f2fs: use MAX_BIO_BLOCKS(sbi)
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / f2fs / data.c
1 /*
2 * fs/f2fs/data.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/aio.h>
16 #include <linux/writeback.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include <trace/events/f2fs.h>
26
27 static void f2fs_read_end_io(struct bio *bio, int err)
28 {
29 struct bio_vec *bvec;
30 int i;
31
32 bio_for_each_segment_all(bvec, bio, i) {
33 struct page *page = bvec->bv_page;
34
35 if (!err) {
36 SetPageUptodate(page);
37 } else {
38 ClearPageUptodate(page);
39 SetPageError(page);
40 }
41 unlock_page(page);
42 }
43 bio_put(bio);
44 }
45
46 static void f2fs_write_end_io(struct bio *bio, int err)
47 {
48 struct f2fs_sb_info *sbi = bio->bi_private;
49 struct bio_vec *bvec;
50 int i;
51
52 bio_for_each_segment_all(bvec, bio, i) {
53 struct page *page = bvec->bv_page;
54
55 if (unlikely(err)) {
56 set_page_dirty(page);
57 set_bit(AS_EIO, &page->mapping->flags);
58 f2fs_stop_checkpoint(sbi);
59 }
60 end_page_writeback(page);
61 dec_page_count(sbi, F2FS_WRITEBACK);
62 }
63
64 if (sbi->wait_io) {
65 complete(sbi->wait_io);
66 sbi->wait_io = NULL;
67 }
68
69 if (!get_pages(sbi, F2FS_WRITEBACK) &&
70 !list_empty(&sbi->cp_wait.task_list))
71 wake_up(&sbi->cp_wait);
72
73 bio_put(bio);
74 }
75
76 /*
77 * Low-level block read/write IO operations.
78 */
79 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
80 int npages, bool is_read)
81 {
82 struct bio *bio;
83
84 /* No failure on bio allocation */
85 bio = bio_alloc(GFP_NOIO, npages);
86
87 bio->bi_bdev = sbi->sb->s_bdev;
88 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
89 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
90 bio->bi_private = sbi;
91
92 return bio;
93 }
94
95 static void __submit_merged_bio(struct f2fs_bio_info *io)
96 {
97 struct f2fs_io_info *fio = &io->fio;
98 int rw;
99
100 if (!io->bio)
101 return;
102
103 rw = fio->rw;
104
105 if (is_read_io(rw)) {
106 trace_f2fs_submit_read_bio(io->sbi->sb, rw,
107 fio->type, io->bio);
108 submit_bio(rw, io->bio);
109 } else {
110 trace_f2fs_submit_write_bio(io->sbi->sb, rw,
111 fio->type, io->bio);
112 /*
113 * META_FLUSH is only from the checkpoint procedure, and we
114 * should wait this metadata bio for FS consistency.
115 */
116 if (fio->type == META_FLUSH) {
117 DECLARE_COMPLETION_ONSTACK(wait);
118 io->sbi->wait_io = &wait;
119 submit_bio(rw, io->bio);
120 wait_for_completion(&wait);
121 } else {
122 submit_bio(rw, io->bio);
123 }
124 }
125
126 io->bio = NULL;
127 }
128
129 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
130 enum page_type type, int rw)
131 {
132 enum page_type btype = PAGE_TYPE_OF_BIO(type);
133 struct f2fs_bio_info *io;
134
135 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
136
137 down_write(&io->io_rwsem);
138
139 /* change META to META_FLUSH in the checkpoint procedure */
140 if (type >= META_FLUSH) {
141 io->fio.type = META_FLUSH;
142 if (test_opt(sbi, NOBARRIER))
143 io->fio.rw = WRITE_FLUSH | REQ_META | REQ_PRIO;
144 else
145 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
146 }
147 __submit_merged_bio(io);
148 up_write(&io->io_rwsem);
149 }
150
151 /*
152 * Fill the locked page with data located in the block address.
153 * Return unlocked page.
154 */
155 int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
156 block_t blk_addr, int rw)
157 {
158 struct bio *bio;
159
160 trace_f2fs_submit_page_bio(page, blk_addr, rw);
161
162 /* Allocate a new bio */
163 bio = __bio_alloc(sbi, blk_addr, 1, is_read_io(rw));
164
165 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
166 bio_put(bio);
167 f2fs_put_page(page, 1);
168 return -EFAULT;
169 }
170
171 submit_bio(rw, bio);
172 return 0;
173 }
174
175 void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
176 block_t blk_addr, struct f2fs_io_info *fio)
177 {
178 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
179 struct f2fs_bio_info *io;
180 bool is_read = is_read_io(fio->rw);
181
182 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
183
184 verify_block_addr(sbi, blk_addr);
185
186 down_write(&io->io_rwsem);
187
188 if (!is_read)
189 inc_page_count(sbi, F2FS_WRITEBACK);
190
191 if (io->bio && (io->last_block_in_bio != blk_addr - 1 ||
192 io->fio.rw != fio->rw))
193 __submit_merged_bio(io);
194 alloc_new:
195 if (io->bio == NULL) {
196 int bio_blocks = MAX_BIO_BLOCKS(sbi);
197
198 io->bio = __bio_alloc(sbi, blk_addr, bio_blocks, is_read);
199 io->fio = *fio;
200 }
201
202 if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
203 PAGE_CACHE_SIZE) {
204 __submit_merged_bio(io);
205 goto alloc_new;
206 }
207
208 io->last_block_in_bio = blk_addr;
209
210 up_write(&io->io_rwsem);
211 trace_f2fs_submit_page_mbio(page, fio->rw, fio->type, blk_addr);
212 }
213
214 /*
215 * Lock ordering for the change of data block address:
216 * ->data_page
217 * ->node_page
218 * update block addresses in the node page
219 */
220 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
221 {
222 struct f2fs_node *rn;
223 __le32 *addr_array;
224 struct page *node_page = dn->node_page;
225 unsigned int ofs_in_node = dn->ofs_in_node;
226
227 f2fs_wait_on_page_writeback(node_page, NODE);
228
229 rn = F2FS_NODE(node_page);
230
231 /* Get physical address of data block */
232 addr_array = blkaddr_in_node(rn);
233 addr_array[ofs_in_node] = cpu_to_le32(new_addr);
234 set_page_dirty(node_page);
235 }
236
237 int reserve_new_block(struct dnode_of_data *dn)
238 {
239 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
240
241 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
242 return -EPERM;
243 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
244 return -ENOSPC;
245
246 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
247
248 __set_data_blkaddr(dn, NEW_ADDR);
249 dn->data_blkaddr = NEW_ADDR;
250 mark_inode_dirty(dn->inode);
251 sync_inode_page(dn);
252 return 0;
253 }
254
255 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
256 {
257 bool need_put = dn->inode_page ? false : true;
258 int err;
259
260 /* if inode_page exists, index should be zero */
261 f2fs_bug_on(F2FS_I_SB(dn->inode), !need_put && index);
262
263 err = get_dnode_of_data(dn, index, ALLOC_NODE);
264 if (err)
265 return err;
266
267 if (dn->data_blkaddr == NULL_ADDR)
268 err = reserve_new_block(dn);
269 if (err || need_put)
270 f2fs_put_dnode(dn);
271 return err;
272 }
273
274 static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
275 struct buffer_head *bh_result)
276 {
277 struct f2fs_inode_info *fi = F2FS_I(inode);
278 pgoff_t start_fofs, end_fofs;
279 block_t start_blkaddr;
280
281 if (is_inode_flag_set(fi, FI_NO_EXTENT))
282 return 0;
283
284 read_lock(&fi->ext.ext_lock);
285 if (fi->ext.len == 0) {
286 read_unlock(&fi->ext.ext_lock);
287 return 0;
288 }
289
290 stat_inc_total_hit(inode->i_sb);
291
292 start_fofs = fi->ext.fofs;
293 end_fofs = fi->ext.fofs + fi->ext.len - 1;
294 start_blkaddr = fi->ext.blk_addr;
295
296 if (pgofs >= start_fofs && pgofs <= end_fofs) {
297 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
298 size_t count;
299
300 clear_buffer_new(bh_result);
301 map_bh(bh_result, inode->i_sb,
302 start_blkaddr + pgofs - start_fofs);
303 count = end_fofs - pgofs + 1;
304 if (count < (UINT_MAX >> blkbits))
305 bh_result->b_size = (count << blkbits);
306 else
307 bh_result->b_size = UINT_MAX;
308
309 stat_inc_read_hit(inode->i_sb);
310 read_unlock(&fi->ext.ext_lock);
311 return 1;
312 }
313 read_unlock(&fi->ext.ext_lock);
314 return 0;
315 }
316
317 void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
318 {
319 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
320 pgoff_t fofs, start_fofs, end_fofs;
321 block_t start_blkaddr, end_blkaddr;
322 int need_update = true;
323
324 f2fs_bug_on(F2FS_I_SB(dn->inode), blk_addr == NEW_ADDR);
325 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
326 dn->ofs_in_node;
327
328 /* Update the page address in the parent node */
329 __set_data_blkaddr(dn, blk_addr);
330
331 if (is_inode_flag_set(fi, FI_NO_EXTENT))
332 return;
333
334 write_lock(&fi->ext.ext_lock);
335
336 start_fofs = fi->ext.fofs;
337 end_fofs = fi->ext.fofs + fi->ext.len - 1;
338 start_blkaddr = fi->ext.blk_addr;
339 end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
340
341 /* Drop and initialize the matched extent */
342 if (fi->ext.len == 1 && fofs == start_fofs)
343 fi->ext.len = 0;
344
345 /* Initial extent */
346 if (fi->ext.len == 0) {
347 if (blk_addr != NULL_ADDR) {
348 fi->ext.fofs = fofs;
349 fi->ext.blk_addr = blk_addr;
350 fi->ext.len = 1;
351 }
352 goto end_update;
353 }
354
355 /* Front merge */
356 if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
357 fi->ext.fofs--;
358 fi->ext.blk_addr--;
359 fi->ext.len++;
360 goto end_update;
361 }
362
363 /* Back merge */
364 if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
365 fi->ext.len++;
366 goto end_update;
367 }
368
369 /* Split the existing extent */
370 if (fi->ext.len > 1 &&
371 fofs >= start_fofs && fofs <= end_fofs) {
372 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
373 fi->ext.len = fofs - start_fofs;
374 } else {
375 fi->ext.fofs = fofs + 1;
376 fi->ext.blk_addr = start_blkaddr +
377 fofs - start_fofs + 1;
378 fi->ext.len -= fofs - start_fofs + 1;
379 }
380 } else {
381 need_update = false;
382 }
383
384 /* Finally, if the extent is very fragmented, let's drop the cache. */
385 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
386 fi->ext.len = 0;
387 set_inode_flag(fi, FI_NO_EXTENT);
388 need_update = true;
389 }
390 end_update:
391 write_unlock(&fi->ext.ext_lock);
392 if (need_update)
393 sync_inode_page(dn);
394 return;
395 }
396
397 struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
398 {
399 struct address_space *mapping = inode->i_mapping;
400 struct dnode_of_data dn;
401 struct page *page;
402 int err;
403
404 page = find_get_page(mapping, index);
405 if (page && PageUptodate(page))
406 return page;
407 f2fs_put_page(page, 0);
408
409 set_new_dnode(&dn, inode, NULL, NULL, 0);
410 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
411 if (err)
412 return ERR_PTR(err);
413 f2fs_put_dnode(&dn);
414
415 if (dn.data_blkaddr == NULL_ADDR)
416 return ERR_PTR(-ENOENT);
417
418 /* By fallocate(), there is no cached page, but with NEW_ADDR */
419 if (unlikely(dn.data_blkaddr == NEW_ADDR))
420 return ERR_PTR(-EINVAL);
421
422 page = grab_cache_page(mapping, index);
423 if (!page)
424 return ERR_PTR(-ENOMEM);
425
426 if (PageUptodate(page)) {
427 unlock_page(page);
428 return page;
429 }
430
431 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page, dn.data_blkaddr,
432 sync ? READ_SYNC : READA);
433 if (err)
434 return ERR_PTR(err);
435
436 if (sync) {
437 wait_on_page_locked(page);
438 if (unlikely(!PageUptodate(page))) {
439 f2fs_put_page(page, 0);
440 return ERR_PTR(-EIO);
441 }
442 }
443 return page;
444 }
445
446 /*
447 * If it tries to access a hole, return an error.
448 * Because, the callers, functions in dir.c and GC, should be able to know
449 * whether this page exists or not.
450 */
451 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
452 {
453 struct address_space *mapping = inode->i_mapping;
454 struct dnode_of_data dn;
455 struct page *page;
456 int err;
457
458 repeat:
459 page = grab_cache_page(mapping, index);
460 if (!page)
461 return ERR_PTR(-ENOMEM);
462
463 set_new_dnode(&dn, inode, NULL, NULL, 0);
464 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
465 if (err) {
466 f2fs_put_page(page, 1);
467 return ERR_PTR(err);
468 }
469 f2fs_put_dnode(&dn);
470
471 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
472 f2fs_put_page(page, 1);
473 return ERR_PTR(-ENOENT);
474 }
475
476 if (PageUptodate(page))
477 return page;
478
479 /*
480 * A new dentry page is allocated but not able to be written, since its
481 * new inode page couldn't be allocated due to -ENOSPC.
482 * In such the case, its blkaddr can be remained as NEW_ADDR.
483 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
484 */
485 if (dn.data_blkaddr == NEW_ADDR) {
486 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
487 SetPageUptodate(page);
488 return page;
489 }
490
491 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page,
492 dn.data_blkaddr, READ_SYNC);
493 if (err)
494 return ERR_PTR(err);
495
496 lock_page(page);
497 if (unlikely(!PageUptodate(page))) {
498 f2fs_put_page(page, 1);
499 return ERR_PTR(-EIO);
500 }
501 if (unlikely(page->mapping != mapping)) {
502 f2fs_put_page(page, 1);
503 goto repeat;
504 }
505 return page;
506 }
507
508 /*
509 * Caller ensures that this data page is never allocated.
510 * A new zero-filled data page is allocated in the page cache.
511 *
512 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
513 * f2fs_unlock_op().
514 * Note that, ipage is set only by make_empty_dir.
515 */
516 struct page *get_new_data_page(struct inode *inode,
517 struct page *ipage, pgoff_t index, bool new_i_size)
518 {
519 struct address_space *mapping = inode->i_mapping;
520 struct page *page;
521 struct dnode_of_data dn;
522 int err;
523
524 set_new_dnode(&dn, inode, ipage, NULL, 0);
525 err = f2fs_reserve_block(&dn, index);
526 if (err)
527 return ERR_PTR(err);
528 repeat:
529 page = grab_cache_page(mapping, index);
530 if (!page) {
531 err = -ENOMEM;
532 goto put_err;
533 }
534
535 if (PageUptodate(page))
536 return page;
537
538 if (dn.data_blkaddr == NEW_ADDR) {
539 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
540 SetPageUptodate(page);
541 } else {
542 err = f2fs_submit_page_bio(F2FS_I_SB(inode), page,
543 dn.data_blkaddr, READ_SYNC);
544 if (err)
545 goto put_err;
546
547 lock_page(page);
548 if (unlikely(!PageUptodate(page))) {
549 f2fs_put_page(page, 1);
550 err = -EIO;
551 goto put_err;
552 }
553 if (unlikely(page->mapping != mapping)) {
554 f2fs_put_page(page, 1);
555 goto repeat;
556 }
557 }
558
559 if (new_i_size &&
560 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
561 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
562 /* Only the directory inode sets new_i_size */
563 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
564 }
565 return page;
566
567 put_err:
568 f2fs_put_dnode(&dn);
569 return ERR_PTR(err);
570 }
571
572 static int __allocate_data_block(struct dnode_of_data *dn)
573 {
574 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
575 struct f2fs_summary sum;
576 block_t new_blkaddr;
577 struct node_info ni;
578 int type;
579
580 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
581 return -EPERM;
582 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
583 return -ENOSPC;
584
585 __set_data_blkaddr(dn, NEW_ADDR);
586 dn->data_blkaddr = NEW_ADDR;
587
588 get_node_info(sbi, dn->nid, &ni);
589 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
590
591 type = CURSEG_WARM_DATA;
592
593 allocate_data_block(sbi, NULL, NULL_ADDR, &new_blkaddr, &sum, type);
594
595 /* direct IO doesn't use extent cache to maximize the performance */
596 set_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT);
597 update_extent_cache(new_blkaddr, dn);
598 clear_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT);
599
600 dn->data_blkaddr = new_blkaddr;
601 return 0;
602 }
603
604 /*
605 * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
606 * If original data blocks are allocated, then give them to blockdev.
607 * Otherwise,
608 * a. preallocate requested block addresses
609 * b. do not use extent cache for better performance
610 * c. give the block addresses to blockdev
611 */
612 static int __get_data_block(struct inode *inode, sector_t iblock,
613 struct buffer_head *bh_result, int create, bool fiemap)
614 {
615 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
616 unsigned maxblocks = bh_result->b_size >> blkbits;
617 struct dnode_of_data dn;
618 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
619 pgoff_t pgofs, end_offset;
620 int err = 0, ofs = 1;
621 bool allocated = false;
622
623 /* Get the page offset from the block offset(iblock) */
624 pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
625
626 if (check_extent_cache(inode, pgofs, bh_result))
627 goto out;
628
629 if (create) {
630 f2fs_balance_fs(F2FS_I_SB(inode));
631 f2fs_lock_op(F2FS_I_SB(inode));
632 }
633
634 /* When reading holes, we need its node page */
635 set_new_dnode(&dn, inode, NULL, NULL, 0);
636 err = get_dnode_of_data(&dn, pgofs, mode);
637 if (err) {
638 if (err == -ENOENT)
639 err = 0;
640 goto unlock_out;
641 }
642 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
643 goto put_out;
644
645 if (dn.data_blkaddr != NULL_ADDR) {
646 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
647 } else if (create) {
648 err = __allocate_data_block(&dn);
649 if (err)
650 goto put_out;
651 allocated = true;
652 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
653 } else {
654 goto put_out;
655 }
656
657 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
658 bh_result->b_size = (((size_t)1) << blkbits);
659 dn.ofs_in_node++;
660 pgofs++;
661
662 get_next:
663 if (dn.ofs_in_node >= end_offset) {
664 if (allocated)
665 sync_inode_page(&dn);
666 allocated = false;
667 f2fs_put_dnode(&dn);
668
669 set_new_dnode(&dn, inode, NULL, NULL, 0);
670 err = get_dnode_of_data(&dn, pgofs, mode);
671 if (err) {
672 if (err == -ENOENT)
673 err = 0;
674 goto unlock_out;
675 }
676 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
677 goto put_out;
678
679 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
680 }
681
682 if (maxblocks > (bh_result->b_size >> blkbits)) {
683 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
684 if (blkaddr == NULL_ADDR && create) {
685 err = __allocate_data_block(&dn);
686 if (err)
687 goto sync_out;
688 allocated = true;
689 blkaddr = dn.data_blkaddr;
690 }
691 /* Give more consecutive addresses for the readahead */
692 if (blkaddr == (bh_result->b_blocknr + ofs)) {
693 ofs++;
694 dn.ofs_in_node++;
695 pgofs++;
696 bh_result->b_size += (((size_t)1) << blkbits);
697 goto get_next;
698 }
699 }
700 sync_out:
701 if (allocated)
702 sync_inode_page(&dn);
703 put_out:
704 f2fs_put_dnode(&dn);
705 unlock_out:
706 if (create)
707 f2fs_unlock_op(F2FS_I_SB(inode));
708 out:
709 trace_f2fs_get_data_block(inode, iblock, bh_result, err);
710 return err;
711 }
712
713 static int get_data_block(struct inode *inode, sector_t iblock,
714 struct buffer_head *bh_result, int create)
715 {
716 return __get_data_block(inode, iblock, bh_result, create, false);
717 }
718
719 static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
720 struct buffer_head *bh_result, int create)
721 {
722 return __get_data_block(inode, iblock, bh_result, create, true);
723 }
724
725 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
726 u64 start, u64 len)
727 {
728 return generic_block_fiemap(inode, fieinfo,
729 start, len, get_data_block_fiemap);
730 }
731
732 static int f2fs_read_data_page(struct file *file, struct page *page)
733 {
734 struct inode *inode = page->mapping->host;
735 int ret;
736
737 trace_f2fs_readpage(page, DATA);
738
739 /* If the file has inline data, try to read it directly */
740 if (f2fs_has_inline_data(inode))
741 ret = f2fs_read_inline_data(inode, page);
742 else
743 ret = mpage_readpage(page, get_data_block);
744
745 return ret;
746 }
747
748 static int f2fs_read_data_pages(struct file *file,
749 struct address_space *mapping,
750 struct list_head *pages, unsigned nr_pages)
751 {
752 struct inode *inode = file->f_mapping->host;
753
754 /* If the file has inline data, skip readpages */
755 if (f2fs_has_inline_data(inode))
756 return 0;
757
758 return mpage_readpages(mapping, pages, nr_pages, get_data_block);
759 }
760
761 int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
762 {
763 struct inode *inode = page->mapping->host;
764 block_t old_blkaddr, new_blkaddr;
765 struct dnode_of_data dn;
766 int err = 0;
767
768 set_new_dnode(&dn, inode, NULL, NULL, 0);
769 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
770 if (err)
771 return err;
772
773 old_blkaddr = dn.data_blkaddr;
774
775 /* This page is already truncated */
776 if (old_blkaddr == NULL_ADDR)
777 goto out_writepage;
778
779 set_page_writeback(page);
780
781 /*
782 * If current allocation needs SSR,
783 * it had better in-place writes for updated data.
784 */
785 if (unlikely(old_blkaddr != NEW_ADDR &&
786 !is_cold_data(page) &&
787 need_inplace_update(inode))) {
788 rewrite_data_page(page, old_blkaddr, fio);
789 set_inode_flag(F2FS_I(inode), FI_UPDATE_WRITE);
790 } else {
791 write_data_page(page, &dn, &new_blkaddr, fio);
792 update_extent_cache(new_blkaddr, &dn);
793 set_inode_flag(F2FS_I(inode), FI_APPEND_WRITE);
794 }
795 out_writepage:
796 f2fs_put_dnode(&dn);
797 return err;
798 }
799
800 static int f2fs_write_data_page(struct page *page,
801 struct writeback_control *wbc)
802 {
803 struct inode *inode = page->mapping->host;
804 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
805 loff_t i_size = i_size_read(inode);
806 const pgoff_t end_index = ((unsigned long long) i_size)
807 >> PAGE_CACHE_SHIFT;
808 unsigned offset = 0;
809 bool need_balance_fs = false;
810 int err = 0;
811 struct f2fs_io_info fio = {
812 .type = DATA,
813 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
814 };
815
816 trace_f2fs_writepage(page, DATA);
817
818 if (page->index < end_index)
819 goto write;
820
821 /*
822 * If the offset is out-of-range of file size,
823 * this page does not have to be written to disk.
824 */
825 offset = i_size & (PAGE_CACHE_SIZE - 1);
826 if ((page->index >= end_index + 1) || !offset)
827 goto out;
828
829 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
830 write:
831 if (unlikely(sbi->por_doing))
832 goto redirty_out;
833
834 /* Dentry blocks are controlled by checkpoint */
835 if (S_ISDIR(inode->i_mode)) {
836 if (unlikely(f2fs_cp_error(sbi)))
837 goto redirty_out;
838 err = do_write_data_page(page, &fio);
839 goto done;
840 }
841
842 /* we should bypass data pages to proceed the kworkder jobs */
843 if (unlikely(f2fs_cp_error(sbi))) {
844 SetPageError(page);
845 unlock_page(page);
846 goto out;
847 }
848
849 if (!wbc->for_reclaim)
850 need_balance_fs = true;
851 else if (has_not_enough_free_secs(sbi, 0))
852 goto redirty_out;
853
854 f2fs_lock_op(sbi);
855 if (f2fs_has_inline_data(inode) || f2fs_may_inline(inode))
856 err = f2fs_write_inline_data(inode, page, offset);
857 else
858 err = do_write_data_page(page, &fio);
859 f2fs_unlock_op(sbi);
860 done:
861 if (err && err != -ENOENT)
862 goto redirty_out;
863
864 clear_cold_data(page);
865 out:
866 inode_dec_dirty_pages(inode);
867 unlock_page(page);
868 if (need_balance_fs)
869 f2fs_balance_fs(sbi);
870 if (wbc->for_reclaim)
871 f2fs_submit_merged_bio(sbi, DATA, WRITE);
872 return 0;
873
874 redirty_out:
875 redirty_page_for_writepage(wbc, page);
876 return AOP_WRITEPAGE_ACTIVATE;
877 }
878
879 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
880 void *data)
881 {
882 struct address_space *mapping = data;
883 int ret = mapping->a_ops->writepage(page, wbc);
884 mapping_set_error(mapping, ret);
885 return ret;
886 }
887
888 static int f2fs_write_data_pages(struct address_space *mapping,
889 struct writeback_control *wbc)
890 {
891 struct inode *inode = mapping->host;
892 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
893 bool locked = false;
894 int ret;
895 long diff;
896
897 trace_f2fs_writepages(mapping->host, wbc, DATA);
898
899 /* deal with chardevs and other special file */
900 if (!mapping->a_ops->writepage)
901 return 0;
902
903 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
904 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
905 available_free_memory(sbi, DIRTY_DENTS))
906 goto skip_write;
907
908 diff = nr_pages_to_write(sbi, DATA, wbc);
909
910 if (!S_ISDIR(inode->i_mode)) {
911 mutex_lock(&sbi->writepages);
912 locked = true;
913 }
914 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
915 if (locked)
916 mutex_unlock(&sbi->writepages);
917
918 f2fs_submit_merged_bio(sbi, DATA, WRITE);
919
920 remove_dirty_dir_inode(inode);
921
922 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
923 return ret;
924
925 skip_write:
926 wbc->pages_skipped += get_dirty_pages(inode);
927 return 0;
928 }
929
930 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
931 {
932 struct inode *inode = mapping->host;
933
934 if (to > inode->i_size) {
935 truncate_pagecache(inode, inode->i_size);
936 truncate_blocks(inode, inode->i_size, true);
937 }
938 }
939
940 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
941 loff_t pos, unsigned len, unsigned flags,
942 struct page **pagep, void **fsdata)
943 {
944 struct inode *inode = mapping->host;
945 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
946 struct page *page;
947 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
948 struct dnode_of_data dn;
949 int err = 0;
950
951 trace_f2fs_write_begin(inode, pos, len, flags);
952
953 f2fs_balance_fs(sbi);
954 repeat:
955 err = f2fs_convert_inline_data(inode, pos + len, NULL);
956 if (err)
957 goto fail;
958
959 page = grab_cache_page_write_begin(mapping, index, flags);
960 if (!page) {
961 err = -ENOMEM;
962 goto fail;
963 }
964
965 /* to avoid latency during memory pressure */
966 unlock_page(page);
967
968 *pagep = page;
969
970 if (f2fs_has_inline_data(inode) && (pos + len) <= MAX_INLINE_DATA)
971 goto inline_data;
972
973 f2fs_lock_op(sbi);
974 set_new_dnode(&dn, inode, NULL, NULL, 0);
975 err = f2fs_reserve_block(&dn, index);
976 f2fs_unlock_op(sbi);
977 if (err) {
978 f2fs_put_page(page, 0);
979 goto fail;
980 }
981 inline_data:
982 lock_page(page);
983 if (unlikely(page->mapping != mapping)) {
984 f2fs_put_page(page, 1);
985 goto repeat;
986 }
987
988 f2fs_wait_on_page_writeback(page, DATA);
989
990 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
991 return 0;
992
993 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
994 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
995 unsigned end = start + len;
996
997 /* Reading beyond i_size is simple: memset to zero */
998 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
999 goto out;
1000 }
1001
1002 if (dn.data_blkaddr == NEW_ADDR) {
1003 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
1004 } else {
1005 if (f2fs_has_inline_data(inode)) {
1006 err = f2fs_read_inline_data(inode, page);
1007 if (err) {
1008 page_cache_release(page);
1009 goto fail;
1010 }
1011 } else {
1012 err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
1013 READ_SYNC);
1014 if (err)
1015 goto fail;
1016 }
1017
1018 lock_page(page);
1019 if (unlikely(!PageUptodate(page))) {
1020 f2fs_put_page(page, 1);
1021 err = -EIO;
1022 goto fail;
1023 }
1024 if (unlikely(page->mapping != mapping)) {
1025 f2fs_put_page(page, 1);
1026 goto repeat;
1027 }
1028 }
1029 out:
1030 SetPageUptodate(page);
1031 clear_cold_data(page);
1032 return 0;
1033 fail:
1034 f2fs_write_failed(mapping, pos + len);
1035 return err;
1036 }
1037
1038 static int f2fs_write_end(struct file *file,
1039 struct address_space *mapping,
1040 loff_t pos, unsigned len, unsigned copied,
1041 struct page *page, void *fsdata)
1042 {
1043 struct inode *inode = page->mapping->host;
1044
1045 trace_f2fs_write_end(inode, pos, len, copied);
1046
1047 set_page_dirty(page);
1048
1049 if (pos + copied > i_size_read(inode)) {
1050 i_size_write(inode, pos + copied);
1051 mark_inode_dirty(inode);
1052 update_inode_page(inode);
1053 }
1054
1055 f2fs_put_page(page, 1);
1056 return copied;
1057 }
1058
1059 static int check_direct_IO(struct inode *inode, int rw,
1060 struct iov_iter *iter, loff_t offset)
1061 {
1062 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1063
1064 if (rw == READ)
1065 return 0;
1066
1067 if (offset & blocksize_mask)
1068 return -EINVAL;
1069
1070 if (iov_iter_alignment(iter) & blocksize_mask)
1071 return -EINVAL;
1072
1073 return 0;
1074 }
1075
1076 static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
1077 struct iov_iter *iter, loff_t offset)
1078 {
1079 struct file *file = iocb->ki_filp;
1080 struct address_space *mapping = file->f_mapping;
1081 struct inode *inode = mapping->host;
1082 size_t count = iov_iter_count(iter);
1083 int err;
1084
1085 /* Let buffer I/O handle the inline data case. */
1086 if (f2fs_has_inline_data(inode))
1087 return 0;
1088
1089 if (check_direct_IO(inode, rw, iter, offset))
1090 return 0;
1091
1092 trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1093
1094 err = blockdev_direct_IO(rw, iocb, inode, iter, offset, get_data_block);
1095 if (err < 0 && (rw & WRITE))
1096 f2fs_write_failed(mapping, offset + count);
1097
1098 trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1099
1100 return err;
1101 }
1102
1103 static void f2fs_invalidate_data_page(struct page *page, unsigned int offset,
1104 unsigned int length)
1105 {
1106 struct inode *inode = page->mapping->host;
1107
1108 if (offset % PAGE_CACHE_SIZE || length != PAGE_CACHE_SIZE)
1109 return;
1110
1111 if (PageDirty(page))
1112 inode_dec_dirty_pages(inode);
1113 ClearPagePrivate(page);
1114 }
1115
1116 static int f2fs_release_data_page(struct page *page, gfp_t wait)
1117 {
1118 ClearPagePrivate(page);
1119 return 1;
1120 }
1121
1122 static int f2fs_set_data_page_dirty(struct page *page)
1123 {
1124 struct address_space *mapping = page->mapping;
1125 struct inode *inode = mapping->host;
1126
1127 trace_f2fs_set_page_dirty(page, DATA);
1128
1129 SetPageUptodate(page);
1130 mark_inode_dirty(inode);
1131
1132 if (!PageDirty(page)) {
1133 __set_page_dirty_nobuffers(page);
1134 update_dirty_page(inode, page);
1135 return 1;
1136 }
1137 return 0;
1138 }
1139
1140 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1141 {
1142 struct inode *inode = mapping->host;
1143
1144 if (f2fs_has_inline_data(inode))
1145 return 0;
1146
1147 return generic_block_bmap(mapping, block, get_data_block);
1148 }
1149
1150 const struct address_space_operations f2fs_dblock_aops = {
1151 .readpage = f2fs_read_data_page,
1152 .readpages = f2fs_read_data_pages,
1153 .writepage = f2fs_write_data_page,
1154 .writepages = f2fs_write_data_pages,
1155 .write_begin = f2fs_write_begin,
1156 .write_end = f2fs_write_end,
1157 .set_page_dirty = f2fs_set_data_page_dirty,
1158 .invalidatepage = f2fs_invalidate_data_page,
1159 .releasepage = f2fs_release_data_page,
1160 .direct_IO = f2fs_direct_IO,
1161 .bmap = f2fs_bmap,
1162 };