if (f2fs_has_inline_data(inode))
1477 err = f2fs_write_inline_data(inode, page);
1478 if (err == -EAGAIN)
1479 err = do_write_data_page(page, &fio);
1480 f2fs_unlock_op(sbi);
1481 done:
1482 if (err && err != -ENOENT)
1483 goto redirty_out;
1484
1485 clear_cold_data(page);
1486 out:
1487 inode_dec_dirty_pages(inode);
1488 if (err)
1489 ClearPageUptodate(page);
1490 unlock_page(page);
1491 if (need_balance_fs)
1492 f2fs_balance_fs(sbi);
1493 if (wbc->for_reclaim)
1494 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1495 return 0;
1496
1497 redirty_out:
1498 redirty_page_for_writepage(wbc, page);
1499 return AOP_WRITEPAGE_ACTIVATE;
1500 }
1501
1502 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
1503 void *data)
1504 {
1505 struct address_space *mapping = data;
1506 int ret = mapping->a_ops->writepage(page, wbc);
1507 mapping_set_error(mapping, ret);
1508 return ret;
1509 }
1510
1511 static int f2fs_write_data_pages(struct address_space *mapping,
1512 struct writeback_control *wbc)
1513 {
1514 struct inode *inode = mapping->host;
1515 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1516 int ret;
1517 long diff;
1518
1519 trace_f2fs_writepages(mapping->host, wbc, DATA);
1520
1521 /* deal with chardevs and other special file */
1522 if (!mapping->a_ops->writepage)
1523 return 0;
1524
1525 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1526 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1527 available_free_memory(sbi, DIRTY_DENTS))
1528 goto skip_write;
1529
1530 /* during POR, we don't need to trigger writepage at all. */
1531 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1532 goto skip_write;
1533
1534 diff = nr_pages_to_write(sbi, DATA, wbc);
1535
1536 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
1537
1538 f2fs_submit_merged_bio(sbi, DATA, WRITE);
1539
1540 remove_dirty_dir_inode(inode);
1541
1542 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1543 return ret;
1544
1545 skip_write:
1546 wbc->pages_skipped += get_dirty_pages(inode);
1547 return 0;
1548 }
1549
1550 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1551 {
1552 struct inode *inode = mapping->host;
1553
1554 if (to > inode->i_size) {
1555 truncate_pagecache(inode, inode->i_size);
1556 truncate_blocks(inode, inode->i_size, true);
1557 }
1558 }
1559
1560 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1561 loff_t pos, unsigned len, unsigned flags,
1562 struct page **pagep, void **fsdata)
1563 {
1564 struct inode *inode = mapping->host;
1565 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1566 struct page *page, *ipage;
1567 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
1568 struct dnode_of_data dn;
1569 int err = 0;
1570
1571 trace_f2fs_write_begin(inode, pos, len, flags);
1572
1573 f2fs_balance_fs(sbi);
1574
1575 /*
1576 * We should check this at this moment to avoid deadlock on inode page
1577 * and #0 page. The locking rule for inline_data conversion should be:
1578 * lock_page(page #0) -> lock_page(inode_page)
1579 */
1580 if (index != 0) {
1581 err = f2fs_convert_inline_inode(inode);
1582 if (err)
1583 goto fail;
1584 }
1585 repeat:
1586 page = grab_cache_page_write_begin(mapping, index, flags);
1587 if (!page) {
1588 err = -ENOMEM;
1589 goto fail;
1590 }
1591
1592 *pagep = page;
1593
1594 f2fs_lock_op(sbi);
1595
1596 /* check inline_data */
1597 ipage = get_node_page(sbi, inode->i_ino);
1598 if (IS_ERR(ipage)) {
1599 err = PTR_ERR(ipage);
1600 goto unlock_fail;
1601 }
1602
1603 set_new_dnode(&dn, inode, ipage, ipage, 0);
1604
1605 if (f2fs_has_inline_data(inode)) {
1606 if (pos + len <= MAX_INLINE_DATA) {
1607 read_inline_data(page, ipage);
1608 set_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1609 sync_inode_page(&dn);
1610 goto put_next;
1611 }
1612 err = f2fs_convert_inline_page(&dn, page);
1613 if (err)
1614 goto put_fail;
1615 }
1616 err = f2fs_reserve_block(&dn, index);
1617 if (err)
1618 goto put_fail;
1619 put_next:
1620 f2fs_put_dnode(&dn);
1621 f2fs_unlock_op(sbi);
1622
1623 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
1624 return 0;
1625
1626 f2fs_wait_on_page_writeback(page, DATA);
1627
1628 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
1629 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1630 unsigned end = start + len;
1631
1632 /* Reading beyond i_size is simple: memset to zero */
1633 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
1634 goto out;
1635 }
1636
1637 if (dn.data_blkaddr == NEW_ADDR) {
1638 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1639 } else {
1640 struct f2fs_io_info fio = {
1641 .type = DATA,
1642 .rw = READ_SYNC,
1643 .blk_addr = dn.data_blkaddr,
1644 };
1645 err = f2fs_submit_page_bio(sbi, page, &fio);
1646 if (err)
1647 goto fail;
1648
1649 lock_page(page);
1650 if (unlikely(!PageUptodate(page))) {
1651 f2fs_put_page(page, 1);
1652 err = -EIO;
1653 goto fail;
1654 }
1655 if (unlikely(page->mapping != mapping)) {
1656 f2fs_put_page(page, 1);
1657 goto repeat;
1658 }
1659 }
1660 out:
1661 SetPageUptodate(page);
1662 clear_cold_data(page);
1663 return 0;
1664
1665 put_fail:
1666 f2fs_put_dnode(&dn);
1667 unlock_fail:
1668 f2fs_unlock_op(sbi);
1669 f2fs_put_page(page, 1);
1670 fail:
1671 f2fs_write_failed(mapping, pos + len);
1672 return err;
1673 }
1674
1675 static int f2fs_write_end(struct file *file,
1676 struct address_space *mapping,
1677 loff_t pos, unsigned len, unsigned copied,
1678 struct page *page, void *fsdata)
1679 {
1680 struct inode *inode = page->mapping->host;
1681
1682 trace_f2fs_write_end(inode, pos, len, copied);
1683
1684 set_page_dirty(page);
1685
1686 if (pos + copied > i_size_read(inode)) {
1687 i_size_write(inode, pos + copied);
1688 mark_inode_dirty(inode);
1689 update_inode_page(inode);
1690 }
1691
1692 f2fs_put_page(page, 1);
1693 return copied;
1694 }
1695
1696 static int check_direct_IO(struct inode *inode, int rw,
1697 struct iov_iter *iter, loff_t offset)
1698 {
1699 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1700
1701 if (rw == READ)
1702 return 0;
1703
1704 if (offset & blocksize_mask)
1705 return -EINVAL;
1706
1707 if (iov_iter_alignment(iter) & blocksize_mask)
1708 return -EINVAL;
1709
1710 return 0;
1711 }
1712
1713 static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
1714 struct iov_iter *iter, loff_t offset)
1715 {
1716 struct file *file = iocb->ki_filp;
1717 struct address_space *mapping = file->f_mapping;
1718 struct inode *inode = mapping->host;
1719 size_t count = iov_iter_count(iter);
1720 int err;
1721
1722 /* we don't need to use inline_data strictly */
1723 if (f2fs_has_inline_data(inode)) {
1724 err = f2fs_convert_inline_inode(inode);
1725 if (err)
1726 return err;
1727 }
1728
1729 if (check_direct_IO(inode, rw, iter, offset))
1730 return 0;
1731
1732 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1733
1734 if (rw & WRITE)
1735 __allocate_data_blocks(inode, offset, count);
1736
1737 err = blockdev_direct_IO(rw, iocb, inode, iter, offset, get_data_block);
1738 if (err < 0 && (rw & WRITE))
1739 f2fs_write_failed(mapping, offset + count);
1740
1741 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1742
1743 return err;
1744 }
1745
1746 void f2fs_invalidate_page(struct page *page, unsigned int offset,
1747 unsigned int length)
1748 {
1749 struct inode *inode = page->mapping->host;
1750 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1751
1752 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1753 (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE))
1754 return;
1755
1756 if (PageDirty(page)) {
1757 if (inode->i_ino == F2FS_META_INO(sbi))
1758 dec_page_count(sbi, F2FS_DIRTY_META);
1759 else if (inode->i_ino == F2FS_NODE_INO(sbi))
1760 dec_page_count(sbi, F2FS_DIRTY_NODES);
1761 else
1762 inode_dec_dirty_pages(inode);
1763 }
1764 ClearPagePrivate(page);
1765 }
1766
1767 int f2fs_release_page(struct page *page, gfp_t wait)
1768 {
1769 /* If this is dirty page, keep PagePrivate */
1770 if (PageDirty(page))
1771 return 0;
1772
1773 ClearPagePrivate(page);
1774 return 1;
1775 }
1776
1777 static int f2fs_set_data_page_dirty(struct page *page)
1778 {
1779 struct address_space *mapping = page->mapping;
1780 struct inode *inode = mapping->host;
1781
1782 trace_f2fs_set_page_dirty(page, DATA);
1783
1784 SetPageUptodate(page);
1785
1786 if (f2fs_is_atomic_file(inode)) {
1787 register_inmem_page(inode, page);
1788 return 1;
1789 }
1790
1791 mark_inode_dirty(inode);
1792
1793 if (!PageDirty(page)) {
1794 __set_page_dirty_nobuffers(page);
1795 update_dirty_page(inode, page);
1796 return 1;
1797 }
1798 return 0;
1799 }
1800
1801 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1802 {
1803 struct inode *inode = mapping->host;
1804
1805 /* we don't need to use inline_data strictly */
1806 if (f2fs_has_inline_data(inode)) {
1807 int err = f2fs_convert_inline_inode(inode);
1808 if (err)
1809 return err;
1810 }
1811 return generic_block_bmap(mapping, block, get_data_block);
1812 }
1813
1814 void init_extent_cache_info(struct f2fs_sb_info *sbi)
1815 {
1816 INIT_RADIX_TREE(&sbi->extent_tree_root, GFP_NOIO);
1817 init_rwsem(&sbi->extent_tree_lock);
1818 INIT_LIST_HEAD(&sbi->extent_list);
1819 spin_lock_init(&sbi->extent_lock);
1820 sbi->total_ext_tree = 0;
1821 atomic_set(&sbi->total_ext_node, 0);
1822 }
1823
1824 int __init create_extent_cache(void)
1825 {
1826 extent_tree_slab = f2fs_kmem_cache_create("f2fs_extent_tree",
1827 sizeof(struct extent_tree));
1828 if (!extent_tree_slab)
1829 return -ENOMEM;
1830 extent_node_slab = f2fs_kmem_cache_create("f2fs_extent_node",
1831 sizeof(struct extent_node));
1832 if (!extent_node_slab) {
1833 kmem_cache_destroy(extent_tree_slab);
1834 return -ENOMEM;
1835 }
1836 return 0;
1837 }
1838
1839 void destroy_extent_cache(void)
1840 {
1841 kmem_cache_destroy(extent_node_slab);
1842 kmem_cache_destroy(extent_tree_slab);
1843 }
1844
1845 const struct address_space_operations f2fs_dblock_aops = {
1846 .readpage = f2fs_read_data_page,
1847 .readpages = f2fs_read_data_pages,
1848 .writepage = f2fs_write_data_page,
1849 .writepages = f2fs_write_data_pages,
1850 .write_begin = f2fs_write_begin,
1851 .write_end = f2fs_write_end,
1852 .set_page_dirty = f2fs_set_data_page_dirty,
1853 .invalidatepage = f2fs_invalidate_page,
1854 .releasepage = f2fs_release_page,
1855 .direct_IO = f2fs_direct_IO,
1856 .bmap = f2fs_bmap,
1857 };