8e8b14d714fc8c024d763a78da0385d4485f6a96
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/blkdev.h>
18 #include <linux/bio.h>
19 #include <linux/prefetch.h>
20
21 #include "f2fs.h"
22 #include "node.h"
23 #include "segment.h"
24 #include <trace/events/f2fs.h>
25
26 /*
27 * Lock ordering for the change of data block address:
28 * ->data_page
29 * ->node_page
30 * update block addresses in the node page
31 */
32 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
33 {
34 struct f2fs_node *rn;
35 __le32 *addr_array;
36 struct page *node_page = dn->node_page;
37 unsigned int ofs_in_node = dn->ofs_in_node;
38
39 wait_on_page_writeback(node_page);
40
41 rn = (struct f2fs_node *)page_address(node_page);
42
43 /* Get physical address of data block */
44 addr_array = blkaddr_in_node(rn);
45 addr_array[ofs_in_node] = cpu_to_le32(new_addr);
46 set_page_dirty(node_page);
47 }
48
49 int reserve_new_block(struct dnode_of_data *dn)
50 {
51 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
52
53 if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
54 return -EPERM;
55 if (!inc_valid_block_count(sbi, dn->inode, 1))
56 return -ENOSPC;
57
58 __set_data_blkaddr(dn, NEW_ADDR);
59 dn->data_blkaddr = NEW_ADDR;
60 sync_inode_page(dn);
61 return 0;
62 }
63
64 static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
65 struct buffer_head *bh_result)
66 {
67 struct f2fs_inode_info *fi = F2FS_I(inode);
68 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
69 pgoff_t start_fofs, end_fofs;
70 block_t start_blkaddr;
71
72 read_lock(&fi->ext.ext_lock);
73 if (fi->ext.len == 0) {
74 read_unlock(&fi->ext.ext_lock);
75 return 0;
76 }
77
78 sbi->total_hit_ext++;
79 start_fofs = fi->ext.fofs;
80 end_fofs = fi->ext.fofs + fi->ext.len - 1;
81 start_blkaddr = fi->ext.blk_addr;
82
83 if (pgofs >= start_fofs && pgofs <= end_fofs) {
84 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
85 size_t count;
86
87 clear_buffer_new(bh_result);
88 map_bh(bh_result, inode->i_sb,
89 start_blkaddr + pgofs - start_fofs);
90 count = end_fofs - pgofs + 1;
91 if (count < (UINT_MAX >> blkbits))
92 bh_result->b_size = (count << blkbits);
93 else
94 bh_result->b_size = UINT_MAX;
95
96 sbi->read_hit_ext++;
97 read_unlock(&fi->ext.ext_lock);
98 return 1;
99 }
100 read_unlock(&fi->ext.ext_lock);
101 return 0;
102 }
103
104 void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
105 {
106 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
107 pgoff_t fofs, start_fofs, end_fofs;
108 block_t start_blkaddr, end_blkaddr;
109
110 BUG_ON(blk_addr == NEW_ADDR);
111 fofs = start_bidx_of_node(ofs_of_node(dn->node_page)) + dn->ofs_in_node;
112
113 /* Update the page address in the parent node */
114 __set_data_blkaddr(dn, blk_addr);
115
116 write_lock(&fi->ext.ext_lock);
117
118 start_fofs = fi->ext.fofs;
119 end_fofs = fi->ext.fofs + fi->ext.len - 1;
120 start_blkaddr = fi->ext.blk_addr;
121 end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
122
123 /* Drop and initialize the matched extent */
124 if (fi->ext.len == 1 && fofs == start_fofs)
125 fi->ext.len = 0;
126
127 /* Initial extent */
128 if (fi->ext.len == 0) {
129 if (blk_addr != NULL_ADDR) {
130 fi->ext.fofs = fofs;
131 fi->ext.blk_addr = blk_addr;
132 fi->ext.len = 1;
133 }
134 goto end_update;
135 }
136
137 /* Front merge */
138 if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
139 fi->ext.fofs--;
140 fi->ext.blk_addr--;
141 fi->ext.len++;
142 goto end_update;
143 }
144
145 /* Back merge */
146 if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
147 fi->ext.len++;
148 goto end_update;
149 }
150
151 /* Split the existing extent */
152 if (fi->ext.len > 1 &&
153 fofs >= start_fofs && fofs <= end_fofs) {
154 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
155 fi->ext.len = fofs - start_fofs;
156 } else {
157 fi->ext.fofs = fofs + 1;
158 fi->ext.blk_addr = start_blkaddr +
159 fofs - start_fofs + 1;
160 fi->ext.len -= fofs - start_fofs + 1;
161 }
162 goto end_update;
163 }
164 write_unlock(&fi->ext.ext_lock);
165 return;
166
167 end_update:
168 write_unlock(&fi->ext.ext_lock);
169 sync_inode_page(dn);
170 return;
171 }
172
173 struct page *find_data_page(struct inode *inode, pgoff_t index)
174 {
175 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
176 struct address_space *mapping = inode->i_mapping;
177 struct dnode_of_data dn;
178 struct page *page;
179 int err;
180
181 page = find_get_page(mapping, index);
182 if (page && PageUptodate(page))
183 return page;
184 f2fs_put_page(page, 0);
185
186 set_new_dnode(&dn, inode, NULL, NULL, 0);
187 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
188 if (err)
189 return ERR_PTR(err);
190 f2fs_put_dnode(&dn);
191
192 if (dn.data_blkaddr == NULL_ADDR)
193 return ERR_PTR(-ENOENT);
194
195 /* By fallocate(), there is no cached page, but with NEW_ADDR */
196 if (dn.data_blkaddr == NEW_ADDR)
197 return ERR_PTR(-EINVAL);
198
199 page = grab_cache_page(mapping, index);
200 if (!page)
201 return ERR_PTR(-ENOMEM);
202
203 if (PageUptodate(page)) {
204 unlock_page(page);
205 return page;
206 }
207
208 err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
209 wait_on_page_locked(page);
210 if (!PageUptodate(page)) {
211 f2fs_put_page(page, 0);
212 return ERR_PTR(-EIO);
213 }
214 return page;
215 }
216
217 /*
218 * If it tries to access a hole, return an error.
219 * Because, the callers, functions in dir.c and GC, should be able to know
220 * whether this page exists or not.
221 */
222 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
223 {
224 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
225 struct address_space *mapping = inode->i_mapping;
226 struct dnode_of_data dn;
227 struct page *page;
228 int err;
229
230 set_new_dnode(&dn, inode, NULL, NULL, 0);
231 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
232 if (err)
233 return ERR_PTR(err);
234 f2fs_put_dnode(&dn);
235
236 if (dn.data_blkaddr == NULL_ADDR)
237 return ERR_PTR(-ENOENT);
238
239 page = grab_cache_page(mapping, index);
240 if (!page)
241 return ERR_PTR(-ENOMEM);
242
243 if (PageUptodate(page))
244 return page;
245
246 BUG_ON(dn.data_blkaddr == NEW_ADDR);
247 BUG_ON(dn.data_blkaddr == NULL_ADDR);
248
249 err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
250 if (err)
251 return ERR_PTR(err);
252
253 lock_page(page);
254 if (!PageUptodate(page)) {
255 f2fs_put_page(page, 1);
256 return ERR_PTR(-EIO);
257 }
258 return page;
259 }
260
261 /*
262 * Caller ensures that this data page is never allocated.
263 * A new zero-filled data page is allocated in the page cache.
264 *
265 * Also, caller should grab and release a mutex by calling mutex_lock_op() and
266 * mutex_unlock_op().
267 */
268 struct page *get_new_data_page(struct inode *inode, pgoff_t index,
269 bool new_i_size)
270 {
271 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
272 struct address_space *mapping = inode->i_mapping;
273 struct page *page;
274 struct dnode_of_data dn;
275 int err;
276
277 set_new_dnode(&dn, inode, NULL, NULL, 0);
278 err = get_dnode_of_data(&dn, index, ALLOC_NODE);
279 if (err)
280 return ERR_PTR(err);
281
282 if (dn.data_blkaddr == NULL_ADDR) {
283 if (reserve_new_block(&dn)) {
284 f2fs_put_dnode(&dn);
285 return ERR_PTR(-ENOSPC);
286 }
287 }
288 f2fs_put_dnode(&dn);
289
290 page = grab_cache_page(mapping, index);
291 if (!page)
292 return ERR_PTR(-ENOMEM);
293
294 if (PageUptodate(page))
295 return page;
296
297 if (dn.data_blkaddr == NEW_ADDR) {
298 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
299 SetPageUptodate(page);
300 } else {
301 err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
302 if (err)
303 return ERR_PTR(err);
304 lock_page(page);
305 if (!PageUptodate(page)) {
306 f2fs_put_page(page, 1);
307 return ERR_PTR(-EIO);
308 }
309 }
310
311 if (new_i_size &&
312 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
313 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
314 mark_inode_dirty_sync(inode);
315 }
316 return page;
317 }
318
319 static void read_end_io(struct bio *bio, int err)
320 {
321 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
322 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
323
324 do {
325 struct page *page = bvec->bv_page;
326
327 if (--bvec >= bio->bi_io_vec)
328 prefetchw(&bvec->bv_page->flags);
329
330 if (uptodate) {
331 SetPageUptodate(page);
332 } else {
333 ClearPageUptodate(page);
334 SetPageError(page);
335 }
336 unlock_page(page);
337 } while (bvec >= bio->bi_io_vec);
338 kfree(bio->bi_private);
339 bio_put(bio);
340 }
341
342 /*
343 * Fill the locked page with data located in the block address.
344 * Return unlocked page.
345 */
346 int f2fs_readpage(struct f2fs_sb_info *sbi, struct page *page,
347 block_t blk_addr, int type)
348 {
349 struct block_device *bdev = sbi->sb->s_bdev;
350 struct bio *bio;
351
352 trace_f2fs_readpage(page, blk_addr, type);
353
354 down_read(&sbi->bio_sem);
355
356 /* Allocate a new bio */
357 bio = f2fs_bio_alloc(bdev, 1);
358
359 /* Initialize the bio */
360 bio->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
361 bio->bi_end_io = read_end_io;
362
363 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
364 kfree(bio->bi_private);
365 bio_put(bio);
366 up_read(&sbi->bio_sem);
367 f2fs_put_page(page, 1);
368 return -EFAULT;
369 }
370
371 submit_bio(type, bio);
372 up_read(&sbi->bio_sem);
373 return 0;
374 }
375
376 /*
377 * This function should be used by the data read flow only where it
378 * does not check the "create" flag that indicates block allocation.
379 * The reason for this special functionality is to exploit VFS readahead
380 * mechanism.
381 */
382 static int get_data_block_ro(struct inode *inode, sector_t iblock,
383 struct buffer_head *bh_result, int create)
384 {
385 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
386 unsigned maxblocks = bh_result->b_size >> blkbits;
387 struct dnode_of_data dn;
388 pgoff_t pgofs;
389 int err;
390
391 /* Get the page offset from the block offset(iblock) */
392 pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
393
394 if (check_extent_cache(inode, pgofs, bh_result)) {
395 trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
396 return 0;
397 }
398
399 /* When reading holes, we need its node page */
400 set_new_dnode(&dn, inode, NULL, NULL, 0);
401 err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE_RA);
402 if (err) {
403 trace_f2fs_get_data_block(inode, iblock, bh_result, err);
404 return (err == -ENOENT) ? 0 : err;
405 }
406
407 /* It does not support data allocation */
408 BUG_ON(create);
409
410 if (dn.data_blkaddr != NEW_ADDR && dn.data_blkaddr != NULL_ADDR) {
411 int i;
412 unsigned int end_offset;
413
414 end_offset = IS_INODE(dn.node_page) ?
415 ADDRS_PER_INODE :
416 ADDRS_PER_BLOCK;
417
418 clear_buffer_new(bh_result);
419
420 /* Give more consecutive addresses for the read ahead */
421 for (i = 0; i < end_offset - dn.ofs_in_node; i++)
422 if (((datablock_addr(dn.node_page,
423 dn.ofs_in_node + i))
424 != (dn.data_blkaddr + i)) || maxblocks == i)
425 break;
426 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
427 bh_result->b_size = (i << blkbits);
428 }
429 f2fs_put_dnode(&dn);
430 trace_f2fs_get_data_block(inode, iblock, bh_result, 0);
431 return 0;
432 }
433
434 static int f2fs_read_data_page(struct file *file, struct page *page)
435 {
436 return mpage_readpage(page, get_data_block_ro);
437 }
438
439 static int f2fs_read_data_pages(struct file *file,
440 struct address_space *mapping,
441 struct list_head *pages, unsigned nr_pages)
442 {
443 return mpage_readpages(mapping, pages, nr_pages, get_data_block_ro);
444 }
445
446 int do_write_data_page(struct page *page)
447 {
448 struct inode *inode = page->mapping->host;
449 block_t old_blk_addr, new_blk_addr;
450 struct dnode_of_data dn;
451 int err = 0;
452
453 set_new_dnode(&dn, inode, NULL, NULL, 0);
454 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
455 if (err)
456 return err;
457
458 old_blk_addr = dn.data_blkaddr;
459
460 /* This page is already truncated */
461 if (old_blk_addr == NULL_ADDR)
462 goto out_writepage;
463
464 set_page_writeback(page);
465
466 /*
467 * If current allocation needs SSR,
468 * it had better in-place writes for updated data.
469 */
470 if (old_blk_addr != NEW_ADDR && !is_cold_data(page) &&
471 need_inplace_update(inode)) {
472 rewrite_data_page(F2FS_SB(inode->i_sb), page,
473 old_blk_addr);
474 } else {
475 write_data_page(inode, page, &dn,
476 old_blk_addr, &new_blk_addr);
477 update_extent_cache(new_blk_addr, &dn);
478 }
479 out_writepage:
480 f2fs_put_dnode(&dn);
481 return err;
482 }
483
484 static int f2fs_write_data_page(struct page *page,
485 struct writeback_control *wbc)
486 {
487 struct inode *inode = page->mapping->host;
488 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
489 loff_t i_size = i_size_read(inode);
490 const pgoff_t end_index = ((unsigned long long) i_size)
491 >> PAGE_CACHE_SHIFT;
492 unsigned offset;
493 bool need_balance_fs = false;
494 int err = 0;
495
496 if (page->index < end_index)
497 goto write;
498
499 /*
500 * If the offset is out-of-range of file size,
501 * this page does not have to be written to disk.
502 */
503 offset = i_size & (PAGE_CACHE_SIZE - 1);
504 if ((page->index >= end_index + 1) || !offset) {
505 if (S_ISDIR(inode->i_mode)) {
506 dec_page_count(sbi, F2FS_DIRTY_DENTS);
507 inode_dec_dirty_dents(inode);
508 }
509 goto out;
510 }
511
512 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
513 write:
514 if (sbi->por_doing) {
515 err = AOP_WRITEPAGE_ACTIVATE;
516 goto redirty_out;
517 }
518
519 /* Dentry blocks are controlled by checkpoint */
520 if (S_ISDIR(inode->i_mode)) {
521 dec_page_count(sbi, F2FS_DIRTY_DENTS);
522 inode_dec_dirty_dents(inode);
523 err = do_write_data_page(page);
524 } else {
525 int ilock = mutex_lock_op(sbi);
526 err = do_write_data_page(page);
527 mutex_unlock_op(sbi, ilock);
528 need_balance_fs = true;
529 }
530 if (err == -ENOENT)
531 goto out;
532 else if (err)
533 goto redirty_out;
534
535 if (wbc->for_reclaim)
536 f2fs_submit_bio(sbi, DATA, true);
537
538 clear_cold_data(page);
539 out:
540 unlock_page(page);
541 if (need_balance_fs)
542 f2fs_balance_fs(sbi);
543 return 0;
544
545 redirty_out:
546 wbc->pages_skipped++;
547 set_page_dirty(page);
548 return err;
549 }
550
551 #define MAX_DESIRED_PAGES_WP 4096
552
553 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
554 void *data)
555 {
556 struct address_space *mapping = data;
557 int ret = mapping->a_ops->writepage(page, wbc);
558 mapping_set_error(mapping, ret);
559 return ret;
560 }
561
562 static int f2fs_write_data_pages(struct address_space *mapping,
563 struct writeback_control *wbc)
564 {
565 struct inode *inode = mapping->host;
566 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
567 int ret;
568 long excess_nrtw = 0, desired_nrtw;
569
570 /* deal with chardevs and other special file */
571 if (!mapping->a_ops->writepage)
572 return 0;
573
574 if (wbc->nr_to_write < MAX_DESIRED_PAGES_WP) {
575 desired_nrtw = MAX_DESIRED_PAGES_WP;
576 excess_nrtw = desired_nrtw - wbc->nr_to_write;
577 wbc->nr_to_write = desired_nrtw;
578 }
579
580 if (!S_ISDIR(inode->i_mode))
581 mutex_lock(&sbi->writepages);
582 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
583 if (!S_ISDIR(inode->i_mode))
584 mutex_unlock(&sbi->writepages);
585 f2fs_submit_bio(sbi, DATA, (wbc->sync_mode == WB_SYNC_ALL));
586
587 remove_dirty_dir_inode(inode);
588
589 wbc->nr_to_write -= excess_nrtw;
590 return ret;
591 }
592
593 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
594 loff_t pos, unsigned len, unsigned flags,
595 struct page **pagep, void **fsdata)
596 {
597 struct inode *inode = mapping->host;
598 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
599 struct page *page;
600 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
601 struct dnode_of_data dn;
602 int err = 0;
603 int ilock;
604
605 /* for nobh_write_end */
606 *fsdata = NULL;
607
608 f2fs_balance_fs(sbi);
609
610 page = grab_cache_page_write_begin(mapping, index, flags);
611 if (!page)
612 return -ENOMEM;
613 *pagep = page;
614
615 ilock = mutex_lock_op(sbi);
616
617 set_new_dnode(&dn, inode, NULL, NULL, 0);
618 err = get_dnode_of_data(&dn, index, ALLOC_NODE);
619 if (err)
620 goto err;
621
622 if (dn.data_blkaddr == NULL_ADDR)
623 err = reserve_new_block(&dn);
624
625 f2fs_put_dnode(&dn);
626 if (err)
627 goto err;
628
629 mutex_unlock_op(sbi, ilock);
630
631 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
632 return 0;
633
634 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
635 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
636 unsigned end = start + len;
637
638 /* Reading beyond i_size is simple: memset to zero */
639 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
640 goto out;
641 }
642
643 if (dn.data_blkaddr == NEW_ADDR) {
644 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
645 } else {
646 err = f2fs_readpage(sbi, page, dn.data_blkaddr, READ_SYNC);
647 if (err)
648 return err;
649 lock_page(page);
650 if (!PageUptodate(page)) {
651 f2fs_put_page(page, 1);
652 return -EIO;
653 }
654 }
655 out:
656 SetPageUptodate(page);
657 clear_cold_data(page);
658 return 0;
659
660 err:
661 mutex_unlock_op(sbi, ilock);
662 f2fs_put_page(page, 1);
663 return err;
664 }
665
666 static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
667 const struct iovec *iov, loff_t offset, unsigned long nr_segs)
668 {
669 struct file *file = iocb->ki_filp;
670 struct inode *inode = file->f_mapping->host;
671
672 if (rw == WRITE)
673 return 0;
674
675 /* Needs synchronization with the cleaner */
676 return blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
677 get_data_block_ro);
678 }
679
680 static void f2fs_invalidate_data_page(struct page *page, unsigned long offset)
681 {
682 struct inode *inode = page->mapping->host;
683 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
684 if (S_ISDIR(inode->i_mode) && PageDirty(page)) {
685 dec_page_count(sbi, F2FS_DIRTY_DENTS);
686 inode_dec_dirty_dents(inode);
687 }
688 ClearPagePrivate(page);
689 }
690
691 static int f2fs_release_data_page(struct page *page, gfp_t wait)
692 {
693 ClearPagePrivate(page);
694 return 1;
695 }
696
697 static int f2fs_set_data_page_dirty(struct page *page)
698 {
699 struct address_space *mapping = page->mapping;
700 struct inode *inode = mapping->host;
701
702 SetPageUptodate(page);
703 if (!PageDirty(page)) {
704 __set_page_dirty_nobuffers(page);
705 set_dirty_dir_page(inode, page);
706 return 1;
707 }
708 return 0;
709 }
710
711 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
712 {
713 return generic_block_bmap(mapping, block, get_data_block_ro);
714 }
715
716 const struct address_space_operations f2fs_dblock_aops = {
717 .readpage = f2fs_read_data_page,
718 .readpages = f2fs_read_data_pages,
719 .writepage = f2fs_write_data_page,
720 .writepages = f2fs_write_data_pages,
721 .write_begin = f2fs_write_begin,
722 .write_end = nobh_write_end,
723 .set_page_dirty = f2fs_set_data_page_dirty,
724 .invalidatepage = f2fs_invalidate_data_page,
725 .releasepage = f2fs_release_data_page,
726 .direct_IO = f2fs_direct_IO,
727 .bmap = f2fs_bmap,
728 };