Merge branch 'slab/for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penber...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static const char *ext4_decode_error(struct super_block *sb, int errno,
73 char nbuf[16]);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86
87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
88 static struct file_system_type ext2_fs_type = {
89 .owner = THIS_MODULE,
90 .name = "ext2",
91 .mount = ext4_mount,
92 .kill_sb = kill_block_super,
93 .fs_flags = FS_REQUIRES_DEV,
94 };
95 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
96 #else
97 #define IS_EXT2_SB(sb) (0)
98 #endif
99
100
101 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
102 static struct file_system_type ext3_fs_type = {
103 .owner = THIS_MODULE,
104 .name = "ext3",
105 .mount = ext4_mount,
106 .kill_sb = kill_block_super,
107 .fs_flags = FS_REQUIRES_DEV,
108 };
109 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
110 #else
111 #define IS_EXT3_SB(sb) (0)
112 #endif
113
114 static int ext4_verify_csum_type(struct super_block *sb,
115 struct ext4_super_block *es)
116 {
117 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
118 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
119 return 1;
120
121 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
122 }
123
124 static __le32 ext4_superblock_csum(struct super_block *sb,
125 struct ext4_super_block *es)
126 {
127 struct ext4_sb_info *sbi = EXT4_SB(sb);
128 int offset = offsetof(struct ext4_super_block, s_checksum);
129 __u32 csum;
130
131 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
132
133 return cpu_to_le32(csum);
134 }
135
136 int ext4_superblock_csum_verify(struct super_block *sb,
137 struct ext4_super_block *es)
138 {
139 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
140 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
141 return 1;
142
143 return es->s_checksum == ext4_superblock_csum(sb, es);
144 }
145
146 void ext4_superblock_csum_set(struct super_block *sb)
147 {
148 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
149
150 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
151 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
152 return;
153
154 es->s_checksum = ext4_superblock_csum(sb, es);
155 }
156
157 void *ext4_kvmalloc(size_t size, gfp_t flags)
158 {
159 void *ret;
160
161 ret = kmalloc(size, flags);
162 if (!ret)
163 ret = __vmalloc(size, flags, PAGE_KERNEL);
164 return ret;
165 }
166
167 void *ext4_kvzalloc(size_t size, gfp_t flags)
168 {
169 void *ret;
170
171 ret = kzalloc(size, flags);
172 if (!ret)
173 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
174 return ret;
175 }
176
177 void ext4_kvfree(void *ptr)
178 {
179 if (is_vmalloc_addr(ptr))
180 vfree(ptr);
181 else
182 kfree(ptr);
183
184 }
185
186 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
187 struct ext4_group_desc *bg)
188 {
189 return le32_to_cpu(bg->bg_block_bitmap_lo) |
190 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
191 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
192 }
193
194 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
195 struct ext4_group_desc *bg)
196 {
197 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
198 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
199 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
200 }
201
202 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
203 struct ext4_group_desc *bg)
204 {
205 return le32_to_cpu(bg->bg_inode_table_lo) |
206 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
207 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
208 }
209
210 __u32 ext4_free_group_clusters(struct super_block *sb,
211 struct ext4_group_desc *bg)
212 {
213 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
214 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
215 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
216 }
217
218 __u32 ext4_free_inodes_count(struct super_block *sb,
219 struct ext4_group_desc *bg)
220 {
221 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
222 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
223 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
224 }
225
226 __u32 ext4_used_dirs_count(struct super_block *sb,
227 struct ext4_group_desc *bg)
228 {
229 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
230 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
231 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
232 }
233
234 __u32 ext4_itable_unused_count(struct super_block *sb,
235 struct ext4_group_desc *bg)
236 {
237 return le16_to_cpu(bg->bg_itable_unused_lo) |
238 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
239 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
240 }
241
242 void ext4_block_bitmap_set(struct super_block *sb,
243 struct ext4_group_desc *bg, ext4_fsblk_t blk)
244 {
245 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
246 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
247 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
248 }
249
250 void ext4_inode_bitmap_set(struct super_block *sb,
251 struct ext4_group_desc *bg, ext4_fsblk_t blk)
252 {
253 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
254 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
255 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
256 }
257
258 void ext4_inode_table_set(struct super_block *sb,
259 struct ext4_group_desc *bg, ext4_fsblk_t blk)
260 {
261 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
262 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
263 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
264 }
265
266 void ext4_free_group_clusters_set(struct super_block *sb,
267 struct ext4_group_desc *bg, __u32 count)
268 {
269 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
270 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
271 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
272 }
273
274 void ext4_free_inodes_set(struct super_block *sb,
275 struct ext4_group_desc *bg, __u32 count)
276 {
277 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
278 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
279 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
280 }
281
282 void ext4_used_dirs_set(struct super_block *sb,
283 struct ext4_group_desc *bg, __u32 count)
284 {
285 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
286 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
287 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
288 }
289
290 void ext4_itable_unused_set(struct super_block *sb,
291 struct ext4_group_desc *bg, __u32 count)
292 {
293 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
294 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
295 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
296 }
297
298
299 /* Just increment the non-pointer handle value */
300 static handle_t *ext4_get_nojournal(void)
301 {
302 handle_t *handle = current->journal_info;
303 unsigned long ref_cnt = (unsigned long)handle;
304
305 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
306
307 ref_cnt++;
308 handle = (handle_t *)ref_cnt;
309
310 current->journal_info = handle;
311 return handle;
312 }
313
314
315 /* Decrement the non-pointer handle value */
316 static void ext4_put_nojournal(handle_t *handle)
317 {
318 unsigned long ref_cnt = (unsigned long)handle;
319
320 BUG_ON(ref_cnt == 0);
321
322 ref_cnt--;
323 handle = (handle_t *)ref_cnt;
324
325 current->journal_info = handle;
326 }
327
328 /*
329 * Wrappers for jbd2_journal_start/end.
330 */
331 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
332 {
333 journal_t *journal;
334
335 trace_ext4_journal_start(sb, nblocks, _RET_IP_);
336 if (sb->s_flags & MS_RDONLY)
337 return ERR_PTR(-EROFS);
338
339 WARN_ON(sb->s_writers.frozen == SB_FREEZE_COMPLETE);
340 journal = EXT4_SB(sb)->s_journal;
341 if (!journal)
342 return ext4_get_nojournal();
343 /*
344 * Special case here: if the journal has aborted behind our
345 * backs (eg. EIO in the commit thread), then we still need to
346 * take the FS itself readonly cleanly.
347 */
348 if (is_journal_aborted(journal)) {
349 ext4_abort(sb, "Detected aborted journal");
350 return ERR_PTR(-EROFS);
351 }
352 return jbd2_journal_start(journal, nblocks);
353 }
354
355 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
356 {
357 struct super_block *sb;
358 int err;
359 int rc;
360
361 if (!ext4_handle_valid(handle)) {
362 ext4_put_nojournal(handle);
363 return 0;
364 }
365 sb = handle->h_transaction->t_journal->j_private;
366 err = handle->h_err;
367 rc = jbd2_journal_stop(handle);
368
369 if (!err)
370 err = rc;
371 if (err)
372 __ext4_std_error(sb, where, line, err);
373 return err;
374 }
375
376 void ext4_journal_abort_handle(const char *caller, unsigned int line,
377 const char *err_fn, struct buffer_head *bh,
378 handle_t *handle, int err)
379 {
380 char nbuf[16];
381 const char *errstr = ext4_decode_error(NULL, err, nbuf);
382
383 BUG_ON(!ext4_handle_valid(handle));
384
385 if (bh)
386 BUFFER_TRACE(bh, "abort");
387
388 if (!handle->h_err)
389 handle->h_err = err;
390
391 if (is_handle_aborted(handle))
392 return;
393
394 printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n",
395 caller, line, errstr, err_fn);
396
397 jbd2_journal_abort_handle(handle);
398 }
399
400 static void __save_error_info(struct super_block *sb, const char *func,
401 unsigned int line)
402 {
403 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
404
405 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
406 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
407 es->s_last_error_time = cpu_to_le32(get_seconds());
408 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
409 es->s_last_error_line = cpu_to_le32(line);
410 if (!es->s_first_error_time) {
411 es->s_first_error_time = es->s_last_error_time;
412 strncpy(es->s_first_error_func, func,
413 sizeof(es->s_first_error_func));
414 es->s_first_error_line = cpu_to_le32(line);
415 es->s_first_error_ino = es->s_last_error_ino;
416 es->s_first_error_block = es->s_last_error_block;
417 }
418 /*
419 * Start the daily error reporting function if it hasn't been
420 * started already
421 */
422 if (!es->s_error_count)
423 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
424 le32_add_cpu(&es->s_error_count, 1);
425 }
426
427 static void save_error_info(struct super_block *sb, const char *func,
428 unsigned int line)
429 {
430 __save_error_info(sb, func, line);
431 ext4_commit_super(sb, 1);
432 }
433
434 /*
435 * The del_gendisk() function uninitializes the disk-specific data
436 * structures, including the bdi structure, without telling anyone
437 * else. Once this happens, any attempt to call mark_buffer_dirty()
438 * (for example, by ext4_commit_super), will cause a kernel OOPS.
439 * This is a kludge to prevent these oops until we can put in a proper
440 * hook in del_gendisk() to inform the VFS and file system layers.
441 */
442 static int block_device_ejected(struct super_block *sb)
443 {
444 struct inode *bd_inode = sb->s_bdev->bd_inode;
445 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
446
447 return bdi->dev == NULL;
448 }
449
450 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
451 {
452 struct super_block *sb = journal->j_private;
453 struct ext4_sb_info *sbi = EXT4_SB(sb);
454 int error = is_journal_aborted(journal);
455 struct ext4_journal_cb_entry *jce, *tmp;
456
457 spin_lock(&sbi->s_md_lock);
458 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) {
459 list_del_init(&jce->jce_list);
460 spin_unlock(&sbi->s_md_lock);
461 jce->jce_func(sb, jce, error);
462 spin_lock(&sbi->s_md_lock);
463 }
464 spin_unlock(&sbi->s_md_lock);
465 }
466
467 /* Deal with the reporting of failure conditions on a filesystem such as
468 * inconsistencies detected or read IO failures.
469 *
470 * On ext2, we can store the error state of the filesystem in the
471 * superblock. That is not possible on ext4, because we may have other
472 * write ordering constraints on the superblock which prevent us from
473 * writing it out straight away; and given that the journal is about to
474 * be aborted, we can't rely on the current, or future, transactions to
475 * write out the superblock safely.
476 *
477 * We'll just use the jbd2_journal_abort() error code to record an error in
478 * the journal instead. On recovery, the journal will complain about
479 * that error until we've noted it down and cleared it.
480 */
481
482 static void ext4_handle_error(struct super_block *sb)
483 {
484 if (sb->s_flags & MS_RDONLY)
485 return;
486
487 if (!test_opt(sb, ERRORS_CONT)) {
488 journal_t *journal = EXT4_SB(sb)->s_journal;
489
490 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
491 if (journal)
492 jbd2_journal_abort(journal, -EIO);
493 }
494 if (test_opt(sb, ERRORS_RO)) {
495 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
496 sb->s_flags |= MS_RDONLY;
497 }
498 if (test_opt(sb, ERRORS_PANIC))
499 panic("EXT4-fs (device %s): panic forced after error\n",
500 sb->s_id);
501 }
502
503 void __ext4_error(struct super_block *sb, const char *function,
504 unsigned int line, const char *fmt, ...)
505 {
506 struct va_format vaf;
507 va_list args;
508
509 va_start(args, fmt);
510 vaf.fmt = fmt;
511 vaf.va = &args;
512 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
513 sb->s_id, function, line, current->comm, &vaf);
514 va_end(args);
515 save_error_info(sb, function, line);
516
517 ext4_handle_error(sb);
518 }
519
520 void ext4_error_inode(struct inode *inode, const char *function,
521 unsigned int line, ext4_fsblk_t block,
522 const char *fmt, ...)
523 {
524 va_list args;
525 struct va_format vaf;
526 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
527
528 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
529 es->s_last_error_block = cpu_to_le64(block);
530 save_error_info(inode->i_sb, function, line);
531 va_start(args, fmt);
532 vaf.fmt = fmt;
533 vaf.va = &args;
534 if (block)
535 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
536 "inode #%lu: block %llu: comm %s: %pV\n",
537 inode->i_sb->s_id, function, line, inode->i_ino,
538 block, current->comm, &vaf);
539 else
540 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
541 "inode #%lu: comm %s: %pV\n",
542 inode->i_sb->s_id, function, line, inode->i_ino,
543 current->comm, &vaf);
544 va_end(args);
545
546 ext4_handle_error(inode->i_sb);
547 }
548
549 void ext4_error_file(struct file *file, const char *function,
550 unsigned int line, ext4_fsblk_t block,
551 const char *fmt, ...)
552 {
553 va_list args;
554 struct va_format vaf;
555 struct ext4_super_block *es;
556 struct inode *inode = file->f_dentry->d_inode;
557 char pathname[80], *path;
558
559 es = EXT4_SB(inode->i_sb)->s_es;
560 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
561 save_error_info(inode->i_sb, function, line);
562 path = d_path(&(file->f_path), pathname, sizeof(pathname));
563 if (IS_ERR(path))
564 path = "(unknown)";
565 va_start(args, fmt);
566 vaf.fmt = fmt;
567 vaf.va = &args;
568 if (block)
569 printk(KERN_CRIT
570 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
571 "block %llu: comm %s: path %s: %pV\n",
572 inode->i_sb->s_id, function, line, inode->i_ino,
573 block, current->comm, path, &vaf);
574 else
575 printk(KERN_CRIT
576 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
577 "comm %s: path %s: %pV\n",
578 inode->i_sb->s_id, function, line, inode->i_ino,
579 current->comm, path, &vaf);
580 va_end(args);
581
582 ext4_handle_error(inode->i_sb);
583 }
584
585 static const char *ext4_decode_error(struct super_block *sb, int errno,
586 char nbuf[16])
587 {
588 char *errstr = NULL;
589
590 switch (errno) {
591 case -EIO:
592 errstr = "IO failure";
593 break;
594 case -ENOMEM:
595 errstr = "Out of memory";
596 break;
597 case -EROFS:
598 if (!sb || (EXT4_SB(sb)->s_journal &&
599 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
600 errstr = "Journal has aborted";
601 else
602 errstr = "Readonly filesystem";
603 break;
604 default:
605 /* If the caller passed in an extra buffer for unknown
606 * errors, textualise them now. Else we just return
607 * NULL. */
608 if (nbuf) {
609 /* Check for truncated error codes... */
610 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
611 errstr = nbuf;
612 }
613 break;
614 }
615
616 return errstr;
617 }
618
619 /* __ext4_std_error decodes expected errors from journaling functions
620 * automatically and invokes the appropriate error response. */
621
622 void __ext4_std_error(struct super_block *sb, const char *function,
623 unsigned int line, int errno)
624 {
625 char nbuf[16];
626 const char *errstr;
627
628 /* Special case: if the error is EROFS, and we're not already
629 * inside a transaction, then there's really no point in logging
630 * an error. */
631 if (errno == -EROFS && journal_current_handle() == NULL &&
632 (sb->s_flags & MS_RDONLY))
633 return;
634
635 errstr = ext4_decode_error(sb, errno, nbuf);
636 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
637 sb->s_id, function, line, errstr);
638 save_error_info(sb, function, line);
639
640 ext4_handle_error(sb);
641 }
642
643 /*
644 * ext4_abort is a much stronger failure handler than ext4_error. The
645 * abort function may be used to deal with unrecoverable failures such
646 * as journal IO errors or ENOMEM at a critical moment in log management.
647 *
648 * We unconditionally force the filesystem into an ABORT|READONLY state,
649 * unless the error response on the fs has been set to panic in which
650 * case we take the easy way out and panic immediately.
651 */
652
653 void __ext4_abort(struct super_block *sb, const char *function,
654 unsigned int line, const char *fmt, ...)
655 {
656 va_list args;
657
658 save_error_info(sb, function, line);
659 va_start(args, fmt);
660 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
661 function, line);
662 vprintk(fmt, args);
663 printk("\n");
664 va_end(args);
665
666 if ((sb->s_flags & MS_RDONLY) == 0) {
667 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
668 sb->s_flags |= MS_RDONLY;
669 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
670 if (EXT4_SB(sb)->s_journal)
671 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
672 save_error_info(sb, function, line);
673 }
674 if (test_opt(sb, ERRORS_PANIC))
675 panic("EXT4-fs panic from previous error\n");
676 }
677
678 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
679 {
680 struct va_format vaf;
681 va_list args;
682
683 va_start(args, fmt);
684 vaf.fmt = fmt;
685 vaf.va = &args;
686 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
687 va_end(args);
688 }
689
690 void __ext4_warning(struct super_block *sb, const char *function,
691 unsigned int line, const char *fmt, ...)
692 {
693 struct va_format vaf;
694 va_list args;
695
696 va_start(args, fmt);
697 vaf.fmt = fmt;
698 vaf.va = &args;
699 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
700 sb->s_id, function, line, &vaf);
701 va_end(args);
702 }
703
704 void __ext4_grp_locked_error(const char *function, unsigned int line,
705 struct super_block *sb, ext4_group_t grp,
706 unsigned long ino, ext4_fsblk_t block,
707 const char *fmt, ...)
708 __releases(bitlock)
709 __acquires(bitlock)
710 {
711 struct va_format vaf;
712 va_list args;
713 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
714
715 es->s_last_error_ino = cpu_to_le32(ino);
716 es->s_last_error_block = cpu_to_le64(block);
717 __save_error_info(sb, function, line);
718
719 va_start(args, fmt);
720
721 vaf.fmt = fmt;
722 vaf.va = &args;
723 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
724 sb->s_id, function, line, grp);
725 if (ino)
726 printk(KERN_CONT "inode %lu: ", ino);
727 if (block)
728 printk(KERN_CONT "block %llu:", (unsigned long long) block);
729 printk(KERN_CONT "%pV\n", &vaf);
730 va_end(args);
731
732 if (test_opt(sb, ERRORS_CONT)) {
733 ext4_commit_super(sb, 0);
734 return;
735 }
736
737 ext4_unlock_group(sb, grp);
738 ext4_handle_error(sb);
739 /*
740 * We only get here in the ERRORS_RO case; relocking the group
741 * may be dangerous, but nothing bad will happen since the
742 * filesystem will have already been marked read/only and the
743 * journal has been aborted. We return 1 as a hint to callers
744 * who might what to use the return value from
745 * ext4_grp_locked_error() to distinguish between the
746 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
747 * aggressively from the ext4 function in question, with a
748 * more appropriate error code.
749 */
750 ext4_lock_group(sb, grp);
751 return;
752 }
753
754 void ext4_update_dynamic_rev(struct super_block *sb)
755 {
756 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
757
758 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
759 return;
760
761 ext4_warning(sb,
762 "updating to rev %d because of new feature flag, "
763 "running e2fsck is recommended",
764 EXT4_DYNAMIC_REV);
765
766 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
767 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
768 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
769 /* leave es->s_feature_*compat flags alone */
770 /* es->s_uuid will be set by e2fsck if empty */
771
772 /*
773 * The rest of the superblock fields should be zero, and if not it
774 * means they are likely already in use, so leave them alone. We
775 * can leave it up to e2fsck to clean up any inconsistencies there.
776 */
777 }
778
779 /*
780 * Open the external journal device
781 */
782 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
783 {
784 struct block_device *bdev;
785 char b[BDEVNAME_SIZE];
786
787 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
788 if (IS_ERR(bdev))
789 goto fail;
790 return bdev;
791
792 fail:
793 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
794 __bdevname(dev, b), PTR_ERR(bdev));
795 return NULL;
796 }
797
798 /*
799 * Release the journal device
800 */
801 static int ext4_blkdev_put(struct block_device *bdev)
802 {
803 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
804 }
805
806 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
807 {
808 struct block_device *bdev;
809 int ret = -ENODEV;
810
811 bdev = sbi->journal_bdev;
812 if (bdev) {
813 ret = ext4_blkdev_put(bdev);
814 sbi->journal_bdev = NULL;
815 }
816 return ret;
817 }
818
819 static inline struct inode *orphan_list_entry(struct list_head *l)
820 {
821 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
822 }
823
824 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
825 {
826 struct list_head *l;
827
828 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
829 le32_to_cpu(sbi->s_es->s_last_orphan));
830
831 printk(KERN_ERR "sb_info orphan list:\n");
832 list_for_each(l, &sbi->s_orphan) {
833 struct inode *inode = orphan_list_entry(l);
834 printk(KERN_ERR " "
835 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
836 inode->i_sb->s_id, inode->i_ino, inode,
837 inode->i_mode, inode->i_nlink,
838 NEXT_ORPHAN(inode));
839 }
840 }
841
842 static void ext4_put_super(struct super_block *sb)
843 {
844 struct ext4_sb_info *sbi = EXT4_SB(sb);
845 struct ext4_super_block *es = sbi->s_es;
846 int i, err;
847
848 ext4_unregister_li_request(sb);
849 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
850
851 flush_workqueue(sbi->dio_unwritten_wq);
852 destroy_workqueue(sbi->dio_unwritten_wq);
853
854 if (sbi->s_journal) {
855 err = jbd2_journal_destroy(sbi->s_journal);
856 sbi->s_journal = NULL;
857 if (err < 0)
858 ext4_abort(sb, "Couldn't clean up the journal");
859 }
860
861 del_timer(&sbi->s_err_report);
862 ext4_release_system_zone(sb);
863 ext4_mb_release(sb);
864 ext4_ext_release(sb);
865 ext4_xattr_put_super(sb);
866
867 if (!(sb->s_flags & MS_RDONLY)) {
868 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
869 es->s_state = cpu_to_le16(sbi->s_mount_state);
870 }
871 if (!(sb->s_flags & MS_RDONLY))
872 ext4_commit_super(sb, 1);
873
874 if (sbi->s_proc) {
875 remove_proc_entry("options", sbi->s_proc);
876 remove_proc_entry(sb->s_id, ext4_proc_root);
877 }
878 kobject_del(&sbi->s_kobj);
879
880 for (i = 0; i < sbi->s_gdb_count; i++)
881 brelse(sbi->s_group_desc[i]);
882 ext4_kvfree(sbi->s_group_desc);
883 ext4_kvfree(sbi->s_flex_groups);
884 percpu_counter_destroy(&sbi->s_freeclusters_counter);
885 percpu_counter_destroy(&sbi->s_freeinodes_counter);
886 percpu_counter_destroy(&sbi->s_dirs_counter);
887 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
888 brelse(sbi->s_sbh);
889 #ifdef CONFIG_QUOTA
890 for (i = 0; i < MAXQUOTAS; i++)
891 kfree(sbi->s_qf_names[i]);
892 #endif
893
894 /* Debugging code just in case the in-memory inode orphan list
895 * isn't empty. The on-disk one can be non-empty if we've
896 * detected an error and taken the fs readonly, but the
897 * in-memory list had better be clean by this point. */
898 if (!list_empty(&sbi->s_orphan))
899 dump_orphan_list(sb, sbi);
900 J_ASSERT(list_empty(&sbi->s_orphan));
901
902 invalidate_bdev(sb->s_bdev);
903 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
904 /*
905 * Invalidate the journal device's buffers. We don't want them
906 * floating about in memory - the physical journal device may
907 * hotswapped, and it breaks the `ro-after' testing code.
908 */
909 sync_blockdev(sbi->journal_bdev);
910 invalidate_bdev(sbi->journal_bdev);
911 ext4_blkdev_remove(sbi);
912 }
913 if (sbi->s_mmp_tsk)
914 kthread_stop(sbi->s_mmp_tsk);
915 sb->s_fs_info = NULL;
916 /*
917 * Now that we are completely done shutting down the
918 * superblock, we need to actually destroy the kobject.
919 */
920 kobject_put(&sbi->s_kobj);
921 wait_for_completion(&sbi->s_kobj_unregister);
922 if (sbi->s_chksum_driver)
923 crypto_free_shash(sbi->s_chksum_driver);
924 kfree(sbi->s_blockgroup_lock);
925 kfree(sbi);
926 }
927
928 static struct kmem_cache *ext4_inode_cachep;
929
930 /*
931 * Called inside transaction, so use GFP_NOFS
932 */
933 static struct inode *ext4_alloc_inode(struct super_block *sb)
934 {
935 struct ext4_inode_info *ei;
936
937 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
938 if (!ei)
939 return NULL;
940
941 ei->vfs_inode.i_version = 1;
942 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
943 INIT_LIST_HEAD(&ei->i_prealloc_list);
944 spin_lock_init(&ei->i_prealloc_lock);
945 ext4_es_init_tree(&ei->i_es_tree);
946 rwlock_init(&ei->i_es_lock);
947 ei->i_reserved_data_blocks = 0;
948 ei->i_reserved_meta_blocks = 0;
949 ei->i_allocated_meta_blocks = 0;
950 ei->i_da_metadata_calc_len = 0;
951 ei->i_da_metadata_calc_last_lblock = 0;
952 spin_lock_init(&(ei->i_block_reservation_lock));
953 #ifdef CONFIG_QUOTA
954 ei->i_reserved_quota = 0;
955 #endif
956 ei->jinode = NULL;
957 INIT_LIST_HEAD(&ei->i_completed_io_list);
958 spin_lock_init(&ei->i_completed_io_lock);
959 ei->i_sync_tid = 0;
960 ei->i_datasync_tid = 0;
961 atomic_set(&ei->i_ioend_count, 0);
962 atomic_set(&ei->i_unwritten, 0);
963
964 return &ei->vfs_inode;
965 }
966
967 static int ext4_drop_inode(struct inode *inode)
968 {
969 int drop = generic_drop_inode(inode);
970
971 trace_ext4_drop_inode(inode, drop);
972 return drop;
973 }
974
975 static void ext4_i_callback(struct rcu_head *head)
976 {
977 struct inode *inode = container_of(head, struct inode, i_rcu);
978 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
979 }
980
981 static void ext4_destroy_inode(struct inode *inode)
982 {
983 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
984 ext4_msg(inode->i_sb, KERN_ERR,
985 "Inode %lu (%p): orphan list check failed!",
986 inode->i_ino, EXT4_I(inode));
987 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
988 EXT4_I(inode), sizeof(struct ext4_inode_info),
989 true);
990 dump_stack();
991 }
992 call_rcu(&inode->i_rcu, ext4_i_callback);
993 }
994
995 static void init_once(void *foo)
996 {
997 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
998
999 INIT_LIST_HEAD(&ei->i_orphan);
1000 init_rwsem(&ei->xattr_sem);
1001 init_rwsem(&ei->i_data_sem);
1002 inode_init_once(&ei->vfs_inode);
1003 }
1004
1005 static int init_inodecache(void)
1006 {
1007 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1008 sizeof(struct ext4_inode_info),
1009 0, (SLAB_RECLAIM_ACCOUNT|
1010 SLAB_MEM_SPREAD),
1011 init_once);
1012 if (ext4_inode_cachep == NULL)
1013 return -ENOMEM;
1014 return 0;
1015 }
1016
1017 static void destroy_inodecache(void)
1018 {
1019 /*
1020 * Make sure all delayed rcu free inodes are flushed before we
1021 * destroy cache.
1022 */
1023 rcu_barrier();
1024 kmem_cache_destroy(ext4_inode_cachep);
1025 }
1026
1027 void ext4_clear_inode(struct inode *inode)
1028 {
1029 invalidate_inode_buffers(inode);
1030 clear_inode(inode);
1031 dquot_drop(inode);
1032 ext4_discard_preallocations(inode);
1033 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1034 if (EXT4_I(inode)->jinode) {
1035 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1036 EXT4_I(inode)->jinode);
1037 jbd2_free_inode(EXT4_I(inode)->jinode);
1038 EXT4_I(inode)->jinode = NULL;
1039 }
1040 }
1041
1042 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1043 u64 ino, u32 generation)
1044 {
1045 struct inode *inode;
1046
1047 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1048 return ERR_PTR(-ESTALE);
1049 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1050 return ERR_PTR(-ESTALE);
1051
1052 /* iget isn't really right if the inode is currently unallocated!!
1053 *
1054 * ext4_read_inode will return a bad_inode if the inode had been
1055 * deleted, so we should be safe.
1056 *
1057 * Currently we don't know the generation for parent directory, so
1058 * a generation of 0 means "accept any"
1059 */
1060 inode = ext4_iget(sb, ino);
1061 if (IS_ERR(inode))
1062 return ERR_CAST(inode);
1063 if (generation && inode->i_generation != generation) {
1064 iput(inode);
1065 return ERR_PTR(-ESTALE);
1066 }
1067
1068 return inode;
1069 }
1070
1071 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1072 int fh_len, int fh_type)
1073 {
1074 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1075 ext4_nfs_get_inode);
1076 }
1077
1078 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1079 int fh_len, int fh_type)
1080 {
1081 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1082 ext4_nfs_get_inode);
1083 }
1084
1085 /*
1086 * Try to release metadata pages (indirect blocks, directories) which are
1087 * mapped via the block device. Since these pages could have journal heads
1088 * which would prevent try_to_free_buffers() from freeing them, we must use
1089 * jbd2 layer's try_to_free_buffers() function to release them.
1090 */
1091 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1092 gfp_t wait)
1093 {
1094 journal_t *journal = EXT4_SB(sb)->s_journal;
1095
1096 WARN_ON(PageChecked(page));
1097 if (!page_has_buffers(page))
1098 return 0;
1099 if (journal)
1100 return jbd2_journal_try_to_free_buffers(journal, page,
1101 wait & ~__GFP_WAIT);
1102 return try_to_free_buffers(page);
1103 }
1104
1105 #ifdef CONFIG_QUOTA
1106 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1107 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1108
1109 static int ext4_write_dquot(struct dquot *dquot);
1110 static int ext4_acquire_dquot(struct dquot *dquot);
1111 static int ext4_release_dquot(struct dquot *dquot);
1112 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1113 static int ext4_write_info(struct super_block *sb, int type);
1114 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1115 struct path *path);
1116 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1117 int format_id);
1118 static int ext4_quota_off(struct super_block *sb, int type);
1119 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1120 static int ext4_quota_on_mount(struct super_block *sb, int type);
1121 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1122 size_t len, loff_t off);
1123 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1124 const char *data, size_t len, loff_t off);
1125 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1126 unsigned int flags);
1127 static int ext4_enable_quotas(struct super_block *sb);
1128
1129 static const struct dquot_operations ext4_quota_operations = {
1130 .get_reserved_space = ext4_get_reserved_space,
1131 .write_dquot = ext4_write_dquot,
1132 .acquire_dquot = ext4_acquire_dquot,
1133 .release_dquot = ext4_release_dquot,
1134 .mark_dirty = ext4_mark_dquot_dirty,
1135 .write_info = ext4_write_info,
1136 .alloc_dquot = dquot_alloc,
1137 .destroy_dquot = dquot_destroy,
1138 };
1139
1140 static const struct quotactl_ops ext4_qctl_operations = {
1141 .quota_on = ext4_quota_on,
1142 .quota_off = ext4_quota_off,
1143 .quota_sync = dquot_quota_sync,
1144 .get_info = dquot_get_dqinfo,
1145 .set_info = dquot_set_dqinfo,
1146 .get_dqblk = dquot_get_dqblk,
1147 .set_dqblk = dquot_set_dqblk
1148 };
1149
1150 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1151 .quota_on_meta = ext4_quota_on_sysfile,
1152 .quota_off = ext4_quota_off_sysfile,
1153 .quota_sync = dquot_quota_sync,
1154 .get_info = dquot_get_dqinfo,
1155 .set_info = dquot_set_dqinfo,
1156 .get_dqblk = dquot_get_dqblk,
1157 .set_dqblk = dquot_set_dqblk
1158 };
1159 #endif
1160
1161 static const struct super_operations ext4_sops = {
1162 .alloc_inode = ext4_alloc_inode,
1163 .destroy_inode = ext4_destroy_inode,
1164 .write_inode = ext4_write_inode,
1165 .dirty_inode = ext4_dirty_inode,
1166 .drop_inode = ext4_drop_inode,
1167 .evict_inode = ext4_evict_inode,
1168 .put_super = ext4_put_super,
1169 .sync_fs = ext4_sync_fs,
1170 .freeze_fs = ext4_freeze,
1171 .unfreeze_fs = ext4_unfreeze,
1172 .statfs = ext4_statfs,
1173 .remount_fs = ext4_remount,
1174 .show_options = ext4_show_options,
1175 #ifdef CONFIG_QUOTA
1176 .quota_read = ext4_quota_read,
1177 .quota_write = ext4_quota_write,
1178 #endif
1179 .bdev_try_to_free_page = bdev_try_to_free_page,
1180 };
1181
1182 static const struct super_operations ext4_nojournal_sops = {
1183 .alloc_inode = ext4_alloc_inode,
1184 .destroy_inode = ext4_destroy_inode,
1185 .write_inode = ext4_write_inode,
1186 .dirty_inode = ext4_dirty_inode,
1187 .drop_inode = ext4_drop_inode,
1188 .evict_inode = ext4_evict_inode,
1189 .put_super = ext4_put_super,
1190 .statfs = ext4_statfs,
1191 .remount_fs = ext4_remount,
1192 .show_options = ext4_show_options,
1193 #ifdef CONFIG_QUOTA
1194 .quota_read = ext4_quota_read,
1195 .quota_write = ext4_quota_write,
1196 #endif
1197 .bdev_try_to_free_page = bdev_try_to_free_page,
1198 };
1199
1200 static const struct export_operations ext4_export_ops = {
1201 .fh_to_dentry = ext4_fh_to_dentry,
1202 .fh_to_parent = ext4_fh_to_parent,
1203 .get_parent = ext4_get_parent,
1204 };
1205
1206 enum {
1207 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1208 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1209 Opt_nouid32, Opt_debug, Opt_removed,
1210 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1211 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1212 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1213 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1214 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1215 Opt_data_err_abort, Opt_data_err_ignore,
1216 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1217 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1218 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1219 Opt_usrquota, Opt_grpquota, Opt_i_version,
1220 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1221 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1222 Opt_inode_readahead_blks, Opt_journal_ioprio,
1223 Opt_dioread_nolock, Opt_dioread_lock,
1224 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1225 Opt_max_dir_size_kb,
1226 };
1227
1228 static const match_table_t tokens = {
1229 {Opt_bsd_df, "bsddf"},
1230 {Opt_minix_df, "minixdf"},
1231 {Opt_grpid, "grpid"},
1232 {Opt_grpid, "bsdgroups"},
1233 {Opt_nogrpid, "nogrpid"},
1234 {Opt_nogrpid, "sysvgroups"},
1235 {Opt_resgid, "resgid=%u"},
1236 {Opt_resuid, "resuid=%u"},
1237 {Opt_sb, "sb=%u"},
1238 {Opt_err_cont, "errors=continue"},
1239 {Opt_err_panic, "errors=panic"},
1240 {Opt_err_ro, "errors=remount-ro"},
1241 {Opt_nouid32, "nouid32"},
1242 {Opt_debug, "debug"},
1243 {Opt_removed, "oldalloc"},
1244 {Opt_removed, "orlov"},
1245 {Opt_user_xattr, "user_xattr"},
1246 {Opt_nouser_xattr, "nouser_xattr"},
1247 {Opt_acl, "acl"},
1248 {Opt_noacl, "noacl"},
1249 {Opt_noload, "norecovery"},
1250 {Opt_noload, "noload"},
1251 {Opt_removed, "nobh"},
1252 {Opt_removed, "bh"},
1253 {Opt_commit, "commit=%u"},
1254 {Opt_min_batch_time, "min_batch_time=%u"},
1255 {Opt_max_batch_time, "max_batch_time=%u"},
1256 {Opt_journal_dev, "journal_dev=%u"},
1257 {Opt_journal_checksum, "journal_checksum"},
1258 {Opt_journal_async_commit, "journal_async_commit"},
1259 {Opt_abort, "abort"},
1260 {Opt_data_journal, "data=journal"},
1261 {Opt_data_ordered, "data=ordered"},
1262 {Opt_data_writeback, "data=writeback"},
1263 {Opt_data_err_abort, "data_err=abort"},
1264 {Opt_data_err_ignore, "data_err=ignore"},
1265 {Opt_offusrjquota, "usrjquota="},
1266 {Opt_usrjquota, "usrjquota=%s"},
1267 {Opt_offgrpjquota, "grpjquota="},
1268 {Opt_grpjquota, "grpjquota=%s"},
1269 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1270 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1271 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1272 {Opt_grpquota, "grpquota"},
1273 {Opt_noquota, "noquota"},
1274 {Opt_quota, "quota"},
1275 {Opt_usrquota, "usrquota"},
1276 {Opt_barrier, "barrier=%u"},
1277 {Opt_barrier, "barrier"},
1278 {Opt_nobarrier, "nobarrier"},
1279 {Opt_i_version, "i_version"},
1280 {Opt_stripe, "stripe=%u"},
1281 {Opt_delalloc, "delalloc"},
1282 {Opt_nodelalloc, "nodelalloc"},
1283 {Opt_mblk_io_submit, "mblk_io_submit"},
1284 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1285 {Opt_block_validity, "block_validity"},
1286 {Opt_noblock_validity, "noblock_validity"},
1287 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1288 {Opt_journal_ioprio, "journal_ioprio=%u"},
1289 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1290 {Opt_auto_da_alloc, "auto_da_alloc"},
1291 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1292 {Opt_dioread_nolock, "dioread_nolock"},
1293 {Opt_dioread_lock, "dioread_lock"},
1294 {Opt_discard, "discard"},
1295 {Opt_nodiscard, "nodiscard"},
1296 {Opt_init_itable, "init_itable=%u"},
1297 {Opt_init_itable, "init_itable"},
1298 {Opt_noinit_itable, "noinit_itable"},
1299 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1300 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1301 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1302 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1303 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1304 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1305 {Opt_err, NULL},
1306 };
1307
1308 static ext4_fsblk_t get_sb_block(void **data)
1309 {
1310 ext4_fsblk_t sb_block;
1311 char *options = (char *) *data;
1312
1313 if (!options || strncmp(options, "sb=", 3) != 0)
1314 return 1; /* Default location */
1315
1316 options += 3;
1317 /* TODO: use simple_strtoll with >32bit ext4 */
1318 sb_block = simple_strtoul(options, &options, 0);
1319 if (*options && *options != ',') {
1320 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1321 (char *) *data);
1322 return 1;
1323 }
1324 if (*options == ',')
1325 options++;
1326 *data = (void *) options;
1327
1328 return sb_block;
1329 }
1330
1331 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1332 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1333 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1334
1335 #ifdef CONFIG_QUOTA
1336 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1337 {
1338 struct ext4_sb_info *sbi = EXT4_SB(sb);
1339 char *qname;
1340
1341 if (sb_any_quota_loaded(sb) &&
1342 !sbi->s_qf_names[qtype]) {
1343 ext4_msg(sb, KERN_ERR,
1344 "Cannot change journaled "
1345 "quota options when quota turned on");
1346 return -1;
1347 }
1348 qname = match_strdup(args);
1349 if (!qname) {
1350 ext4_msg(sb, KERN_ERR,
1351 "Not enough memory for storing quotafile name");
1352 return -1;
1353 }
1354 if (sbi->s_qf_names[qtype] &&
1355 strcmp(sbi->s_qf_names[qtype], qname)) {
1356 ext4_msg(sb, KERN_ERR,
1357 "%s quota file already specified", QTYPE2NAME(qtype));
1358 kfree(qname);
1359 return -1;
1360 }
1361 sbi->s_qf_names[qtype] = qname;
1362 if (strchr(sbi->s_qf_names[qtype], '/')) {
1363 ext4_msg(sb, KERN_ERR,
1364 "quotafile must be on filesystem root");
1365 kfree(sbi->s_qf_names[qtype]);
1366 sbi->s_qf_names[qtype] = NULL;
1367 return -1;
1368 }
1369 set_opt(sb, QUOTA);
1370 return 1;
1371 }
1372
1373 static int clear_qf_name(struct super_block *sb, int qtype)
1374 {
1375
1376 struct ext4_sb_info *sbi = EXT4_SB(sb);
1377
1378 if (sb_any_quota_loaded(sb) &&
1379 sbi->s_qf_names[qtype]) {
1380 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1381 " when quota turned on");
1382 return -1;
1383 }
1384 /*
1385 * The space will be released later when all options are confirmed
1386 * to be correct
1387 */
1388 sbi->s_qf_names[qtype] = NULL;
1389 return 1;
1390 }
1391 #endif
1392
1393 #define MOPT_SET 0x0001
1394 #define MOPT_CLEAR 0x0002
1395 #define MOPT_NOSUPPORT 0x0004
1396 #define MOPT_EXPLICIT 0x0008
1397 #define MOPT_CLEAR_ERR 0x0010
1398 #define MOPT_GTE0 0x0020
1399 #ifdef CONFIG_QUOTA
1400 #define MOPT_Q 0
1401 #define MOPT_QFMT 0x0040
1402 #else
1403 #define MOPT_Q MOPT_NOSUPPORT
1404 #define MOPT_QFMT MOPT_NOSUPPORT
1405 #endif
1406 #define MOPT_DATAJ 0x0080
1407
1408 static const struct mount_opts {
1409 int token;
1410 int mount_opt;
1411 int flags;
1412 } ext4_mount_opts[] = {
1413 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1414 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1415 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1416 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1417 {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET},
1418 {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR},
1419 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1420 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1421 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET},
1422 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR},
1423 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1424 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1425 {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT},
1426 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT},
1427 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET},
1428 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1429 EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET},
1430 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET},
1431 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1432 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1433 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1434 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET},
1435 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR},
1436 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1437 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1438 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1439 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1440 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1441 {Opt_commit, 0, MOPT_GTE0},
1442 {Opt_max_batch_time, 0, MOPT_GTE0},
1443 {Opt_min_batch_time, 0, MOPT_GTE0},
1444 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1445 {Opt_init_itable, 0, MOPT_GTE0},
1446 {Opt_stripe, 0, MOPT_GTE0},
1447 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ},
1448 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ},
1449 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ},
1450 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1451 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1452 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1453 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1454 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1455 #else
1456 {Opt_acl, 0, MOPT_NOSUPPORT},
1457 {Opt_noacl, 0, MOPT_NOSUPPORT},
1458 #endif
1459 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1460 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1461 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1462 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1463 MOPT_SET | MOPT_Q},
1464 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1465 MOPT_SET | MOPT_Q},
1466 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1467 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1468 {Opt_usrjquota, 0, MOPT_Q},
1469 {Opt_grpjquota, 0, MOPT_Q},
1470 {Opt_offusrjquota, 0, MOPT_Q},
1471 {Opt_offgrpjquota, 0, MOPT_Q},
1472 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1473 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1474 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1475 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1476 {Opt_err, 0, 0}
1477 };
1478
1479 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1480 substring_t *args, unsigned long *journal_devnum,
1481 unsigned int *journal_ioprio, int is_remount)
1482 {
1483 struct ext4_sb_info *sbi = EXT4_SB(sb);
1484 const struct mount_opts *m;
1485 kuid_t uid;
1486 kgid_t gid;
1487 int arg = 0;
1488
1489 #ifdef CONFIG_QUOTA
1490 if (token == Opt_usrjquota)
1491 return set_qf_name(sb, USRQUOTA, &args[0]);
1492 else if (token == Opt_grpjquota)
1493 return set_qf_name(sb, GRPQUOTA, &args[0]);
1494 else if (token == Opt_offusrjquota)
1495 return clear_qf_name(sb, USRQUOTA);
1496 else if (token == Opt_offgrpjquota)
1497 return clear_qf_name(sb, GRPQUOTA);
1498 #endif
1499 if (args->from && match_int(args, &arg))
1500 return -1;
1501 switch (token) {
1502 case Opt_noacl:
1503 case Opt_nouser_xattr:
1504 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1505 break;
1506 case Opt_sb:
1507 return 1; /* handled by get_sb_block() */
1508 case Opt_removed:
1509 ext4_msg(sb, KERN_WARNING,
1510 "Ignoring removed %s option", opt);
1511 return 1;
1512 case Opt_resuid:
1513 uid = make_kuid(current_user_ns(), arg);
1514 if (!uid_valid(uid)) {
1515 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1516 return -1;
1517 }
1518 sbi->s_resuid = uid;
1519 return 1;
1520 case Opt_resgid:
1521 gid = make_kgid(current_user_ns(), arg);
1522 if (!gid_valid(gid)) {
1523 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1524 return -1;
1525 }
1526 sbi->s_resgid = gid;
1527 return 1;
1528 case Opt_abort:
1529 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1530 return 1;
1531 case Opt_i_version:
1532 sb->s_flags |= MS_I_VERSION;
1533 return 1;
1534 case Opt_journal_dev:
1535 if (is_remount) {
1536 ext4_msg(sb, KERN_ERR,
1537 "Cannot specify journal on remount");
1538 return -1;
1539 }
1540 *journal_devnum = arg;
1541 return 1;
1542 case Opt_journal_ioprio:
1543 if (arg < 0 || arg > 7)
1544 return -1;
1545 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1546 return 1;
1547 }
1548
1549 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1550 if (token != m->token)
1551 continue;
1552 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1553 return -1;
1554 if (m->flags & MOPT_EXPLICIT)
1555 set_opt2(sb, EXPLICIT_DELALLOC);
1556 if (m->flags & MOPT_CLEAR_ERR)
1557 clear_opt(sb, ERRORS_MASK);
1558 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1559 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1560 "options when quota turned on");
1561 return -1;
1562 }
1563
1564 if (m->flags & MOPT_NOSUPPORT) {
1565 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1566 } else if (token == Opt_commit) {
1567 if (arg == 0)
1568 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1569 sbi->s_commit_interval = HZ * arg;
1570 } else if (token == Opt_max_batch_time) {
1571 if (arg == 0)
1572 arg = EXT4_DEF_MAX_BATCH_TIME;
1573 sbi->s_max_batch_time = arg;
1574 } else if (token == Opt_min_batch_time) {
1575 sbi->s_min_batch_time = arg;
1576 } else if (token == Opt_inode_readahead_blks) {
1577 if (arg > (1 << 30))
1578 return -1;
1579 if (arg && !is_power_of_2(arg)) {
1580 ext4_msg(sb, KERN_ERR,
1581 "EXT4-fs: inode_readahead_blks"
1582 " must be a power of 2");
1583 return -1;
1584 }
1585 sbi->s_inode_readahead_blks = arg;
1586 } else if (token == Opt_init_itable) {
1587 set_opt(sb, INIT_INODE_TABLE);
1588 if (!args->from)
1589 arg = EXT4_DEF_LI_WAIT_MULT;
1590 sbi->s_li_wait_mult = arg;
1591 } else if (token == Opt_max_dir_size_kb) {
1592 sbi->s_max_dir_size_kb = arg;
1593 } else if (token == Opt_stripe) {
1594 sbi->s_stripe = arg;
1595 } else if (m->flags & MOPT_DATAJ) {
1596 if (is_remount) {
1597 if (!sbi->s_journal)
1598 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1599 else if (test_opt(sb, DATA_FLAGS) !=
1600 m->mount_opt) {
1601 ext4_msg(sb, KERN_ERR,
1602 "Cannot change data mode on remount");
1603 return -1;
1604 }
1605 } else {
1606 clear_opt(sb, DATA_FLAGS);
1607 sbi->s_mount_opt |= m->mount_opt;
1608 }
1609 #ifdef CONFIG_QUOTA
1610 } else if (m->flags & MOPT_QFMT) {
1611 if (sb_any_quota_loaded(sb) &&
1612 sbi->s_jquota_fmt != m->mount_opt) {
1613 ext4_msg(sb, KERN_ERR, "Cannot "
1614 "change journaled quota options "
1615 "when quota turned on");
1616 return -1;
1617 }
1618 sbi->s_jquota_fmt = m->mount_opt;
1619 #endif
1620 } else {
1621 if (!args->from)
1622 arg = 1;
1623 if (m->flags & MOPT_CLEAR)
1624 arg = !arg;
1625 else if (unlikely(!(m->flags & MOPT_SET))) {
1626 ext4_msg(sb, KERN_WARNING,
1627 "buggy handling of option %s", opt);
1628 WARN_ON(1);
1629 return -1;
1630 }
1631 if (arg != 0)
1632 sbi->s_mount_opt |= m->mount_opt;
1633 else
1634 sbi->s_mount_opt &= ~m->mount_opt;
1635 }
1636 return 1;
1637 }
1638 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1639 "or missing value", opt);
1640 return -1;
1641 }
1642
1643 static int parse_options(char *options, struct super_block *sb,
1644 unsigned long *journal_devnum,
1645 unsigned int *journal_ioprio,
1646 int is_remount)
1647 {
1648 #ifdef CONFIG_QUOTA
1649 struct ext4_sb_info *sbi = EXT4_SB(sb);
1650 #endif
1651 char *p;
1652 substring_t args[MAX_OPT_ARGS];
1653 int token;
1654
1655 if (!options)
1656 return 1;
1657
1658 while ((p = strsep(&options, ",")) != NULL) {
1659 if (!*p)
1660 continue;
1661 /*
1662 * Initialize args struct so we know whether arg was
1663 * found; some options take optional arguments.
1664 */
1665 args[0].to = args[0].from = NULL;
1666 token = match_token(p, tokens, args);
1667 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1668 journal_ioprio, is_remount) < 0)
1669 return 0;
1670 }
1671 #ifdef CONFIG_QUOTA
1672 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1673 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1674 clear_opt(sb, USRQUOTA);
1675
1676 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1677 clear_opt(sb, GRPQUOTA);
1678
1679 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1680 ext4_msg(sb, KERN_ERR, "old and new quota "
1681 "format mixing");
1682 return 0;
1683 }
1684
1685 if (!sbi->s_jquota_fmt) {
1686 ext4_msg(sb, KERN_ERR, "journaled quota format "
1687 "not specified");
1688 return 0;
1689 }
1690 } else {
1691 if (sbi->s_jquota_fmt) {
1692 ext4_msg(sb, KERN_ERR, "journaled quota format "
1693 "specified with no journaling "
1694 "enabled");
1695 return 0;
1696 }
1697 }
1698 #endif
1699 return 1;
1700 }
1701
1702 static inline void ext4_show_quota_options(struct seq_file *seq,
1703 struct super_block *sb)
1704 {
1705 #if defined(CONFIG_QUOTA)
1706 struct ext4_sb_info *sbi = EXT4_SB(sb);
1707
1708 if (sbi->s_jquota_fmt) {
1709 char *fmtname = "";
1710
1711 switch (sbi->s_jquota_fmt) {
1712 case QFMT_VFS_OLD:
1713 fmtname = "vfsold";
1714 break;
1715 case QFMT_VFS_V0:
1716 fmtname = "vfsv0";
1717 break;
1718 case QFMT_VFS_V1:
1719 fmtname = "vfsv1";
1720 break;
1721 }
1722 seq_printf(seq, ",jqfmt=%s", fmtname);
1723 }
1724
1725 if (sbi->s_qf_names[USRQUOTA])
1726 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1727
1728 if (sbi->s_qf_names[GRPQUOTA])
1729 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1730
1731 if (test_opt(sb, USRQUOTA))
1732 seq_puts(seq, ",usrquota");
1733
1734 if (test_opt(sb, GRPQUOTA))
1735 seq_puts(seq, ",grpquota");
1736 #endif
1737 }
1738
1739 static const char *token2str(int token)
1740 {
1741 const struct match_token *t;
1742
1743 for (t = tokens; t->token != Opt_err; t++)
1744 if (t->token == token && !strchr(t->pattern, '='))
1745 break;
1746 return t->pattern;
1747 }
1748
1749 /*
1750 * Show an option if
1751 * - it's set to a non-default value OR
1752 * - if the per-sb default is different from the global default
1753 */
1754 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1755 int nodefs)
1756 {
1757 struct ext4_sb_info *sbi = EXT4_SB(sb);
1758 struct ext4_super_block *es = sbi->s_es;
1759 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1760 const struct mount_opts *m;
1761 char sep = nodefs ? '\n' : ',';
1762
1763 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1764 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1765
1766 if (sbi->s_sb_block != 1)
1767 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1768
1769 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1770 int want_set = m->flags & MOPT_SET;
1771 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1772 (m->flags & MOPT_CLEAR_ERR))
1773 continue;
1774 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1775 continue; /* skip if same as the default */
1776 if ((want_set &&
1777 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1778 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1779 continue; /* select Opt_noFoo vs Opt_Foo */
1780 SEQ_OPTS_PRINT("%s", token2str(m->token));
1781 }
1782
1783 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1784 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1785 SEQ_OPTS_PRINT("resuid=%u",
1786 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1787 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1788 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1789 SEQ_OPTS_PRINT("resgid=%u",
1790 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1791 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1792 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1793 SEQ_OPTS_PUTS("errors=remount-ro");
1794 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1795 SEQ_OPTS_PUTS("errors=continue");
1796 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1797 SEQ_OPTS_PUTS("errors=panic");
1798 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1799 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1800 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1801 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1802 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1803 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1804 if (sb->s_flags & MS_I_VERSION)
1805 SEQ_OPTS_PUTS("i_version");
1806 if (nodefs || sbi->s_stripe)
1807 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1808 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1809 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1810 SEQ_OPTS_PUTS("data=journal");
1811 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1812 SEQ_OPTS_PUTS("data=ordered");
1813 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1814 SEQ_OPTS_PUTS("data=writeback");
1815 }
1816 if (nodefs ||
1817 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1818 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1819 sbi->s_inode_readahead_blks);
1820
1821 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1822 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1823 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1824 if (nodefs || sbi->s_max_dir_size_kb)
1825 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
1826
1827 ext4_show_quota_options(seq, sb);
1828 return 0;
1829 }
1830
1831 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1832 {
1833 return _ext4_show_options(seq, root->d_sb, 0);
1834 }
1835
1836 static int options_seq_show(struct seq_file *seq, void *offset)
1837 {
1838 struct super_block *sb = seq->private;
1839 int rc;
1840
1841 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1842 rc = _ext4_show_options(seq, sb, 1);
1843 seq_puts(seq, "\n");
1844 return rc;
1845 }
1846
1847 static int options_open_fs(struct inode *inode, struct file *file)
1848 {
1849 return single_open(file, options_seq_show, PDE(inode)->data);
1850 }
1851
1852 static const struct file_operations ext4_seq_options_fops = {
1853 .owner = THIS_MODULE,
1854 .open = options_open_fs,
1855 .read = seq_read,
1856 .llseek = seq_lseek,
1857 .release = single_release,
1858 };
1859
1860 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1861 int read_only)
1862 {
1863 struct ext4_sb_info *sbi = EXT4_SB(sb);
1864 int res = 0;
1865
1866 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1867 ext4_msg(sb, KERN_ERR, "revision level too high, "
1868 "forcing read-only mode");
1869 res = MS_RDONLY;
1870 }
1871 if (read_only)
1872 goto done;
1873 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1874 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1875 "running e2fsck is recommended");
1876 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1877 ext4_msg(sb, KERN_WARNING,
1878 "warning: mounting fs with errors, "
1879 "running e2fsck is recommended");
1880 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1881 le16_to_cpu(es->s_mnt_count) >=
1882 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1883 ext4_msg(sb, KERN_WARNING,
1884 "warning: maximal mount count reached, "
1885 "running e2fsck is recommended");
1886 else if (le32_to_cpu(es->s_checkinterval) &&
1887 (le32_to_cpu(es->s_lastcheck) +
1888 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1889 ext4_msg(sb, KERN_WARNING,
1890 "warning: checktime reached, "
1891 "running e2fsck is recommended");
1892 if (!sbi->s_journal)
1893 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1894 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1895 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1896 le16_add_cpu(&es->s_mnt_count, 1);
1897 es->s_mtime = cpu_to_le32(get_seconds());
1898 ext4_update_dynamic_rev(sb);
1899 if (sbi->s_journal)
1900 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1901
1902 ext4_commit_super(sb, 1);
1903 done:
1904 if (test_opt(sb, DEBUG))
1905 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1906 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1907 sb->s_blocksize,
1908 sbi->s_groups_count,
1909 EXT4_BLOCKS_PER_GROUP(sb),
1910 EXT4_INODES_PER_GROUP(sb),
1911 sbi->s_mount_opt, sbi->s_mount_opt2);
1912
1913 cleancache_init_fs(sb);
1914 return res;
1915 }
1916
1917 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
1918 {
1919 struct ext4_sb_info *sbi = EXT4_SB(sb);
1920 struct flex_groups *new_groups;
1921 int size;
1922
1923 if (!sbi->s_log_groups_per_flex)
1924 return 0;
1925
1926 size = ext4_flex_group(sbi, ngroup - 1) + 1;
1927 if (size <= sbi->s_flex_groups_allocated)
1928 return 0;
1929
1930 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
1931 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
1932 if (!new_groups) {
1933 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
1934 size / (int) sizeof(struct flex_groups));
1935 return -ENOMEM;
1936 }
1937
1938 if (sbi->s_flex_groups) {
1939 memcpy(new_groups, sbi->s_flex_groups,
1940 (sbi->s_flex_groups_allocated *
1941 sizeof(struct flex_groups)));
1942 ext4_kvfree(sbi->s_flex_groups);
1943 }
1944 sbi->s_flex_groups = new_groups;
1945 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
1946 return 0;
1947 }
1948
1949 static int ext4_fill_flex_info(struct super_block *sb)
1950 {
1951 struct ext4_sb_info *sbi = EXT4_SB(sb);
1952 struct ext4_group_desc *gdp = NULL;
1953 ext4_group_t flex_group;
1954 unsigned int groups_per_flex = 0;
1955 int i, err;
1956
1957 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1958 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1959 sbi->s_log_groups_per_flex = 0;
1960 return 1;
1961 }
1962 groups_per_flex = 1U << sbi->s_log_groups_per_flex;
1963
1964 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
1965 if (err)
1966 goto failed;
1967
1968 for (i = 0; i < sbi->s_groups_count; i++) {
1969 gdp = ext4_get_group_desc(sb, i, NULL);
1970
1971 flex_group = ext4_flex_group(sbi, i);
1972 atomic_add(ext4_free_inodes_count(sb, gdp),
1973 &sbi->s_flex_groups[flex_group].free_inodes);
1974 atomic_add(ext4_free_group_clusters(sb, gdp),
1975 &sbi->s_flex_groups[flex_group].free_clusters);
1976 atomic_add(ext4_used_dirs_count(sb, gdp),
1977 &sbi->s_flex_groups[flex_group].used_dirs);
1978 }
1979
1980 return 1;
1981 failed:
1982 return 0;
1983 }
1984
1985 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1986 struct ext4_group_desc *gdp)
1987 {
1988 int offset;
1989 __u16 crc = 0;
1990 __le32 le_group = cpu_to_le32(block_group);
1991
1992 if ((sbi->s_es->s_feature_ro_compat &
1993 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1994 /* Use new metadata_csum algorithm */
1995 __u16 old_csum;
1996 __u32 csum32;
1997
1998 old_csum = gdp->bg_checksum;
1999 gdp->bg_checksum = 0;
2000 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2001 sizeof(le_group));
2002 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2003 sbi->s_desc_size);
2004 gdp->bg_checksum = old_csum;
2005
2006 crc = csum32 & 0xFFFF;
2007 goto out;
2008 }
2009
2010 /* old crc16 code */
2011 offset = offsetof(struct ext4_group_desc, bg_checksum);
2012
2013 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2014 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2015 crc = crc16(crc, (__u8 *)gdp, offset);
2016 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2017 /* for checksum of struct ext4_group_desc do the rest...*/
2018 if ((sbi->s_es->s_feature_incompat &
2019 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2020 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2021 crc = crc16(crc, (__u8 *)gdp + offset,
2022 le16_to_cpu(sbi->s_es->s_desc_size) -
2023 offset);
2024
2025 out:
2026 return cpu_to_le16(crc);
2027 }
2028
2029 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2030 struct ext4_group_desc *gdp)
2031 {
2032 if (ext4_has_group_desc_csum(sb) &&
2033 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2034 block_group, gdp)))
2035 return 0;
2036
2037 return 1;
2038 }
2039
2040 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2041 struct ext4_group_desc *gdp)
2042 {
2043 if (!ext4_has_group_desc_csum(sb))
2044 return;
2045 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2046 }
2047
2048 /* Called at mount-time, super-block is locked */
2049 static int ext4_check_descriptors(struct super_block *sb,
2050 ext4_group_t *first_not_zeroed)
2051 {
2052 struct ext4_sb_info *sbi = EXT4_SB(sb);
2053 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2054 ext4_fsblk_t last_block;
2055 ext4_fsblk_t block_bitmap;
2056 ext4_fsblk_t inode_bitmap;
2057 ext4_fsblk_t inode_table;
2058 int flexbg_flag = 0;
2059 ext4_group_t i, grp = sbi->s_groups_count;
2060
2061 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2062 flexbg_flag = 1;
2063
2064 ext4_debug("Checking group descriptors");
2065
2066 for (i = 0; i < sbi->s_groups_count; i++) {
2067 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2068
2069 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2070 last_block = ext4_blocks_count(sbi->s_es) - 1;
2071 else
2072 last_block = first_block +
2073 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2074
2075 if ((grp == sbi->s_groups_count) &&
2076 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2077 grp = i;
2078
2079 block_bitmap = ext4_block_bitmap(sb, gdp);
2080 if (block_bitmap < first_block || block_bitmap > last_block) {
2081 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2082 "Block bitmap for group %u not in group "
2083 "(block %llu)!", i, block_bitmap);
2084 return 0;
2085 }
2086 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2087 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2088 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2089 "Inode bitmap for group %u not in group "
2090 "(block %llu)!", i, inode_bitmap);
2091 return 0;
2092 }
2093 inode_table = ext4_inode_table(sb, gdp);
2094 if (inode_table < first_block ||
2095 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2096 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2097 "Inode table for group %u not in group "
2098 "(block %llu)!", i, inode_table);
2099 return 0;
2100 }
2101 ext4_lock_group(sb, i);
2102 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2103 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2104 "Checksum for group %u failed (%u!=%u)",
2105 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2106 gdp)), le16_to_cpu(gdp->bg_checksum));
2107 if (!(sb->s_flags & MS_RDONLY)) {
2108 ext4_unlock_group(sb, i);
2109 return 0;
2110 }
2111 }
2112 ext4_unlock_group(sb, i);
2113 if (!flexbg_flag)
2114 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2115 }
2116 if (NULL != first_not_zeroed)
2117 *first_not_zeroed = grp;
2118
2119 ext4_free_blocks_count_set(sbi->s_es,
2120 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2121 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2122 return 1;
2123 }
2124
2125 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2126 * the superblock) which were deleted from all directories, but held open by
2127 * a process at the time of a crash. We walk the list and try to delete these
2128 * inodes at recovery time (only with a read-write filesystem).
2129 *
2130 * In order to keep the orphan inode chain consistent during traversal (in
2131 * case of crash during recovery), we link each inode into the superblock
2132 * orphan list_head and handle it the same way as an inode deletion during
2133 * normal operation (which journals the operations for us).
2134 *
2135 * We only do an iget() and an iput() on each inode, which is very safe if we
2136 * accidentally point at an in-use or already deleted inode. The worst that
2137 * can happen in this case is that we get a "bit already cleared" message from
2138 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2139 * e2fsck was run on this filesystem, and it must have already done the orphan
2140 * inode cleanup for us, so we can safely abort without any further action.
2141 */
2142 static void ext4_orphan_cleanup(struct super_block *sb,
2143 struct ext4_super_block *es)
2144 {
2145 unsigned int s_flags = sb->s_flags;
2146 int nr_orphans = 0, nr_truncates = 0;
2147 #ifdef CONFIG_QUOTA
2148 int i;
2149 #endif
2150 if (!es->s_last_orphan) {
2151 jbd_debug(4, "no orphan inodes to clean up\n");
2152 return;
2153 }
2154
2155 if (bdev_read_only(sb->s_bdev)) {
2156 ext4_msg(sb, KERN_ERR, "write access "
2157 "unavailable, skipping orphan cleanup");
2158 return;
2159 }
2160
2161 /* Check if feature set would not allow a r/w mount */
2162 if (!ext4_feature_set_ok(sb, 0)) {
2163 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2164 "unknown ROCOMPAT features");
2165 return;
2166 }
2167
2168 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2169 /* don't clear list on RO mount w/ errors */
2170 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2171 jbd_debug(1, "Errors on filesystem, "
2172 "clearing orphan list.\n");
2173 es->s_last_orphan = 0;
2174 }
2175 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2176 return;
2177 }
2178
2179 if (s_flags & MS_RDONLY) {
2180 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2181 sb->s_flags &= ~MS_RDONLY;
2182 }
2183 #ifdef CONFIG_QUOTA
2184 /* Needed for iput() to work correctly and not trash data */
2185 sb->s_flags |= MS_ACTIVE;
2186 /* Turn on quotas so that they are updated correctly */
2187 for (i = 0; i < MAXQUOTAS; i++) {
2188 if (EXT4_SB(sb)->s_qf_names[i]) {
2189 int ret = ext4_quota_on_mount(sb, i);
2190 if (ret < 0)
2191 ext4_msg(sb, KERN_ERR,
2192 "Cannot turn on journaled "
2193 "quota: error %d", ret);
2194 }
2195 }
2196 #endif
2197
2198 while (es->s_last_orphan) {
2199 struct inode *inode;
2200
2201 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2202 if (IS_ERR(inode)) {
2203 es->s_last_orphan = 0;
2204 break;
2205 }
2206
2207 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2208 dquot_initialize(inode);
2209 if (inode->i_nlink) {
2210 ext4_msg(sb, KERN_DEBUG,
2211 "%s: truncating inode %lu to %lld bytes",
2212 __func__, inode->i_ino, inode->i_size);
2213 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2214 inode->i_ino, inode->i_size);
2215 ext4_truncate(inode);
2216 nr_truncates++;
2217 } else {
2218 ext4_msg(sb, KERN_DEBUG,
2219 "%s: deleting unreferenced inode %lu",
2220 __func__, inode->i_ino);
2221 jbd_debug(2, "deleting unreferenced inode %lu\n",
2222 inode->i_ino);
2223 nr_orphans++;
2224 }
2225 iput(inode); /* The delete magic happens here! */
2226 }
2227
2228 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2229
2230 if (nr_orphans)
2231 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2232 PLURAL(nr_orphans));
2233 if (nr_truncates)
2234 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2235 PLURAL(nr_truncates));
2236 #ifdef CONFIG_QUOTA
2237 /* Turn quotas off */
2238 for (i = 0; i < MAXQUOTAS; i++) {
2239 if (sb_dqopt(sb)->files[i])
2240 dquot_quota_off(sb, i);
2241 }
2242 #endif
2243 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2244 }
2245
2246 /*
2247 * Maximal extent format file size.
2248 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2249 * extent format containers, within a sector_t, and within i_blocks
2250 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2251 * so that won't be a limiting factor.
2252 *
2253 * However there is other limiting factor. We do store extents in the form
2254 * of starting block and length, hence the resulting length of the extent
2255 * covering maximum file size must fit into on-disk format containers as
2256 * well. Given that length is always by 1 unit bigger than max unit (because
2257 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2258 *
2259 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2260 */
2261 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2262 {
2263 loff_t res;
2264 loff_t upper_limit = MAX_LFS_FILESIZE;
2265
2266 /* small i_blocks in vfs inode? */
2267 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2268 /*
2269 * CONFIG_LBDAF is not enabled implies the inode
2270 * i_block represent total blocks in 512 bytes
2271 * 32 == size of vfs inode i_blocks * 8
2272 */
2273 upper_limit = (1LL << 32) - 1;
2274
2275 /* total blocks in file system block size */
2276 upper_limit >>= (blkbits - 9);
2277 upper_limit <<= blkbits;
2278 }
2279
2280 /*
2281 * 32-bit extent-start container, ee_block. We lower the maxbytes
2282 * by one fs block, so ee_len can cover the extent of maximum file
2283 * size
2284 */
2285 res = (1LL << 32) - 1;
2286 res <<= blkbits;
2287
2288 /* Sanity check against vm- & vfs- imposed limits */
2289 if (res > upper_limit)
2290 res = upper_limit;
2291
2292 return res;
2293 }
2294
2295 /*
2296 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2297 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2298 * We need to be 1 filesystem block less than the 2^48 sector limit.
2299 */
2300 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2301 {
2302 loff_t res = EXT4_NDIR_BLOCKS;
2303 int meta_blocks;
2304 loff_t upper_limit;
2305 /* This is calculated to be the largest file size for a dense, block
2306 * mapped file such that the file's total number of 512-byte sectors,
2307 * including data and all indirect blocks, does not exceed (2^48 - 1).
2308 *
2309 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2310 * number of 512-byte sectors of the file.
2311 */
2312
2313 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2314 /*
2315 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2316 * the inode i_block field represents total file blocks in
2317 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2318 */
2319 upper_limit = (1LL << 32) - 1;
2320
2321 /* total blocks in file system block size */
2322 upper_limit >>= (bits - 9);
2323
2324 } else {
2325 /*
2326 * We use 48 bit ext4_inode i_blocks
2327 * With EXT4_HUGE_FILE_FL set the i_blocks
2328 * represent total number of blocks in
2329 * file system block size
2330 */
2331 upper_limit = (1LL << 48) - 1;
2332
2333 }
2334
2335 /* indirect blocks */
2336 meta_blocks = 1;
2337 /* double indirect blocks */
2338 meta_blocks += 1 + (1LL << (bits-2));
2339 /* tripple indirect blocks */
2340 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2341
2342 upper_limit -= meta_blocks;
2343 upper_limit <<= bits;
2344
2345 res += 1LL << (bits-2);
2346 res += 1LL << (2*(bits-2));
2347 res += 1LL << (3*(bits-2));
2348 res <<= bits;
2349 if (res > upper_limit)
2350 res = upper_limit;
2351
2352 if (res > MAX_LFS_FILESIZE)
2353 res = MAX_LFS_FILESIZE;
2354
2355 return res;
2356 }
2357
2358 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2359 ext4_fsblk_t logical_sb_block, int nr)
2360 {
2361 struct ext4_sb_info *sbi = EXT4_SB(sb);
2362 ext4_group_t bg, first_meta_bg;
2363 int has_super = 0;
2364
2365 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2366
2367 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2368 nr < first_meta_bg)
2369 return logical_sb_block + nr + 1;
2370 bg = sbi->s_desc_per_block * nr;
2371 if (ext4_bg_has_super(sb, bg))
2372 has_super = 1;
2373
2374 return (has_super + ext4_group_first_block_no(sb, bg));
2375 }
2376
2377 /**
2378 * ext4_get_stripe_size: Get the stripe size.
2379 * @sbi: In memory super block info
2380 *
2381 * If we have specified it via mount option, then
2382 * use the mount option value. If the value specified at mount time is
2383 * greater than the blocks per group use the super block value.
2384 * If the super block value is greater than blocks per group return 0.
2385 * Allocator needs it be less than blocks per group.
2386 *
2387 */
2388 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2389 {
2390 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2391 unsigned long stripe_width =
2392 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2393 int ret;
2394
2395 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2396 ret = sbi->s_stripe;
2397 else if (stripe_width <= sbi->s_blocks_per_group)
2398 ret = stripe_width;
2399 else if (stride <= sbi->s_blocks_per_group)
2400 ret = stride;
2401 else
2402 ret = 0;
2403
2404 /*
2405 * If the stripe width is 1, this makes no sense and
2406 * we set it to 0 to turn off stripe handling code.
2407 */
2408 if (ret <= 1)
2409 ret = 0;
2410
2411 return ret;
2412 }
2413
2414 /* sysfs supprt */
2415
2416 struct ext4_attr {
2417 struct attribute attr;
2418 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2419 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2420 const char *, size_t);
2421 int offset;
2422 };
2423
2424 static int parse_strtoul(const char *buf,
2425 unsigned long max, unsigned long *value)
2426 {
2427 char *endp;
2428
2429 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2430 endp = skip_spaces(endp);
2431 if (*endp || *value > max)
2432 return -EINVAL;
2433
2434 return 0;
2435 }
2436
2437 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2438 struct ext4_sb_info *sbi,
2439 char *buf)
2440 {
2441 return snprintf(buf, PAGE_SIZE, "%llu\n",
2442 (s64) EXT4_C2B(sbi,
2443 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2444 }
2445
2446 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2447 struct ext4_sb_info *sbi, char *buf)
2448 {
2449 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2450
2451 if (!sb->s_bdev->bd_part)
2452 return snprintf(buf, PAGE_SIZE, "0\n");
2453 return snprintf(buf, PAGE_SIZE, "%lu\n",
2454 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2455 sbi->s_sectors_written_start) >> 1);
2456 }
2457
2458 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2459 struct ext4_sb_info *sbi, char *buf)
2460 {
2461 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2462
2463 if (!sb->s_bdev->bd_part)
2464 return snprintf(buf, PAGE_SIZE, "0\n");
2465 return snprintf(buf, PAGE_SIZE, "%llu\n",
2466 (unsigned long long)(sbi->s_kbytes_written +
2467 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2468 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2469 }
2470
2471 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2472 struct ext4_sb_info *sbi,
2473 const char *buf, size_t count)
2474 {
2475 unsigned long t;
2476
2477 if (parse_strtoul(buf, 0x40000000, &t))
2478 return -EINVAL;
2479
2480 if (t && !is_power_of_2(t))
2481 return -EINVAL;
2482
2483 sbi->s_inode_readahead_blks = t;
2484 return count;
2485 }
2486
2487 static ssize_t sbi_ui_show(struct ext4_attr *a,
2488 struct ext4_sb_info *sbi, char *buf)
2489 {
2490 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2491
2492 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2493 }
2494
2495 static ssize_t sbi_ui_store(struct ext4_attr *a,
2496 struct ext4_sb_info *sbi,
2497 const char *buf, size_t count)
2498 {
2499 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2500 unsigned long t;
2501
2502 if (parse_strtoul(buf, 0xffffffff, &t))
2503 return -EINVAL;
2504 *ui = t;
2505 return count;
2506 }
2507
2508 static ssize_t trigger_test_error(struct ext4_attr *a,
2509 struct ext4_sb_info *sbi,
2510 const char *buf, size_t count)
2511 {
2512 int len = count;
2513
2514 if (!capable(CAP_SYS_ADMIN))
2515 return -EPERM;
2516
2517 if (len && buf[len-1] == '\n')
2518 len--;
2519
2520 if (len)
2521 ext4_error(sbi->s_sb, "%.*s", len, buf);
2522 return count;
2523 }
2524
2525 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2526 static struct ext4_attr ext4_attr_##_name = { \
2527 .attr = {.name = __stringify(_name), .mode = _mode }, \
2528 .show = _show, \
2529 .store = _store, \
2530 .offset = offsetof(struct ext4_sb_info, _elname), \
2531 }
2532 #define EXT4_ATTR(name, mode, show, store) \
2533 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2534
2535 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2536 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2537 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2538 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2539 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2540 #define ATTR_LIST(name) &ext4_attr_##name.attr
2541
2542 EXT4_RO_ATTR(delayed_allocation_blocks);
2543 EXT4_RO_ATTR(session_write_kbytes);
2544 EXT4_RO_ATTR(lifetime_write_kbytes);
2545 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2546 inode_readahead_blks_store, s_inode_readahead_blks);
2547 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2548 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2549 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2550 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2551 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2552 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2553 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2554 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2555 EXT4_RW_ATTR_SBI_UI(extent_max_zeroout_kb, s_extent_max_zeroout_kb);
2556 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2557
2558 static struct attribute *ext4_attrs[] = {
2559 ATTR_LIST(delayed_allocation_blocks),
2560 ATTR_LIST(session_write_kbytes),
2561 ATTR_LIST(lifetime_write_kbytes),
2562 ATTR_LIST(inode_readahead_blks),
2563 ATTR_LIST(inode_goal),
2564 ATTR_LIST(mb_stats),
2565 ATTR_LIST(mb_max_to_scan),
2566 ATTR_LIST(mb_min_to_scan),
2567 ATTR_LIST(mb_order2_req),
2568 ATTR_LIST(mb_stream_req),
2569 ATTR_LIST(mb_group_prealloc),
2570 ATTR_LIST(max_writeback_mb_bump),
2571 ATTR_LIST(extent_max_zeroout_kb),
2572 ATTR_LIST(trigger_fs_error),
2573 NULL,
2574 };
2575
2576 /* Features this copy of ext4 supports */
2577 EXT4_INFO_ATTR(lazy_itable_init);
2578 EXT4_INFO_ATTR(batched_discard);
2579 EXT4_INFO_ATTR(meta_bg_resize);
2580
2581 static struct attribute *ext4_feat_attrs[] = {
2582 ATTR_LIST(lazy_itable_init),
2583 ATTR_LIST(batched_discard),
2584 ATTR_LIST(meta_bg_resize),
2585 NULL,
2586 };
2587
2588 static ssize_t ext4_attr_show(struct kobject *kobj,
2589 struct attribute *attr, char *buf)
2590 {
2591 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2592 s_kobj);
2593 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2594
2595 return a->show ? a->show(a, sbi, buf) : 0;
2596 }
2597
2598 static ssize_t ext4_attr_store(struct kobject *kobj,
2599 struct attribute *attr,
2600 const char *buf, size_t len)
2601 {
2602 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2603 s_kobj);
2604 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2605
2606 return a->store ? a->store(a, sbi, buf, len) : 0;
2607 }
2608
2609 static void ext4_sb_release(struct kobject *kobj)
2610 {
2611 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2612 s_kobj);
2613 complete(&sbi->s_kobj_unregister);
2614 }
2615
2616 static const struct sysfs_ops ext4_attr_ops = {
2617 .show = ext4_attr_show,
2618 .store = ext4_attr_store,
2619 };
2620
2621 static struct kobj_type ext4_ktype = {
2622 .default_attrs = ext4_attrs,
2623 .sysfs_ops = &ext4_attr_ops,
2624 .release = ext4_sb_release,
2625 };
2626
2627 static void ext4_feat_release(struct kobject *kobj)
2628 {
2629 complete(&ext4_feat->f_kobj_unregister);
2630 }
2631
2632 static struct kobj_type ext4_feat_ktype = {
2633 .default_attrs = ext4_feat_attrs,
2634 .sysfs_ops = &ext4_attr_ops,
2635 .release = ext4_feat_release,
2636 };
2637
2638 /*
2639 * Check whether this filesystem can be mounted based on
2640 * the features present and the RDONLY/RDWR mount requested.
2641 * Returns 1 if this filesystem can be mounted as requested,
2642 * 0 if it cannot be.
2643 */
2644 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2645 {
2646 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2647 ext4_msg(sb, KERN_ERR,
2648 "Couldn't mount because of "
2649 "unsupported optional features (%x)",
2650 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2651 ~EXT4_FEATURE_INCOMPAT_SUPP));
2652 return 0;
2653 }
2654
2655 if (readonly)
2656 return 1;
2657
2658 /* Check that feature set is OK for a read-write mount */
2659 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2660 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2661 "unsupported optional features (%x)",
2662 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2663 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2664 return 0;
2665 }
2666 /*
2667 * Large file size enabled file system can only be mounted
2668 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2669 */
2670 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2671 if (sizeof(blkcnt_t) < sizeof(u64)) {
2672 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2673 "cannot be mounted RDWR without "
2674 "CONFIG_LBDAF");
2675 return 0;
2676 }
2677 }
2678 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2679 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2680 ext4_msg(sb, KERN_ERR,
2681 "Can't support bigalloc feature without "
2682 "extents feature\n");
2683 return 0;
2684 }
2685
2686 #ifndef CONFIG_QUOTA
2687 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2688 !readonly) {
2689 ext4_msg(sb, KERN_ERR,
2690 "Filesystem with quota feature cannot be mounted RDWR "
2691 "without CONFIG_QUOTA");
2692 return 0;
2693 }
2694 #endif /* CONFIG_QUOTA */
2695 return 1;
2696 }
2697
2698 /*
2699 * This function is called once a day if we have errors logged
2700 * on the file system
2701 */
2702 static void print_daily_error_info(unsigned long arg)
2703 {
2704 struct super_block *sb = (struct super_block *) arg;
2705 struct ext4_sb_info *sbi;
2706 struct ext4_super_block *es;
2707
2708 sbi = EXT4_SB(sb);
2709 es = sbi->s_es;
2710
2711 if (es->s_error_count)
2712 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2713 le32_to_cpu(es->s_error_count));
2714 if (es->s_first_error_time) {
2715 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2716 sb->s_id, le32_to_cpu(es->s_first_error_time),
2717 (int) sizeof(es->s_first_error_func),
2718 es->s_first_error_func,
2719 le32_to_cpu(es->s_first_error_line));
2720 if (es->s_first_error_ino)
2721 printk(": inode %u",
2722 le32_to_cpu(es->s_first_error_ino));
2723 if (es->s_first_error_block)
2724 printk(": block %llu", (unsigned long long)
2725 le64_to_cpu(es->s_first_error_block));
2726 printk("\n");
2727 }
2728 if (es->s_last_error_time) {
2729 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2730 sb->s_id, le32_to_cpu(es->s_last_error_time),
2731 (int) sizeof(es->s_last_error_func),
2732 es->s_last_error_func,
2733 le32_to_cpu(es->s_last_error_line));
2734 if (es->s_last_error_ino)
2735 printk(": inode %u",
2736 le32_to_cpu(es->s_last_error_ino));
2737 if (es->s_last_error_block)
2738 printk(": block %llu", (unsigned long long)
2739 le64_to_cpu(es->s_last_error_block));
2740 printk("\n");
2741 }
2742 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2743 }
2744
2745 /* Find next suitable group and run ext4_init_inode_table */
2746 static int ext4_run_li_request(struct ext4_li_request *elr)
2747 {
2748 struct ext4_group_desc *gdp = NULL;
2749 ext4_group_t group, ngroups;
2750 struct super_block *sb;
2751 unsigned long timeout = 0;
2752 int ret = 0;
2753
2754 sb = elr->lr_super;
2755 ngroups = EXT4_SB(sb)->s_groups_count;
2756
2757 sb_start_write(sb);
2758 for (group = elr->lr_next_group; group < ngroups; group++) {
2759 gdp = ext4_get_group_desc(sb, group, NULL);
2760 if (!gdp) {
2761 ret = 1;
2762 break;
2763 }
2764
2765 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2766 break;
2767 }
2768
2769 if (group == ngroups)
2770 ret = 1;
2771
2772 if (!ret) {
2773 timeout = jiffies;
2774 ret = ext4_init_inode_table(sb, group,
2775 elr->lr_timeout ? 0 : 1);
2776 if (elr->lr_timeout == 0) {
2777 timeout = (jiffies - timeout) *
2778 elr->lr_sbi->s_li_wait_mult;
2779 elr->lr_timeout = timeout;
2780 }
2781 elr->lr_next_sched = jiffies + elr->lr_timeout;
2782 elr->lr_next_group = group + 1;
2783 }
2784 sb_end_write(sb);
2785
2786 return ret;
2787 }
2788
2789 /*
2790 * Remove lr_request from the list_request and free the
2791 * request structure. Should be called with li_list_mtx held
2792 */
2793 static void ext4_remove_li_request(struct ext4_li_request *elr)
2794 {
2795 struct ext4_sb_info *sbi;
2796
2797 if (!elr)
2798 return;
2799
2800 sbi = elr->lr_sbi;
2801
2802 list_del(&elr->lr_request);
2803 sbi->s_li_request = NULL;
2804 kfree(elr);
2805 }
2806
2807 static void ext4_unregister_li_request(struct super_block *sb)
2808 {
2809 mutex_lock(&ext4_li_mtx);
2810 if (!ext4_li_info) {
2811 mutex_unlock(&ext4_li_mtx);
2812 return;
2813 }
2814
2815 mutex_lock(&ext4_li_info->li_list_mtx);
2816 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2817 mutex_unlock(&ext4_li_info->li_list_mtx);
2818 mutex_unlock(&ext4_li_mtx);
2819 }
2820
2821 static struct task_struct *ext4_lazyinit_task;
2822
2823 /*
2824 * This is the function where ext4lazyinit thread lives. It walks
2825 * through the request list searching for next scheduled filesystem.
2826 * When such a fs is found, run the lazy initialization request
2827 * (ext4_rn_li_request) and keep track of the time spend in this
2828 * function. Based on that time we compute next schedule time of
2829 * the request. When walking through the list is complete, compute
2830 * next waking time and put itself into sleep.
2831 */
2832 static int ext4_lazyinit_thread(void *arg)
2833 {
2834 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2835 struct list_head *pos, *n;
2836 struct ext4_li_request *elr;
2837 unsigned long next_wakeup, cur;
2838
2839 BUG_ON(NULL == eli);
2840
2841 cont_thread:
2842 while (true) {
2843 next_wakeup = MAX_JIFFY_OFFSET;
2844
2845 mutex_lock(&eli->li_list_mtx);
2846 if (list_empty(&eli->li_request_list)) {
2847 mutex_unlock(&eli->li_list_mtx);
2848 goto exit_thread;
2849 }
2850
2851 list_for_each_safe(pos, n, &eli->li_request_list) {
2852 elr = list_entry(pos, struct ext4_li_request,
2853 lr_request);
2854
2855 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2856 if (ext4_run_li_request(elr) != 0) {
2857 /* error, remove the lazy_init job */
2858 ext4_remove_li_request(elr);
2859 continue;
2860 }
2861 }
2862
2863 if (time_before(elr->lr_next_sched, next_wakeup))
2864 next_wakeup = elr->lr_next_sched;
2865 }
2866 mutex_unlock(&eli->li_list_mtx);
2867
2868 try_to_freeze();
2869
2870 cur = jiffies;
2871 if ((time_after_eq(cur, next_wakeup)) ||
2872 (MAX_JIFFY_OFFSET == next_wakeup)) {
2873 cond_resched();
2874 continue;
2875 }
2876
2877 schedule_timeout_interruptible(next_wakeup - cur);
2878
2879 if (kthread_should_stop()) {
2880 ext4_clear_request_list();
2881 goto exit_thread;
2882 }
2883 }
2884
2885 exit_thread:
2886 /*
2887 * It looks like the request list is empty, but we need
2888 * to check it under the li_list_mtx lock, to prevent any
2889 * additions into it, and of course we should lock ext4_li_mtx
2890 * to atomically free the list and ext4_li_info, because at
2891 * this point another ext4 filesystem could be registering
2892 * new one.
2893 */
2894 mutex_lock(&ext4_li_mtx);
2895 mutex_lock(&eli->li_list_mtx);
2896 if (!list_empty(&eli->li_request_list)) {
2897 mutex_unlock(&eli->li_list_mtx);
2898 mutex_unlock(&ext4_li_mtx);
2899 goto cont_thread;
2900 }
2901 mutex_unlock(&eli->li_list_mtx);
2902 kfree(ext4_li_info);
2903 ext4_li_info = NULL;
2904 mutex_unlock(&ext4_li_mtx);
2905
2906 return 0;
2907 }
2908
2909 static void ext4_clear_request_list(void)
2910 {
2911 struct list_head *pos, *n;
2912 struct ext4_li_request *elr;
2913
2914 mutex_lock(&ext4_li_info->li_list_mtx);
2915 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2916 elr = list_entry(pos, struct ext4_li_request,
2917 lr_request);
2918 ext4_remove_li_request(elr);
2919 }
2920 mutex_unlock(&ext4_li_info->li_list_mtx);
2921 }
2922
2923 static int ext4_run_lazyinit_thread(void)
2924 {
2925 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2926 ext4_li_info, "ext4lazyinit");
2927 if (IS_ERR(ext4_lazyinit_task)) {
2928 int err = PTR_ERR(ext4_lazyinit_task);
2929 ext4_clear_request_list();
2930 kfree(ext4_li_info);
2931 ext4_li_info = NULL;
2932 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2933 "initialization thread\n",
2934 err);
2935 return err;
2936 }
2937 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2938 return 0;
2939 }
2940
2941 /*
2942 * Check whether it make sense to run itable init. thread or not.
2943 * If there is at least one uninitialized inode table, return
2944 * corresponding group number, else the loop goes through all
2945 * groups and return total number of groups.
2946 */
2947 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2948 {
2949 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2950 struct ext4_group_desc *gdp = NULL;
2951
2952 for (group = 0; group < ngroups; group++) {
2953 gdp = ext4_get_group_desc(sb, group, NULL);
2954 if (!gdp)
2955 continue;
2956
2957 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2958 break;
2959 }
2960
2961 return group;
2962 }
2963
2964 static int ext4_li_info_new(void)
2965 {
2966 struct ext4_lazy_init *eli = NULL;
2967
2968 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2969 if (!eli)
2970 return -ENOMEM;
2971
2972 INIT_LIST_HEAD(&eli->li_request_list);
2973 mutex_init(&eli->li_list_mtx);
2974
2975 eli->li_state |= EXT4_LAZYINIT_QUIT;
2976
2977 ext4_li_info = eli;
2978
2979 return 0;
2980 }
2981
2982 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2983 ext4_group_t start)
2984 {
2985 struct ext4_sb_info *sbi = EXT4_SB(sb);
2986 struct ext4_li_request *elr;
2987 unsigned long rnd;
2988
2989 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2990 if (!elr)
2991 return NULL;
2992
2993 elr->lr_super = sb;
2994 elr->lr_sbi = sbi;
2995 elr->lr_next_group = start;
2996
2997 /*
2998 * Randomize first schedule time of the request to
2999 * spread the inode table initialization requests
3000 * better.
3001 */
3002 get_random_bytes(&rnd, sizeof(rnd));
3003 elr->lr_next_sched = jiffies + (unsigned long)rnd %
3004 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
3005
3006 return elr;
3007 }
3008
3009 static int ext4_register_li_request(struct super_block *sb,
3010 ext4_group_t first_not_zeroed)
3011 {
3012 struct ext4_sb_info *sbi = EXT4_SB(sb);
3013 struct ext4_li_request *elr;
3014 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3015 int ret = 0;
3016
3017 if (sbi->s_li_request != NULL) {
3018 /*
3019 * Reset timeout so it can be computed again, because
3020 * s_li_wait_mult might have changed.
3021 */
3022 sbi->s_li_request->lr_timeout = 0;
3023 return 0;
3024 }
3025
3026 if (first_not_zeroed == ngroups ||
3027 (sb->s_flags & MS_RDONLY) ||
3028 !test_opt(sb, INIT_INODE_TABLE))
3029 return 0;
3030
3031 elr = ext4_li_request_new(sb, first_not_zeroed);
3032 if (!elr)
3033 return -ENOMEM;
3034
3035 mutex_lock(&ext4_li_mtx);
3036
3037 if (NULL == ext4_li_info) {
3038 ret = ext4_li_info_new();
3039 if (ret)
3040 goto out;
3041 }
3042
3043 mutex_lock(&ext4_li_info->li_list_mtx);
3044 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3045 mutex_unlock(&ext4_li_info->li_list_mtx);
3046
3047 sbi->s_li_request = elr;
3048 /*
3049 * set elr to NULL here since it has been inserted to
3050 * the request_list and the removal and free of it is
3051 * handled by ext4_clear_request_list from now on.
3052 */
3053 elr = NULL;
3054
3055 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3056 ret = ext4_run_lazyinit_thread();
3057 if (ret)
3058 goto out;
3059 }
3060 out:
3061 mutex_unlock(&ext4_li_mtx);
3062 if (ret)
3063 kfree(elr);
3064 return ret;
3065 }
3066
3067 /*
3068 * We do not need to lock anything since this is called on
3069 * module unload.
3070 */
3071 static void ext4_destroy_lazyinit_thread(void)
3072 {
3073 /*
3074 * If thread exited earlier
3075 * there's nothing to be done.
3076 */
3077 if (!ext4_li_info || !ext4_lazyinit_task)
3078 return;
3079
3080 kthread_stop(ext4_lazyinit_task);
3081 }
3082
3083 static int set_journal_csum_feature_set(struct super_block *sb)
3084 {
3085 int ret = 1;
3086 int compat, incompat;
3087 struct ext4_sb_info *sbi = EXT4_SB(sb);
3088
3089 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3090 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3091 /* journal checksum v2 */
3092 compat = 0;
3093 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3094 } else {
3095 /* journal checksum v1 */
3096 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3097 incompat = 0;
3098 }
3099
3100 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3101 ret = jbd2_journal_set_features(sbi->s_journal,
3102 compat, 0,
3103 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3104 incompat);
3105 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3106 ret = jbd2_journal_set_features(sbi->s_journal,
3107 compat, 0,
3108 incompat);
3109 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3110 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3111 } else {
3112 jbd2_journal_clear_features(sbi->s_journal,
3113 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3114 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3115 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3116 }
3117
3118 return ret;
3119 }
3120
3121 /*
3122 * Note: calculating the overhead so we can be compatible with
3123 * historical BSD practice is quite difficult in the face of
3124 * clusters/bigalloc. This is because multiple metadata blocks from
3125 * different block group can end up in the same allocation cluster.
3126 * Calculating the exact overhead in the face of clustered allocation
3127 * requires either O(all block bitmaps) in memory or O(number of block
3128 * groups**2) in time. We will still calculate the superblock for
3129 * older file systems --- and if we come across with a bigalloc file
3130 * system with zero in s_overhead_clusters the estimate will be close to
3131 * correct especially for very large cluster sizes --- but for newer
3132 * file systems, it's better to calculate this figure once at mkfs
3133 * time, and store it in the superblock. If the superblock value is
3134 * present (even for non-bigalloc file systems), we will use it.
3135 */
3136 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3137 char *buf)
3138 {
3139 struct ext4_sb_info *sbi = EXT4_SB(sb);
3140 struct ext4_group_desc *gdp;
3141 ext4_fsblk_t first_block, last_block, b;
3142 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3143 int s, j, count = 0;
3144
3145 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC))
3146 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3147 sbi->s_itb_per_group + 2);
3148
3149 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3150 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3151 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3152 for (i = 0; i < ngroups; i++) {
3153 gdp = ext4_get_group_desc(sb, i, NULL);
3154 b = ext4_block_bitmap(sb, gdp);
3155 if (b >= first_block && b <= last_block) {
3156 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3157 count++;
3158 }
3159 b = ext4_inode_bitmap(sb, gdp);
3160 if (b >= first_block && b <= last_block) {
3161 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3162 count++;
3163 }
3164 b = ext4_inode_table(sb, gdp);
3165 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3166 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3167 int c = EXT4_B2C(sbi, b - first_block);
3168 ext4_set_bit(c, buf);
3169 count++;
3170 }
3171 if (i != grp)
3172 continue;
3173 s = 0;
3174 if (ext4_bg_has_super(sb, grp)) {
3175 ext4_set_bit(s++, buf);
3176 count++;
3177 }
3178 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3179 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3180 count++;
3181 }
3182 }
3183 if (!count)
3184 return 0;
3185 return EXT4_CLUSTERS_PER_GROUP(sb) -
3186 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3187 }
3188
3189 /*
3190 * Compute the overhead and stash it in sbi->s_overhead
3191 */
3192 int ext4_calculate_overhead(struct super_block *sb)
3193 {
3194 struct ext4_sb_info *sbi = EXT4_SB(sb);
3195 struct ext4_super_block *es = sbi->s_es;
3196 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3197 ext4_fsblk_t overhead = 0;
3198 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3199
3200 if (!buf)
3201 return -ENOMEM;
3202
3203 /*
3204 * Compute the overhead (FS structures). This is constant
3205 * for a given filesystem unless the number of block groups
3206 * changes so we cache the previous value until it does.
3207 */
3208
3209 /*
3210 * All of the blocks before first_data_block are overhead
3211 */
3212 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3213
3214 /*
3215 * Add the overhead found in each block group
3216 */
3217 for (i = 0; i < ngroups; i++) {
3218 int blks;
3219
3220 blks = count_overhead(sb, i, buf);
3221 overhead += blks;
3222 if (blks)
3223 memset(buf, 0, PAGE_SIZE);
3224 cond_resched();
3225 }
3226 sbi->s_overhead = overhead;
3227 smp_wmb();
3228 free_page((unsigned long) buf);
3229 return 0;
3230 }
3231
3232 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3233 {
3234 char *orig_data = kstrdup(data, GFP_KERNEL);
3235 struct buffer_head *bh;
3236 struct ext4_super_block *es = NULL;
3237 struct ext4_sb_info *sbi;
3238 ext4_fsblk_t block;
3239 ext4_fsblk_t sb_block = get_sb_block(&data);
3240 ext4_fsblk_t logical_sb_block;
3241 unsigned long offset = 0;
3242 unsigned long journal_devnum = 0;
3243 unsigned long def_mount_opts;
3244 struct inode *root;
3245 char *cp;
3246 const char *descr;
3247 int ret = -ENOMEM;
3248 int blocksize, clustersize;
3249 unsigned int db_count;
3250 unsigned int i;
3251 int needs_recovery, has_huge_files, has_bigalloc;
3252 __u64 blocks_count;
3253 int err = 0;
3254 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3255 ext4_group_t first_not_zeroed;
3256
3257 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3258 if (!sbi)
3259 goto out_free_orig;
3260
3261 sbi->s_blockgroup_lock =
3262 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3263 if (!sbi->s_blockgroup_lock) {
3264 kfree(sbi);
3265 goto out_free_orig;
3266 }
3267 sb->s_fs_info = sbi;
3268 sbi->s_sb = sb;
3269 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3270 sbi->s_sb_block = sb_block;
3271 if (sb->s_bdev->bd_part)
3272 sbi->s_sectors_written_start =
3273 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3274
3275 /* Cleanup superblock name */
3276 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3277 *cp = '!';
3278
3279 /* -EINVAL is default */
3280 ret = -EINVAL;
3281 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3282 if (!blocksize) {
3283 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3284 goto out_fail;
3285 }
3286
3287 /*
3288 * The ext4 superblock will not be buffer aligned for other than 1kB
3289 * block sizes. We need to calculate the offset from buffer start.
3290 */
3291 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3292 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3293 offset = do_div(logical_sb_block, blocksize);
3294 } else {
3295 logical_sb_block = sb_block;
3296 }
3297
3298 if (!(bh = sb_bread(sb, logical_sb_block))) {
3299 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3300 goto out_fail;
3301 }
3302 /*
3303 * Note: s_es must be initialized as soon as possible because
3304 * some ext4 macro-instructions depend on its value
3305 */
3306 es = (struct ext4_super_block *) (bh->b_data + offset);
3307 sbi->s_es = es;
3308 sb->s_magic = le16_to_cpu(es->s_magic);
3309 if (sb->s_magic != EXT4_SUPER_MAGIC)
3310 goto cantfind_ext4;
3311 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3312
3313 /* Warn if metadata_csum and gdt_csum are both set. */
3314 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3315 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3316 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3317 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3318 "redundant flags; please run fsck.");
3319
3320 /* Check for a known checksum algorithm */
3321 if (!ext4_verify_csum_type(sb, es)) {
3322 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3323 "unknown checksum algorithm.");
3324 silent = 1;
3325 goto cantfind_ext4;
3326 }
3327
3328 /* Load the checksum driver */
3329 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3330 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3331 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3332 if (IS_ERR(sbi->s_chksum_driver)) {
3333 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3334 ret = PTR_ERR(sbi->s_chksum_driver);
3335 sbi->s_chksum_driver = NULL;
3336 goto failed_mount;
3337 }
3338 }
3339
3340 /* Check superblock checksum */
3341 if (!ext4_superblock_csum_verify(sb, es)) {
3342 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3343 "invalid superblock checksum. Run e2fsck?");
3344 silent = 1;
3345 goto cantfind_ext4;
3346 }
3347
3348 /* Precompute checksum seed for all metadata */
3349 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3350 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3351 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3352 sizeof(es->s_uuid));
3353
3354 /* Set defaults before we parse the mount options */
3355 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3356 set_opt(sb, INIT_INODE_TABLE);
3357 if (def_mount_opts & EXT4_DEFM_DEBUG)
3358 set_opt(sb, DEBUG);
3359 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3360 set_opt(sb, GRPID);
3361 if (def_mount_opts & EXT4_DEFM_UID16)
3362 set_opt(sb, NO_UID32);
3363 /* xattr user namespace & acls are now defaulted on */
3364 set_opt(sb, XATTR_USER);
3365 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3366 set_opt(sb, POSIX_ACL);
3367 #endif
3368 set_opt(sb, MBLK_IO_SUBMIT);
3369 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3370 set_opt(sb, JOURNAL_DATA);
3371 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3372 set_opt(sb, ORDERED_DATA);
3373 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3374 set_opt(sb, WRITEBACK_DATA);
3375
3376 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3377 set_opt(sb, ERRORS_PANIC);
3378 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3379 set_opt(sb, ERRORS_CONT);
3380 else
3381 set_opt(sb, ERRORS_RO);
3382 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3383 set_opt(sb, BLOCK_VALIDITY);
3384 if (def_mount_opts & EXT4_DEFM_DISCARD)
3385 set_opt(sb, DISCARD);
3386
3387 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3388 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3389 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3390 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3391 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3392
3393 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3394 set_opt(sb, BARRIER);
3395
3396 /*
3397 * enable delayed allocation by default
3398 * Use -o nodelalloc to turn it off
3399 */
3400 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3401 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3402 set_opt(sb, DELALLOC);
3403
3404 /*
3405 * set default s_li_wait_mult for lazyinit, for the case there is
3406 * no mount option specified.
3407 */
3408 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3409
3410 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3411 &journal_devnum, &journal_ioprio, 0)) {
3412 ext4_msg(sb, KERN_WARNING,
3413 "failed to parse options in superblock: %s",
3414 sbi->s_es->s_mount_opts);
3415 }
3416 sbi->s_def_mount_opt = sbi->s_mount_opt;
3417 if (!parse_options((char *) data, sb, &journal_devnum,
3418 &journal_ioprio, 0))
3419 goto failed_mount;
3420
3421 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3422 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3423 "with data=journal disables delayed "
3424 "allocation and O_DIRECT support!\n");
3425 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3426 ext4_msg(sb, KERN_ERR, "can't mount with "
3427 "both data=journal and delalloc");
3428 goto failed_mount;
3429 }
3430 if (test_opt(sb, DIOREAD_NOLOCK)) {
3431 ext4_msg(sb, KERN_ERR, "can't mount with "
3432 "both data=journal and delalloc");
3433 goto failed_mount;
3434 }
3435 if (test_opt(sb, DELALLOC))
3436 clear_opt(sb, DELALLOC);
3437 }
3438
3439 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3440 if (test_opt(sb, DIOREAD_NOLOCK)) {
3441 if (blocksize < PAGE_SIZE) {
3442 ext4_msg(sb, KERN_ERR, "can't mount with "
3443 "dioread_nolock if block size != PAGE_SIZE");
3444 goto failed_mount;
3445 }
3446 }
3447
3448 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3449 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3450
3451 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3452 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3453 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3454 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3455 ext4_msg(sb, KERN_WARNING,
3456 "feature flags set on rev 0 fs, "
3457 "running e2fsck is recommended");
3458
3459 if (IS_EXT2_SB(sb)) {
3460 if (ext2_feature_set_ok(sb))
3461 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3462 "using the ext4 subsystem");
3463 else {
3464 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3465 "to feature incompatibilities");
3466 goto failed_mount;
3467 }
3468 }
3469
3470 if (IS_EXT3_SB(sb)) {
3471 if (ext3_feature_set_ok(sb))
3472 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3473 "using the ext4 subsystem");
3474 else {
3475 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3476 "to feature incompatibilities");
3477 goto failed_mount;
3478 }
3479 }
3480
3481 /*
3482 * Check feature flags regardless of the revision level, since we
3483 * previously didn't change the revision level when setting the flags,
3484 * so there is a chance incompat flags are set on a rev 0 filesystem.
3485 */
3486 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3487 goto failed_mount;
3488
3489 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3490 blocksize > EXT4_MAX_BLOCK_SIZE) {
3491 ext4_msg(sb, KERN_ERR,
3492 "Unsupported filesystem blocksize %d", blocksize);
3493 goto failed_mount;
3494 }
3495
3496 if (sb->s_blocksize != blocksize) {
3497 /* Validate the filesystem blocksize */
3498 if (!sb_set_blocksize(sb, blocksize)) {
3499 ext4_msg(sb, KERN_ERR, "bad block size %d",
3500 blocksize);
3501 goto failed_mount;
3502 }
3503
3504 brelse(bh);
3505 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3506 offset = do_div(logical_sb_block, blocksize);
3507 bh = sb_bread(sb, logical_sb_block);
3508 if (!bh) {
3509 ext4_msg(sb, KERN_ERR,
3510 "Can't read superblock on 2nd try");
3511 goto failed_mount;
3512 }
3513 es = (struct ext4_super_block *)(bh->b_data + offset);
3514 sbi->s_es = es;
3515 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3516 ext4_msg(sb, KERN_ERR,
3517 "Magic mismatch, very weird!");
3518 goto failed_mount;
3519 }
3520 }
3521
3522 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3523 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3524 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3525 has_huge_files);
3526 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3527
3528 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3529 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3530 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3531 } else {
3532 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3533 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3534 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3535 (!is_power_of_2(sbi->s_inode_size)) ||
3536 (sbi->s_inode_size > blocksize)) {
3537 ext4_msg(sb, KERN_ERR,
3538 "unsupported inode size: %d",
3539 sbi->s_inode_size);
3540 goto failed_mount;
3541 }
3542 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3543 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3544 }
3545
3546 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3547 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3548 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3549 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3550 !is_power_of_2(sbi->s_desc_size)) {
3551 ext4_msg(sb, KERN_ERR,
3552 "unsupported descriptor size %lu",
3553 sbi->s_desc_size);
3554 goto failed_mount;
3555 }
3556 } else
3557 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3558
3559 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3560 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3561 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3562 goto cantfind_ext4;
3563
3564 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3565 if (sbi->s_inodes_per_block == 0)
3566 goto cantfind_ext4;
3567 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3568 sbi->s_inodes_per_block;
3569 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3570 sbi->s_sbh = bh;
3571 sbi->s_mount_state = le16_to_cpu(es->s_state);
3572 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3573 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3574
3575 for (i = 0; i < 4; i++)
3576 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3577 sbi->s_def_hash_version = es->s_def_hash_version;
3578 i = le32_to_cpu(es->s_flags);
3579 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3580 sbi->s_hash_unsigned = 3;
3581 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3582 #ifdef __CHAR_UNSIGNED__
3583 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3584 sbi->s_hash_unsigned = 3;
3585 #else
3586 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3587 #endif
3588 }
3589
3590 /* Handle clustersize */
3591 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3592 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3593 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3594 if (has_bigalloc) {
3595 if (clustersize < blocksize) {
3596 ext4_msg(sb, KERN_ERR,
3597 "cluster size (%d) smaller than "
3598 "block size (%d)", clustersize, blocksize);
3599 goto failed_mount;
3600 }
3601 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3602 le32_to_cpu(es->s_log_block_size);
3603 sbi->s_clusters_per_group =
3604 le32_to_cpu(es->s_clusters_per_group);
3605 if (sbi->s_clusters_per_group > blocksize * 8) {
3606 ext4_msg(sb, KERN_ERR,
3607 "#clusters per group too big: %lu",
3608 sbi->s_clusters_per_group);
3609 goto failed_mount;
3610 }
3611 if (sbi->s_blocks_per_group !=
3612 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3613 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3614 "clusters per group (%lu) inconsistent",
3615 sbi->s_blocks_per_group,
3616 sbi->s_clusters_per_group);
3617 goto failed_mount;
3618 }
3619 } else {
3620 if (clustersize != blocksize) {
3621 ext4_warning(sb, "fragment/cluster size (%d) != "
3622 "block size (%d)", clustersize,
3623 blocksize);
3624 clustersize = blocksize;
3625 }
3626 if (sbi->s_blocks_per_group > blocksize * 8) {
3627 ext4_msg(sb, KERN_ERR,
3628 "#blocks per group too big: %lu",
3629 sbi->s_blocks_per_group);
3630 goto failed_mount;
3631 }
3632 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3633 sbi->s_cluster_bits = 0;
3634 }
3635 sbi->s_cluster_ratio = clustersize / blocksize;
3636
3637 if (sbi->s_inodes_per_group > blocksize * 8) {
3638 ext4_msg(sb, KERN_ERR,
3639 "#inodes per group too big: %lu",
3640 sbi->s_inodes_per_group);
3641 goto failed_mount;
3642 }
3643
3644 /*
3645 * Test whether we have more sectors than will fit in sector_t,
3646 * and whether the max offset is addressable by the page cache.
3647 */
3648 err = generic_check_addressable(sb->s_blocksize_bits,
3649 ext4_blocks_count(es));
3650 if (err) {
3651 ext4_msg(sb, KERN_ERR, "filesystem"
3652 " too large to mount safely on this system");
3653 if (sizeof(sector_t) < 8)
3654 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3655 goto failed_mount;
3656 }
3657
3658 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3659 goto cantfind_ext4;
3660
3661 /* check blocks count against device size */
3662 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3663 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3664 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3665 "exceeds size of device (%llu blocks)",
3666 ext4_blocks_count(es), blocks_count);
3667 goto failed_mount;
3668 }
3669
3670 /*
3671 * It makes no sense for the first data block to be beyond the end
3672 * of the filesystem.
3673 */
3674 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3675 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3676 "block %u is beyond end of filesystem (%llu)",
3677 le32_to_cpu(es->s_first_data_block),
3678 ext4_blocks_count(es));
3679 goto failed_mount;
3680 }
3681 blocks_count = (ext4_blocks_count(es) -
3682 le32_to_cpu(es->s_first_data_block) +
3683 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3684 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3685 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3686 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3687 "(block count %llu, first data block %u, "
3688 "blocks per group %lu)", sbi->s_groups_count,
3689 ext4_blocks_count(es),
3690 le32_to_cpu(es->s_first_data_block),
3691 EXT4_BLOCKS_PER_GROUP(sb));
3692 goto failed_mount;
3693 }
3694 sbi->s_groups_count = blocks_count;
3695 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3696 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3697 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3698 EXT4_DESC_PER_BLOCK(sb);
3699 sbi->s_group_desc = ext4_kvmalloc(db_count *
3700 sizeof(struct buffer_head *),
3701 GFP_KERNEL);
3702 if (sbi->s_group_desc == NULL) {
3703 ext4_msg(sb, KERN_ERR, "not enough memory");
3704 ret = -ENOMEM;
3705 goto failed_mount;
3706 }
3707
3708 if (ext4_proc_root)
3709 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3710
3711 if (sbi->s_proc)
3712 proc_create_data("options", S_IRUGO, sbi->s_proc,
3713 &ext4_seq_options_fops, sb);
3714
3715 bgl_lock_init(sbi->s_blockgroup_lock);
3716
3717 for (i = 0; i < db_count; i++) {
3718 block = descriptor_loc(sb, logical_sb_block, i);
3719 sbi->s_group_desc[i] = sb_bread(sb, block);
3720 if (!sbi->s_group_desc[i]) {
3721 ext4_msg(sb, KERN_ERR,
3722 "can't read group descriptor %d", i);
3723 db_count = i;
3724 goto failed_mount2;
3725 }
3726 }
3727 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3728 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3729 goto failed_mount2;
3730 }
3731 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3732 if (!ext4_fill_flex_info(sb)) {
3733 ext4_msg(sb, KERN_ERR,
3734 "unable to initialize "
3735 "flex_bg meta info!");
3736 goto failed_mount2;
3737 }
3738
3739 sbi->s_gdb_count = db_count;
3740 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3741 spin_lock_init(&sbi->s_next_gen_lock);
3742
3743 init_timer(&sbi->s_err_report);
3744 sbi->s_err_report.function = print_daily_error_info;
3745 sbi->s_err_report.data = (unsigned long) sb;
3746
3747 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3748 ext4_count_free_clusters(sb));
3749 if (!err) {
3750 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3751 ext4_count_free_inodes(sb));
3752 }
3753 if (!err) {
3754 err = percpu_counter_init(&sbi->s_dirs_counter,
3755 ext4_count_dirs(sb));
3756 }
3757 if (!err) {
3758 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3759 }
3760 if (err) {
3761 ext4_msg(sb, KERN_ERR, "insufficient memory");
3762 goto failed_mount3;
3763 }
3764
3765 sbi->s_stripe = ext4_get_stripe_size(sbi);
3766 sbi->s_max_writeback_mb_bump = 128;
3767 sbi->s_extent_max_zeroout_kb = 32;
3768
3769 /*
3770 * set up enough so that it can read an inode
3771 */
3772 if (!test_opt(sb, NOLOAD) &&
3773 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3774 sb->s_op = &ext4_sops;
3775 else
3776 sb->s_op = &ext4_nojournal_sops;
3777 sb->s_export_op = &ext4_export_ops;
3778 sb->s_xattr = ext4_xattr_handlers;
3779 #ifdef CONFIG_QUOTA
3780 sb->s_qcop = &ext4_qctl_operations;
3781 sb->dq_op = &ext4_quota_operations;
3782
3783 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
3784 /* Use qctl operations for hidden quota files. */
3785 sb->s_qcop = &ext4_qctl_sysfile_operations;
3786 }
3787 #endif
3788 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3789
3790 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3791 mutex_init(&sbi->s_orphan_lock);
3792
3793 sb->s_root = NULL;
3794
3795 needs_recovery = (es->s_last_orphan != 0 ||
3796 EXT4_HAS_INCOMPAT_FEATURE(sb,
3797 EXT4_FEATURE_INCOMPAT_RECOVER));
3798
3799 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3800 !(sb->s_flags & MS_RDONLY))
3801 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3802 goto failed_mount3;
3803
3804 /*
3805 * The first inode we look at is the journal inode. Don't try
3806 * root first: it may be modified in the journal!
3807 */
3808 if (!test_opt(sb, NOLOAD) &&
3809 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3810 if (ext4_load_journal(sb, es, journal_devnum))
3811 goto failed_mount3;
3812 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3813 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3814 ext4_msg(sb, KERN_ERR, "required journal recovery "
3815 "suppressed and not mounted read-only");
3816 goto failed_mount_wq;
3817 } else {
3818 clear_opt(sb, DATA_FLAGS);
3819 sbi->s_journal = NULL;
3820 needs_recovery = 0;
3821 goto no_journal;
3822 }
3823
3824 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3825 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3826 JBD2_FEATURE_INCOMPAT_64BIT)) {
3827 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3828 goto failed_mount_wq;
3829 }
3830
3831 if (!set_journal_csum_feature_set(sb)) {
3832 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3833 "feature set");
3834 goto failed_mount_wq;
3835 }
3836
3837 /* We have now updated the journal if required, so we can
3838 * validate the data journaling mode. */
3839 switch (test_opt(sb, DATA_FLAGS)) {
3840 case 0:
3841 /* No mode set, assume a default based on the journal
3842 * capabilities: ORDERED_DATA if the journal can
3843 * cope, else JOURNAL_DATA
3844 */
3845 if (jbd2_journal_check_available_features
3846 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3847 set_opt(sb, ORDERED_DATA);
3848 else
3849 set_opt(sb, JOURNAL_DATA);
3850 break;
3851
3852 case EXT4_MOUNT_ORDERED_DATA:
3853 case EXT4_MOUNT_WRITEBACK_DATA:
3854 if (!jbd2_journal_check_available_features
3855 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3856 ext4_msg(sb, KERN_ERR, "Journal does not support "
3857 "requested data journaling mode");
3858 goto failed_mount_wq;
3859 }
3860 default:
3861 break;
3862 }
3863 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3864
3865 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3866
3867 /*
3868 * The journal may have updated the bg summary counts, so we
3869 * need to update the global counters.
3870 */
3871 percpu_counter_set(&sbi->s_freeclusters_counter,
3872 ext4_count_free_clusters(sb));
3873 percpu_counter_set(&sbi->s_freeinodes_counter,
3874 ext4_count_free_inodes(sb));
3875 percpu_counter_set(&sbi->s_dirs_counter,
3876 ext4_count_dirs(sb));
3877 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3878
3879 no_journal:
3880 /*
3881 * Get the # of file system overhead blocks from the
3882 * superblock if present.
3883 */
3884 if (es->s_overhead_clusters)
3885 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3886 else {
3887 err = ext4_calculate_overhead(sb);
3888 if (err)
3889 goto failed_mount_wq;
3890 }
3891
3892 /*
3893 * The maximum number of concurrent works can be high and
3894 * concurrency isn't really necessary. Limit it to 1.
3895 */
3896 EXT4_SB(sb)->dio_unwritten_wq =
3897 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3898 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3899 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3900 ret = -ENOMEM;
3901 goto failed_mount_wq;
3902 }
3903
3904 /*
3905 * The jbd2_journal_load will have done any necessary log recovery,
3906 * so we can safely mount the rest of the filesystem now.
3907 */
3908
3909 root = ext4_iget(sb, EXT4_ROOT_INO);
3910 if (IS_ERR(root)) {
3911 ext4_msg(sb, KERN_ERR, "get root inode failed");
3912 ret = PTR_ERR(root);
3913 root = NULL;
3914 goto failed_mount4;
3915 }
3916 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3917 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3918 iput(root);
3919 goto failed_mount4;
3920 }
3921 sb->s_root = d_make_root(root);
3922 if (!sb->s_root) {
3923 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3924 ret = -ENOMEM;
3925 goto failed_mount4;
3926 }
3927
3928 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3929 sb->s_flags |= MS_RDONLY;
3930
3931 /* determine the minimum size of new large inodes, if present */
3932 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3933 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3934 EXT4_GOOD_OLD_INODE_SIZE;
3935 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3936 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3937 if (sbi->s_want_extra_isize <
3938 le16_to_cpu(es->s_want_extra_isize))
3939 sbi->s_want_extra_isize =
3940 le16_to_cpu(es->s_want_extra_isize);
3941 if (sbi->s_want_extra_isize <
3942 le16_to_cpu(es->s_min_extra_isize))
3943 sbi->s_want_extra_isize =
3944 le16_to_cpu(es->s_min_extra_isize);
3945 }
3946 }
3947 /* Check if enough inode space is available */
3948 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3949 sbi->s_inode_size) {
3950 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3951 EXT4_GOOD_OLD_INODE_SIZE;
3952 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3953 "available");
3954 }
3955
3956 err = ext4_setup_system_zone(sb);
3957 if (err) {
3958 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3959 "zone (%d)", err);
3960 goto failed_mount4a;
3961 }
3962
3963 ext4_ext_init(sb);
3964 err = ext4_mb_init(sb);
3965 if (err) {
3966 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3967 err);
3968 goto failed_mount5;
3969 }
3970
3971 err = ext4_register_li_request(sb, first_not_zeroed);
3972 if (err)
3973 goto failed_mount6;
3974
3975 sbi->s_kobj.kset = ext4_kset;
3976 init_completion(&sbi->s_kobj_unregister);
3977 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3978 "%s", sb->s_id);
3979 if (err)
3980 goto failed_mount7;
3981
3982 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3983 ext4_orphan_cleanup(sb, es);
3984 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3985 if (needs_recovery) {
3986 ext4_msg(sb, KERN_INFO, "recovery complete");
3987 ext4_mark_recovery_complete(sb, es);
3988 }
3989 if (EXT4_SB(sb)->s_journal) {
3990 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3991 descr = " journalled data mode";
3992 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3993 descr = " ordered data mode";
3994 else
3995 descr = " writeback data mode";
3996 } else
3997 descr = "out journal";
3998
3999 #ifdef CONFIG_QUOTA
4000 /* Enable quota usage during mount. */
4001 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
4002 !(sb->s_flags & MS_RDONLY)) {
4003 err = ext4_enable_quotas(sb);
4004 if (err)
4005 goto failed_mount7;
4006 }
4007 #endif /* CONFIG_QUOTA */
4008
4009 if (test_opt(sb, DISCARD)) {
4010 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4011 if (!blk_queue_discard(q))
4012 ext4_msg(sb, KERN_WARNING,
4013 "mounting with \"discard\" option, but "
4014 "the device does not support discard");
4015 }
4016
4017 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4018 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4019 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4020
4021 if (es->s_error_count)
4022 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4023
4024 kfree(orig_data);
4025 return 0;
4026
4027 cantfind_ext4:
4028 if (!silent)
4029 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4030 goto failed_mount;
4031
4032 failed_mount7:
4033 ext4_unregister_li_request(sb);
4034 failed_mount6:
4035 ext4_mb_release(sb);
4036 failed_mount5:
4037 ext4_ext_release(sb);
4038 ext4_release_system_zone(sb);
4039 failed_mount4a:
4040 dput(sb->s_root);
4041 sb->s_root = NULL;
4042 failed_mount4:
4043 ext4_msg(sb, KERN_ERR, "mount failed");
4044 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
4045 failed_mount_wq:
4046 if (sbi->s_journal) {
4047 jbd2_journal_destroy(sbi->s_journal);
4048 sbi->s_journal = NULL;
4049 }
4050 failed_mount3:
4051 del_timer(&sbi->s_err_report);
4052 if (sbi->s_flex_groups)
4053 ext4_kvfree(sbi->s_flex_groups);
4054 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4055 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4056 percpu_counter_destroy(&sbi->s_dirs_counter);
4057 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4058 if (sbi->s_mmp_tsk)
4059 kthread_stop(sbi->s_mmp_tsk);
4060 failed_mount2:
4061 for (i = 0; i < db_count; i++)
4062 brelse(sbi->s_group_desc[i]);
4063 ext4_kvfree(sbi->s_group_desc);
4064 failed_mount:
4065 if (sbi->s_chksum_driver)
4066 crypto_free_shash(sbi->s_chksum_driver);
4067 if (sbi->s_proc) {
4068 remove_proc_entry("options", sbi->s_proc);
4069 remove_proc_entry(sb->s_id, ext4_proc_root);
4070 }
4071 #ifdef CONFIG_QUOTA
4072 for (i = 0; i < MAXQUOTAS; i++)
4073 kfree(sbi->s_qf_names[i]);
4074 #endif
4075 ext4_blkdev_remove(sbi);
4076 brelse(bh);
4077 out_fail:
4078 sb->s_fs_info = NULL;
4079 kfree(sbi->s_blockgroup_lock);
4080 kfree(sbi);
4081 out_free_orig:
4082 kfree(orig_data);
4083 return err ? err : ret;
4084 }
4085
4086 /*
4087 * Setup any per-fs journal parameters now. We'll do this both on
4088 * initial mount, once the journal has been initialised but before we've
4089 * done any recovery; and again on any subsequent remount.
4090 */
4091 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4092 {
4093 struct ext4_sb_info *sbi = EXT4_SB(sb);
4094
4095 journal->j_commit_interval = sbi->s_commit_interval;
4096 journal->j_min_batch_time = sbi->s_min_batch_time;
4097 journal->j_max_batch_time = sbi->s_max_batch_time;
4098
4099 write_lock(&journal->j_state_lock);
4100 if (test_opt(sb, BARRIER))
4101 journal->j_flags |= JBD2_BARRIER;
4102 else
4103 journal->j_flags &= ~JBD2_BARRIER;
4104 if (test_opt(sb, DATA_ERR_ABORT))
4105 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4106 else
4107 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4108 write_unlock(&journal->j_state_lock);
4109 }
4110
4111 static journal_t *ext4_get_journal(struct super_block *sb,
4112 unsigned int journal_inum)
4113 {
4114 struct inode *journal_inode;
4115 journal_t *journal;
4116
4117 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4118
4119 /* First, test for the existence of a valid inode on disk. Bad
4120 * things happen if we iget() an unused inode, as the subsequent
4121 * iput() will try to delete it. */
4122
4123 journal_inode = ext4_iget(sb, journal_inum);
4124 if (IS_ERR(journal_inode)) {
4125 ext4_msg(sb, KERN_ERR, "no journal found");
4126 return NULL;
4127 }
4128 if (!journal_inode->i_nlink) {
4129 make_bad_inode(journal_inode);
4130 iput(journal_inode);
4131 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4132 return NULL;
4133 }
4134
4135 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4136 journal_inode, journal_inode->i_size);
4137 if (!S_ISREG(journal_inode->i_mode)) {
4138 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4139 iput(journal_inode);
4140 return NULL;
4141 }
4142
4143 journal = jbd2_journal_init_inode(journal_inode);
4144 if (!journal) {
4145 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4146 iput(journal_inode);
4147 return NULL;
4148 }
4149 journal->j_private = sb;
4150 ext4_init_journal_params(sb, journal);
4151 return journal;
4152 }
4153
4154 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4155 dev_t j_dev)
4156 {
4157 struct buffer_head *bh;
4158 journal_t *journal;
4159 ext4_fsblk_t start;
4160 ext4_fsblk_t len;
4161 int hblock, blocksize;
4162 ext4_fsblk_t sb_block;
4163 unsigned long offset;
4164 struct ext4_super_block *es;
4165 struct block_device *bdev;
4166
4167 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4168
4169 bdev = ext4_blkdev_get(j_dev, sb);
4170 if (bdev == NULL)
4171 return NULL;
4172
4173 blocksize = sb->s_blocksize;
4174 hblock = bdev_logical_block_size(bdev);
4175 if (blocksize < hblock) {
4176 ext4_msg(sb, KERN_ERR,
4177 "blocksize too small for journal device");
4178 goto out_bdev;
4179 }
4180
4181 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4182 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4183 set_blocksize(bdev, blocksize);
4184 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4185 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4186 "external journal");
4187 goto out_bdev;
4188 }
4189
4190 es = (struct ext4_super_block *) (bh->b_data + offset);
4191 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4192 !(le32_to_cpu(es->s_feature_incompat) &
4193 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4194 ext4_msg(sb, KERN_ERR, "external journal has "
4195 "bad superblock");
4196 brelse(bh);
4197 goto out_bdev;
4198 }
4199
4200 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4201 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4202 brelse(bh);
4203 goto out_bdev;
4204 }
4205
4206 len = ext4_blocks_count(es);
4207 start = sb_block + 1;
4208 brelse(bh); /* we're done with the superblock */
4209
4210 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4211 start, len, blocksize);
4212 if (!journal) {
4213 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4214 goto out_bdev;
4215 }
4216 journal->j_private = sb;
4217 ll_rw_block(READ, 1, &journal->j_sb_buffer);
4218 wait_on_buffer(journal->j_sb_buffer);
4219 if (!buffer_uptodate(journal->j_sb_buffer)) {
4220 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4221 goto out_journal;
4222 }
4223 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4224 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4225 "user (unsupported) - %d",
4226 be32_to_cpu(journal->j_superblock->s_nr_users));
4227 goto out_journal;
4228 }
4229 EXT4_SB(sb)->journal_bdev = bdev;
4230 ext4_init_journal_params(sb, journal);
4231 return journal;
4232
4233 out_journal:
4234 jbd2_journal_destroy(journal);
4235 out_bdev:
4236 ext4_blkdev_put(bdev);
4237 return NULL;
4238 }
4239
4240 static int ext4_load_journal(struct super_block *sb,
4241 struct ext4_super_block *es,
4242 unsigned long journal_devnum)
4243 {
4244 journal_t *journal;
4245 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4246 dev_t journal_dev;
4247 int err = 0;
4248 int really_read_only;
4249
4250 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4251
4252 if (journal_devnum &&
4253 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4254 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4255 "numbers have changed");
4256 journal_dev = new_decode_dev(journal_devnum);
4257 } else
4258 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4259
4260 really_read_only = bdev_read_only(sb->s_bdev);
4261
4262 /*
4263 * Are we loading a blank journal or performing recovery after a
4264 * crash? For recovery, we need to check in advance whether we
4265 * can get read-write access to the device.
4266 */
4267 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4268 if (sb->s_flags & MS_RDONLY) {
4269 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4270 "required on readonly filesystem");
4271 if (really_read_only) {
4272 ext4_msg(sb, KERN_ERR, "write access "
4273 "unavailable, cannot proceed");
4274 return -EROFS;
4275 }
4276 ext4_msg(sb, KERN_INFO, "write access will "
4277 "be enabled during recovery");
4278 }
4279 }
4280
4281 if (journal_inum && journal_dev) {
4282 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4283 "and inode journals!");
4284 return -EINVAL;
4285 }
4286
4287 if (journal_inum) {
4288 if (!(journal = ext4_get_journal(sb, journal_inum)))
4289 return -EINVAL;
4290 } else {
4291 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4292 return -EINVAL;
4293 }
4294
4295 if (!(journal->j_flags & JBD2_BARRIER))
4296 ext4_msg(sb, KERN_INFO, "barriers disabled");
4297
4298 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4299 err = jbd2_journal_wipe(journal, !really_read_only);
4300 if (!err) {
4301 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4302 if (save)
4303 memcpy(save, ((char *) es) +
4304 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4305 err = jbd2_journal_load(journal);
4306 if (save)
4307 memcpy(((char *) es) + EXT4_S_ERR_START,
4308 save, EXT4_S_ERR_LEN);
4309 kfree(save);
4310 }
4311
4312 if (err) {
4313 ext4_msg(sb, KERN_ERR, "error loading journal");
4314 jbd2_journal_destroy(journal);
4315 return err;
4316 }
4317
4318 EXT4_SB(sb)->s_journal = journal;
4319 ext4_clear_journal_err(sb, es);
4320
4321 if (!really_read_only && journal_devnum &&
4322 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4323 es->s_journal_dev = cpu_to_le32(journal_devnum);
4324
4325 /* Make sure we flush the recovery flag to disk. */
4326 ext4_commit_super(sb, 1);
4327 }
4328
4329 return 0;
4330 }
4331
4332 static int ext4_commit_super(struct super_block *sb, int sync)
4333 {
4334 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4335 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4336 int error = 0;
4337
4338 if (!sbh || block_device_ejected(sb))
4339 return error;
4340 if (buffer_write_io_error(sbh)) {
4341 /*
4342 * Oh, dear. A previous attempt to write the
4343 * superblock failed. This could happen because the
4344 * USB device was yanked out. Or it could happen to
4345 * be a transient write error and maybe the block will
4346 * be remapped. Nothing we can do but to retry the
4347 * write and hope for the best.
4348 */
4349 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4350 "superblock detected");
4351 clear_buffer_write_io_error(sbh);
4352 set_buffer_uptodate(sbh);
4353 }
4354 /*
4355 * If the file system is mounted read-only, don't update the
4356 * superblock write time. This avoids updating the superblock
4357 * write time when we are mounting the root file system
4358 * read/only but we need to replay the journal; at that point,
4359 * for people who are east of GMT and who make their clock
4360 * tick in localtime for Windows bug-for-bug compatibility,
4361 * the clock is set in the future, and this will cause e2fsck
4362 * to complain and force a full file system check.
4363 */
4364 if (!(sb->s_flags & MS_RDONLY))
4365 es->s_wtime = cpu_to_le32(get_seconds());
4366 if (sb->s_bdev->bd_part)
4367 es->s_kbytes_written =
4368 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4369 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4370 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4371 else
4372 es->s_kbytes_written =
4373 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4374 ext4_free_blocks_count_set(es,
4375 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4376 &EXT4_SB(sb)->s_freeclusters_counter)));
4377 es->s_free_inodes_count =
4378 cpu_to_le32(percpu_counter_sum_positive(
4379 &EXT4_SB(sb)->s_freeinodes_counter));
4380 BUFFER_TRACE(sbh, "marking dirty");
4381 ext4_superblock_csum_set(sb);
4382 mark_buffer_dirty(sbh);
4383 if (sync) {
4384 error = sync_dirty_buffer(sbh);
4385 if (error)
4386 return error;
4387
4388 error = buffer_write_io_error(sbh);
4389 if (error) {
4390 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4391 "superblock");
4392 clear_buffer_write_io_error(sbh);
4393 set_buffer_uptodate(sbh);
4394 }
4395 }
4396 return error;
4397 }
4398
4399 /*
4400 * Have we just finished recovery? If so, and if we are mounting (or
4401 * remounting) the filesystem readonly, then we will end up with a
4402 * consistent fs on disk. Record that fact.
4403 */
4404 static void ext4_mark_recovery_complete(struct super_block *sb,
4405 struct ext4_super_block *es)
4406 {
4407 journal_t *journal = EXT4_SB(sb)->s_journal;
4408
4409 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4410 BUG_ON(journal != NULL);
4411 return;
4412 }
4413 jbd2_journal_lock_updates(journal);
4414 if (jbd2_journal_flush(journal) < 0)
4415 goto out;
4416
4417 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4418 sb->s_flags & MS_RDONLY) {
4419 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4420 ext4_commit_super(sb, 1);
4421 }
4422
4423 out:
4424 jbd2_journal_unlock_updates(journal);
4425 }
4426
4427 /*
4428 * If we are mounting (or read-write remounting) a filesystem whose journal
4429 * has recorded an error from a previous lifetime, move that error to the
4430 * main filesystem now.
4431 */
4432 static void ext4_clear_journal_err(struct super_block *sb,
4433 struct ext4_super_block *es)
4434 {
4435 journal_t *journal;
4436 int j_errno;
4437 const char *errstr;
4438
4439 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4440
4441 journal = EXT4_SB(sb)->s_journal;
4442
4443 /*
4444 * Now check for any error status which may have been recorded in the
4445 * journal by a prior ext4_error() or ext4_abort()
4446 */
4447
4448 j_errno = jbd2_journal_errno(journal);
4449 if (j_errno) {
4450 char nbuf[16];
4451
4452 errstr = ext4_decode_error(sb, j_errno, nbuf);
4453 ext4_warning(sb, "Filesystem error recorded "
4454 "from previous mount: %s", errstr);
4455 ext4_warning(sb, "Marking fs in need of filesystem check.");
4456
4457 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4458 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4459 ext4_commit_super(sb, 1);
4460
4461 jbd2_journal_clear_err(journal);
4462 jbd2_journal_update_sb_errno(journal);
4463 }
4464 }
4465
4466 /*
4467 * Force the running and committing transactions to commit,
4468 * and wait on the commit.
4469 */
4470 int ext4_force_commit(struct super_block *sb)
4471 {
4472 journal_t *journal;
4473 int ret = 0;
4474
4475 if (sb->s_flags & MS_RDONLY)
4476 return 0;
4477
4478 journal = EXT4_SB(sb)->s_journal;
4479 if (journal)
4480 ret = ext4_journal_force_commit(journal);
4481
4482 return ret;
4483 }
4484
4485 static int ext4_sync_fs(struct super_block *sb, int wait)
4486 {
4487 int ret = 0;
4488 tid_t target;
4489 struct ext4_sb_info *sbi = EXT4_SB(sb);
4490
4491 trace_ext4_sync_fs(sb, wait);
4492 flush_workqueue(sbi->dio_unwritten_wq);
4493 /*
4494 * Writeback quota in non-journalled quota case - journalled quota has
4495 * no dirty dquots
4496 */
4497 dquot_writeback_dquots(sb, -1);
4498 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4499 if (wait)
4500 jbd2_log_wait_commit(sbi->s_journal, target);
4501 }
4502 return ret;
4503 }
4504
4505 /*
4506 * LVM calls this function before a (read-only) snapshot is created. This
4507 * gives us a chance to flush the journal completely and mark the fs clean.
4508 *
4509 * Note that only this function cannot bring a filesystem to be in a clean
4510 * state independently. It relies on upper layer to stop all data & metadata
4511 * modifications.
4512 */
4513 static int ext4_freeze(struct super_block *sb)
4514 {
4515 int error = 0;
4516 journal_t *journal;
4517
4518 if (sb->s_flags & MS_RDONLY)
4519 return 0;
4520
4521 journal = EXT4_SB(sb)->s_journal;
4522
4523 /* Now we set up the journal barrier. */
4524 jbd2_journal_lock_updates(journal);
4525
4526 /*
4527 * Don't clear the needs_recovery flag if we failed to flush
4528 * the journal.
4529 */
4530 error = jbd2_journal_flush(journal);
4531 if (error < 0)
4532 goto out;
4533
4534 /* Journal blocked and flushed, clear needs_recovery flag. */
4535 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4536 error = ext4_commit_super(sb, 1);
4537 out:
4538 /* we rely on upper layer to stop further updates */
4539 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4540 return error;
4541 }
4542
4543 /*
4544 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4545 * flag here, even though the filesystem is not technically dirty yet.
4546 */
4547 static int ext4_unfreeze(struct super_block *sb)
4548 {
4549 if (sb->s_flags & MS_RDONLY)
4550 return 0;
4551
4552 /* Reset the needs_recovery flag before the fs is unlocked. */
4553 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4554 ext4_commit_super(sb, 1);
4555 return 0;
4556 }
4557
4558 /*
4559 * Structure to save mount options for ext4_remount's benefit
4560 */
4561 struct ext4_mount_options {
4562 unsigned long s_mount_opt;
4563 unsigned long s_mount_opt2;
4564 kuid_t s_resuid;
4565 kgid_t s_resgid;
4566 unsigned long s_commit_interval;
4567 u32 s_min_batch_time, s_max_batch_time;
4568 #ifdef CONFIG_QUOTA
4569 int s_jquota_fmt;
4570 char *s_qf_names[MAXQUOTAS];
4571 #endif
4572 };
4573
4574 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4575 {
4576 struct ext4_super_block *es;
4577 struct ext4_sb_info *sbi = EXT4_SB(sb);
4578 unsigned long old_sb_flags;
4579 struct ext4_mount_options old_opts;
4580 int enable_quota = 0;
4581 ext4_group_t g;
4582 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4583 int err = 0;
4584 #ifdef CONFIG_QUOTA
4585 int i;
4586 #endif
4587 char *orig_data = kstrdup(data, GFP_KERNEL);
4588
4589 /* Store the original options */
4590 old_sb_flags = sb->s_flags;
4591 old_opts.s_mount_opt = sbi->s_mount_opt;
4592 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4593 old_opts.s_resuid = sbi->s_resuid;
4594 old_opts.s_resgid = sbi->s_resgid;
4595 old_opts.s_commit_interval = sbi->s_commit_interval;
4596 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4597 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4598 #ifdef CONFIG_QUOTA
4599 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4600 for (i = 0; i < MAXQUOTAS; i++)
4601 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4602 #endif
4603 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4604 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4605
4606 /*
4607 * Allow the "check" option to be passed as a remount option.
4608 */
4609 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4610 err = -EINVAL;
4611 goto restore_opts;
4612 }
4613
4614 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4615 ext4_abort(sb, "Abort forced by user");
4616
4617 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4618 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4619
4620 es = sbi->s_es;
4621
4622 if (sbi->s_journal) {
4623 ext4_init_journal_params(sb, sbi->s_journal);
4624 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4625 }
4626
4627 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4628 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4629 err = -EROFS;
4630 goto restore_opts;
4631 }
4632
4633 if (*flags & MS_RDONLY) {
4634 err = dquot_suspend(sb, -1);
4635 if (err < 0)
4636 goto restore_opts;
4637
4638 /*
4639 * First of all, the unconditional stuff we have to do
4640 * to disable replay of the journal when we next remount
4641 */
4642 sb->s_flags |= MS_RDONLY;
4643
4644 /*
4645 * OK, test if we are remounting a valid rw partition
4646 * readonly, and if so set the rdonly flag and then
4647 * mark the partition as valid again.
4648 */
4649 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4650 (sbi->s_mount_state & EXT4_VALID_FS))
4651 es->s_state = cpu_to_le16(sbi->s_mount_state);
4652
4653 if (sbi->s_journal)
4654 ext4_mark_recovery_complete(sb, es);
4655 } else {
4656 /* Make sure we can mount this feature set readwrite */
4657 if (!ext4_feature_set_ok(sb, 0)) {
4658 err = -EROFS;
4659 goto restore_opts;
4660 }
4661 /*
4662 * Make sure the group descriptor checksums
4663 * are sane. If they aren't, refuse to remount r/w.
4664 */
4665 for (g = 0; g < sbi->s_groups_count; g++) {
4666 struct ext4_group_desc *gdp =
4667 ext4_get_group_desc(sb, g, NULL);
4668
4669 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4670 ext4_msg(sb, KERN_ERR,
4671 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4672 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4673 le16_to_cpu(gdp->bg_checksum));
4674 err = -EINVAL;
4675 goto restore_opts;
4676 }
4677 }
4678
4679 /*
4680 * If we have an unprocessed orphan list hanging
4681 * around from a previously readonly bdev mount,
4682 * require a full umount/remount for now.
4683 */
4684 if (es->s_last_orphan) {
4685 ext4_msg(sb, KERN_WARNING, "Couldn't "
4686 "remount RDWR because of unprocessed "
4687 "orphan inode list. Please "
4688 "umount/remount instead");
4689 err = -EINVAL;
4690 goto restore_opts;
4691 }
4692
4693 /*
4694 * Mounting a RDONLY partition read-write, so reread
4695 * and store the current valid flag. (It may have
4696 * been changed by e2fsck since we originally mounted
4697 * the partition.)
4698 */
4699 if (sbi->s_journal)
4700 ext4_clear_journal_err(sb, es);
4701 sbi->s_mount_state = le16_to_cpu(es->s_state);
4702 if (!ext4_setup_super(sb, es, 0))
4703 sb->s_flags &= ~MS_RDONLY;
4704 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4705 EXT4_FEATURE_INCOMPAT_MMP))
4706 if (ext4_multi_mount_protect(sb,
4707 le64_to_cpu(es->s_mmp_block))) {
4708 err = -EROFS;
4709 goto restore_opts;
4710 }
4711 enable_quota = 1;
4712 }
4713 }
4714
4715 /*
4716 * Reinitialize lazy itable initialization thread based on
4717 * current settings
4718 */
4719 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4720 ext4_unregister_li_request(sb);
4721 else {
4722 ext4_group_t first_not_zeroed;
4723 first_not_zeroed = ext4_has_uninit_itable(sb);
4724 ext4_register_li_request(sb, first_not_zeroed);
4725 }
4726
4727 ext4_setup_system_zone(sb);
4728 if (sbi->s_journal == NULL)
4729 ext4_commit_super(sb, 1);
4730
4731 #ifdef CONFIG_QUOTA
4732 /* Release old quota file names */
4733 for (i = 0; i < MAXQUOTAS; i++)
4734 if (old_opts.s_qf_names[i] &&
4735 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4736 kfree(old_opts.s_qf_names[i]);
4737 if (enable_quota) {
4738 if (sb_any_quota_suspended(sb))
4739 dquot_resume(sb, -1);
4740 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4741 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4742 err = ext4_enable_quotas(sb);
4743 if (err)
4744 goto restore_opts;
4745 }
4746 }
4747 #endif
4748
4749 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4750 kfree(orig_data);
4751 return 0;
4752
4753 restore_opts:
4754 sb->s_flags = old_sb_flags;
4755 sbi->s_mount_opt = old_opts.s_mount_opt;
4756 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4757 sbi->s_resuid = old_opts.s_resuid;
4758 sbi->s_resgid = old_opts.s_resgid;
4759 sbi->s_commit_interval = old_opts.s_commit_interval;
4760 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4761 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4762 #ifdef CONFIG_QUOTA
4763 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4764 for (i = 0; i < MAXQUOTAS; i++) {
4765 if (sbi->s_qf_names[i] &&
4766 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4767 kfree(sbi->s_qf_names[i]);
4768 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4769 }
4770 #endif
4771 kfree(orig_data);
4772 return err;
4773 }
4774
4775 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4776 {
4777 struct super_block *sb = dentry->d_sb;
4778 struct ext4_sb_info *sbi = EXT4_SB(sb);
4779 struct ext4_super_block *es = sbi->s_es;
4780 ext4_fsblk_t overhead = 0;
4781 u64 fsid;
4782 s64 bfree;
4783
4784 if (!test_opt(sb, MINIX_DF))
4785 overhead = sbi->s_overhead;
4786
4787 buf->f_type = EXT4_SUPER_MAGIC;
4788 buf->f_bsize = sb->s_blocksize;
4789 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
4790 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4791 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4792 /* prevent underflow in case that few free space is available */
4793 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4794 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4795 if (buf->f_bfree < ext4_r_blocks_count(es))
4796 buf->f_bavail = 0;
4797 buf->f_files = le32_to_cpu(es->s_inodes_count);
4798 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4799 buf->f_namelen = EXT4_NAME_LEN;
4800 fsid = le64_to_cpup((void *)es->s_uuid) ^
4801 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4802 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4803 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4804
4805 return 0;
4806 }
4807
4808 /* Helper function for writing quotas on sync - we need to start transaction
4809 * before quota file is locked for write. Otherwise the are possible deadlocks:
4810 * Process 1 Process 2
4811 * ext4_create() quota_sync()
4812 * jbd2_journal_start() write_dquot()
4813 * dquot_initialize() down(dqio_mutex)
4814 * down(dqio_mutex) jbd2_journal_start()
4815 *
4816 */
4817
4818 #ifdef CONFIG_QUOTA
4819
4820 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4821 {
4822 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
4823 }
4824
4825 static int ext4_write_dquot(struct dquot *dquot)
4826 {
4827 int ret, err;
4828 handle_t *handle;
4829 struct inode *inode;
4830
4831 inode = dquot_to_inode(dquot);
4832 handle = ext4_journal_start(inode,
4833 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4834 if (IS_ERR(handle))
4835 return PTR_ERR(handle);
4836 ret = dquot_commit(dquot);
4837 err = ext4_journal_stop(handle);
4838 if (!ret)
4839 ret = err;
4840 return ret;
4841 }
4842
4843 static int ext4_acquire_dquot(struct dquot *dquot)
4844 {
4845 int ret, err;
4846 handle_t *handle;
4847
4848 handle = ext4_journal_start(dquot_to_inode(dquot),
4849 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4850 if (IS_ERR(handle))
4851 return PTR_ERR(handle);
4852 ret = dquot_acquire(dquot);
4853 err = ext4_journal_stop(handle);
4854 if (!ret)
4855 ret = err;
4856 return ret;
4857 }
4858
4859 static int ext4_release_dquot(struct dquot *dquot)
4860 {
4861 int ret, err;
4862 handle_t *handle;
4863
4864 handle = ext4_journal_start(dquot_to_inode(dquot),
4865 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4866 if (IS_ERR(handle)) {
4867 /* Release dquot anyway to avoid endless cycle in dqput() */
4868 dquot_release(dquot);
4869 return PTR_ERR(handle);
4870 }
4871 ret = dquot_release(dquot);
4872 err = ext4_journal_stop(handle);
4873 if (!ret)
4874 ret = err;
4875 return ret;
4876 }
4877
4878 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4879 {
4880 /* Are we journaling quotas? */
4881 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4882 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4883 dquot_mark_dquot_dirty(dquot);
4884 return ext4_write_dquot(dquot);
4885 } else {
4886 return dquot_mark_dquot_dirty(dquot);
4887 }
4888 }
4889
4890 static int ext4_write_info(struct super_block *sb, int type)
4891 {
4892 int ret, err;
4893 handle_t *handle;
4894
4895 /* Data block + inode block */
4896 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4897 if (IS_ERR(handle))
4898 return PTR_ERR(handle);
4899 ret = dquot_commit_info(sb, type);
4900 err = ext4_journal_stop(handle);
4901 if (!ret)
4902 ret = err;
4903 return ret;
4904 }
4905
4906 /*
4907 * Turn on quotas during mount time - we need to find
4908 * the quota file and such...
4909 */
4910 static int ext4_quota_on_mount(struct super_block *sb, int type)
4911 {
4912 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4913 EXT4_SB(sb)->s_jquota_fmt, type);
4914 }
4915
4916 /*
4917 * Standard function to be called on quota_on
4918 */
4919 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4920 struct path *path)
4921 {
4922 int err;
4923
4924 if (!test_opt(sb, QUOTA))
4925 return -EINVAL;
4926
4927 /* Quotafile not on the same filesystem? */
4928 if (path->dentry->d_sb != sb)
4929 return -EXDEV;
4930 /* Journaling quota? */
4931 if (EXT4_SB(sb)->s_qf_names[type]) {
4932 /* Quotafile not in fs root? */
4933 if (path->dentry->d_parent != sb->s_root)
4934 ext4_msg(sb, KERN_WARNING,
4935 "Quota file not on filesystem root. "
4936 "Journaled quota will not work");
4937 }
4938
4939 /*
4940 * When we journal data on quota file, we have to flush journal to see
4941 * all updates to the file when we bypass pagecache...
4942 */
4943 if (EXT4_SB(sb)->s_journal &&
4944 ext4_should_journal_data(path->dentry->d_inode)) {
4945 /*
4946 * We don't need to lock updates but journal_flush() could
4947 * otherwise be livelocked...
4948 */
4949 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4950 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4951 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4952 if (err)
4953 return err;
4954 }
4955
4956 return dquot_quota_on(sb, type, format_id, path);
4957 }
4958
4959 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
4960 unsigned int flags)
4961 {
4962 int err;
4963 struct inode *qf_inode;
4964 unsigned long qf_inums[MAXQUOTAS] = {
4965 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
4966 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
4967 };
4968
4969 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
4970
4971 if (!qf_inums[type])
4972 return -EPERM;
4973
4974 qf_inode = ext4_iget(sb, qf_inums[type]);
4975 if (IS_ERR(qf_inode)) {
4976 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
4977 return PTR_ERR(qf_inode);
4978 }
4979
4980 err = dquot_enable(qf_inode, type, format_id, flags);
4981 iput(qf_inode);
4982
4983 return err;
4984 }
4985
4986 /* Enable usage tracking for all quota types. */
4987 static int ext4_enable_quotas(struct super_block *sb)
4988 {
4989 int type, err = 0;
4990 unsigned long qf_inums[MAXQUOTAS] = {
4991 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
4992 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
4993 };
4994
4995 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
4996 for (type = 0; type < MAXQUOTAS; type++) {
4997 if (qf_inums[type]) {
4998 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
4999 DQUOT_USAGE_ENABLED);
5000 if (err) {
5001 ext4_warning(sb,
5002 "Failed to enable quota (type=%d) "
5003 "tracking. Please run e2fsck to fix.",
5004 type);
5005 return err;
5006 }
5007 }
5008 }
5009 return 0;
5010 }
5011
5012 /*
5013 * quota_on function that is used when QUOTA feature is set.
5014 */
5015 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5016 int format_id)
5017 {
5018 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5019 return -EINVAL;
5020
5021 /*
5022 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5023 */
5024 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5025 }
5026
5027 static int ext4_quota_off(struct super_block *sb, int type)
5028 {
5029 struct inode *inode = sb_dqopt(sb)->files[type];
5030 handle_t *handle;
5031
5032 /* Force all delayed allocation blocks to be allocated.
5033 * Caller already holds s_umount sem */
5034 if (test_opt(sb, DELALLOC))
5035 sync_filesystem(sb);
5036
5037 if (!inode)
5038 goto out;
5039
5040 /* Update modification times of quota files when userspace can
5041 * start looking at them */
5042 handle = ext4_journal_start(inode, 1);
5043 if (IS_ERR(handle))
5044 goto out;
5045 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5046 ext4_mark_inode_dirty(handle, inode);
5047 ext4_journal_stop(handle);
5048
5049 out:
5050 return dquot_quota_off(sb, type);
5051 }
5052
5053 /*
5054 * quota_off function that is used when QUOTA feature is set.
5055 */
5056 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5057 {
5058 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5059 return -EINVAL;
5060
5061 /* Disable only the limits. */
5062 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5063 }
5064
5065 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5066 * acquiring the locks... As quota files are never truncated and quota code
5067 * itself serializes the operations (and no one else should touch the files)
5068 * we don't have to be afraid of races */
5069 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5070 size_t len, loff_t off)
5071 {
5072 struct inode *inode = sb_dqopt(sb)->files[type];
5073 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5074 int err = 0;
5075 int offset = off & (sb->s_blocksize - 1);
5076 int tocopy;
5077 size_t toread;
5078 struct buffer_head *bh;
5079 loff_t i_size = i_size_read(inode);
5080
5081 if (off > i_size)
5082 return 0;
5083 if (off+len > i_size)
5084 len = i_size-off;
5085 toread = len;
5086 while (toread > 0) {
5087 tocopy = sb->s_blocksize - offset < toread ?
5088 sb->s_blocksize - offset : toread;
5089 bh = ext4_bread(NULL, inode, blk, 0, &err);
5090 if (err)
5091 return err;
5092 if (!bh) /* A hole? */
5093 memset(data, 0, tocopy);
5094 else
5095 memcpy(data, bh->b_data+offset, tocopy);
5096 brelse(bh);
5097 offset = 0;
5098 toread -= tocopy;
5099 data += tocopy;
5100 blk++;
5101 }
5102 return len;
5103 }
5104
5105 /* Write to quotafile (we know the transaction is already started and has
5106 * enough credits) */
5107 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5108 const char *data, size_t len, loff_t off)
5109 {
5110 struct inode *inode = sb_dqopt(sb)->files[type];
5111 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5112 int err = 0;
5113 int offset = off & (sb->s_blocksize - 1);
5114 struct buffer_head *bh;
5115 handle_t *handle = journal_current_handle();
5116
5117 if (EXT4_SB(sb)->s_journal && !handle) {
5118 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5119 " cancelled because transaction is not started",
5120 (unsigned long long)off, (unsigned long long)len);
5121 return -EIO;
5122 }
5123 /*
5124 * Since we account only one data block in transaction credits,
5125 * then it is impossible to cross a block boundary.
5126 */
5127 if (sb->s_blocksize - offset < len) {
5128 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5129 " cancelled because not block aligned",
5130 (unsigned long long)off, (unsigned long long)len);
5131 return -EIO;
5132 }
5133
5134 bh = ext4_bread(handle, inode, blk, 1, &err);
5135 if (!bh)
5136 goto out;
5137 err = ext4_journal_get_write_access(handle, bh);
5138 if (err) {
5139 brelse(bh);
5140 goto out;
5141 }
5142 lock_buffer(bh);
5143 memcpy(bh->b_data+offset, data, len);
5144 flush_dcache_page(bh->b_page);
5145 unlock_buffer(bh);
5146 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5147 brelse(bh);
5148 out:
5149 if (err)
5150 return err;
5151 if (inode->i_size < off + len) {
5152 i_size_write(inode, off + len);
5153 EXT4_I(inode)->i_disksize = inode->i_size;
5154 ext4_mark_inode_dirty(handle, inode);
5155 }
5156 return len;
5157 }
5158
5159 #endif
5160
5161 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5162 const char *dev_name, void *data)
5163 {
5164 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5165 }
5166
5167 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5168 static inline void register_as_ext2(void)
5169 {
5170 int err = register_filesystem(&ext2_fs_type);
5171 if (err)
5172 printk(KERN_WARNING
5173 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5174 }
5175
5176 static inline void unregister_as_ext2(void)
5177 {
5178 unregister_filesystem(&ext2_fs_type);
5179 }
5180
5181 static inline int ext2_feature_set_ok(struct super_block *sb)
5182 {
5183 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5184 return 0;
5185 if (sb->s_flags & MS_RDONLY)
5186 return 1;
5187 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5188 return 0;
5189 return 1;
5190 }
5191 MODULE_ALIAS("ext2");
5192 #else
5193 static inline void register_as_ext2(void) { }
5194 static inline void unregister_as_ext2(void) { }
5195 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5196 #endif
5197
5198 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5199 static inline void register_as_ext3(void)
5200 {
5201 int err = register_filesystem(&ext3_fs_type);
5202 if (err)
5203 printk(KERN_WARNING
5204 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5205 }
5206
5207 static inline void unregister_as_ext3(void)
5208 {
5209 unregister_filesystem(&ext3_fs_type);
5210 }
5211
5212 static inline int ext3_feature_set_ok(struct super_block *sb)
5213 {
5214 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5215 return 0;
5216 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5217 return 0;
5218 if (sb->s_flags & MS_RDONLY)
5219 return 1;
5220 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5221 return 0;
5222 return 1;
5223 }
5224 MODULE_ALIAS("ext3");
5225 #else
5226 static inline void register_as_ext3(void) { }
5227 static inline void unregister_as_ext3(void) { }
5228 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5229 #endif
5230
5231 static struct file_system_type ext4_fs_type = {
5232 .owner = THIS_MODULE,
5233 .name = "ext4",
5234 .mount = ext4_mount,
5235 .kill_sb = kill_block_super,
5236 .fs_flags = FS_REQUIRES_DEV,
5237 };
5238
5239 static int __init ext4_init_feat_adverts(void)
5240 {
5241 struct ext4_features *ef;
5242 int ret = -ENOMEM;
5243
5244 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5245 if (!ef)
5246 goto out;
5247
5248 ef->f_kobj.kset = ext4_kset;
5249 init_completion(&ef->f_kobj_unregister);
5250 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5251 "features");
5252 if (ret) {
5253 kfree(ef);
5254 goto out;
5255 }
5256
5257 ext4_feat = ef;
5258 ret = 0;
5259 out:
5260 return ret;
5261 }
5262
5263 static void ext4_exit_feat_adverts(void)
5264 {
5265 kobject_put(&ext4_feat->f_kobj);
5266 wait_for_completion(&ext4_feat->f_kobj_unregister);
5267 kfree(ext4_feat);
5268 }
5269
5270 /* Shared across all ext4 file systems */
5271 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5272 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5273
5274 static int __init ext4_init_fs(void)
5275 {
5276 int i, err;
5277
5278 ext4_li_info = NULL;
5279 mutex_init(&ext4_li_mtx);
5280
5281 /* Build-time check for flags consistency */
5282 ext4_check_flag_values();
5283
5284 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5285 mutex_init(&ext4__aio_mutex[i]);
5286 init_waitqueue_head(&ext4__ioend_wq[i]);
5287 }
5288
5289 err = ext4_init_es();
5290 if (err)
5291 return err;
5292
5293 err = ext4_init_pageio();
5294 if (err)
5295 goto out7;
5296
5297 err = ext4_init_system_zone();
5298 if (err)
5299 goto out6;
5300 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5301 if (!ext4_kset) {
5302 err = -ENOMEM;
5303 goto out5;
5304 }
5305 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5306
5307 err = ext4_init_feat_adverts();
5308 if (err)
5309 goto out4;
5310
5311 err = ext4_init_mballoc();
5312 if (err)
5313 goto out3;
5314
5315 err = ext4_init_xattr();
5316 if (err)
5317 goto out2;
5318 err = init_inodecache();
5319 if (err)
5320 goto out1;
5321 register_as_ext3();
5322 register_as_ext2();
5323 err = register_filesystem(&ext4_fs_type);
5324 if (err)
5325 goto out;
5326
5327 return 0;
5328 out:
5329 unregister_as_ext2();
5330 unregister_as_ext3();
5331 destroy_inodecache();
5332 out1:
5333 ext4_exit_xattr();
5334 out2:
5335 ext4_exit_mballoc();
5336 out3:
5337 ext4_exit_feat_adverts();
5338 out4:
5339 if (ext4_proc_root)
5340 remove_proc_entry("fs/ext4", NULL);
5341 kset_unregister(ext4_kset);
5342 out5:
5343 ext4_exit_system_zone();
5344 out6:
5345 ext4_exit_pageio();
5346 out7:
5347 ext4_exit_es();
5348
5349 return err;
5350 }
5351
5352 static void __exit ext4_exit_fs(void)
5353 {
5354 ext4_destroy_lazyinit_thread();
5355 unregister_as_ext2();
5356 unregister_as_ext3();
5357 unregister_filesystem(&ext4_fs_type);
5358 destroy_inodecache();
5359 ext4_exit_xattr();
5360 ext4_exit_mballoc();
5361 ext4_exit_feat_adverts();
5362 remove_proc_entry("fs/ext4", NULL);
5363 kset_unregister(ext4_kset);
5364 ext4_exit_system_zone();
5365 ext4_exit_pageio();
5366 }
5367
5368 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5369 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5370 MODULE_LICENSE("GPL");
5371 module_init(ext4_init_fs)
5372 module_exit(ext4_exit_fs)