Merge branches 'fixes' and 'mmci' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / f2fs / checkpoint.c
1 /*
2 * fs/f2fs/checkpoint.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23
24 static struct kmem_cache *orphan_entry_slab;
25 static struct kmem_cache *inode_entry_slab;
26
27 /*
28 * We guarantee no failure on the returned page.
29 */
30 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
31 {
32 struct address_space *mapping = sbi->meta_inode->i_mapping;
33 struct page *page = NULL;
34 repeat:
35 page = grab_cache_page(mapping, index);
36 if (!page) {
37 cond_resched();
38 goto repeat;
39 }
40
41 /* We wait writeback only inside grab_meta_page() */
42 wait_on_page_writeback(page);
43 SetPageUptodate(page);
44 return page;
45 }
46
47 /*
48 * We guarantee no failure on the returned page.
49 */
50 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
51 {
52 struct address_space *mapping = sbi->meta_inode->i_mapping;
53 struct page *page;
54 repeat:
55 page = grab_cache_page(mapping, index);
56 if (!page) {
57 cond_resched();
58 goto repeat;
59 }
60 if (f2fs_readpage(sbi, page, index, READ_SYNC)) {
61 f2fs_put_page(page, 1);
62 goto repeat;
63 }
64 mark_page_accessed(page);
65
66 /* We do not allow returning an errorneous page */
67 return page;
68 }
69
70 static int f2fs_write_meta_page(struct page *page,
71 struct writeback_control *wbc)
72 {
73 struct inode *inode = page->mapping->host;
74 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
75 int err;
76
77 wait_on_page_writeback(page);
78
79 err = write_meta_page(sbi, page, wbc);
80 if (err) {
81 wbc->pages_skipped++;
82 set_page_dirty(page);
83 }
84
85 dec_page_count(sbi, F2FS_DIRTY_META);
86
87 /* In this case, we should not unlock this page */
88 if (err != AOP_WRITEPAGE_ACTIVATE)
89 unlock_page(page);
90 return err;
91 }
92
93 static int f2fs_write_meta_pages(struct address_space *mapping,
94 struct writeback_control *wbc)
95 {
96 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
97 struct block_device *bdev = sbi->sb->s_bdev;
98 long written;
99
100 if (wbc->for_kupdate)
101 return 0;
102
103 if (get_pages(sbi, F2FS_DIRTY_META) == 0)
104 return 0;
105
106 /* if mounting is failed, skip writing node pages */
107 mutex_lock(&sbi->cp_mutex);
108 written = sync_meta_pages(sbi, META, bio_get_nr_vecs(bdev));
109 mutex_unlock(&sbi->cp_mutex);
110 wbc->nr_to_write -= written;
111 return 0;
112 }
113
114 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
115 long nr_to_write)
116 {
117 struct address_space *mapping = sbi->meta_inode->i_mapping;
118 pgoff_t index = 0, end = LONG_MAX;
119 struct pagevec pvec;
120 long nwritten = 0;
121 struct writeback_control wbc = {
122 .for_reclaim = 0,
123 };
124
125 pagevec_init(&pvec, 0);
126
127 while (index <= end) {
128 int i, nr_pages;
129 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
130 PAGECACHE_TAG_DIRTY,
131 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
132 if (nr_pages == 0)
133 break;
134
135 for (i = 0; i < nr_pages; i++) {
136 struct page *page = pvec.pages[i];
137 lock_page(page);
138 BUG_ON(page->mapping != mapping);
139 BUG_ON(!PageDirty(page));
140 clear_page_dirty_for_io(page);
141 f2fs_write_meta_page(page, &wbc);
142 if (nwritten++ >= nr_to_write)
143 break;
144 }
145 pagevec_release(&pvec);
146 cond_resched();
147 }
148
149 if (nwritten)
150 f2fs_submit_bio(sbi, type, nr_to_write == LONG_MAX);
151
152 return nwritten;
153 }
154
155 static int f2fs_set_meta_page_dirty(struct page *page)
156 {
157 struct address_space *mapping = page->mapping;
158 struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
159
160 SetPageUptodate(page);
161 if (!PageDirty(page)) {
162 __set_page_dirty_nobuffers(page);
163 inc_page_count(sbi, F2FS_DIRTY_META);
164 F2FS_SET_SB_DIRT(sbi);
165 return 1;
166 }
167 return 0;
168 }
169
170 const struct address_space_operations f2fs_meta_aops = {
171 .writepage = f2fs_write_meta_page,
172 .writepages = f2fs_write_meta_pages,
173 .set_page_dirty = f2fs_set_meta_page_dirty,
174 };
175
176 int check_orphan_space(struct f2fs_sb_info *sbi)
177 {
178 unsigned int max_orphans;
179 int err = 0;
180
181 /*
182 * considering 512 blocks in a segment 5 blocks are needed for cp
183 * and log segment summaries. Remaining blocks are used to keep
184 * orphan entries with the limitation one reserved segment
185 * for cp pack we can have max 1020*507 orphan entries
186 */
187 max_orphans = (sbi->blocks_per_seg - 5) * F2FS_ORPHANS_PER_BLOCK;
188 mutex_lock(&sbi->orphan_inode_mutex);
189 if (sbi->n_orphans >= max_orphans)
190 err = -ENOSPC;
191 mutex_unlock(&sbi->orphan_inode_mutex);
192 return err;
193 }
194
195 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
196 {
197 struct list_head *head, *this;
198 struct orphan_inode_entry *new = NULL, *orphan = NULL;
199
200 mutex_lock(&sbi->orphan_inode_mutex);
201 head = &sbi->orphan_inode_list;
202 list_for_each(this, head) {
203 orphan = list_entry(this, struct orphan_inode_entry, list);
204 if (orphan->ino == ino)
205 goto out;
206 if (orphan->ino > ino)
207 break;
208 orphan = NULL;
209 }
210 retry:
211 new = kmem_cache_alloc(orphan_entry_slab, GFP_ATOMIC);
212 if (!new) {
213 cond_resched();
214 goto retry;
215 }
216 new->ino = ino;
217
218 /* add new_oentry into list which is sorted by inode number */
219 if (orphan) {
220 struct orphan_inode_entry *prev;
221
222 /* get previous entry */
223 prev = list_entry(orphan->list.prev, typeof(*prev), list);
224 if (&prev->list != head)
225 /* insert new orphan inode entry */
226 list_add(&new->list, &prev->list);
227 else
228 list_add(&new->list, head);
229 } else {
230 list_add_tail(&new->list, head);
231 }
232 sbi->n_orphans++;
233 out:
234 mutex_unlock(&sbi->orphan_inode_mutex);
235 }
236
237 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
238 {
239 struct list_head *this, *next, *head;
240 struct orphan_inode_entry *orphan;
241
242 mutex_lock(&sbi->orphan_inode_mutex);
243 head = &sbi->orphan_inode_list;
244 list_for_each_safe(this, next, head) {
245 orphan = list_entry(this, struct orphan_inode_entry, list);
246 if (orphan->ino == ino) {
247 list_del(&orphan->list);
248 kmem_cache_free(orphan_entry_slab, orphan);
249 sbi->n_orphans--;
250 break;
251 }
252 }
253 mutex_unlock(&sbi->orphan_inode_mutex);
254 }
255
256 static void recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
257 {
258 struct inode *inode = f2fs_iget(sbi->sb, ino);
259 BUG_ON(IS_ERR(inode));
260 clear_nlink(inode);
261
262 /* truncate all the data during iput */
263 iput(inode);
264 }
265
266 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
267 {
268 block_t start_blk, orphan_blkaddr, i, j;
269
270 if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
271 return 0;
272
273 sbi->por_doing = 1;
274 start_blk = __start_cp_addr(sbi) + 1;
275 orphan_blkaddr = __start_sum_addr(sbi) - 1;
276
277 for (i = 0; i < orphan_blkaddr; i++) {
278 struct page *page = get_meta_page(sbi, start_blk + i);
279 struct f2fs_orphan_block *orphan_blk;
280
281 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
282 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
283 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
284 recover_orphan_inode(sbi, ino);
285 }
286 f2fs_put_page(page, 1);
287 }
288 /* clear Orphan Flag */
289 clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
290 sbi->por_doing = 0;
291 return 0;
292 }
293
294 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
295 {
296 struct list_head *head, *this, *next;
297 struct f2fs_orphan_block *orphan_blk = NULL;
298 struct page *page = NULL;
299 unsigned int nentries = 0;
300 unsigned short index = 1;
301 unsigned short orphan_blocks;
302
303 orphan_blocks = (unsigned short)((sbi->n_orphans +
304 (F2FS_ORPHANS_PER_BLOCK - 1)) / F2FS_ORPHANS_PER_BLOCK);
305
306 mutex_lock(&sbi->orphan_inode_mutex);
307 head = &sbi->orphan_inode_list;
308
309 /* loop for each orphan inode entry and write them in Jornal block */
310 list_for_each_safe(this, next, head) {
311 struct orphan_inode_entry *orphan;
312
313 orphan = list_entry(this, struct orphan_inode_entry, list);
314
315 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
316 /*
317 * an orphan block is full of 1020 entries,
318 * then we need to flush current orphan blocks
319 * and bring another one in memory
320 */
321 orphan_blk->blk_addr = cpu_to_le16(index);
322 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
323 orphan_blk->entry_count = cpu_to_le32(nentries);
324 set_page_dirty(page);
325 f2fs_put_page(page, 1);
326 index++;
327 start_blk++;
328 nentries = 0;
329 page = NULL;
330 }
331 if (page)
332 goto page_exist;
333
334 page = grab_meta_page(sbi, start_blk);
335 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
336 memset(orphan_blk, 0, sizeof(*orphan_blk));
337 page_exist:
338 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
339 }
340 if (!page)
341 goto end;
342
343 orphan_blk->blk_addr = cpu_to_le16(index);
344 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
345 orphan_blk->entry_count = cpu_to_le32(nentries);
346 set_page_dirty(page);
347 f2fs_put_page(page, 1);
348 end:
349 mutex_unlock(&sbi->orphan_inode_mutex);
350 }
351
352 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
353 block_t cp_addr, unsigned long long *version)
354 {
355 struct page *cp_page_1, *cp_page_2 = NULL;
356 unsigned long blk_size = sbi->blocksize;
357 struct f2fs_checkpoint *cp_block;
358 unsigned long long cur_version = 0, pre_version = 0;
359 unsigned int crc = 0;
360 size_t crc_offset;
361
362 /* Read the 1st cp block in this CP pack */
363 cp_page_1 = get_meta_page(sbi, cp_addr);
364
365 /* get the version number */
366 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
367 crc_offset = le32_to_cpu(cp_block->checksum_offset);
368 if (crc_offset >= blk_size)
369 goto invalid_cp1;
370
371 crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
372 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
373 goto invalid_cp1;
374
375 pre_version = le64_to_cpu(cp_block->checkpoint_ver);
376
377 /* Read the 2nd cp block in this CP pack */
378 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
379 cp_page_2 = get_meta_page(sbi, cp_addr);
380
381 cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
382 crc_offset = le32_to_cpu(cp_block->checksum_offset);
383 if (crc_offset >= blk_size)
384 goto invalid_cp2;
385
386 crc = *(unsigned int *)((unsigned char *)cp_block + crc_offset);
387 if (!f2fs_crc_valid(crc, cp_block, crc_offset))
388 goto invalid_cp2;
389
390 cur_version = le64_to_cpu(cp_block->checkpoint_ver);
391
392 if (cur_version == pre_version) {
393 *version = cur_version;
394 f2fs_put_page(cp_page_2, 1);
395 return cp_page_1;
396 }
397 invalid_cp2:
398 f2fs_put_page(cp_page_2, 1);
399 invalid_cp1:
400 f2fs_put_page(cp_page_1, 1);
401 return NULL;
402 }
403
404 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
405 {
406 struct f2fs_checkpoint *cp_block;
407 struct f2fs_super_block *fsb = sbi->raw_super;
408 struct page *cp1, *cp2, *cur_page;
409 unsigned long blk_size = sbi->blocksize;
410 unsigned long long cp1_version = 0, cp2_version = 0;
411 unsigned long long cp_start_blk_no;
412
413 sbi->ckpt = kzalloc(blk_size, GFP_KERNEL);
414 if (!sbi->ckpt)
415 return -ENOMEM;
416 /*
417 * Finding out valid cp block involves read both
418 * sets( cp pack1 and cp pack 2)
419 */
420 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
421 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
422
423 /* The second checkpoint pack should start at the next segment */
424 cp_start_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
425 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
426
427 if (cp1 && cp2) {
428 if (ver_after(cp2_version, cp1_version))
429 cur_page = cp2;
430 else
431 cur_page = cp1;
432 } else if (cp1) {
433 cur_page = cp1;
434 } else if (cp2) {
435 cur_page = cp2;
436 } else {
437 goto fail_no_cp;
438 }
439
440 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
441 memcpy(sbi->ckpt, cp_block, blk_size);
442
443 f2fs_put_page(cp1, 1);
444 f2fs_put_page(cp2, 1);
445 return 0;
446
447 fail_no_cp:
448 kfree(sbi->ckpt);
449 return -EINVAL;
450 }
451
452 void set_dirty_dir_page(struct inode *inode, struct page *page)
453 {
454 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
455 struct list_head *head = &sbi->dir_inode_list;
456 struct dir_inode_entry *new;
457 struct list_head *this;
458
459 if (!S_ISDIR(inode->i_mode))
460 return;
461 retry:
462 new = kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
463 if (!new) {
464 cond_resched();
465 goto retry;
466 }
467 new->inode = inode;
468 INIT_LIST_HEAD(&new->list);
469
470 spin_lock(&sbi->dir_inode_lock);
471 list_for_each(this, head) {
472 struct dir_inode_entry *entry;
473 entry = list_entry(this, struct dir_inode_entry, list);
474 if (entry->inode == inode) {
475 kmem_cache_free(inode_entry_slab, new);
476 goto out;
477 }
478 }
479 list_add_tail(&new->list, head);
480 sbi->n_dirty_dirs++;
481
482 BUG_ON(!S_ISDIR(inode->i_mode));
483 out:
484 inc_page_count(sbi, F2FS_DIRTY_DENTS);
485 inode_inc_dirty_dents(inode);
486 SetPagePrivate(page);
487
488 spin_unlock(&sbi->dir_inode_lock);
489 }
490
491 void remove_dirty_dir_inode(struct inode *inode)
492 {
493 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
494 struct list_head *head = &sbi->dir_inode_list;
495 struct list_head *this;
496
497 if (!S_ISDIR(inode->i_mode))
498 return;
499
500 spin_lock(&sbi->dir_inode_lock);
501 if (atomic_read(&F2FS_I(inode)->dirty_dents))
502 goto out;
503
504 list_for_each(this, head) {
505 struct dir_inode_entry *entry;
506 entry = list_entry(this, struct dir_inode_entry, list);
507 if (entry->inode == inode) {
508 list_del(&entry->list);
509 kmem_cache_free(inode_entry_slab, entry);
510 sbi->n_dirty_dirs--;
511 break;
512 }
513 }
514 out:
515 spin_unlock(&sbi->dir_inode_lock);
516 }
517
518 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
519 {
520 struct list_head *head = &sbi->dir_inode_list;
521 struct dir_inode_entry *entry;
522 struct inode *inode;
523 retry:
524 spin_lock(&sbi->dir_inode_lock);
525 if (list_empty(head)) {
526 spin_unlock(&sbi->dir_inode_lock);
527 return;
528 }
529 entry = list_entry(head->next, struct dir_inode_entry, list);
530 inode = igrab(entry->inode);
531 spin_unlock(&sbi->dir_inode_lock);
532 if (inode) {
533 filemap_flush(inode->i_mapping);
534 iput(inode);
535 } else {
536 /*
537 * We should submit bio, since it exists several
538 * wribacking dentry pages in the freeing inode.
539 */
540 f2fs_submit_bio(sbi, DATA, true);
541 }
542 goto retry;
543 }
544
545 /*
546 * Freeze all the FS-operations for checkpoint.
547 */
548 void block_operations(struct f2fs_sb_info *sbi)
549 {
550 int t;
551 struct writeback_control wbc = {
552 .sync_mode = WB_SYNC_ALL,
553 .nr_to_write = LONG_MAX,
554 .for_reclaim = 0,
555 };
556
557 /* Stop renaming operation */
558 mutex_lock_op(sbi, RENAME);
559 mutex_lock_op(sbi, DENTRY_OPS);
560
561 retry_dents:
562 /* write all the dirty dentry pages */
563 sync_dirty_dir_inodes(sbi);
564
565 mutex_lock_op(sbi, DATA_WRITE);
566 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
567 mutex_unlock_op(sbi, DATA_WRITE);
568 goto retry_dents;
569 }
570
571 /* block all the operations */
572 for (t = DATA_NEW; t <= NODE_TRUNC; t++)
573 mutex_lock_op(sbi, t);
574
575 mutex_lock(&sbi->write_inode);
576
577 /*
578 * POR: we should ensure that there is no dirty node pages
579 * until finishing nat/sit flush.
580 */
581 retry:
582 sync_node_pages(sbi, 0, &wbc);
583
584 mutex_lock_op(sbi, NODE_WRITE);
585
586 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
587 mutex_unlock_op(sbi, NODE_WRITE);
588 goto retry;
589 }
590 mutex_unlock(&sbi->write_inode);
591 }
592
593 static void unblock_operations(struct f2fs_sb_info *sbi)
594 {
595 int t;
596 for (t = NODE_WRITE; t >= RENAME; t--)
597 mutex_unlock_op(sbi, t);
598 }
599
600 static void do_checkpoint(struct f2fs_sb_info *sbi, bool is_umount)
601 {
602 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
603 nid_t last_nid = 0;
604 block_t start_blk;
605 struct page *cp_page;
606 unsigned int data_sum_blocks, orphan_blocks;
607 unsigned int crc32 = 0;
608 void *kaddr;
609 int i;
610
611 /* Flush all the NAT/SIT pages */
612 while (get_pages(sbi, F2FS_DIRTY_META))
613 sync_meta_pages(sbi, META, LONG_MAX);
614
615 next_free_nid(sbi, &last_nid);
616
617 /*
618 * modify checkpoint
619 * version number is already updated
620 */
621 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
622 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
623 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
624 for (i = 0; i < 3; i++) {
625 ckpt->cur_node_segno[i] =
626 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
627 ckpt->cur_node_blkoff[i] =
628 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
629 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
630 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
631 }
632 for (i = 0; i < 3; i++) {
633 ckpt->cur_data_segno[i] =
634 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
635 ckpt->cur_data_blkoff[i] =
636 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
637 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
638 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
639 }
640
641 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
642 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
643 ckpt->next_free_nid = cpu_to_le32(last_nid);
644
645 /* 2 cp + n data seg summary + orphan inode blocks */
646 data_sum_blocks = npages_for_summary_flush(sbi);
647 if (data_sum_blocks < 3)
648 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
649 else
650 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
651
652 orphan_blocks = (sbi->n_orphans + F2FS_ORPHANS_PER_BLOCK - 1)
653 / F2FS_ORPHANS_PER_BLOCK;
654 ckpt->cp_pack_start_sum = cpu_to_le32(1 + orphan_blocks);
655
656 if (is_umount) {
657 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
658 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
659 data_sum_blocks + orphan_blocks + NR_CURSEG_NODE_TYPE);
660 } else {
661 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
662 ckpt->cp_pack_total_block_count = cpu_to_le32(2 +
663 data_sum_blocks + orphan_blocks);
664 }
665
666 if (sbi->n_orphans)
667 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
668 else
669 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
670
671 /* update SIT/NAT bitmap */
672 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
673 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
674
675 crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
676 *(__le32 *)((unsigned char *)ckpt +
677 le32_to_cpu(ckpt->checksum_offset))
678 = cpu_to_le32(crc32);
679
680 start_blk = __start_cp_addr(sbi);
681
682 /* write out checkpoint buffer at block 0 */
683 cp_page = grab_meta_page(sbi, start_blk++);
684 kaddr = page_address(cp_page);
685 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
686 set_page_dirty(cp_page);
687 f2fs_put_page(cp_page, 1);
688
689 if (sbi->n_orphans) {
690 write_orphan_inodes(sbi, start_blk);
691 start_blk += orphan_blocks;
692 }
693
694 write_data_summaries(sbi, start_blk);
695 start_blk += data_sum_blocks;
696 if (is_umount) {
697 write_node_summaries(sbi, start_blk);
698 start_blk += NR_CURSEG_NODE_TYPE;
699 }
700
701 /* writeout checkpoint block */
702 cp_page = grab_meta_page(sbi, start_blk);
703 kaddr = page_address(cp_page);
704 memcpy(kaddr, ckpt, (1 << sbi->log_blocksize));
705 set_page_dirty(cp_page);
706 f2fs_put_page(cp_page, 1);
707
708 /* wait for previous submitted node/meta pages writeback */
709 while (get_pages(sbi, F2FS_WRITEBACK))
710 congestion_wait(BLK_RW_ASYNC, HZ / 50);
711
712 filemap_fdatawait_range(sbi->node_inode->i_mapping, 0, LONG_MAX);
713 filemap_fdatawait_range(sbi->meta_inode->i_mapping, 0, LONG_MAX);
714
715 /* update user_block_counts */
716 sbi->last_valid_block_count = sbi->total_valid_block_count;
717 sbi->alloc_valid_block_count = 0;
718
719 /* Here, we only have one bio having CP pack */
720 if (is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))
721 sbi->sb->s_flags |= MS_RDONLY;
722 else
723 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
724
725 clear_prefree_segments(sbi);
726 F2FS_RESET_SB_DIRT(sbi);
727 }
728
729 /*
730 * We guarantee that this checkpoint procedure should not fail.
731 */
732 void write_checkpoint(struct f2fs_sb_info *sbi, bool blocked, bool is_umount)
733 {
734 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
735 unsigned long long ckpt_ver;
736
737 if (!blocked) {
738 mutex_lock(&sbi->cp_mutex);
739 block_operations(sbi);
740 }
741
742 f2fs_submit_bio(sbi, DATA, true);
743 f2fs_submit_bio(sbi, NODE, true);
744 f2fs_submit_bio(sbi, META, true);
745
746 /*
747 * update checkpoint pack index
748 * Increase the version number so that
749 * SIT entries and seg summaries are written at correct place
750 */
751 ckpt_ver = le64_to_cpu(ckpt->checkpoint_ver);
752 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
753
754 /* write cached NAT/SIT entries to NAT/SIT area */
755 flush_nat_entries(sbi);
756 flush_sit_entries(sbi);
757
758 reset_victim_segmap(sbi);
759
760 /* unlock all the fs_lock[] in do_checkpoint() */
761 do_checkpoint(sbi, is_umount);
762
763 unblock_operations(sbi);
764 mutex_unlock(&sbi->cp_mutex);
765 }
766
767 void init_orphan_info(struct f2fs_sb_info *sbi)
768 {
769 mutex_init(&sbi->orphan_inode_mutex);
770 INIT_LIST_HEAD(&sbi->orphan_inode_list);
771 sbi->n_orphans = 0;
772 }
773
774 int __init create_checkpoint_caches(void)
775 {
776 orphan_entry_slab = f2fs_kmem_cache_create("f2fs_orphan_entry",
777 sizeof(struct orphan_inode_entry), NULL);
778 if (unlikely(!orphan_entry_slab))
779 return -ENOMEM;
780 inode_entry_slab = f2fs_kmem_cache_create("f2fs_dirty_dir_entry",
781 sizeof(struct dir_inode_entry), NULL);
782 if (unlikely(!inode_entry_slab)) {
783 kmem_cache_destroy(orphan_entry_slab);
784 return -ENOMEM;
785 }
786 return 0;
787 }
788
789 void destroy_checkpoint_caches(void)
790 {
791 kmem_cache_destroy(orphan_entry_slab);
792 kmem_cache_destroy(inode_entry_slab);
793 }