Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/ralf/upstream-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/jbd2.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 #include <linux/blkdev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/proc_fs.h>
38 #include <linux/ctype.h>
39 #include <linux/log2.h>
40 #include <linux/crc16.h>
41 #include <linux/cleancache.h>
42 #include <asm/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h"
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/ext4.h>
56
57 static struct proc_dir_entry *ext4_proc_root;
58 static struct kset *ext4_kset;
59 static struct ext4_lazy_init *ext4_li_info;
60 static struct mutex ext4_li_mtx;
61 static struct ext4_features *ext4_feat;
62
63 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
64 unsigned long journal_devnum);
65 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
66 static int ext4_commit_super(struct super_block *sb, int sync);
67 static void ext4_mark_recovery_complete(struct super_block *sb,
68 struct ext4_super_block *es);
69 static void ext4_clear_journal_err(struct super_block *sb,
70 struct ext4_super_block *es);
71 static int ext4_sync_fs(struct super_block *sb, int wait);
72 static const char *ext4_decode_error(struct super_block *sb, int errno,
73 char nbuf[16]);
74 static int ext4_remount(struct super_block *sb, int *flags, char *data);
75 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
76 static int ext4_unfreeze(struct super_block *sb);
77 static int ext4_freeze(struct super_block *sb);
78 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
79 const char *dev_name, void *data);
80 static inline int ext2_feature_set_ok(struct super_block *sb);
81 static inline int ext3_feature_set_ok(struct super_block *sb);
82 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
83 static void ext4_destroy_lazyinit_thread(void);
84 static void ext4_unregister_li_request(struct super_block *sb);
85 static void ext4_clear_request_list(void);
86
87 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
88 static struct file_system_type ext2_fs_type = {
89 .owner = THIS_MODULE,
90 .name = "ext2",
91 .mount = ext4_mount,
92 .kill_sb = kill_block_super,
93 .fs_flags = FS_REQUIRES_DEV,
94 };
95 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
96 #else
97 #define IS_EXT2_SB(sb) (0)
98 #endif
99
100
101 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
102 static struct file_system_type ext3_fs_type = {
103 .owner = THIS_MODULE,
104 .name = "ext3",
105 .mount = ext4_mount,
106 .kill_sb = kill_block_super,
107 .fs_flags = FS_REQUIRES_DEV,
108 };
109 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
110 #else
111 #define IS_EXT3_SB(sb) (0)
112 #endif
113
114 static int ext4_verify_csum_type(struct super_block *sb,
115 struct ext4_super_block *es)
116 {
117 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
118 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
119 return 1;
120
121 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
122 }
123
124 static __le32 ext4_superblock_csum(struct super_block *sb,
125 struct ext4_super_block *es)
126 {
127 struct ext4_sb_info *sbi = EXT4_SB(sb);
128 int offset = offsetof(struct ext4_super_block, s_checksum);
129 __u32 csum;
130
131 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
132
133 return cpu_to_le32(csum);
134 }
135
136 int ext4_superblock_csum_verify(struct super_block *sb,
137 struct ext4_super_block *es)
138 {
139 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
140 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
141 return 1;
142
143 return es->s_checksum == ext4_superblock_csum(sb, es);
144 }
145
146 void ext4_superblock_csum_set(struct super_block *sb,
147 struct ext4_super_block *es)
148 {
149 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
150 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
151 return;
152
153 es->s_checksum = ext4_superblock_csum(sb, es);
154 }
155
156 void *ext4_kvmalloc(size_t size, gfp_t flags)
157 {
158 void *ret;
159
160 ret = kmalloc(size, flags);
161 if (!ret)
162 ret = __vmalloc(size, flags, PAGE_KERNEL);
163 return ret;
164 }
165
166 void *ext4_kvzalloc(size_t size, gfp_t flags)
167 {
168 void *ret;
169
170 ret = kzalloc(size, flags);
171 if (!ret)
172 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
173 return ret;
174 }
175
176 void ext4_kvfree(void *ptr)
177 {
178 if (is_vmalloc_addr(ptr))
179 vfree(ptr);
180 else
181 kfree(ptr);
182
183 }
184
185 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
186 struct ext4_group_desc *bg)
187 {
188 return le32_to_cpu(bg->bg_block_bitmap_lo) |
189 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
190 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
191 }
192
193 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
194 struct ext4_group_desc *bg)
195 {
196 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
197 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
198 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
199 }
200
201 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
202 struct ext4_group_desc *bg)
203 {
204 return le32_to_cpu(bg->bg_inode_table_lo) |
205 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
206 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
207 }
208
209 __u32 ext4_free_group_clusters(struct super_block *sb,
210 struct ext4_group_desc *bg)
211 {
212 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
213 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
214 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
215 }
216
217 __u32 ext4_free_inodes_count(struct super_block *sb,
218 struct ext4_group_desc *bg)
219 {
220 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
221 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
222 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
223 }
224
225 __u32 ext4_used_dirs_count(struct super_block *sb,
226 struct ext4_group_desc *bg)
227 {
228 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
229 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
230 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
231 }
232
233 __u32 ext4_itable_unused_count(struct super_block *sb,
234 struct ext4_group_desc *bg)
235 {
236 return le16_to_cpu(bg->bg_itable_unused_lo) |
237 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
238 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
239 }
240
241 void ext4_block_bitmap_set(struct super_block *sb,
242 struct ext4_group_desc *bg, ext4_fsblk_t blk)
243 {
244 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
245 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
246 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
247 }
248
249 void ext4_inode_bitmap_set(struct super_block *sb,
250 struct ext4_group_desc *bg, ext4_fsblk_t blk)
251 {
252 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
253 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
254 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
255 }
256
257 void ext4_inode_table_set(struct super_block *sb,
258 struct ext4_group_desc *bg, ext4_fsblk_t blk)
259 {
260 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
261 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
262 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
263 }
264
265 void ext4_free_group_clusters_set(struct super_block *sb,
266 struct ext4_group_desc *bg, __u32 count)
267 {
268 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
269 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
270 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
271 }
272
273 void ext4_free_inodes_set(struct super_block *sb,
274 struct ext4_group_desc *bg, __u32 count)
275 {
276 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
277 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
278 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
279 }
280
281 void ext4_used_dirs_set(struct super_block *sb,
282 struct ext4_group_desc *bg, __u32 count)
283 {
284 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
285 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
286 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
287 }
288
289 void ext4_itable_unused_set(struct super_block *sb,
290 struct ext4_group_desc *bg, __u32 count)
291 {
292 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
293 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
294 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
295 }
296
297
298 /* Just increment the non-pointer handle value */
299 static handle_t *ext4_get_nojournal(void)
300 {
301 handle_t *handle = current->journal_info;
302 unsigned long ref_cnt = (unsigned long)handle;
303
304 BUG_ON(ref_cnt >= EXT4_NOJOURNAL_MAX_REF_COUNT);
305
306 ref_cnt++;
307 handle = (handle_t *)ref_cnt;
308
309 current->journal_info = handle;
310 return handle;
311 }
312
313
314 /* Decrement the non-pointer handle value */
315 static void ext4_put_nojournal(handle_t *handle)
316 {
317 unsigned long ref_cnt = (unsigned long)handle;
318
319 BUG_ON(ref_cnt == 0);
320
321 ref_cnt--;
322 handle = (handle_t *)ref_cnt;
323
324 current->journal_info = handle;
325 }
326
327 /*
328 * Wrappers for jbd2_journal_start/end.
329 *
330 * The only special thing we need to do here is to make sure that all
331 * journal_end calls result in the superblock being marked dirty, so
332 * that sync() will call the filesystem's write_super callback if
333 * appropriate.
334 *
335 * To avoid j_barrier hold in userspace when a user calls freeze(),
336 * ext4 prevents a new handle from being started by s_frozen, which
337 * is in an upper layer.
338 */
339 handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
340 {
341 journal_t *journal;
342 handle_t *handle;
343
344 trace_ext4_journal_start(sb, nblocks, _RET_IP_);
345 if (sb->s_flags & MS_RDONLY)
346 return ERR_PTR(-EROFS);
347
348 journal = EXT4_SB(sb)->s_journal;
349 handle = ext4_journal_current_handle();
350
351 /*
352 * If a handle has been started, it should be allowed to
353 * finish, otherwise deadlock could happen between freeze
354 * and others(e.g. truncate) due to the restart of the
355 * journal handle if the filesystem is forzen and active
356 * handles are not stopped.
357 */
358 if (!handle)
359 vfs_check_frozen(sb, SB_FREEZE_TRANS);
360
361 if (!journal)
362 return ext4_get_nojournal();
363 /*
364 * Special case here: if the journal has aborted behind our
365 * backs (eg. EIO in the commit thread), then we still need to
366 * take the FS itself readonly cleanly.
367 */
368 if (is_journal_aborted(journal)) {
369 ext4_abort(sb, "Detected aborted journal");
370 return ERR_PTR(-EROFS);
371 }
372 return jbd2_journal_start(journal, nblocks);
373 }
374
375 /*
376 * The only special thing we need to do here is to make sure that all
377 * jbd2_journal_stop calls result in the superblock being marked dirty, so
378 * that sync() will call the filesystem's write_super callback if
379 * appropriate.
380 */
381 int __ext4_journal_stop(const char *where, unsigned int line, handle_t *handle)
382 {
383 struct super_block *sb;
384 int err;
385 int rc;
386
387 if (!ext4_handle_valid(handle)) {
388 ext4_put_nojournal(handle);
389 return 0;
390 }
391 sb = handle->h_transaction->t_journal->j_private;
392 err = handle->h_err;
393 rc = jbd2_journal_stop(handle);
394
395 if (!err)
396 err = rc;
397 if (err)
398 __ext4_std_error(sb, where, line, err);
399 return err;
400 }
401
402 void ext4_journal_abort_handle(const char *caller, unsigned int line,
403 const char *err_fn, struct buffer_head *bh,
404 handle_t *handle, int err)
405 {
406 char nbuf[16];
407 const char *errstr = ext4_decode_error(NULL, err, nbuf);
408
409 BUG_ON(!ext4_handle_valid(handle));
410
411 if (bh)
412 BUFFER_TRACE(bh, "abort");
413
414 if (!handle->h_err)
415 handle->h_err = err;
416
417 if (is_handle_aborted(handle))
418 return;
419
420 printk(KERN_ERR "EXT4-fs: %s:%d: aborting transaction: %s in %s\n",
421 caller, line, errstr, err_fn);
422
423 jbd2_journal_abort_handle(handle);
424 }
425
426 static void __save_error_info(struct super_block *sb, const char *func,
427 unsigned int line)
428 {
429 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
430
431 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
432 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
433 es->s_last_error_time = cpu_to_le32(get_seconds());
434 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
435 es->s_last_error_line = cpu_to_le32(line);
436 if (!es->s_first_error_time) {
437 es->s_first_error_time = es->s_last_error_time;
438 strncpy(es->s_first_error_func, func,
439 sizeof(es->s_first_error_func));
440 es->s_first_error_line = cpu_to_le32(line);
441 es->s_first_error_ino = es->s_last_error_ino;
442 es->s_first_error_block = es->s_last_error_block;
443 }
444 /*
445 * Start the daily error reporting function if it hasn't been
446 * started already
447 */
448 if (!es->s_error_count)
449 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
450 es->s_error_count = cpu_to_le32(le32_to_cpu(es->s_error_count) + 1);
451 }
452
453 static void save_error_info(struct super_block *sb, const char *func,
454 unsigned int line)
455 {
456 __save_error_info(sb, func, line);
457 ext4_commit_super(sb, 1);
458 }
459
460 /*
461 * The del_gendisk() function uninitializes the disk-specific data
462 * structures, including the bdi structure, without telling anyone
463 * else. Once this happens, any attempt to call mark_buffer_dirty()
464 * (for example, by ext4_commit_super), will cause a kernel OOPS.
465 * This is a kludge to prevent these oops until we can put in a proper
466 * hook in del_gendisk() to inform the VFS and file system layers.
467 */
468 static int block_device_ejected(struct super_block *sb)
469 {
470 struct inode *bd_inode = sb->s_bdev->bd_inode;
471 struct backing_dev_info *bdi = bd_inode->i_mapping->backing_dev_info;
472
473 return bdi->dev == NULL;
474 }
475
476 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
477 {
478 struct super_block *sb = journal->j_private;
479 struct ext4_sb_info *sbi = EXT4_SB(sb);
480 int error = is_journal_aborted(journal);
481 struct ext4_journal_cb_entry *jce, *tmp;
482
483 spin_lock(&sbi->s_md_lock);
484 list_for_each_entry_safe(jce, tmp, &txn->t_private_list, jce_list) {
485 list_del_init(&jce->jce_list);
486 spin_unlock(&sbi->s_md_lock);
487 jce->jce_func(sb, jce, error);
488 spin_lock(&sbi->s_md_lock);
489 }
490 spin_unlock(&sbi->s_md_lock);
491 }
492
493 /* Deal with the reporting of failure conditions on a filesystem such as
494 * inconsistencies detected or read IO failures.
495 *
496 * On ext2, we can store the error state of the filesystem in the
497 * superblock. That is not possible on ext4, because we may have other
498 * write ordering constraints on the superblock which prevent us from
499 * writing it out straight away; and given that the journal is about to
500 * be aborted, we can't rely on the current, or future, transactions to
501 * write out the superblock safely.
502 *
503 * We'll just use the jbd2_journal_abort() error code to record an error in
504 * the journal instead. On recovery, the journal will complain about
505 * that error until we've noted it down and cleared it.
506 */
507
508 static void ext4_handle_error(struct super_block *sb)
509 {
510 if (sb->s_flags & MS_RDONLY)
511 return;
512
513 if (!test_opt(sb, ERRORS_CONT)) {
514 journal_t *journal = EXT4_SB(sb)->s_journal;
515
516 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
517 if (journal)
518 jbd2_journal_abort(journal, -EIO);
519 }
520 if (test_opt(sb, ERRORS_RO)) {
521 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
522 sb->s_flags |= MS_RDONLY;
523 }
524 if (test_opt(sb, ERRORS_PANIC))
525 panic("EXT4-fs (device %s): panic forced after error\n",
526 sb->s_id);
527 }
528
529 void __ext4_error(struct super_block *sb, const char *function,
530 unsigned int line, const char *fmt, ...)
531 {
532 struct va_format vaf;
533 va_list args;
534
535 va_start(args, fmt);
536 vaf.fmt = fmt;
537 vaf.va = &args;
538 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
539 sb->s_id, function, line, current->comm, &vaf);
540 va_end(args);
541 save_error_info(sb, function, line);
542
543 ext4_handle_error(sb);
544 }
545
546 void ext4_error_inode(struct inode *inode, const char *function,
547 unsigned int line, ext4_fsblk_t block,
548 const char *fmt, ...)
549 {
550 va_list args;
551 struct va_format vaf;
552 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
553
554 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
555 es->s_last_error_block = cpu_to_le64(block);
556 save_error_info(inode->i_sb, function, line);
557 va_start(args, fmt);
558 vaf.fmt = fmt;
559 vaf.va = &args;
560 if (block)
561 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
562 "inode #%lu: block %llu: comm %s: %pV\n",
563 inode->i_sb->s_id, function, line, inode->i_ino,
564 block, current->comm, &vaf);
565 else
566 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
567 "inode #%lu: comm %s: %pV\n",
568 inode->i_sb->s_id, function, line, inode->i_ino,
569 current->comm, &vaf);
570 va_end(args);
571
572 ext4_handle_error(inode->i_sb);
573 }
574
575 void ext4_error_file(struct file *file, const char *function,
576 unsigned int line, ext4_fsblk_t block,
577 const char *fmt, ...)
578 {
579 va_list args;
580 struct va_format vaf;
581 struct ext4_super_block *es;
582 struct inode *inode = file->f_dentry->d_inode;
583 char pathname[80], *path;
584
585 es = EXT4_SB(inode->i_sb)->s_es;
586 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
587 save_error_info(inode->i_sb, function, line);
588 path = d_path(&(file->f_path), pathname, sizeof(pathname));
589 if (IS_ERR(path))
590 path = "(unknown)";
591 va_start(args, fmt);
592 vaf.fmt = fmt;
593 vaf.va = &args;
594 if (block)
595 printk(KERN_CRIT
596 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
597 "block %llu: comm %s: path %s: %pV\n",
598 inode->i_sb->s_id, function, line, inode->i_ino,
599 block, current->comm, path, &vaf);
600 else
601 printk(KERN_CRIT
602 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
603 "comm %s: path %s: %pV\n",
604 inode->i_sb->s_id, function, line, inode->i_ino,
605 current->comm, path, &vaf);
606 va_end(args);
607
608 ext4_handle_error(inode->i_sb);
609 }
610
611 static const char *ext4_decode_error(struct super_block *sb, int errno,
612 char nbuf[16])
613 {
614 char *errstr = NULL;
615
616 switch (errno) {
617 case -EIO:
618 errstr = "IO failure";
619 break;
620 case -ENOMEM:
621 errstr = "Out of memory";
622 break;
623 case -EROFS:
624 if (!sb || (EXT4_SB(sb)->s_journal &&
625 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
626 errstr = "Journal has aborted";
627 else
628 errstr = "Readonly filesystem";
629 break;
630 default:
631 /* If the caller passed in an extra buffer for unknown
632 * errors, textualise them now. Else we just return
633 * NULL. */
634 if (nbuf) {
635 /* Check for truncated error codes... */
636 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
637 errstr = nbuf;
638 }
639 break;
640 }
641
642 return errstr;
643 }
644
645 /* __ext4_std_error decodes expected errors from journaling functions
646 * automatically and invokes the appropriate error response. */
647
648 void __ext4_std_error(struct super_block *sb, const char *function,
649 unsigned int line, int errno)
650 {
651 char nbuf[16];
652 const char *errstr;
653
654 /* Special case: if the error is EROFS, and we're not already
655 * inside a transaction, then there's really no point in logging
656 * an error. */
657 if (errno == -EROFS && journal_current_handle() == NULL &&
658 (sb->s_flags & MS_RDONLY))
659 return;
660
661 errstr = ext4_decode_error(sb, errno, nbuf);
662 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
663 sb->s_id, function, line, errstr);
664 save_error_info(sb, function, line);
665
666 ext4_handle_error(sb);
667 }
668
669 /*
670 * ext4_abort is a much stronger failure handler than ext4_error. The
671 * abort function may be used to deal with unrecoverable failures such
672 * as journal IO errors or ENOMEM at a critical moment in log management.
673 *
674 * We unconditionally force the filesystem into an ABORT|READONLY state,
675 * unless the error response on the fs has been set to panic in which
676 * case we take the easy way out and panic immediately.
677 */
678
679 void __ext4_abort(struct super_block *sb, const char *function,
680 unsigned int line, const char *fmt, ...)
681 {
682 va_list args;
683
684 save_error_info(sb, function, line);
685 va_start(args, fmt);
686 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: ", sb->s_id,
687 function, line);
688 vprintk(fmt, args);
689 printk("\n");
690 va_end(args);
691
692 if ((sb->s_flags & MS_RDONLY) == 0) {
693 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
694 sb->s_flags |= MS_RDONLY;
695 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
696 if (EXT4_SB(sb)->s_journal)
697 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
698 save_error_info(sb, function, line);
699 }
700 if (test_opt(sb, ERRORS_PANIC))
701 panic("EXT4-fs panic from previous error\n");
702 }
703
704 void ext4_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
705 {
706 struct va_format vaf;
707 va_list args;
708
709 va_start(args, fmt);
710 vaf.fmt = fmt;
711 vaf.va = &args;
712 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
713 va_end(args);
714 }
715
716 void __ext4_warning(struct super_block *sb, const char *function,
717 unsigned int line, const char *fmt, ...)
718 {
719 struct va_format vaf;
720 va_list args;
721
722 va_start(args, fmt);
723 vaf.fmt = fmt;
724 vaf.va = &args;
725 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
726 sb->s_id, function, line, &vaf);
727 va_end(args);
728 }
729
730 void __ext4_grp_locked_error(const char *function, unsigned int line,
731 struct super_block *sb, ext4_group_t grp,
732 unsigned long ino, ext4_fsblk_t block,
733 const char *fmt, ...)
734 __releases(bitlock)
735 __acquires(bitlock)
736 {
737 struct va_format vaf;
738 va_list args;
739 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
740
741 es->s_last_error_ino = cpu_to_le32(ino);
742 es->s_last_error_block = cpu_to_le64(block);
743 __save_error_info(sb, function, line);
744
745 va_start(args, fmt);
746
747 vaf.fmt = fmt;
748 vaf.va = &args;
749 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
750 sb->s_id, function, line, grp);
751 if (ino)
752 printk(KERN_CONT "inode %lu: ", ino);
753 if (block)
754 printk(KERN_CONT "block %llu:", (unsigned long long) block);
755 printk(KERN_CONT "%pV\n", &vaf);
756 va_end(args);
757
758 if (test_opt(sb, ERRORS_CONT)) {
759 ext4_commit_super(sb, 0);
760 return;
761 }
762
763 ext4_unlock_group(sb, grp);
764 ext4_handle_error(sb);
765 /*
766 * We only get here in the ERRORS_RO case; relocking the group
767 * may be dangerous, but nothing bad will happen since the
768 * filesystem will have already been marked read/only and the
769 * journal has been aborted. We return 1 as a hint to callers
770 * who might what to use the return value from
771 * ext4_grp_locked_error() to distinguish between the
772 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
773 * aggressively from the ext4 function in question, with a
774 * more appropriate error code.
775 */
776 ext4_lock_group(sb, grp);
777 return;
778 }
779
780 void ext4_update_dynamic_rev(struct super_block *sb)
781 {
782 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
783
784 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
785 return;
786
787 ext4_warning(sb,
788 "updating to rev %d because of new feature flag, "
789 "running e2fsck is recommended",
790 EXT4_DYNAMIC_REV);
791
792 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
793 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
794 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
795 /* leave es->s_feature_*compat flags alone */
796 /* es->s_uuid will be set by e2fsck if empty */
797
798 /*
799 * The rest of the superblock fields should be zero, and if not it
800 * means they are likely already in use, so leave them alone. We
801 * can leave it up to e2fsck to clean up any inconsistencies there.
802 */
803 }
804
805 /*
806 * Open the external journal device
807 */
808 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
809 {
810 struct block_device *bdev;
811 char b[BDEVNAME_SIZE];
812
813 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
814 if (IS_ERR(bdev))
815 goto fail;
816 return bdev;
817
818 fail:
819 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
820 __bdevname(dev, b), PTR_ERR(bdev));
821 return NULL;
822 }
823
824 /*
825 * Release the journal device
826 */
827 static int ext4_blkdev_put(struct block_device *bdev)
828 {
829 return blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
830 }
831
832 static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
833 {
834 struct block_device *bdev;
835 int ret = -ENODEV;
836
837 bdev = sbi->journal_bdev;
838 if (bdev) {
839 ret = ext4_blkdev_put(bdev);
840 sbi->journal_bdev = NULL;
841 }
842 return ret;
843 }
844
845 static inline struct inode *orphan_list_entry(struct list_head *l)
846 {
847 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
848 }
849
850 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
851 {
852 struct list_head *l;
853
854 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
855 le32_to_cpu(sbi->s_es->s_last_orphan));
856
857 printk(KERN_ERR "sb_info orphan list:\n");
858 list_for_each(l, &sbi->s_orphan) {
859 struct inode *inode = orphan_list_entry(l);
860 printk(KERN_ERR " "
861 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
862 inode->i_sb->s_id, inode->i_ino, inode,
863 inode->i_mode, inode->i_nlink,
864 NEXT_ORPHAN(inode));
865 }
866 }
867
868 static void ext4_put_super(struct super_block *sb)
869 {
870 struct ext4_sb_info *sbi = EXT4_SB(sb);
871 struct ext4_super_block *es = sbi->s_es;
872 int i, err;
873
874 ext4_unregister_li_request(sb);
875 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
876
877 flush_workqueue(sbi->dio_unwritten_wq);
878 destroy_workqueue(sbi->dio_unwritten_wq);
879
880 lock_super(sb);
881 if (sbi->s_journal) {
882 err = jbd2_journal_destroy(sbi->s_journal);
883 sbi->s_journal = NULL;
884 if (err < 0)
885 ext4_abort(sb, "Couldn't clean up the journal");
886 }
887
888 del_timer(&sbi->s_err_report);
889 ext4_release_system_zone(sb);
890 ext4_mb_release(sb);
891 ext4_ext_release(sb);
892 ext4_xattr_put_super(sb);
893
894 if (!(sb->s_flags & MS_RDONLY)) {
895 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
896 es->s_state = cpu_to_le16(sbi->s_mount_state);
897 }
898 if (!(sb->s_flags & MS_RDONLY))
899 ext4_commit_super(sb, 1);
900
901 if (sbi->s_proc) {
902 remove_proc_entry("options", sbi->s_proc);
903 remove_proc_entry(sb->s_id, ext4_proc_root);
904 }
905 kobject_del(&sbi->s_kobj);
906
907 for (i = 0; i < sbi->s_gdb_count; i++)
908 brelse(sbi->s_group_desc[i]);
909 ext4_kvfree(sbi->s_group_desc);
910 ext4_kvfree(sbi->s_flex_groups);
911 percpu_counter_destroy(&sbi->s_freeclusters_counter);
912 percpu_counter_destroy(&sbi->s_freeinodes_counter);
913 percpu_counter_destroy(&sbi->s_dirs_counter);
914 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
915 brelse(sbi->s_sbh);
916 #ifdef CONFIG_QUOTA
917 for (i = 0; i < MAXQUOTAS; i++)
918 kfree(sbi->s_qf_names[i]);
919 #endif
920
921 /* Debugging code just in case the in-memory inode orphan list
922 * isn't empty. The on-disk one can be non-empty if we've
923 * detected an error and taken the fs readonly, but the
924 * in-memory list had better be clean by this point. */
925 if (!list_empty(&sbi->s_orphan))
926 dump_orphan_list(sb, sbi);
927 J_ASSERT(list_empty(&sbi->s_orphan));
928
929 invalidate_bdev(sb->s_bdev);
930 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
931 /*
932 * Invalidate the journal device's buffers. We don't want them
933 * floating about in memory - the physical journal device may
934 * hotswapped, and it breaks the `ro-after' testing code.
935 */
936 sync_blockdev(sbi->journal_bdev);
937 invalidate_bdev(sbi->journal_bdev);
938 ext4_blkdev_remove(sbi);
939 }
940 if (sbi->s_mmp_tsk)
941 kthread_stop(sbi->s_mmp_tsk);
942 sb->s_fs_info = NULL;
943 /*
944 * Now that we are completely done shutting down the
945 * superblock, we need to actually destroy the kobject.
946 */
947 unlock_super(sb);
948 kobject_put(&sbi->s_kobj);
949 wait_for_completion(&sbi->s_kobj_unregister);
950 if (sbi->s_chksum_driver)
951 crypto_free_shash(sbi->s_chksum_driver);
952 kfree(sbi->s_blockgroup_lock);
953 kfree(sbi);
954 }
955
956 static struct kmem_cache *ext4_inode_cachep;
957
958 /*
959 * Called inside transaction, so use GFP_NOFS
960 */
961 static struct inode *ext4_alloc_inode(struct super_block *sb)
962 {
963 struct ext4_inode_info *ei;
964
965 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
966 if (!ei)
967 return NULL;
968
969 ei->vfs_inode.i_version = 1;
970 ei->vfs_inode.i_data.writeback_index = 0;
971 memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
972 INIT_LIST_HEAD(&ei->i_prealloc_list);
973 spin_lock_init(&ei->i_prealloc_lock);
974 ei->i_reserved_data_blocks = 0;
975 ei->i_reserved_meta_blocks = 0;
976 ei->i_allocated_meta_blocks = 0;
977 ei->i_da_metadata_calc_len = 0;
978 spin_lock_init(&(ei->i_block_reservation_lock));
979 #ifdef CONFIG_QUOTA
980 ei->i_reserved_quota = 0;
981 #endif
982 ei->jinode = NULL;
983 INIT_LIST_HEAD(&ei->i_completed_io_list);
984 spin_lock_init(&ei->i_completed_io_lock);
985 ei->cur_aio_dio = NULL;
986 ei->i_sync_tid = 0;
987 ei->i_datasync_tid = 0;
988 atomic_set(&ei->i_ioend_count, 0);
989 atomic_set(&ei->i_aiodio_unwritten, 0);
990
991 return &ei->vfs_inode;
992 }
993
994 static int ext4_drop_inode(struct inode *inode)
995 {
996 int drop = generic_drop_inode(inode);
997
998 trace_ext4_drop_inode(inode, drop);
999 return drop;
1000 }
1001
1002 static void ext4_i_callback(struct rcu_head *head)
1003 {
1004 struct inode *inode = container_of(head, struct inode, i_rcu);
1005 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1006 }
1007
1008 static void ext4_destroy_inode(struct inode *inode)
1009 {
1010 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1011 ext4_msg(inode->i_sb, KERN_ERR,
1012 "Inode %lu (%p): orphan list check failed!",
1013 inode->i_ino, EXT4_I(inode));
1014 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1015 EXT4_I(inode), sizeof(struct ext4_inode_info),
1016 true);
1017 dump_stack();
1018 }
1019 call_rcu(&inode->i_rcu, ext4_i_callback);
1020 }
1021
1022 static void init_once(void *foo)
1023 {
1024 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1025
1026 INIT_LIST_HEAD(&ei->i_orphan);
1027 #ifdef CONFIG_EXT4_FS_XATTR
1028 init_rwsem(&ei->xattr_sem);
1029 #endif
1030 init_rwsem(&ei->i_data_sem);
1031 inode_init_once(&ei->vfs_inode);
1032 }
1033
1034 static int init_inodecache(void)
1035 {
1036 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1037 sizeof(struct ext4_inode_info),
1038 0, (SLAB_RECLAIM_ACCOUNT|
1039 SLAB_MEM_SPREAD),
1040 init_once);
1041 if (ext4_inode_cachep == NULL)
1042 return -ENOMEM;
1043 return 0;
1044 }
1045
1046 static void destroy_inodecache(void)
1047 {
1048 kmem_cache_destroy(ext4_inode_cachep);
1049 }
1050
1051 void ext4_clear_inode(struct inode *inode)
1052 {
1053 invalidate_inode_buffers(inode);
1054 clear_inode(inode);
1055 dquot_drop(inode);
1056 ext4_discard_preallocations(inode);
1057 if (EXT4_I(inode)->jinode) {
1058 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1059 EXT4_I(inode)->jinode);
1060 jbd2_free_inode(EXT4_I(inode)->jinode);
1061 EXT4_I(inode)->jinode = NULL;
1062 }
1063 }
1064
1065 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1066 u64 ino, u32 generation)
1067 {
1068 struct inode *inode;
1069
1070 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1071 return ERR_PTR(-ESTALE);
1072 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1073 return ERR_PTR(-ESTALE);
1074
1075 /* iget isn't really right if the inode is currently unallocated!!
1076 *
1077 * ext4_read_inode will return a bad_inode if the inode had been
1078 * deleted, so we should be safe.
1079 *
1080 * Currently we don't know the generation for parent directory, so
1081 * a generation of 0 means "accept any"
1082 */
1083 inode = ext4_iget(sb, ino);
1084 if (IS_ERR(inode))
1085 return ERR_CAST(inode);
1086 if (generation && inode->i_generation != generation) {
1087 iput(inode);
1088 return ERR_PTR(-ESTALE);
1089 }
1090
1091 return inode;
1092 }
1093
1094 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1095 int fh_len, int fh_type)
1096 {
1097 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1098 ext4_nfs_get_inode);
1099 }
1100
1101 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1102 int fh_len, int fh_type)
1103 {
1104 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1105 ext4_nfs_get_inode);
1106 }
1107
1108 /*
1109 * Try to release metadata pages (indirect blocks, directories) which are
1110 * mapped via the block device. Since these pages could have journal heads
1111 * which would prevent try_to_free_buffers() from freeing them, we must use
1112 * jbd2 layer's try_to_free_buffers() function to release them.
1113 */
1114 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1115 gfp_t wait)
1116 {
1117 journal_t *journal = EXT4_SB(sb)->s_journal;
1118
1119 WARN_ON(PageChecked(page));
1120 if (!page_has_buffers(page))
1121 return 0;
1122 if (journal)
1123 return jbd2_journal_try_to_free_buffers(journal, page,
1124 wait & ~__GFP_WAIT);
1125 return try_to_free_buffers(page);
1126 }
1127
1128 #ifdef CONFIG_QUOTA
1129 #define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
1130 #define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
1131
1132 static int ext4_write_dquot(struct dquot *dquot);
1133 static int ext4_acquire_dquot(struct dquot *dquot);
1134 static int ext4_release_dquot(struct dquot *dquot);
1135 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1136 static int ext4_write_info(struct super_block *sb, int type);
1137 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1138 struct path *path);
1139 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
1140 int format_id);
1141 static int ext4_quota_off(struct super_block *sb, int type);
1142 static int ext4_quota_off_sysfile(struct super_block *sb, int type);
1143 static int ext4_quota_on_mount(struct super_block *sb, int type);
1144 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1145 size_t len, loff_t off);
1146 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1147 const char *data, size_t len, loff_t off);
1148 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1149 unsigned int flags);
1150 static int ext4_enable_quotas(struct super_block *sb);
1151
1152 static const struct dquot_operations ext4_quota_operations = {
1153 .get_reserved_space = ext4_get_reserved_space,
1154 .write_dquot = ext4_write_dquot,
1155 .acquire_dquot = ext4_acquire_dquot,
1156 .release_dquot = ext4_release_dquot,
1157 .mark_dirty = ext4_mark_dquot_dirty,
1158 .write_info = ext4_write_info,
1159 .alloc_dquot = dquot_alloc,
1160 .destroy_dquot = dquot_destroy,
1161 };
1162
1163 static const struct quotactl_ops ext4_qctl_operations = {
1164 .quota_on = ext4_quota_on,
1165 .quota_off = ext4_quota_off,
1166 .quota_sync = dquot_quota_sync,
1167 .get_info = dquot_get_dqinfo,
1168 .set_info = dquot_set_dqinfo,
1169 .get_dqblk = dquot_get_dqblk,
1170 .set_dqblk = dquot_set_dqblk
1171 };
1172
1173 static const struct quotactl_ops ext4_qctl_sysfile_operations = {
1174 .quota_on_meta = ext4_quota_on_sysfile,
1175 .quota_off = ext4_quota_off_sysfile,
1176 .quota_sync = dquot_quota_sync,
1177 .get_info = dquot_get_dqinfo,
1178 .set_info = dquot_set_dqinfo,
1179 .get_dqblk = dquot_get_dqblk,
1180 .set_dqblk = dquot_set_dqblk
1181 };
1182 #endif
1183
1184 static const struct super_operations ext4_sops = {
1185 .alloc_inode = ext4_alloc_inode,
1186 .destroy_inode = ext4_destroy_inode,
1187 .write_inode = ext4_write_inode,
1188 .dirty_inode = ext4_dirty_inode,
1189 .drop_inode = ext4_drop_inode,
1190 .evict_inode = ext4_evict_inode,
1191 .put_super = ext4_put_super,
1192 .sync_fs = ext4_sync_fs,
1193 .freeze_fs = ext4_freeze,
1194 .unfreeze_fs = ext4_unfreeze,
1195 .statfs = ext4_statfs,
1196 .remount_fs = ext4_remount,
1197 .show_options = ext4_show_options,
1198 #ifdef CONFIG_QUOTA
1199 .quota_read = ext4_quota_read,
1200 .quota_write = ext4_quota_write,
1201 #endif
1202 .bdev_try_to_free_page = bdev_try_to_free_page,
1203 };
1204
1205 static const struct super_operations ext4_nojournal_sops = {
1206 .alloc_inode = ext4_alloc_inode,
1207 .destroy_inode = ext4_destroy_inode,
1208 .write_inode = ext4_write_inode,
1209 .dirty_inode = ext4_dirty_inode,
1210 .drop_inode = ext4_drop_inode,
1211 .evict_inode = ext4_evict_inode,
1212 .put_super = ext4_put_super,
1213 .statfs = ext4_statfs,
1214 .remount_fs = ext4_remount,
1215 .show_options = ext4_show_options,
1216 #ifdef CONFIG_QUOTA
1217 .quota_read = ext4_quota_read,
1218 .quota_write = ext4_quota_write,
1219 #endif
1220 .bdev_try_to_free_page = bdev_try_to_free_page,
1221 };
1222
1223 static const struct export_operations ext4_export_ops = {
1224 .fh_to_dentry = ext4_fh_to_dentry,
1225 .fh_to_parent = ext4_fh_to_parent,
1226 .get_parent = ext4_get_parent,
1227 };
1228
1229 enum {
1230 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1231 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1232 Opt_nouid32, Opt_debug, Opt_removed,
1233 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1234 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1235 Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
1236 Opt_journal_dev, Opt_journal_checksum, Opt_journal_async_commit,
1237 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1238 Opt_data_err_abort, Opt_data_err_ignore,
1239 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1240 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1241 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1242 Opt_usrquota, Opt_grpquota, Opt_i_version,
1243 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1244 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1245 Opt_inode_readahead_blks, Opt_journal_ioprio,
1246 Opt_dioread_nolock, Opt_dioread_lock,
1247 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1248 };
1249
1250 static const match_table_t tokens = {
1251 {Opt_bsd_df, "bsddf"},
1252 {Opt_minix_df, "minixdf"},
1253 {Opt_grpid, "grpid"},
1254 {Opt_grpid, "bsdgroups"},
1255 {Opt_nogrpid, "nogrpid"},
1256 {Opt_nogrpid, "sysvgroups"},
1257 {Opt_resgid, "resgid=%u"},
1258 {Opt_resuid, "resuid=%u"},
1259 {Opt_sb, "sb=%u"},
1260 {Opt_err_cont, "errors=continue"},
1261 {Opt_err_panic, "errors=panic"},
1262 {Opt_err_ro, "errors=remount-ro"},
1263 {Opt_nouid32, "nouid32"},
1264 {Opt_debug, "debug"},
1265 {Opt_removed, "oldalloc"},
1266 {Opt_removed, "orlov"},
1267 {Opt_user_xattr, "user_xattr"},
1268 {Opt_nouser_xattr, "nouser_xattr"},
1269 {Opt_acl, "acl"},
1270 {Opt_noacl, "noacl"},
1271 {Opt_noload, "norecovery"},
1272 {Opt_noload, "noload"},
1273 {Opt_removed, "nobh"},
1274 {Opt_removed, "bh"},
1275 {Opt_commit, "commit=%u"},
1276 {Opt_min_batch_time, "min_batch_time=%u"},
1277 {Opt_max_batch_time, "max_batch_time=%u"},
1278 {Opt_journal_dev, "journal_dev=%u"},
1279 {Opt_journal_checksum, "journal_checksum"},
1280 {Opt_journal_async_commit, "journal_async_commit"},
1281 {Opt_abort, "abort"},
1282 {Opt_data_journal, "data=journal"},
1283 {Opt_data_ordered, "data=ordered"},
1284 {Opt_data_writeback, "data=writeback"},
1285 {Opt_data_err_abort, "data_err=abort"},
1286 {Opt_data_err_ignore, "data_err=ignore"},
1287 {Opt_offusrjquota, "usrjquota="},
1288 {Opt_usrjquota, "usrjquota=%s"},
1289 {Opt_offgrpjquota, "grpjquota="},
1290 {Opt_grpjquota, "grpjquota=%s"},
1291 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1292 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1293 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1294 {Opt_grpquota, "grpquota"},
1295 {Opt_noquota, "noquota"},
1296 {Opt_quota, "quota"},
1297 {Opt_usrquota, "usrquota"},
1298 {Opt_barrier, "barrier=%u"},
1299 {Opt_barrier, "barrier"},
1300 {Opt_nobarrier, "nobarrier"},
1301 {Opt_i_version, "i_version"},
1302 {Opt_stripe, "stripe=%u"},
1303 {Opt_delalloc, "delalloc"},
1304 {Opt_nodelalloc, "nodelalloc"},
1305 {Opt_mblk_io_submit, "mblk_io_submit"},
1306 {Opt_nomblk_io_submit, "nomblk_io_submit"},
1307 {Opt_block_validity, "block_validity"},
1308 {Opt_noblock_validity, "noblock_validity"},
1309 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1310 {Opt_journal_ioprio, "journal_ioprio=%u"},
1311 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1312 {Opt_auto_da_alloc, "auto_da_alloc"},
1313 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1314 {Opt_dioread_nolock, "dioread_nolock"},
1315 {Opt_dioread_lock, "dioread_lock"},
1316 {Opt_discard, "discard"},
1317 {Opt_nodiscard, "nodiscard"},
1318 {Opt_init_itable, "init_itable=%u"},
1319 {Opt_init_itable, "init_itable"},
1320 {Opt_noinit_itable, "noinit_itable"},
1321 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1322 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1323 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1324 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1325 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1326 {Opt_err, NULL},
1327 };
1328
1329 static ext4_fsblk_t get_sb_block(void **data)
1330 {
1331 ext4_fsblk_t sb_block;
1332 char *options = (char *) *data;
1333
1334 if (!options || strncmp(options, "sb=", 3) != 0)
1335 return 1; /* Default location */
1336
1337 options += 3;
1338 /* TODO: use simple_strtoll with >32bit ext4 */
1339 sb_block = simple_strtoul(options, &options, 0);
1340 if (*options && *options != ',') {
1341 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1342 (char *) *data);
1343 return 1;
1344 }
1345 if (*options == ',')
1346 options++;
1347 *data = (void *) options;
1348
1349 return sb_block;
1350 }
1351
1352 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1353 static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1354 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1355
1356 #ifdef CONFIG_QUOTA
1357 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1358 {
1359 struct ext4_sb_info *sbi = EXT4_SB(sb);
1360 char *qname;
1361
1362 if (sb_any_quota_loaded(sb) &&
1363 !sbi->s_qf_names[qtype]) {
1364 ext4_msg(sb, KERN_ERR,
1365 "Cannot change journaled "
1366 "quota options when quota turned on");
1367 return -1;
1368 }
1369 qname = match_strdup(args);
1370 if (!qname) {
1371 ext4_msg(sb, KERN_ERR,
1372 "Not enough memory for storing quotafile name");
1373 return -1;
1374 }
1375 if (sbi->s_qf_names[qtype] &&
1376 strcmp(sbi->s_qf_names[qtype], qname)) {
1377 ext4_msg(sb, KERN_ERR,
1378 "%s quota file already specified", QTYPE2NAME(qtype));
1379 kfree(qname);
1380 return -1;
1381 }
1382 sbi->s_qf_names[qtype] = qname;
1383 if (strchr(sbi->s_qf_names[qtype], '/')) {
1384 ext4_msg(sb, KERN_ERR,
1385 "quotafile must be on filesystem root");
1386 kfree(sbi->s_qf_names[qtype]);
1387 sbi->s_qf_names[qtype] = NULL;
1388 return -1;
1389 }
1390 set_opt(sb, QUOTA);
1391 return 1;
1392 }
1393
1394 static int clear_qf_name(struct super_block *sb, int qtype)
1395 {
1396
1397 struct ext4_sb_info *sbi = EXT4_SB(sb);
1398
1399 if (sb_any_quota_loaded(sb) &&
1400 sbi->s_qf_names[qtype]) {
1401 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1402 " when quota turned on");
1403 return -1;
1404 }
1405 /*
1406 * The space will be released later when all options are confirmed
1407 * to be correct
1408 */
1409 sbi->s_qf_names[qtype] = NULL;
1410 return 1;
1411 }
1412 #endif
1413
1414 #define MOPT_SET 0x0001
1415 #define MOPT_CLEAR 0x0002
1416 #define MOPT_NOSUPPORT 0x0004
1417 #define MOPT_EXPLICIT 0x0008
1418 #define MOPT_CLEAR_ERR 0x0010
1419 #define MOPT_GTE0 0x0020
1420 #ifdef CONFIG_QUOTA
1421 #define MOPT_Q 0
1422 #define MOPT_QFMT 0x0040
1423 #else
1424 #define MOPT_Q MOPT_NOSUPPORT
1425 #define MOPT_QFMT MOPT_NOSUPPORT
1426 #endif
1427 #define MOPT_DATAJ 0x0080
1428
1429 static const struct mount_opts {
1430 int token;
1431 int mount_opt;
1432 int flags;
1433 } ext4_mount_opts[] = {
1434 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1435 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1436 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1437 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1438 {Opt_mblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_SET},
1439 {Opt_nomblk_io_submit, EXT4_MOUNT_MBLK_IO_SUBMIT, MOPT_CLEAR},
1440 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1441 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1442 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_SET},
1443 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK, MOPT_CLEAR},
1444 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1445 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1446 {Opt_delalloc, EXT4_MOUNT_DELALLOC, MOPT_SET | MOPT_EXPLICIT},
1447 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC, MOPT_CLEAR | MOPT_EXPLICIT},
1448 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM, MOPT_SET},
1449 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1450 EXT4_MOUNT_JOURNAL_CHECKSUM), MOPT_SET},
1451 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_SET},
1452 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1453 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1454 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1455 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_SET},
1456 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_CLEAR},
1457 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1458 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1459 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1460 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1461 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1462 {Opt_commit, 0, MOPT_GTE0},
1463 {Opt_max_batch_time, 0, MOPT_GTE0},
1464 {Opt_min_batch_time, 0, MOPT_GTE0},
1465 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1466 {Opt_init_itable, 0, MOPT_GTE0},
1467 {Opt_stripe, 0, MOPT_GTE0},
1468 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_DATAJ},
1469 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_DATAJ},
1470 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA, MOPT_DATAJ},
1471 #ifdef CONFIG_EXT4_FS_XATTR
1472 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1473 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1474 #else
1475 {Opt_user_xattr, 0, MOPT_NOSUPPORT},
1476 {Opt_nouser_xattr, 0, MOPT_NOSUPPORT},
1477 #endif
1478 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1479 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1480 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1481 #else
1482 {Opt_acl, 0, MOPT_NOSUPPORT},
1483 {Opt_noacl, 0, MOPT_NOSUPPORT},
1484 #endif
1485 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1486 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1487 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1488 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1489 MOPT_SET | MOPT_Q},
1490 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1491 MOPT_SET | MOPT_Q},
1492 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1493 EXT4_MOUNT_GRPQUOTA), MOPT_CLEAR | MOPT_Q},
1494 {Opt_usrjquota, 0, MOPT_Q},
1495 {Opt_grpjquota, 0, MOPT_Q},
1496 {Opt_offusrjquota, 0, MOPT_Q},
1497 {Opt_offgrpjquota, 0, MOPT_Q},
1498 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1499 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1500 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1501 {Opt_err, 0, 0}
1502 };
1503
1504 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1505 substring_t *args, unsigned long *journal_devnum,
1506 unsigned int *journal_ioprio, int is_remount)
1507 {
1508 struct ext4_sb_info *sbi = EXT4_SB(sb);
1509 const struct mount_opts *m;
1510 kuid_t uid;
1511 kgid_t gid;
1512 int arg = 0;
1513
1514 #ifdef CONFIG_QUOTA
1515 if (token == Opt_usrjquota)
1516 return set_qf_name(sb, USRQUOTA, &args[0]);
1517 else if (token == Opt_grpjquota)
1518 return set_qf_name(sb, GRPQUOTA, &args[0]);
1519 else if (token == Opt_offusrjquota)
1520 return clear_qf_name(sb, USRQUOTA);
1521 else if (token == Opt_offgrpjquota)
1522 return clear_qf_name(sb, GRPQUOTA);
1523 #endif
1524 if (args->from && match_int(args, &arg))
1525 return -1;
1526 switch (token) {
1527 case Opt_noacl:
1528 case Opt_nouser_xattr:
1529 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1530 break;
1531 case Opt_sb:
1532 return 1; /* handled by get_sb_block() */
1533 case Opt_removed:
1534 ext4_msg(sb, KERN_WARNING,
1535 "Ignoring removed %s option", opt);
1536 return 1;
1537 case Opt_resuid:
1538 uid = make_kuid(current_user_ns(), arg);
1539 if (!uid_valid(uid)) {
1540 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1541 return -1;
1542 }
1543 sbi->s_resuid = uid;
1544 return 1;
1545 case Opt_resgid:
1546 gid = make_kgid(current_user_ns(), arg);
1547 if (!gid_valid(gid)) {
1548 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1549 return -1;
1550 }
1551 sbi->s_resgid = gid;
1552 return 1;
1553 case Opt_abort:
1554 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1555 return 1;
1556 case Opt_i_version:
1557 sb->s_flags |= MS_I_VERSION;
1558 return 1;
1559 case Opt_journal_dev:
1560 if (is_remount) {
1561 ext4_msg(sb, KERN_ERR,
1562 "Cannot specify journal on remount");
1563 return -1;
1564 }
1565 *journal_devnum = arg;
1566 return 1;
1567 case Opt_journal_ioprio:
1568 if (arg < 0 || arg > 7)
1569 return -1;
1570 *journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1571 return 1;
1572 }
1573
1574 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1575 if (token != m->token)
1576 continue;
1577 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1578 return -1;
1579 if (m->flags & MOPT_EXPLICIT)
1580 set_opt2(sb, EXPLICIT_DELALLOC);
1581 if (m->flags & MOPT_CLEAR_ERR)
1582 clear_opt(sb, ERRORS_MASK);
1583 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1584 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1585 "options when quota turned on");
1586 return -1;
1587 }
1588
1589 if (m->flags & MOPT_NOSUPPORT) {
1590 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1591 } else if (token == Opt_commit) {
1592 if (arg == 0)
1593 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1594 sbi->s_commit_interval = HZ * arg;
1595 } else if (token == Opt_max_batch_time) {
1596 if (arg == 0)
1597 arg = EXT4_DEF_MAX_BATCH_TIME;
1598 sbi->s_max_batch_time = arg;
1599 } else if (token == Opt_min_batch_time) {
1600 sbi->s_min_batch_time = arg;
1601 } else if (token == Opt_inode_readahead_blks) {
1602 if (arg > (1 << 30))
1603 return -1;
1604 if (arg && !is_power_of_2(arg)) {
1605 ext4_msg(sb, KERN_ERR,
1606 "EXT4-fs: inode_readahead_blks"
1607 " must be a power of 2");
1608 return -1;
1609 }
1610 sbi->s_inode_readahead_blks = arg;
1611 } else if (token == Opt_init_itable) {
1612 set_opt(sb, INIT_INODE_TABLE);
1613 if (!args->from)
1614 arg = EXT4_DEF_LI_WAIT_MULT;
1615 sbi->s_li_wait_mult = arg;
1616 } else if (token == Opt_stripe) {
1617 sbi->s_stripe = arg;
1618 } else if (m->flags & MOPT_DATAJ) {
1619 if (is_remount) {
1620 if (!sbi->s_journal)
1621 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1622 else if (test_opt(sb, DATA_FLAGS) !=
1623 m->mount_opt) {
1624 ext4_msg(sb, KERN_ERR,
1625 "Cannot change data mode on remount");
1626 return -1;
1627 }
1628 } else {
1629 clear_opt(sb, DATA_FLAGS);
1630 sbi->s_mount_opt |= m->mount_opt;
1631 }
1632 #ifdef CONFIG_QUOTA
1633 } else if (m->flags & MOPT_QFMT) {
1634 if (sb_any_quota_loaded(sb) &&
1635 sbi->s_jquota_fmt != m->mount_opt) {
1636 ext4_msg(sb, KERN_ERR, "Cannot "
1637 "change journaled quota options "
1638 "when quota turned on");
1639 return -1;
1640 }
1641 sbi->s_jquota_fmt = m->mount_opt;
1642 #endif
1643 } else {
1644 if (!args->from)
1645 arg = 1;
1646 if (m->flags & MOPT_CLEAR)
1647 arg = !arg;
1648 else if (unlikely(!(m->flags & MOPT_SET))) {
1649 ext4_msg(sb, KERN_WARNING,
1650 "buggy handling of option %s", opt);
1651 WARN_ON(1);
1652 return -1;
1653 }
1654 if (arg != 0)
1655 sbi->s_mount_opt |= m->mount_opt;
1656 else
1657 sbi->s_mount_opt &= ~m->mount_opt;
1658 }
1659 return 1;
1660 }
1661 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1662 "or missing value", opt);
1663 return -1;
1664 }
1665
1666 static int parse_options(char *options, struct super_block *sb,
1667 unsigned long *journal_devnum,
1668 unsigned int *journal_ioprio,
1669 int is_remount)
1670 {
1671 #ifdef CONFIG_QUOTA
1672 struct ext4_sb_info *sbi = EXT4_SB(sb);
1673 #endif
1674 char *p;
1675 substring_t args[MAX_OPT_ARGS];
1676 int token;
1677
1678 if (!options)
1679 return 1;
1680
1681 while ((p = strsep(&options, ",")) != NULL) {
1682 if (!*p)
1683 continue;
1684 /*
1685 * Initialize args struct so we know whether arg was
1686 * found; some options take optional arguments.
1687 */
1688 args[0].to = args[0].from = 0;
1689 token = match_token(p, tokens, args);
1690 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1691 journal_ioprio, is_remount) < 0)
1692 return 0;
1693 }
1694 #ifdef CONFIG_QUOTA
1695 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1696 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1697 clear_opt(sb, USRQUOTA);
1698
1699 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1700 clear_opt(sb, GRPQUOTA);
1701
1702 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1703 ext4_msg(sb, KERN_ERR, "old and new quota "
1704 "format mixing");
1705 return 0;
1706 }
1707
1708 if (!sbi->s_jquota_fmt) {
1709 ext4_msg(sb, KERN_ERR, "journaled quota format "
1710 "not specified");
1711 return 0;
1712 }
1713 } else {
1714 if (sbi->s_jquota_fmt) {
1715 ext4_msg(sb, KERN_ERR, "journaled quota format "
1716 "specified with no journaling "
1717 "enabled");
1718 return 0;
1719 }
1720 }
1721 #endif
1722 return 1;
1723 }
1724
1725 static inline void ext4_show_quota_options(struct seq_file *seq,
1726 struct super_block *sb)
1727 {
1728 #if defined(CONFIG_QUOTA)
1729 struct ext4_sb_info *sbi = EXT4_SB(sb);
1730
1731 if (sbi->s_jquota_fmt) {
1732 char *fmtname = "";
1733
1734 switch (sbi->s_jquota_fmt) {
1735 case QFMT_VFS_OLD:
1736 fmtname = "vfsold";
1737 break;
1738 case QFMT_VFS_V0:
1739 fmtname = "vfsv0";
1740 break;
1741 case QFMT_VFS_V1:
1742 fmtname = "vfsv1";
1743 break;
1744 }
1745 seq_printf(seq, ",jqfmt=%s", fmtname);
1746 }
1747
1748 if (sbi->s_qf_names[USRQUOTA])
1749 seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
1750
1751 if (sbi->s_qf_names[GRPQUOTA])
1752 seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
1753
1754 if (test_opt(sb, USRQUOTA))
1755 seq_puts(seq, ",usrquota");
1756
1757 if (test_opt(sb, GRPQUOTA))
1758 seq_puts(seq, ",grpquota");
1759 #endif
1760 }
1761
1762 static const char *token2str(int token)
1763 {
1764 static const struct match_token *t;
1765
1766 for (t = tokens; t->token != Opt_err; t++)
1767 if (t->token == token && !strchr(t->pattern, '='))
1768 break;
1769 return t->pattern;
1770 }
1771
1772 /*
1773 * Show an option if
1774 * - it's set to a non-default value OR
1775 * - if the per-sb default is different from the global default
1776 */
1777 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1778 int nodefs)
1779 {
1780 struct ext4_sb_info *sbi = EXT4_SB(sb);
1781 struct ext4_super_block *es = sbi->s_es;
1782 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1783 const struct mount_opts *m;
1784 char sep = nodefs ? '\n' : ',';
1785
1786 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1787 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1788
1789 if (sbi->s_sb_block != 1)
1790 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1791
1792 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1793 int want_set = m->flags & MOPT_SET;
1794 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1795 (m->flags & MOPT_CLEAR_ERR))
1796 continue;
1797 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1798 continue; /* skip if same as the default */
1799 if ((want_set &&
1800 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1801 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1802 continue; /* select Opt_noFoo vs Opt_Foo */
1803 SEQ_OPTS_PRINT("%s", token2str(m->token));
1804 }
1805
1806 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1807 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1808 SEQ_OPTS_PRINT("resuid=%u",
1809 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1810 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1811 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1812 SEQ_OPTS_PRINT("resgid=%u",
1813 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1814 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1815 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1816 SEQ_OPTS_PUTS("errors=remount-ro");
1817 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1818 SEQ_OPTS_PUTS("errors=continue");
1819 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1820 SEQ_OPTS_PUTS("errors=panic");
1821 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
1822 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
1823 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
1824 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
1825 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
1826 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
1827 if (sb->s_flags & MS_I_VERSION)
1828 SEQ_OPTS_PUTS("i_version");
1829 if (nodefs || sbi->s_stripe)
1830 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
1831 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
1832 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
1833 SEQ_OPTS_PUTS("data=journal");
1834 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
1835 SEQ_OPTS_PUTS("data=ordered");
1836 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
1837 SEQ_OPTS_PUTS("data=writeback");
1838 }
1839 if (nodefs ||
1840 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
1841 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
1842 sbi->s_inode_readahead_blks);
1843
1844 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
1845 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
1846 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
1847
1848 ext4_show_quota_options(seq, sb);
1849 return 0;
1850 }
1851
1852 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
1853 {
1854 return _ext4_show_options(seq, root->d_sb, 0);
1855 }
1856
1857 static int options_seq_show(struct seq_file *seq, void *offset)
1858 {
1859 struct super_block *sb = seq->private;
1860 int rc;
1861
1862 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
1863 rc = _ext4_show_options(seq, sb, 1);
1864 seq_puts(seq, "\n");
1865 return rc;
1866 }
1867
1868 static int options_open_fs(struct inode *inode, struct file *file)
1869 {
1870 return single_open(file, options_seq_show, PDE(inode)->data);
1871 }
1872
1873 static const struct file_operations ext4_seq_options_fops = {
1874 .owner = THIS_MODULE,
1875 .open = options_open_fs,
1876 .read = seq_read,
1877 .llseek = seq_lseek,
1878 .release = single_release,
1879 };
1880
1881 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
1882 int read_only)
1883 {
1884 struct ext4_sb_info *sbi = EXT4_SB(sb);
1885 int res = 0;
1886
1887 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
1888 ext4_msg(sb, KERN_ERR, "revision level too high, "
1889 "forcing read-only mode");
1890 res = MS_RDONLY;
1891 }
1892 if (read_only)
1893 goto done;
1894 if (!(sbi->s_mount_state & EXT4_VALID_FS))
1895 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
1896 "running e2fsck is recommended");
1897 else if ((sbi->s_mount_state & EXT4_ERROR_FS))
1898 ext4_msg(sb, KERN_WARNING,
1899 "warning: mounting fs with errors, "
1900 "running e2fsck is recommended");
1901 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
1902 le16_to_cpu(es->s_mnt_count) >=
1903 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
1904 ext4_msg(sb, KERN_WARNING,
1905 "warning: maximal mount count reached, "
1906 "running e2fsck is recommended");
1907 else if (le32_to_cpu(es->s_checkinterval) &&
1908 (le32_to_cpu(es->s_lastcheck) +
1909 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
1910 ext4_msg(sb, KERN_WARNING,
1911 "warning: checktime reached, "
1912 "running e2fsck is recommended");
1913 if (!sbi->s_journal)
1914 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
1915 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
1916 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
1917 le16_add_cpu(&es->s_mnt_count, 1);
1918 es->s_mtime = cpu_to_le32(get_seconds());
1919 ext4_update_dynamic_rev(sb);
1920 if (sbi->s_journal)
1921 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
1922
1923 ext4_commit_super(sb, 1);
1924 done:
1925 if (test_opt(sb, DEBUG))
1926 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
1927 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
1928 sb->s_blocksize,
1929 sbi->s_groups_count,
1930 EXT4_BLOCKS_PER_GROUP(sb),
1931 EXT4_INODES_PER_GROUP(sb),
1932 sbi->s_mount_opt, sbi->s_mount_opt2);
1933
1934 cleancache_init_fs(sb);
1935 return res;
1936 }
1937
1938 static int ext4_fill_flex_info(struct super_block *sb)
1939 {
1940 struct ext4_sb_info *sbi = EXT4_SB(sb);
1941 struct ext4_group_desc *gdp = NULL;
1942 ext4_group_t flex_group_count;
1943 ext4_group_t flex_group;
1944 unsigned int groups_per_flex = 0;
1945 size_t size;
1946 int i;
1947
1948 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
1949 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
1950 sbi->s_log_groups_per_flex = 0;
1951 return 1;
1952 }
1953 groups_per_flex = 1 << sbi->s_log_groups_per_flex;
1954
1955 /* We allocate both existing and potentially added groups */
1956 flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
1957 ((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
1958 EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
1959 size = flex_group_count * sizeof(struct flex_groups);
1960 sbi->s_flex_groups = ext4_kvzalloc(size, GFP_KERNEL);
1961 if (sbi->s_flex_groups == NULL) {
1962 ext4_msg(sb, KERN_ERR, "not enough memory for %u flex groups",
1963 flex_group_count);
1964 goto failed;
1965 }
1966
1967 for (i = 0; i < sbi->s_groups_count; i++) {
1968 gdp = ext4_get_group_desc(sb, i, NULL);
1969
1970 flex_group = ext4_flex_group(sbi, i);
1971 atomic_add(ext4_free_inodes_count(sb, gdp),
1972 &sbi->s_flex_groups[flex_group].free_inodes);
1973 atomic_add(ext4_free_group_clusters(sb, gdp),
1974 &sbi->s_flex_groups[flex_group].free_clusters);
1975 atomic_add(ext4_used_dirs_count(sb, gdp),
1976 &sbi->s_flex_groups[flex_group].used_dirs);
1977 }
1978
1979 return 1;
1980 failed:
1981 return 0;
1982 }
1983
1984 static __le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
1985 struct ext4_group_desc *gdp)
1986 {
1987 int offset;
1988 __u16 crc = 0;
1989 __le32 le_group = cpu_to_le32(block_group);
1990
1991 if ((sbi->s_es->s_feature_ro_compat &
1992 cpu_to_le32(EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))) {
1993 /* Use new metadata_csum algorithm */
1994 __u16 old_csum;
1995 __u32 csum32;
1996
1997 old_csum = gdp->bg_checksum;
1998 gdp->bg_checksum = 0;
1999 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2000 sizeof(le_group));
2001 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp,
2002 sbi->s_desc_size);
2003 gdp->bg_checksum = old_csum;
2004
2005 crc = csum32 & 0xFFFF;
2006 goto out;
2007 }
2008
2009 /* old crc16 code */
2010 offset = offsetof(struct ext4_group_desc, bg_checksum);
2011
2012 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2013 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2014 crc = crc16(crc, (__u8 *)gdp, offset);
2015 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2016 /* for checksum of struct ext4_group_desc do the rest...*/
2017 if ((sbi->s_es->s_feature_incompat &
2018 cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
2019 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2020 crc = crc16(crc, (__u8 *)gdp + offset,
2021 le16_to_cpu(sbi->s_es->s_desc_size) -
2022 offset);
2023
2024 out:
2025 return cpu_to_le16(crc);
2026 }
2027
2028 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2029 struct ext4_group_desc *gdp)
2030 {
2031 if (ext4_has_group_desc_csum(sb) &&
2032 (gdp->bg_checksum != ext4_group_desc_csum(EXT4_SB(sb),
2033 block_group, gdp)))
2034 return 0;
2035
2036 return 1;
2037 }
2038
2039 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2040 struct ext4_group_desc *gdp)
2041 {
2042 if (!ext4_has_group_desc_csum(sb))
2043 return;
2044 gdp->bg_checksum = ext4_group_desc_csum(EXT4_SB(sb), block_group, gdp);
2045 }
2046
2047 /* Called at mount-time, super-block is locked */
2048 static int ext4_check_descriptors(struct super_block *sb,
2049 ext4_group_t *first_not_zeroed)
2050 {
2051 struct ext4_sb_info *sbi = EXT4_SB(sb);
2052 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2053 ext4_fsblk_t last_block;
2054 ext4_fsblk_t block_bitmap;
2055 ext4_fsblk_t inode_bitmap;
2056 ext4_fsblk_t inode_table;
2057 int flexbg_flag = 0;
2058 ext4_group_t i, grp = sbi->s_groups_count;
2059
2060 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
2061 flexbg_flag = 1;
2062
2063 ext4_debug("Checking group descriptors");
2064
2065 for (i = 0; i < sbi->s_groups_count; i++) {
2066 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2067
2068 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2069 last_block = ext4_blocks_count(sbi->s_es) - 1;
2070 else
2071 last_block = first_block +
2072 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2073
2074 if ((grp == sbi->s_groups_count) &&
2075 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2076 grp = i;
2077
2078 block_bitmap = ext4_block_bitmap(sb, gdp);
2079 if (block_bitmap < first_block || block_bitmap > last_block) {
2080 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2081 "Block bitmap for group %u not in group "
2082 "(block %llu)!", i, block_bitmap);
2083 return 0;
2084 }
2085 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2086 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2087 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2088 "Inode bitmap for group %u not in group "
2089 "(block %llu)!", i, inode_bitmap);
2090 return 0;
2091 }
2092 inode_table = ext4_inode_table(sb, gdp);
2093 if (inode_table < first_block ||
2094 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2095 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2096 "Inode table for group %u not in group "
2097 "(block %llu)!", i, inode_table);
2098 return 0;
2099 }
2100 ext4_lock_group(sb, i);
2101 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2102 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2103 "Checksum for group %u failed (%u!=%u)",
2104 i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
2105 gdp)), le16_to_cpu(gdp->bg_checksum));
2106 if (!(sb->s_flags & MS_RDONLY)) {
2107 ext4_unlock_group(sb, i);
2108 return 0;
2109 }
2110 }
2111 ext4_unlock_group(sb, i);
2112 if (!flexbg_flag)
2113 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2114 }
2115 if (NULL != first_not_zeroed)
2116 *first_not_zeroed = grp;
2117
2118 ext4_free_blocks_count_set(sbi->s_es,
2119 EXT4_C2B(sbi, ext4_count_free_clusters(sb)));
2120 sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
2121 return 1;
2122 }
2123
2124 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2125 * the superblock) which were deleted from all directories, but held open by
2126 * a process at the time of a crash. We walk the list and try to delete these
2127 * inodes at recovery time (only with a read-write filesystem).
2128 *
2129 * In order to keep the orphan inode chain consistent during traversal (in
2130 * case of crash during recovery), we link each inode into the superblock
2131 * orphan list_head and handle it the same way as an inode deletion during
2132 * normal operation (which journals the operations for us).
2133 *
2134 * We only do an iget() and an iput() on each inode, which is very safe if we
2135 * accidentally point at an in-use or already deleted inode. The worst that
2136 * can happen in this case is that we get a "bit already cleared" message from
2137 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2138 * e2fsck was run on this filesystem, and it must have already done the orphan
2139 * inode cleanup for us, so we can safely abort without any further action.
2140 */
2141 static void ext4_orphan_cleanup(struct super_block *sb,
2142 struct ext4_super_block *es)
2143 {
2144 unsigned int s_flags = sb->s_flags;
2145 int nr_orphans = 0, nr_truncates = 0;
2146 #ifdef CONFIG_QUOTA
2147 int i;
2148 #endif
2149 if (!es->s_last_orphan) {
2150 jbd_debug(4, "no orphan inodes to clean up\n");
2151 return;
2152 }
2153
2154 if (bdev_read_only(sb->s_bdev)) {
2155 ext4_msg(sb, KERN_ERR, "write access "
2156 "unavailable, skipping orphan cleanup");
2157 return;
2158 }
2159
2160 /* Check if feature set would not allow a r/w mount */
2161 if (!ext4_feature_set_ok(sb, 0)) {
2162 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2163 "unknown ROCOMPAT features");
2164 return;
2165 }
2166
2167 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2168 if (es->s_last_orphan)
2169 jbd_debug(1, "Errors on filesystem, "
2170 "clearing orphan list.\n");
2171 es->s_last_orphan = 0;
2172 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2173 return;
2174 }
2175
2176 if (s_flags & MS_RDONLY) {
2177 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2178 sb->s_flags &= ~MS_RDONLY;
2179 }
2180 #ifdef CONFIG_QUOTA
2181 /* Needed for iput() to work correctly and not trash data */
2182 sb->s_flags |= MS_ACTIVE;
2183 /* Turn on quotas so that they are updated correctly */
2184 for (i = 0; i < MAXQUOTAS; i++) {
2185 if (EXT4_SB(sb)->s_qf_names[i]) {
2186 int ret = ext4_quota_on_mount(sb, i);
2187 if (ret < 0)
2188 ext4_msg(sb, KERN_ERR,
2189 "Cannot turn on journaled "
2190 "quota: error %d", ret);
2191 }
2192 }
2193 #endif
2194
2195 while (es->s_last_orphan) {
2196 struct inode *inode;
2197
2198 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2199 if (IS_ERR(inode)) {
2200 es->s_last_orphan = 0;
2201 break;
2202 }
2203
2204 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2205 dquot_initialize(inode);
2206 if (inode->i_nlink) {
2207 ext4_msg(sb, KERN_DEBUG,
2208 "%s: truncating inode %lu to %lld bytes",
2209 __func__, inode->i_ino, inode->i_size);
2210 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2211 inode->i_ino, inode->i_size);
2212 ext4_truncate(inode);
2213 nr_truncates++;
2214 } else {
2215 ext4_msg(sb, KERN_DEBUG,
2216 "%s: deleting unreferenced inode %lu",
2217 __func__, inode->i_ino);
2218 jbd_debug(2, "deleting unreferenced inode %lu\n",
2219 inode->i_ino);
2220 nr_orphans++;
2221 }
2222 iput(inode); /* The delete magic happens here! */
2223 }
2224
2225 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2226
2227 if (nr_orphans)
2228 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2229 PLURAL(nr_orphans));
2230 if (nr_truncates)
2231 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2232 PLURAL(nr_truncates));
2233 #ifdef CONFIG_QUOTA
2234 /* Turn quotas off */
2235 for (i = 0; i < MAXQUOTAS; i++) {
2236 if (sb_dqopt(sb)->files[i])
2237 dquot_quota_off(sb, i);
2238 }
2239 #endif
2240 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2241 }
2242
2243 /*
2244 * Maximal extent format file size.
2245 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2246 * extent format containers, within a sector_t, and within i_blocks
2247 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2248 * so that won't be a limiting factor.
2249 *
2250 * However there is other limiting factor. We do store extents in the form
2251 * of starting block and length, hence the resulting length of the extent
2252 * covering maximum file size must fit into on-disk format containers as
2253 * well. Given that length is always by 1 unit bigger than max unit (because
2254 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2255 *
2256 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2257 */
2258 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2259 {
2260 loff_t res;
2261 loff_t upper_limit = MAX_LFS_FILESIZE;
2262
2263 /* small i_blocks in vfs inode? */
2264 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2265 /*
2266 * CONFIG_LBDAF is not enabled implies the inode
2267 * i_block represent total blocks in 512 bytes
2268 * 32 == size of vfs inode i_blocks * 8
2269 */
2270 upper_limit = (1LL << 32) - 1;
2271
2272 /* total blocks in file system block size */
2273 upper_limit >>= (blkbits - 9);
2274 upper_limit <<= blkbits;
2275 }
2276
2277 /*
2278 * 32-bit extent-start container, ee_block. We lower the maxbytes
2279 * by one fs block, so ee_len can cover the extent of maximum file
2280 * size
2281 */
2282 res = (1LL << 32) - 1;
2283 res <<= blkbits;
2284
2285 /* Sanity check against vm- & vfs- imposed limits */
2286 if (res > upper_limit)
2287 res = upper_limit;
2288
2289 return res;
2290 }
2291
2292 /*
2293 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2294 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2295 * We need to be 1 filesystem block less than the 2^48 sector limit.
2296 */
2297 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2298 {
2299 loff_t res = EXT4_NDIR_BLOCKS;
2300 int meta_blocks;
2301 loff_t upper_limit;
2302 /* This is calculated to be the largest file size for a dense, block
2303 * mapped file such that the file's total number of 512-byte sectors,
2304 * including data and all indirect blocks, does not exceed (2^48 - 1).
2305 *
2306 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2307 * number of 512-byte sectors of the file.
2308 */
2309
2310 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2311 /*
2312 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2313 * the inode i_block field represents total file blocks in
2314 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2315 */
2316 upper_limit = (1LL << 32) - 1;
2317
2318 /* total blocks in file system block size */
2319 upper_limit >>= (bits - 9);
2320
2321 } else {
2322 /*
2323 * We use 48 bit ext4_inode i_blocks
2324 * With EXT4_HUGE_FILE_FL set the i_blocks
2325 * represent total number of blocks in
2326 * file system block size
2327 */
2328 upper_limit = (1LL << 48) - 1;
2329
2330 }
2331
2332 /* indirect blocks */
2333 meta_blocks = 1;
2334 /* double indirect blocks */
2335 meta_blocks += 1 + (1LL << (bits-2));
2336 /* tripple indirect blocks */
2337 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2338
2339 upper_limit -= meta_blocks;
2340 upper_limit <<= bits;
2341
2342 res += 1LL << (bits-2);
2343 res += 1LL << (2*(bits-2));
2344 res += 1LL << (3*(bits-2));
2345 res <<= bits;
2346 if (res > upper_limit)
2347 res = upper_limit;
2348
2349 if (res > MAX_LFS_FILESIZE)
2350 res = MAX_LFS_FILESIZE;
2351
2352 return res;
2353 }
2354
2355 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2356 ext4_fsblk_t logical_sb_block, int nr)
2357 {
2358 struct ext4_sb_info *sbi = EXT4_SB(sb);
2359 ext4_group_t bg, first_meta_bg;
2360 int has_super = 0;
2361
2362 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2363
2364 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
2365 nr < first_meta_bg)
2366 return logical_sb_block + nr + 1;
2367 bg = sbi->s_desc_per_block * nr;
2368 if (ext4_bg_has_super(sb, bg))
2369 has_super = 1;
2370
2371 return (has_super + ext4_group_first_block_no(sb, bg));
2372 }
2373
2374 /**
2375 * ext4_get_stripe_size: Get the stripe size.
2376 * @sbi: In memory super block info
2377 *
2378 * If we have specified it via mount option, then
2379 * use the mount option value. If the value specified at mount time is
2380 * greater than the blocks per group use the super block value.
2381 * If the super block value is greater than blocks per group return 0.
2382 * Allocator needs it be less than blocks per group.
2383 *
2384 */
2385 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2386 {
2387 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2388 unsigned long stripe_width =
2389 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2390 int ret;
2391
2392 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2393 ret = sbi->s_stripe;
2394 else if (stripe_width <= sbi->s_blocks_per_group)
2395 ret = stripe_width;
2396 else if (stride <= sbi->s_blocks_per_group)
2397 ret = stride;
2398 else
2399 ret = 0;
2400
2401 /*
2402 * If the stripe width is 1, this makes no sense and
2403 * we set it to 0 to turn off stripe handling code.
2404 */
2405 if (ret <= 1)
2406 ret = 0;
2407
2408 return ret;
2409 }
2410
2411 /* sysfs supprt */
2412
2413 struct ext4_attr {
2414 struct attribute attr;
2415 ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
2416 ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
2417 const char *, size_t);
2418 int offset;
2419 };
2420
2421 static int parse_strtoul(const char *buf,
2422 unsigned long max, unsigned long *value)
2423 {
2424 char *endp;
2425
2426 *value = simple_strtoul(skip_spaces(buf), &endp, 0);
2427 endp = skip_spaces(endp);
2428 if (*endp || *value > max)
2429 return -EINVAL;
2430
2431 return 0;
2432 }
2433
2434 static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
2435 struct ext4_sb_info *sbi,
2436 char *buf)
2437 {
2438 return snprintf(buf, PAGE_SIZE, "%llu\n",
2439 (s64) EXT4_C2B(sbi,
2440 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
2441 }
2442
2443 static ssize_t session_write_kbytes_show(struct ext4_attr *a,
2444 struct ext4_sb_info *sbi, char *buf)
2445 {
2446 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2447
2448 if (!sb->s_bdev->bd_part)
2449 return snprintf(buf, PAGE_SIZE, "0\n");
2450 return snprintf(buf, PAGE_SIZE, "%lu\n",
2451 (part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2452 sbi->s_sectors_written_start) >> 1);
2453 }
2454
2455 static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
2456 struct ext4_sb_info *sbi, char *buf)
2457 {
2458 struct super_block *sb = sbi->s_buddy_cache->i_sb;
2459
2460 if (!sb->s_bdev->bd_part)
2461 return snprintf(buf, PAGE_SIZE, "0\n");
2462 return snprintf(buf, PAGE_SIZE, "%llu\n",
2463 (unsigned long long)(sbi->s_kbytes_written +
2464 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
2465 EXT4_SB(sb)->s_sectors_written_start) >> 1)));
2466 }
2467
2468 static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
2469 struct ext4_sb_info *sbi,
2470 const char *buf, size_t count)
2471 {
2472 unsigned long t;
2473
2474 if (parse_strtoul(buf, 0x40000000, &t))
2475 return -EINVAL;
2476
2477 if (t && !is_power_of_2(t))
2478 return -EINVAL;
2479
2480 sbi->s_inode_readahead_blks = t;
2481 return count;
2482 }
2483
2484 static ssize_t sbi_ui_show(struct ext4_attr *a,
2485 struct ext4_sb_info *sbi, char *buf)
2486 {
2487 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2488
2489 return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
2490 }
2491
2492 static ssize_t sbi_ui_store(struct ext4_attr *a,
2493 struct ext4_sb_info *sbi,
2494 const char *buf, size_t count)
2495 {
2496 unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
2497 unsigned long t;
2498
2499 if (parse_strtoul(buf, 0xffffffff, &t))
2500 return -EINVAL;
2501 *ui = t;
2502 return count;
2503 }
2504
2505 static ssize_t trigger_test_error(struct ext4_attr *a,
2506 struct ext4_sb_info *sbi,
2507 const char *buf, size_t count)
2508 {
2509 int len = count;
2510
2511 if (!capable(CAP_SYS_ADMIN))
2512 return -EPERM;
2513
2514 if (len && buf[len-1] == '\n')
2515 len--;
2516
2517 if (len)
2518 ext4_error(sbi->s_sb, "%.*s", len, buf);
2519 return count;
2520 }
2521
2522 #define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
2523 static struct ext4_attr ext4_attr_##_name = { \
2524 .attr = {.name = __stringify(_name), .mode = _mode }, \
2525 .show = _show, \
2526 .store = _store, \
2527 .offset = offsetof(struct ext4_sb_info, _elname), \
2528 }
2529 #define EXT4_ATTR(name, mode, show, store) \
2530 static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
2531
2532 #define EXT4_INFO_ATTR(name) EXT4_ATTR(name, 0444, NULL, NULL)
2533 #define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
2534 #define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
2535 #define EXT4_RW_ATTR_SBI_UI(name, elname) \
2536 EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
2537 #define ATTR_LIST(name) &ext4_attr_##name.attr
2538
2539 EXT4_RO_ATTR(delayed_allocation_blocks);
2540 EXT4_RO_ATTR(session_write_kbytes);
2541 EXT4_RO_ATTR(lifetime_write_kbytes);
2542 EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
2543 inode_readahead_blks_store, s_inode_readahead_blks);
2544 EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
2545 EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
2546 EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
2547 EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
2548 EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
2549 EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
2550 EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
2551 EXT4_RW_ATTR_SBI_UI(max_writeback_mb_bump, s_max_writeback_mb_bump);
2552 EXT4_ATTR(trigger_fs_error, 0200, NULL, trigger_test_error);
2553
2554 static struct attribute *ext4_attrs[] = {
2555 ATTR_LIST(delayed_allocation_blocks),
2556 ATTR_LIST(session_write_kbytes),
2557 ATTR_LIST(lifetime_write_kbytes),
2558 ATTR_LIST(inode_readahead_blks),
2559 ATTR_LIST(inode_goal),
2560 ATTR_LIST(mb_stats),
2561 ATTR_LIST(mb_max_to_scan),
2562 ATTR_LIST(mb_min_to_scan),
2563 ATTR_LIST(mb_order2_req),
2564 ATTR_LIST(mb_stream_req),
2565 ATTR_LIST(mb_group_prealloc),
2566 ATTR_LIST(max_writeback_mb_bump),
2567 ATTR_LIST(trigger_fs_error),
2568 NULL,
2569 };
2570
2571 /* Features this copy of ext4 supports */
2572 EXT4_INFO_ATTR(lazy_itable_init);
2573 EXT4_INFO_ATTR(batched_discard);
2574
2575 static struct attribute *ext4_feat_attrs[] = {
2576 ATTR_LIST(lazy_itable_init),
2577 ATTR_LIST(batched_discard),
2578 NULL,
2579 };
2580
2581 static ssize_t ext4_attr_show(struct kobject *kobj,
2582 struct attribute *attr, char *buf)
2583 {
2584 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2585 s_kobj);
2586 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2587
2588 return a->show ? a->show(a, sbi, buf) : 0;
2589 }
2590
2591 static ssize_t ext4_attr_store(struct kobject *kobj,
2592 struct attribute *attr,
2593 const char *buf, size_t len)
2594 {
2595 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2596 s_kobj);
2597 struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
2598
2599 return a->store ? a->store(a, sbi, buf, len) : 0;
2600 }
2601
2602 static void ext4_sb_release(struct kobject *kobj)
2603 {
2604 struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
2605 s_kobj);
2606 complete(&sbi->s_kobj_unregister);
2607 }
2608
2609 static const struct sysfs_ops ext4_attr_ops = {
2610 .show = ext4_attr_show,
2611 .store = ext4_attr_store,
2612 };
2613
2614 static struct kobj_type ext4_ktype = {
2615 .default_attrs = ext4_attrs,
2616 .sysfs_ops = &ext4_attr_ops,
2617 .release = ext4_sb_release,
2618 };
2619
2620 static void ext4_feat_release(struct kobject *kobj)
2621 {
2622 complete(&ext4_feat->f_kobj_unregister);
2623 }
2624
2625 static struct kobj_type ext4_feat_ktype = {
2626 .default_attrs = ext4_feat_attrs,
2627 .sysfs_ops = &ext4_attr_ops,
2628 .release = ext4_feat_release,
2629 };
2630
2631 /*
2632 * Check whether this filesystem can be mounted based on
2633 * the features present and the RDONLY/RDWR mount requested.
2634 * Returns 1 if this filesystem can be mounted as requested,
2635 * 0 if it cannot be.
2636 */
2637 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2638 {
2639 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
2640 ext4_msg(sb, KERN_ERR,
2641 "Couldn't mount because of "
2642 "unsupported optional features (%x)",
2643 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2644 ~EXT4_FEATURE_INCOMPAT_SUPP));
2645 return 0;
2646 }
2647
2648 if (readonly)
2649 return 1;
2650
2651 /* Check that feature set is OK for a read-write mount */
2652 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
2653 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2654 "unsupported optional features (%x)",
2655 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2656 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2657 return 0;
2658 }
2659 /*
2660 * Large file size enabled file system can only be mounted
2661 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2662 */
2663 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
2664 if (sizeof(blkcnt_t) < sizeof(u64)) {
2665 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2666 "cannot be mounted RDWR without "
2667 "CONFIG_LBDAF");
2668 return 0;
2669 }
2670 }
2671 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_BIGALLOC) &&
2672 !EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2673 ext4_msg(sb, KERN_ERR,
2674 "Can't support bigalloc feature without "
2675 "extents feature\n");
2676 return 0;
2677 }
2678
2679 #ifndef CONFIG_QUOTA
2680 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
2681 !readonly) {
2682 ext4_msg(sb, KERN_ERR,
2683 "Filesystem with quota feature cannot be mounted RDWR "
2684 "without CONFIG_QUOTA");
2685 return 0;
2686 }
2687 #endif /* CONFIG_QUOTA */
2688 return 1;
2689 }
2690
2691 /*
2692 * This function is called once a day if we have errors logged
2693 * on the file system
2694 */
2695 static void print_daily_error_info(unsigned long arg)
2696 {
2697 struct super_block *sb = (struct super_block *) arg;
2698 struct ext4_sb_info *sbi;
2699 struct ext4_super_block *es;
2700
2701 sbi = EXT4_SB(sb);
2702 es = sbi->s_es;
2703
2704 if (es->s_error_count)
2705 ext4_msg(sb, KERN_NOTICE, "error count: %u",
2706 le32_to_cpu(es->s_error_count));
2707 if (es->s_first_error_time) {
2708 printk(KERN_NOTICE "EXT4-fs (%s): initial error at %u: %.*s:%d",
2709 sb->s_id, le32_to_cpu(es->s_first_error_time),
2710 (int) sizeof(es->s_first_error_func),
2711 es->s_first_error_func,
2712 le32_to_cpu(es->s_first_error_line));
2713 if (es->s_first_error_ino)
2714 printk(": inode %u",
2715 le32_to_cpu(es->s_first_error_ino));
2716 if (es->s_first_error_block)
2717 printk(": block %llu", (unsigned long long)
2718 le64_to_cpu(es->s_first_error_block));
2719 printk("\n");
2720 }
2721 if (es->s_last_error_time) {
2722 printk(KERN_NOTICE "EXT4-fs (%s): last error at %u: %.*s:%d",
2723 sb->s_id, le32_to_cpu(es->s_last_error_time),
2724 (int) sizeof(es->s_last_error_func),
2725 es->s_last_error_func,
2726 le32_to_cpu(es->s_last_error_line));
2727 if (es->s_last_error_ino)
2728 printk(": inode %u",
2729 le32_to_cpu(es->s_last_error_ino));
2730 if (es->s_last_error_block)
2731 printk(": block %llu", (unsigned long long)
2732 le64_to_cpu(es->s_last_error_block));
2733 printk("\n");
2734 }
2735 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2736 }
2737
2738 /* Find next suitable group and run ext4_init_inode_table */
2739 static int ext4_run_li_request(struct ext4_li_request *elr)
2740 {
2741 struct ext4_group_desc *gdp = NULL;
2742 ext4_group_t group, ngroups;
2743 struct super_block *sb;
2744 unsigned long timeout = 0;
2745 int ret = 0;
2746
2747 sb = elr->lr_super;
2748 ngroups = EXT4_SB(sb)->s_groups_count;
2749
2750 for (group = elr->lr_next_group; group < ngroups; group++) {
2751 gdp = ext4_get_group_desc(sb, group, NULL);
2752 if (!gdp) {
2753 ret = 1;
2754 break;
2755 }
2756
2757 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2758 break;
2759 }
2760
2761 if (group == ngroups)
2762 ret = 1;
2763
2764 if (!ret) {
2765 timeout = jiffies;
2766 ret = ext4_init_inode_table(sb, group,
2767 elr->lr_timeout ? 0 : 1);
2768 if (elr->lr_timeout == 0) {
2769 timeout = (jiffies - timeout) *
2770 elr->lr_sbi->s_li_wait_mult;
2771 elr->lr_timeout = timeout;
2772 }
2773 elr->lr_next_sched = jiffies + elr->lr_timeout;
2774 elr->lr_next_group = group + 1;
2775 }
2776
2777 return ret;
2778 }
2779
2780 /*
2781 * Remove lr_request from the list_request and free the
2782 * request structure. Should be called with li_list_mtx held
2783 */
2784 static void ext4_remove_li_request(struct ext4_li_request *elr)
2785 {
2786 struct ext4_sb_info *sbi;
2787
2788 if (!elr)
2789 return;
2790
2791 sbi = elr->lr_sbi;
2792
2793 list_del(&elr->lr_request);
2794 sbi->s_li_request = NULL;
2795 kfree(elr);
2796 }
2797
2798 static void ext4_unregister_li_request(struct super_block *sb)
2799 {
2800 mutex_lock(&ext4_li_mtx);
2801 if (!ext4_li_info) {
2802 mutex_unlock(&ext4_li_mtx);
2803 return;
2804 }
2805
2806 mutex_lock(&ext4_li_info->li_list_mtx);
2807 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2808 mutex_unlock(&ext4_li_info->li_list_mtx);
2809 mutex_unlock(&ext4_li_mtx);
2810 }
2811
2812 static struct task_struct *ext4_lazyinit_task;
2813
2814 /*
2815 * This is the function where ext4lazyinit thread lives. It walks
2816 * through the request list searching for next scheduled filesystem.
2817 * When such a fs is found, run the lazy initialization request
2818 * (ext4_rn_li_request) and keep track of the time spend in this
2819 * function. Based on that time we compute next schedule time of
2820 * the request. When walking through the list is complete, compute
2821 * next waking time and put itself into sleep.
2822 */
2823 static int ext4_lazyinit_thread(void *arg)
2824 {
2825 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2826 struct list_head *pos, *n;
2827 struct ext4_li_request *elr;
2828 unsigned long next_wakeup, cur;
2829
2830 BUG_ON(NULL == eli);
2831
2832 cont_thread:
2833 while (true) {
2834 next_wakeup = MAX_JIFFY_OFFSET;
2835
2836 mutex_lock(&eli->li_list_mtx);
2837 if (list_empty(&eli->li_request_list)) {
2838 mutex_unlock(&eli->li_list_mtx);
2839 goto exit_thread;
2840 }
2841
2842 list_for_each_safe(pos, n, &eli->li_request_list) {
2843 elr = list_entry(pos, struct ext4_li_request,
2844 lr_request);
2845
2846 if (time_after_eq(jiffies, elr->lr_next_sched)) {
2847 if (ext4_run_li_request(elr) != 0) {
2848 /* error, remove the lazy_init job */
2849 ext4_remove_li_request(elr);
2850 continue;
2851 }
2852 }
2853
2854 if (time_before(elr->lr_next_sched, next_wakeup))
2855 next_wakeup = elr->lr_next_sched;
2856 }
2857 mutex_unlock(&eli->li_list_mtx);
2858
2859 try_to_freeze();
2860
2861 cur = jiffies;
2862 if ((time_after_eq(cur, next_wakeup)) ||
2863 (MAX_JIFFY_OFFSET == next_wakeup)) {
2864 cond_resched();
2865 continue;
2866 }
2867
2868 schedule_timeout_interruptible(next_wakeup - cur);
2869
2870 if (kthread_should_stop()) {
2871 ext4_clear_request_list();
2872 goto exit_thread;
2873 }
2874 }
2875
2876 exit_thread:
2877 /*
2878 * It looks like the request list is empty, but we need
2879 * to check it under the li_list_mtx lock, to prevent any
2880 * additions into it, and of course we should lock ext4_li_mtx
2881 * to atomically free the list and ext4_li_info, because at
2882 * this point another ext4 filesystem could be registering
2883 * new one.
2884 */
2885 mutex_lock(&ext4_li_mtx);
2886 mutex_lock(&eli->li_list_mtx);
2887 if (!list_empty(&eli->li_request_list)) {
2888 mutex_unlock(&eli->li_list_mtx);
2889 mutex_unlock(&ext4_li_mtx);
2890 goto cont_thread;
2891 }
2892 mutex_unlock(&eli->li_list_mtx);
2893 kfree(ext4_li_info);
2894 ext4_li_info = NULL;
2895 mutex_unlock(&ext4_li_mtx);
2896
2897 return 0;
2898 }
2899
2900 static void ext4_clear_request_list(void)
2901 {
2902 struct list_head *pos, *n;
2903 struct ext4_li_request *elr;
2904
2905 mutex_lock(&ext4_li_info->li_list_mtx);
2906 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2907 elr = list_entry(pos, struct ext4_li_request,
2908 lr_request);
2909 ext4_remove_li_request(elr);
2910 }
2911 mutex_unlock(&ext4_li_info->li_list_mtx);
2912 }
2913
2914 static int ext4_run_lazyinit_thread(void)
2915 {
2916 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2917 ext4_li_info, "ext4lazyinit");
2918 if (IS_ERR(ext4_lazyinit_task)) {
2919 int err = PTR_ERR(ext4_lazyinit_task);
2920 ext4_clear_request_list();
2921 kfree(ext4_li_info);
2922 ext4_li_info = NULL;
2923 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2924 "initialization thread\n",
2925 err);
2926 return err;
2927 }
2928 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2929 return 0;
2930 }
2931
2932 /*
2933 * Check whether it make sense to run itable init. thread or not.
2934 * If there is at least one uninitialized inode table, return
2935 * corresponding group number, else the loop goes through all
2936 * groups and return total number of groups.
2937 */
2938 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2939 {
2940 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2941 struct ext4_group_desc *gdp = NULL;
2942
2943 for (group = 0; group < ngroups; group++) {
2944 gdp = ext4_get_group_desc(sb, group, NULL);
2945 if (!gdp)
2946 continue;
2947
2948 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2949 break;
2950 }
2951
2952 return group;
2953 }
2954
2955 static int ext4_li_info_new(void)
2956 {
2957 struct ext4_lazy_init *eli = NULL;
2958
2959 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
2960 if (!eli)
2961 return -ENOMEM;
2962
2963 INIT_LIST_HEAD(&eli->li_request_list);
2964 mutex_init(&eli->li_list_mtx);
2965
2966 eli->li_state |= EXT4_LAZYINIT_QUIT;
2967
2968 ext4_li_info = eli;
2969
2970 return 0;
2971 }
2972
2973 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
2974 ext4_group_t start)
2975 {
2976 struct ext4_sb_info *sbi = EXT4_SB(sb);
2977 struct ext4_li_request *elr;
2978 unsigned long rnd;
2979
2980 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
2981 if (!elr)
2982 return NULL;
2983
2984 elr->lr_super = sb;
2985 elr->lr_sbi = sbi;
2986 elr->lr_next_group = start;
2987
2988 /*
2989 * Randomize first schedule time of the request to
2990 * spread the inode table initialization requests
2991 * better.
2992 */
2993 get_random_bytes(&rnd, sizeof(rnd));
2994 elr->lr_next_sched = jiffies + (unsigned long)rnd %
2995 (EXT4_DEF_LI_MAX_START_DELAY * HZ);
2996
2997 return elr;
2998 }
2999
3000 static int ext4_register_li_request(struct super_block *sb,
3001 ext4_group_t first_not_zeroed)
3002 {
3003 struct ext4_sb_info *sbi = EXT4_SB(sb);
3004 struct ext4_li_request *elr;
3005 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3006 int ret = 0;
3007
3008 if (sbi->s_li_request != NULL) {
3009 /*
3010 * Reset timeout so it can be computed again, because
3011 * s_li_wait_mult might have changed.
3012 */
3013 sbi->s_li_request->lr_timeout = 0;
3014 return 0;
3015 }
3016
3017 if (first_not_zeroed == ngroups ||
3018 (sb->s_flags & MS_RDONLY) ||
3019 !test_opt(sb, INIT_INODE_TABLE))
3020 return 0;
3021
3022 elr = ext4_li_request_new(sb, first_not_zeroed);
3023 if (!elr)
3024 return -ENOMEM;
3025
3026 mutex_lock(&ext4_li_mtx);
3027
3028 if (NULL == ext4_li_info) {
3029 ret = ext4_li_info_new();
3030 if (ret)
3031 goto out;
3032 }
3033
3034 mutex_lock(&ext4_li_info->li_list_mtx);
3035 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3036 mutex_unlock(&ext4_li_info->li_list_mtx);
3037
3038 sbi->s_li_request = elr;
3039 /*
3040 * set elr to NULL here since it has been inserted to
3041 * the request_list and the removal and free of it is
3042 * handled by ext4_clear_request_list from now on.
3043 */
3044 elr = NULL;
3045
3046 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3047 ret = ext4_run_lazyinit_thread();
3048 if (ret)
3049 goto out;
3050 }
3051 out:
3052 mutex_unlock(&ext4_li_mtx);
3053 if (ret)
3054 kfree(elr);
3055 return ret;
3056 }
3057
3058 /*
3059 * We do not need to lock anything since this is called on
3060 * module unload.
3061 */
3062 static void ext4_destroy_lazyinit_thread(void)
3063 {
3064 /*
3065 * If thread exited earlier
3066 * there's nothing to be done.
3067 */
3068 if (!ext4_li_info || !ext4_lazyinit_task)
3069 return;
3070
3071 kthread_stop(ext4_lazyinit_task);
3072 }
3073
3074 static int set_journal_csum_feature_set(struct super_block *sb)
3075 {
3076 int ret = 1;
3077 int compat, incompat;
3078 struct ext4_sb_info *sbi = EXT4_SB(sb);
3079
3080 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3081 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3082 /* journal checksum v2 */
3083 compat = 0;
3084 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V2;
3085 } else {
3086 /* journal checksum v1 */
3087 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3088 incompat = 0;
3089 }
3090
3091 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3092 ret = jbd2_journal_set_features(sbi->s_journal,
3093 compat, 0,
3094 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3095 incompat);
3096 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3097 ret = jbd2_journal_set_features(sbi->s_journal,
3098 compat, 0,
3099 incompat);
3100 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3101 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3102 } else {
3103 jbd2_journal_clear_features(sbi->s_journal,
3104 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3105 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3106 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3107 }
3108
3109 return ret;
3110 }
3111
3112 /*
3113 * Note: calculating the overhead so we can be compatible with
3114 * historical BSD practice is quite difficult in the face of
3115 * clusters/bigalloc. This is because multiple metadata blocks from
3116 * different block group can end up in the same allocation cluster.
3117 * Calculating the exact overhead in the face of clustered allocation
3118 * requires either O(all block bitmaps) in memory or O(number of block
3119 * groups**2) in time. We will still calculate the superblock for
3120 * older file systems --- and if we come across with a bigalloc file
3121 * system with zero in s_overhead_clusters the estimate will be close to
3122 * correct especially for very large cluster sizes --- but for newer
3123 * file systems, it's better to calculate this figure once at mkfs
3124 * time, and store it in the superblock. If the superblock value is
3125 * present (even for non-bigalloc file systems), we will use it.
3126 */
3127 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3128 char *buf)
3129 {
3130 struct ext4_sb_info *sbi = EXT4_SB(sb);
3131 struct ext4_group_desc *gdp;
3132 ext4_fsblk_t first_block, last_block, b;
3133 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3134 int s, j, count = 0;
3135
3136 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3137 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3138 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3139 for (i = 0; i < ngroups; i++) {
3140 gdp = ext4_get_group_desc(sb, i, NULL);
3141 b = ext4_block_bitmap(sb, gdp);
3142 if (b >= first_block && b <= last_block) {
3143 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3144 count++;
3145 }
3146 b = ext4_inode_bitmap(sb, gdp);
3147 if (b >= first_block && b <= last_block) {
3148 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3149 count++;
3150 }
3151 b = ext4_inode_table(sb, gdp);
3152 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3153 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3154 int c = EXT4_B2C(sbi, b - first_block);
3155 ext4_set_bit(c, buf);
3156 count++;
3157 }
3158 if (i != grp)
3159 continue;
3160 s = 0;
3161 if (ext4_bg_has_super(sb, grp)) {
3162 ext4_set_bit(s++, buf);
3163 count++;
3164 }
3165 for (j = ext4_bg_num_gdb(sb, grp); j > 0; j--) {
3166 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3167 count++;
3168 }
3169 }
3170 if (!count)
3171 return 0;
3172 return EXT4_CLUSTERS_PER_GROUP(sb) -
3173 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3174 }
3175
3176 /*
3177 * Compute the overhead and stash it in sbi->s_overhead
3178 */
3179 int ext4_calculate_overhead(struct super_block *sb)
3180 {
3181 struct ext4_sb_info *sbi = EXT4_SB(sb);
3182 struct ext4_super_block *es = sbi->s_es;
3183 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3184 ext4_fsblk_t overhead = 0;
3185 char *buf = (char *) get_zeroed_page(GFP_KERNEL);
3186
3187 memset(buf, 0, PAGE_SIZE);
3188 if (!buf)
3189 return -ENOMEM;
3190
3191 /*
3192 * Compute the overhead (FS structures). This is constant
3193 * for a given filesystem unless the number of block groups
3194 * changes so we cache the previous value until it does.
3195 */
3196
3197 /*
3198 * All of the blocks before first_data_block are overhead
3199 */
3200 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3201
3202 /*
3203 * Add the overhead found in each block group
3204 */
3205 for (i = 0; i < ngroups; i++) {
3206 int blks;
3207
3208 blks = count_overhead(sb, i, buf);
3209 overhead += blks;
3210 if (blks)
3211 memset(buf, 0, PAGE_SIZE);
3212 cond_resched();
3213 }
3214 sbi->s_overhead = overhead;
3215 smp_wmb();
3216 free_page((unsigned long) buf);
3217 return 0;
3218 }
3219
3220 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3221 {
3222 char *orig_data = kstrdup(data, GFP_KERNEL);
3223 struct buffer_head *bh;
3224 struct ext4_super_block *es = NULL;
3225 struct ext4_sb_info *sbi;
3226 ext4_fsblk_t block;
3227 ext4_fsblk_t sb_block = get_sb_block(&data);
3228 ext4_fsblk_t logical_sb_block;
3229 unsigned long offset = 0;
3230 unsigned long journal_devnum = 0;
3231 unsigned long def_mount_opts;
3232 struct inode *root;
3233 char *cp;
3234 const char *descr;
3235 int ret = -ENOMEM;
3236 int blocksize, clustersize;
3237 unsigned int db_count;
3238 unsigned int i;
3239 int needs_recovery, has_huge_files, has_bigalloc;
3240 __u64 blocks_count;
3241 int err;
3242 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3243 ext4_group_t first_not_zeroed;
3244
3245 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3246 if (!sbi)
3247 goto out_free_orig;
3248
3249 sbi->s_blockgroup_lock =
3250 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3251 if (!sbi->s_blockgroup_lock) {
3252 kfree(sbi);
3253 goto out_free_orig;
3254 }
3255 sb->s_fs_info = sbi;
3256 sbi->s_sb = sb;
3257 sbi->s_mount_opt = 0;
3258 sbi->s_resuid = make_kuid(&init_user_ns, EXT4_DEF_RESUID);
3259 sbi->s_resgid = make_kgid(&init_user_ns, EXT4_DEF_RESGID);
3260 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3261 sbi->s_sb_block = sb_block;
3262 if (sb->s_bdev->bd_part)
3263 sbi->s_sectors_written_start =
3264 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3265
3266 /* Cleanup superblock name */
3267 for (cp = sb->s_id; (cp = strchr(cp, '/'));)
3268 *cp = '!';
3269
3270 ret = -EINVAL;
3271 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3272 if (!blocksize) {
3273 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3274 goto out_fail;
3275 }
3276
3277 /*
3278 * The ext4 superblock will not be buffer aligned for other than 1kB
3279 * block sizes. We need to calculate the offset from buffer start.
3280 */
3281 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3282 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3283 offset = do_div(logical_sb_block, blocksize);
3284 } else {
3285 logical_sb_block = sb_block;
3286 }
3287
3288 if (!(bh = sb_bread(sb, logical_sb_block))) {
3289 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3290 goto out_fail;
3291 }
3292 /*
3293 * Note: s_es must be initialized as soon as possible because
3294 * some ext4 macro-instructions depend on its value
3295 */
3296 es = (struct ext4_super_block *) (bh->b_data + offset);
3297 sbi->s_es = es;
3298 sb->s_magic = le16_to_cpu(es->s_magic);
3299 if (sb->s_magic != EXT4_SUPER_MAGIC)
3300 goto cantfind_ext4;
3301 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3302
3303 /* Warn if metadata_csum and gdt_csum are both set. */
3304 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3305 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
3306 EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
3307 ext4_warning(sb, KERN_INFO "metadata_csum and uninit_bg are "
3308 "redundant flags; please run fsck.");
3309
3310 /* Check for a known checksum algorithm */
3311 if (!ext4_verify_csum_type(sb, es)) {
3312 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3313 "unknown checksum algorithm.");
3314 silent = 1;
3315 goto cantfind_ext4;
3316 }
3317
3318 /* Load the checksum driver */
3319 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3320 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3321 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3322 if (IS_ERR(sbi->s_chksum_driver)) {
3323 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3324 ret = PTR_ERR(sbi->s_chksum_driver);
3325 sbi->s_chksum_driver = NULL;
3326 goto failed_mount;
3327 }
3328 }
3329
3330 /* Check superblock checksum */
3331 if (!ext4_superblock_csum_verify(sb, es)) {
3332 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3333 "invalid superblock checksum. Run e2fsck?");
3334 silent = 1;
3335 goto cantfind_ext4;
3336 }
3337
3338 /* Precompute checksum seed for all metadata */
3339 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3340 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
3341 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3342 sizeof(es->s_uuid));
3343
3344 /* Set defaults before we parse the mount options */
3345 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3346 set_opt(sb, INIT_INODE_TABLE);
3347 if (def_mount_opts & EXT4_DEFM_DEBUG)
3348 set_opt(sb, DEBUG);
3349 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3350 set_opt(sb, GRPID);
3351 if (def_mount_opts & EXT4_DEFM_UID16)
3352 set_opt(sb, NO_UID32);
3353 /* xattr user namespace & acls are now defaulted on */
3354 #ifdef CONFIG_EXT4_FS_XATTR
3355 set_opt(sb, XATTR_USER);
3356 #endif
3357 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3358 set_opt(sb, POSIX_ACL);
3359 #endif
3360 set_opt(sb, MBLK_IO_SUBMIT);
3361 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3362 set_opt(sb, JOURNAL_DATA);
3363 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3364 set_opt(sb, ORDERED_DATA);
3365 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3366 set_opt(sb, WRITEBACK_DATA);
3367
3368 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3369 set_opt(sb, ERRORS_PANIC);
3370 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3371 set_opt(sb, ERRORS_CONT);
3372 else
3373 set_opt(sb, ERRORS_RO);
3374 if (def_mount_opts & EXT4_DEFM_BLOCK_VALIDITY)
3375 set_opt(sb, BLOCK_VALIDITY);
3376 if (def_mount_opts & EXT4_DEFM_DISCARD)
3377 set_opt(sb, DISCARD);
3378
3379 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3380 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3381 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3382 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3383 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3384
3385 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3386 set_opt(sb, BARRIER);
3387
3388 /*
3389 * enable delayed allocation by default
3390 * Use -o nodelalloc to turn it off
3391 */
3392 if (!IS_EXT3_SB(sb) &&
3393 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3394 set_opt(sb, DELALLOC);
3395
3396 /*
3397 * set default s_li_wait_mult for lazyinit, for the case there is
3398 * no mount option specified.
3399 */
3400 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3401
3402 if (!parse_options((char *) sbi->s_es->s_mount_opts, sb,
3403 &journal_devnum, &journal_ioprio, 0)) {
3404 ext4_msg(sb, KERN_WARNING,
3405 "failed to parse options in superblock: %s",
3406 sbi->s_es->s_mount_opts);
3407 }
3408 sbi->s_def_mount_opt = sbi->s_mount_opt;
3409 if (!parse_options((char *) data, sb, &journal_devnum,
3410 &journal_ioprio, 0))
3411 goto failed_mount;
3412
3413 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3414 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3415 "with data=journal disables delayed "
3416 "allocation and O_DIRECT support!\n");
3417 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3418 ext4_msg(sb, KERN_ERR, "can't mount with "
3419 "both data=journal and delalloc");
3420 goto failed_mount;
3421 }
3422 if (test_opt(sb, DIOREAD_NOLOCK)) {
3423 ext4_msg(sb, KERN_ERR, "can't mount with "
3424 "both data=journal and delalloc");
3425 goto failed_mount;
3426 }
3427 if (test_opt(sb, DELALLOC))
3428 clear_opt(sb, DELALLOC);
3429 }
3430
3431 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3432 if (test_opt(sb, DIOREAD_NOLOCK)) {
3433 if (blocksize < PAGE_SIZE) {
3434 ext4_msg(sb, KERN_ERR, "can't mount with "
3435 "dioread_nolock if block size != PAGE_SIZE");
3436 goto failed_mount;
3437 }
3438 }
3439
3440 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3441 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3442
3443 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3444 (EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
3445 EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
3446 EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
3447 ext4_msg(sb, KERN_WARNING,
3448 "feature flags set on rev 0 fs, "
3449 "running e2fsck is recommended");
3450
3451 if (IS_EXT2_SB(sb)) {
3452 if (ext2_feature_set_ok(sb))
3453 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3454 "using the ext4 subsystem");
3455 else {
3456 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3457 "to feature incompatibilities");
3458 goto failed_mount;
3459 }
3460 }
3461
3462 if (IS_EXT3_SB(sb)) {
3463 if (ext3_feature_set_ok(sb))
3464 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3465 "using the ext4 subsystem");
3466 else {
3467 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3468 "to feature incompatibilities");
3469 goto failed_mount;
3470 }
3471 }
3472
3473 /*
3474 * Check feature flags regardless of the revision level, since we
3475 * previously didn't change the revision level when setting the flags,
3476 * so there is a chance incompat flags are set on a rev 0 filesystem.
3477 */
3478 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3479 goto failed_mount;
3480
3481 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3482 blocksize > EXT4_MAX_BLOCK_SIZE) {
3483 ext4_msg(sb, KERN_ERR,
3484 "Unsupported filesystem blocksize %d", blocksize);
3485 goto failed_mount;
3486 }
3487
3488 if (sb->s_blocksize != blocksize) {
3489 /* Validate the filesystem blocksize */
3490 if (!sb_set_blocksize(sb, blocksize)) {
3491 ext4_msg(sb, KERN_ERR, "bad block size %d",
3492 blocksize);
3493 goto failed_mount;
3494 }
3495
3496 brelse(bh);
3497 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3498 offset = do_div(logical_sb_block, blocksize);
3499 bh = sb_bread(sb, logical_sb_block);
3500 if (!bh) {
3501 ext4_msg(sb, KERN_ERR,
3502 "Can't read superblock on 2nd try");
3503 goto failed_mount;
3504 }
3505 es = (struct ext4_super_block *)(bh->b_data + offset);
3506 sbi->s_es = es;
3507 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3508 ext4_msg(sb, KERN_ERR,
3509 "Magic mismatch, very weird!");
3510 goto failed_mount;
3511 }
3512 }
3513
3514 has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3515 EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
3516 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3517 has_huge_files);
3518 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3519
3520 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3521 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3522 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3523 } else {
3524 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3525 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3526 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3527 (!is_power_of_2(sbi->s_inode_size)) ||
3528 (sbi->s_inode_size > blocksize)) {
3529 ext4_msg(sb, KERN_ERR,
3530 "unsupported inode size: %d",
3531 sbi->s_inode_size);
3532 goto failed_mount;
3533 }
3534 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3535 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3536 }
3537
3538 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3539 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
3540 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3541 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3542 !is_power_of_2(sbi->s_desc_size)) {
3543 ext4_msg(sb, KERN_ERR,
3544 "unsupported descriptor size %lu",
3545 sbi->s_desc_size);
3546 goto failed_mount;
3547 }
3548 } else
3549 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3550
3551 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3552 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3553 if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
3554 goto cantfind_ext4;
3555
3556 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3557 if (sbi->s_inodes_per_block == 0)
3558 goto cantfind_ext4;
3559 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3560 sbi->s_inodes_per_block;
3561 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3562 sbi->s_sbh = bh;
3563 sbi->s_mount_state = le16_to_cpu(es->s_state);
3564 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3565 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3566
3567 for (i = 0; i < 4; i++)
3568 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3569 sbi->s_def_hash_version = es->s_def_hash_version;
3570 i = le32_to_cpu(es->s_flags);
3571 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3572 sbi->s_hash_unsigned = 3;
3573 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3574 #ifdef __CHAR_UNSIGNED__
3575 es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3576 sbi->s_hash_unsigned = 3;
3577 #else
3578 es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3579 #endif
3580 }
3581
3582 /* Handle clustersize */
3583 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3584 has_bigalloc = EXT4_HAS_RO_COMPAT_FEATURE(sb,
3585 EXT4_FEATURE_RO_COMPAT_BIGALLOC);
3586 if (has_bigalloc) {
3587 if (clustersize < blocksize) {
3588 ext4_msg(sb, KERN_ERR,
3589 "cluster size (%d) smaller than "
3590 "block size (%d)", clustersize, blocksize);
3591 goto failed_mount;
3592 }
3593 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3594 le32_to_cpu(es->s_log_block_size);
3595 sbi->s_clusters_per_group =
3596 le32_to_cpu(es->s_clusters_per_group);
3597 if (sbi->s_clusters_per_group > blocksize * 8) {
3598 ext4_msg(sb, KERN_ERR,
3599 "#clusters per group too big: %lu",
3600 sbi->s_clusters_per_group);
3601 goto failed_mount;
3602 }
3603 if (sbi->s_blocks_per_group !=
3604 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3605 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3606 "clusters per group (%lu) inconsistent",
3607 sbi->s_blocks_per_group,
3608 sbi->s_clusters_per_group);
3609 goto failed_mount;
3610 }
3611 } else {
3612 if (clustersize != blocksize) {
3613 ext4_warning(sb, "fragment/cluster size (%d) != "
3614 "block size (%d)", clustersize,
3615 blocksize);
3616 clustersize = blocksize;
3617 }
3618 if (sbi->s_blocks_per_group > blocksize * 8) {
3619 ext4_msg(sb, KERN_ERR,
3620 "#blocks per group too big: %lu",
3621 sbi->s_blocks_per_group);
3622 goto failed_mount;
3623 }
3624 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3625 sbi->s_cluster_bits = 0;
3626 }
3627 sbi->s_cluster_ratio = clustersize / blocksize;
3628
3629 if (sbi->s_inodes_per_group > blocksize * 8) {
3630 ext4_msg(sb, KERN_ERR,
3631 "#inodes per group too big: %lu",
3632 sbi->s_inodes_per_group);
3633 goto failed_mount;
3634 }
3635
3636 /*
3637 * Test whether we have more sectors than will fit in sector_t,
3638 * and whether the max offset is addressable by the page cache.
3639 */
3640 err = generic_check_addressable(sb->s_blocksize_bits,
3641 ext4_blocks_count(es));
3642 if (err) {
3643 ext4_msg(sb, KERN_ERR, "filesystem"
3644 " too large to mount safely on this system");
3645 if (sizeof(sector_t) < 8)
3646 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3647 ret = err;
3648 goto failed_mount;
3649 }
3650
3651 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3652 goto cantfind_ext4;
3653
3654 /* check blocks count against device size */
3655 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3656 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3657 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3658 "exceeds size of device (%llu blocks)",
3659 ext4_blocks_count(es), blocks_count);
3660 goto failed_mount;
3661 }
3662
3663 /*
3664 * It makes no sense for the first data block to be beyond the end
3665 * of the filesystem.
3666 */
3667 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3668 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3669 "block %u is beyond end of filesystem (%llu)",
3670 le32_to_cpu(es->s_first_data_block),
3671 ext4_blocks_count(es));
3672 goto failed_mount;
3673 }
3674 blocks_count = (ext4_blocks_count(es) -
3675 le32_to_cpu(es->s_first_data_block) +
3676 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3677 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3678 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3679 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3680 "(block count %llu, first data block %u, "
3681 "blocks per group %lu)", sbi->s_groups_count,
3682 ext4_blocks_count(es),
3683 le32_to_cpu(es->s_first_data_block),
3684 EXT4_BLOCKS_PER_GROUP(sb));
3685 goto failed_mount;
3686 }
3687 sbi->s_groups_count = blocks_count;
3688 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3689 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3690 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3691 EXT4_DESC_PER_BLOCK(sb);
3692 sbi->s_group_desc = ext4_kvmalloc(db_count *
3693 sizeof(struct buffer_head *),
3694 GFP_KERNEL);
3695 if (sbi->s_group_desc == NULL) {
3696 ext4_msg(sb, KERN_ERR, "not enough memory");
3697 ret = -ENOMEM;
3698 goto failed_mount;
3699 }
3700
3701 if (ext4_proc_root)
3702 sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
3703
3704 if (sbi->s_proc)
3705 proc_create_data("options", S_IRUGO, sbi->s_proc,
3706 &ext4_seq_options_fops, sb);
3707
3708 bgl_lock_init(sbi->s_blockgroup_lock);
3709
3710 for (i = 0; i < db_count; i++) {
3711 block = descriptor_loc(sb, logical_sb_block, i);
3712 sbi->s_group_desc[i] = sb_bread(sb, block);
3713 if (!sbi->s_group_desc[i]) {
3714 ext4_msg(sb, KERN_ERR,
3715 "can't read group descriptor %d", i);
3716 db_count = i;
3717 goto failed_mount2;
3718 }
3719 }
3720 if (!ext4_check_descriptors(sb, &first_not_zeroed)) {
3721 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3722 goto failed_mount2;
3723 }
3724 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
3725 if (!ext4_fill_flex_info(sb)) {
3726 ext4_msg(sb, KERN_ERR,
3727 "unable to initialize "
3728 "flex_bg meta info!");
3729 goto failed_mount2;
3730 }
3731
3732 sbi->s_gdb_count = db_count;
3733 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3734 spin_lock_init(&sbi->s_next_gen_lock);
3735
3736 init_timer(&sbi->s_err_report);
3737 sbi->s_err_report.function = print_daily_error_info;
3738 sbi->s_err_report.data = (unsigned long) sb;
3739
3740 err = percpu_counter_init(&sbi->s_freeclusters_counter,
3741 ext4_count_free_clusters(sb));
3742 if (!err) {
3743 err = percpu_counter_init(&sbi->s_freeinodes_counter,
3744 ext4_count_free_inodes(sb));
3745 }
3746 if (!err) {
3747 err = percpu_counter_init(&sbi->s_dirs_counter,
3748 ext4_count_dirs(sb));
3749 }
3750 if (!err) {
3751 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0);
3752 }
3753 if (err) {
3754 ext4_msg(sb, KERN_ERR, "insufficient memory");
3755 ret = err;
3756 goto failed_mount3;
3757 }
3758
3759 sbi->s_stripe = ext4_get_stripe_size(sbi);
3760 sbi->s_max_writeback_mb_bump = 128;
3761
3762 /*
3763 * set up enough so that it can read an inode
3764 */
3765 if (!test_opt(sb, NOLOAD) &&
3766 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
3767 sb->s_op = &ext4_sops;
3768 else
3769 sb->s_op = &ext4_nojournal_sops;
3770 sb->s_export_op = &ext4_export_ops;
3771 sb->s_xattr = ext4_xattr_handlers;
3772 #ifdef CONFIG_QUOTA
3773 sb->s_qcop = &ext4_qctl_operations;
3774 sb->dq_op = &ext4_quota_operations;
3775
3776 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA)) {
3777 /* Use qctl operations for hidden quota files. */
3778 sb->s_qcop = &ext4_qctl_sysfile_operations;
3779 }
3780 #endif
3781 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3782
3783 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3784 mutex_init(&sbi->s_orphan_lock);
3785 sbi->s_resize_flags = 0;
3786
3787 sb->s_root = NULL;
3788
3789 needs_recovery = (es->s_last_orphan != 0 ||
3790 EXT4_HAS_INCOMPAT_FEATURE(sb,
3791 EXT4_FEATURE_INCOMPAT_RECOVER));
3792
3793 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_MMP) &&
3794 !(sb->s_flags & MS_RDONLY))
3795 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3796 goto failed_mount3;
3797
3798 /*
3799 * The first inode we look at is the journal inode. Don't try
3800 * root first: it may be modified in the journal!
3801 */
3802 if (!test_opt(sb, NOLOAD) &&
3803 EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
3804 if (ext4_load_journal(sb, es, journal_devnum))
3805 goto failed_mount3;
3806 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3807 EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
3808 ext4_msg(sb, KERN_ERR, "required journal recovery "
3809 "suppressed and not mounted read-only");
3810 goto failed_mount_wq;
3811 } else {
3812 clear_opt(sb, DATA_FLAGS);
3813 sbi->s_journal = NULL;
3814 needs_recovery = 0;
3815 goto no_journal;
3816 }
3817
3818 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT) &&
3819 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3820 JBD2_FEATURE_INCOMPAT_64BIT)) {
3821 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3822 goto failed_mount_wq;
3823 }
3824
3825 if (!set_journal_csum_feature_set(sb)) {
3826 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3827 "feature set");
3828 goto failed_mount_wq;
3829 }
3830
3831 /* We have now updated the journal if required, so we can
3832 * validate the data journaling mode. */
3833 switch (test_opt(sb, DATA_FLAGS)) {
3834 case 0:
3835 /* No mode set, assume a default based on the journal
3836 * capabilities: ORDERED_DATA if the journal can
3837 * cope, else JOURNAL_DATA
3838 */
3839 if (jbd2_journal_check_available_features
3840 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3841 set_opt(sb, ORDERED_DATA);
3842 else
3843 set_opt(sb, JOURNAL_DATA);
3844 break;
3845
3846 case EXT4_MOUNT_ORDERED_DATA:
3847 case EXT4_MOUNT_WRITEBACK_DATA:
3848 if (!jbd2_journal_check_available_features
3849 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
3850 ext4_msg(sb, KERN_ERR, "Journal does not support "
3851 "requested data journaling mode");
3852 goto failed_mount_wq;
3853 }
3854 default:
3855 break;
3856 }
3857 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
3858
3859 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
3860
3861 /*
3862 * The journal may have updated the bg summary counts, so we
3863 * need to update the global counters.
3864 */
3865 percpu_counter_set(&sbi->s_freeclusters_counter,
3866 ext4_count_free_clusters(sb));
3867 percpu_counter_set(&sbi->s_freeinodes_counter,
3868 ext4_count_free_inodes(sb));
3869 percpu_counter_set(&sbi->s_dirs_counter,
3870 ext4_count_dirs(sb));
3871 percpu_counter_set(&sbi->s_dirtyclusters_counter, 0);
3872
3873 no_journal:
3874 /*
3875 * Get the # of file system overhead blocks from the
3876 * superblock if present.
3877 */
3878 if (es->s_overhead_clusters)
3879 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
3880 else {
3881 ret = ext4_calculate_overhead(sb);
3882 if (ret)
3883 goto failed_mount_wq;
3884 }
3885
3886 /*
3887 * The maximum number of concurrent works can be high and
3888 * concurrency isn't really necessary. Limit it to 1.
3889 */
3890 EXT4_SB(sb)->dio_unwritten_wq =
3891 alloc_workqueue("ext4-dio-unwritten", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
3892 if (!EXT4_SB(sb)->dio_unwritten_wq) {
3893 printk(KERN_ERR "EXT4-fs: failed to create DIO workqueue\n");
3894 goto failed_mount_wq;
3895 }
3896
3897 /*
3898 * The jbd2_journal_load will have done any necessary log recovery,
3899 * so we can safely mount the rest of the filesystem now.
3900 */
3901
3902 root = ext4_iget(sb, EXT4_ROOT_INO);
3903 if (IS_ERR(root)) {
3904 ext4_msg(sb, KERN_ERR, "get root inode failed");
3905 ret = PTR_ERR(root);
3906 root = NULL;
3907 goto failed_mount4;
3908 }
3909 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
3910 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
3911 iput(root);
3912 goto failed_mount4;
3913 }
3914 sb->s_root = d_make_root(root);
3915 if (!sb->s_root) {
3916 ext4_msg(sb, KERN_ERR, "get root dentry failed");
3917 ret = -ENOMEM;
3918 goto failed_mount4;
3919 }
3920
3921 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
3922 sb->s_flags |= MS_RDONLY;
3923
3924 /* determine the minimum size of new large inodes, if present */
3925 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
3926 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3927 EXT4_GOOD_OLD_INODE_SIZE;
3928 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3929 EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
3930 if (sbi->s_want_extra_isize <
3931 le16_to_cpu(es->s_want_extra_isize))
3932 sbi->s_want_extra_isize =
3933 le16_to_cpu(es->s_want_extra_isize);
3934 if (sbi->s_want_extra_isize <
3935 le16_to_cpu(es->s_min_extra_isize))
3936 sbi->s_want_extra_isize =
3937 le16_to_cpu(es->s_min_extra_isize);
3938 }
3939 }
3940 /* Check if enough inode space is available */
3941 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
3942 sbi->s_inode_size) {
3943 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
3944 EXT4_GOOD_OLD_INODE_SIZE;
3945 ext4_msg(sb, KERN_INFO, "required extra inode space not"
3946 "available");
3947 }
3948
3949 err = ext4_setup_system_zone(sb);
3950 if (err) {
3951 ext4_msg(sb, KERN_ERR, "failed to initialize system "
3952 "zone (%d)", err);
3953 goto failed_mount4a;
3954 }
3955
3956 ext4_ext_init(sb);
3957 err = ext4_mb_init(sb);
3958 if (err) {
3959 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
3960 err);
3961 goto failed_mount5;
3962 }
3963
3964 err = ext4_register_li_request(sb, first_not_zeroed);
3965 if (err)
3966 goto failed_mount6;
3967
3968 sbi->s_kobj.kset = ext4_kset;
3969 init_completion(&sbi->s_kobj_unregister);
3970 err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
3971 "%s", sb->s_id);
3972 if (err)
3973 goto failed_mount7;
3974
3975 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
3976 ext4_orphan_cleanup(sb, es);
3977 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
3978 if (needs_recovery) {
3979 ext4_msg(sb, KERN_INFO, "recovery complete");
3980 ext4_mark_recovery_complete(sb, es);
3981 }
3982 if (EXT4_SB(sb)->s_journal) {
3983 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3984 descr = " journalled data mode";
3985 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3986 descr = " ordered data mode";
3987 else
3988 descr = " writeback data mode";
3989 } else
3990 descr = "out journal";
3991
3992 #ifdef CONFIG_QUOTA
3993 /* Enable quota usage during mount. */
3994 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA) &&
3995 !(sb->s_flags & MS_RDONLY)) {
3996 ret = ext4_enable_quotas(sb);
3997 if (ret)
3998 goto failed_mount7;
3999 }
4000 #endif /* CONFIG_QUOTA */
4001
4002 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4003 "Opts: %s%s%s", descr, sbi->s_es->s_mount_opts,
4004 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4005
4006 if (es->s_error_count)
4007 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4008
4009 kfree(orig_data);
4010 return 0;
4011
4012 cantfind_ext4:
4013 if (!silent)
4014 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4015 goto failed_mount;
4016
4017 failed_mount7:
4018 ext4_unregister_li_request(sb);
4019 failed_mount6:
4020 ext4_mb_release(sb);
4021 failed_mount5:
4022 ext4_ext_release(sb);
4023 ext4_release_system_zone(sb);
4024 failed_mount4a:
4025 dput(sb->s_root);
4026 sb->s_root = NULL;
4027 failed_mount4:
4028 ext4_msg(sb, KERN_ERR, "mount failed");
4029 destroy_workqueue(EXT4_SB(sb)->dio_unwritten_wq);
4030 failed_mount_wq:
4031 if (sbi->s_journal) {
4032 jbd2_journal_destroy(sbi->s_journal);
4033 sbi->s_journal = NULL;
4034 }
4035 failed_mount3:
4036 del_timer(&sbi->s_err_report);
4037 if (sbi->s_flex_groups)
4038 ext4_kvfree(sbi->s_flex_groups);
4039 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4040 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4041 percpu_counter_destroy(&sbi->s_dirs_counter);
4042 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4043 if (sbi->s_mmp_tsk)
4044 kthread_stop(sbi->s_mmp_tsk);
4045 failed_mount2:
4046 for (i = 0; i < db_count; i++)
4047 brelse(sbi->s_group_desc[i]);
4048 ext4_kvfree(sbi->s_group_desc);
4049 failed_mount:
4050 if (sbi->s_chksum_driver)
4051 crypto_free_shash(sbi->s_chksum_driver);
4052 if (sbi->s_proc) {
4053 remove_proc_entry("options", sbi->s_proc);
4054 remove_proc_entry(sb->s_id, ext4_proc_root);
4055 }
4056 #ifdef CONFIG_QUOTA
4057 for (i = 0; i < MAXQUOTAS; i++)
4058 kfree(sbi->s_qf_names[i]);
4059 #endif
4060 ext4_blkdev_remove(sbi);
4061 brelse(bh);
4062 out_fail:
4063 sb->s_fs_info = NULL;
4064 kfree(sbi->s_blockgroup_lock);
4065 kfree(sbi);
4066 out_free_orig:
4067 kfree(orig_data);
4068 return ret;
4069 }
4070
4071 /*
4072 * Setup any per-fs journal parameters now. We'll do this both on
4073 * initial mount, once the journal has been initialised but before we've
4074 * done any recovery; and again on any subsequent remount.
4075 */
4076 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4077 {
4078 struct ext4_sb_info *sbi = EXT4_SB(sb);
4079
4080 journal->j_commit_interval = sbi->s_commit_interval;
4081 journal->j_min_batch_time = sbi->s_min_batch_time;
4082 journal->j_max_batch_time = sbi->s_max_batch_time;
4083
4084 write_lock(&journal->j_state_lock);
4085 if (test_opt(sb, BARRIER))
4086 journal->j_flags |= JBD2_BARRIER;
4087 else
4088 journal->j_flags &= ~JBD2_BARRIER;
4089 if (test_opt(sb, DATA_ERR_ABORT))
4090 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4091 else
4092 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4093 write_unlock(&journal->j_state_lock);
4094 }
4095
4096 static journal_t *ext4_get_journal(struct super_block *sb,
4097 unsigned int journal_inum)
4098 {
4099 struct inode *journal_inode;
4100 journal_t *journal;
4101
4102 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4103
4104 /* First, test for the existence of a valid inode on disk. Bad
4105 * things happen if we iget() an unused inode, as the subsequent
4106 * iput() will try to delete it. */
4107
4108 journal_inode = ext4_iget(sb, journal_inum);
4109 if (IS_ERR(journal_inode)) {
4110 ext4_msg(sb, KERN_ERR, "no journal found");
4111 return NULL;
4112 }
4113 if (!journal_inode->i_nlink) {
4114 make_bad_inode(journal_inode);
4115 iput(journal_inode);
4116 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4117 return NULL;
4118 }
4119
4120 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4121 journal_inode, journal_inode->i_size);
4122 if (!S_ISREG(journal_inode->i_mode)) {
4123 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4124 iput(journal_inode);
4125 return NULL;
4126 }
4127
4128 journal = jbd2_journal_init_inode(journal_inode);
4129 if (!journal) {
4130 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4131 iput(journal_inode);
4132 return NULL;
4133 }
4134 journal->j_private = sb;
4135 ext4_init_journal_params(sb, journal);
4136 return journal;
4137 }
4138
4139 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4140 dev_t j_dev)
4141 {
4142 struct buffer_head *bh;
4143 journal_t *journal;
4144 ext4_fsblk_t start;
4145 ext4_fsblk_t len;
4146 int hblock, blocksize;
4147 ext4_fsblk_t sb_block;
4148 unsigned long offset;
4149 struct ext4_super_block *es;
4150 struct block_device *bdev;
4151
4152 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4153
4154 bdev = ext4_blkdev_get(j_dev, sb);
4155 if (bdev == NULL)
4156 return NULL;
4157
4158 blocksize = sb->s_blocksize;
4159 hblock = bdev_logical_block_size(bdev);
4160 if (blocksize < hblock) {
4161 ext4_msg(sb, KERN_ERR,
4162 "blocksize too small for journal device");
4163 goto out_bdev;
4164 }
4165
4166 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4167 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4168 set_blocksize(bdev, blocksize);
4169 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4170 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4171 "external journal");
4172 goto out_bdev;
4173 }
4174
4175 es = (struct ext4_super_block *) (bh->b_data + offset);
4176 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4177 !(le32_to_cpu(es->s_feature_incompat) &
4178 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4179 ext4_msg(sb, KERN_ERR, "external journal has "
4180 "bad superblock");
4181 brelse(bh);
4182 goto out_bdev;
4183 }
4184
4185 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4186 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4187 brelse(bh);
4188 goto out_bdev;
4189 }
4190
4191 len = ext4_blocks_count(es);
4192 start = sb_block + 1;
4193 brelse(bh); /* we're done with the superblock */
4194
4195 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4196 start, len, blocksize);
4197 if (!journal) {
4198 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4199 goto out_bdev;
4200 }
4201 journal->j_private = sb;
4202 ll_rw_block(READ, 1, &journal->j_sb_buffer);
4203 wait_on_buffer(journal->j_sb_buffer);
4204 if (!buffer_uptodate(journal->j_sb_buffer)) {
4205 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4206 goto out_journal;
4207 }
4208 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4209 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4210 "user (unsupported) - %d",
4211 be32_to_cpu(journal->j_superblock->s_nr_users));
4212 goto out_journal;
4213 }
4214 EXT4_SB(sb)->journal_bdev = bdev;
4215 ext4_init_journal_params(sb, journal);
4216 return journal;
4217
4218 out_journal:
4219 jbd2_journal_destroy(journal);
4220 out_bdev:
4221 ext4_blkdev_put(bdev);
4222 return NULL;
4223 }
4224
4225 static int ext4_load_journal(struct super_block *sb,
4226 struct ext4_super_block *es,
4227 unsigned long journal_devnum)
4228 {
4229 journal_t *journal;
4230 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4231 dev_t journal_dev;
4232 int err = 0;
4233 int really_read_only;
4234
4235 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4236
4237 if (journal_devnum &&
4238 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4239 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4240 "numbers have changed");
4241 journal_dev = new_decode_dev(journal_devnum);
4242 } else
4243 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4244
4245 really_read_only = bdev_read_only(sb->s_bdev);
4246
4247 /*
4248 * Are we loading a blank journal or performing recovery after a
4249 * crash? For recovery, we need to check in advance whether we
4250 * can get read-write access to the device.
4251 */
4252 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
4253 if (sb->s_flags & MS_RDONLY) {
4254 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4255 "required on readonly filesystem");
4256 if (really_read_only) {
4257 ext4_msg(sb, KERN_ERR, "write access "
4258 "unavailable, cannot proceed");
4259 return -EROFS;
4260 }
4261 ext4_msg(sb, KERN_INFO, "write access will "
4262 "be enabled during recovery");
4263 }
4264 }
4265
4266 if (journal_inum && journal_dev) {
4267 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4268 "and inode journals!");
4269 return -EINVAL;
4270 }
4271
4272 if (journal_inum) {
4273 if (!(journal = ext4_get_journal(sb, journal_inum)))
4274 return -EINVAL;
4275 } else {
4276 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4277 return -EINVAL;
4278 }
4279
4280 if (!(journal->j_flags & JBD2_BARRIER))
4281 ext4_msg(sb, KERN_INFO, "barriers disabled");
4282
4283 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
4284 err = jbd2_journal_wipe(journal, !really_read_only);
4285 if (!err) {
4286 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4287 if (save)
4288 memcpy(save, ((char *) es) +
4289 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4290 err = jbd2_journal_load(journal);
4291 if (save)
4292 memcpy(((char *) es) + EXT4_S_ERR_START,
4293 save, EXT4_S_ERR_LEN);
4294 kfree(save);
4295 }
4296
4297 if (err) {
4298 ext4_msg(sb, KERN_ERR, "error loading journal");
4299 jbd2_journal_destroy(journal);
4300 return err;
4301 }
4302
4303 EXT4_SB(sb)->s_journal = journal;
4304 ext4_clear_journal_err(sb, es);
4305
4306 if (!really_read_only && journal_devnum &&
4307 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4308 es->s_journal_dev = cpu_to_le32(journal_devnum);
4309
4310 /* Make sure we flush the recovery flag to disk. */
4311 ext4_commit_super(sb, 1);
4312 }
4313
4314 return 0;
4315 }
4316
4317 static int ext4_commit_super(struct super_block *sb, int sync)
4318 {
4319 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4320 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4321 int error = 0;
4322
4323 if (!sbh || block_device_ejected(sb))
4324 return error;
4325 if (buffer_write_io_error(sbh)) {
4326 /*
4327 * Oh, dear. A previous attempt to write the
4328 * superblock failed. This could happen because the
4329 * USB device was yanked out. Or it could happen to
4330 * be a transient write error and maybe the block will
4331 * be remapped. Nothing we can do but to retry the
4332 * write and hope for the best.
4333 */
4334 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4335 "superblock detected");
4336 clear_buffer_write_io_error(sbh);
4337 set_buffer_uptodate(sbh);
4338 }
4339 /*
4340 * If the file system is mounted read-only, don't update the
4341 * superblock write time. This avoids updating the superblock
4342 * write time when we are mounting the root file system
4343 * read/only but we need to replay the journal; at that point,
4344 * for people who are east of GMT and who make their clock
4345 * tick in localtime for Windows bug-for-bug compatibility,
4346 * the clock is set in the future, and this will cause e2fsck
4347 * to complain and force a full file system check.
4348 */
4349 if (!(sb->s_flags & MS_RDONLY))
4350 es->s_wtime = cpu_to_le32(get_seconds());
4351 if (sb->s_bdev->bd_part)
4352 es->s_kbytes_written =
4353 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4354 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4355 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4356 else
4357 es->s_kbytes_written =
4358 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4359 ext4_free_blocks_count_set(es,
4360 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4361 &EXT4_SB(sb)->s_freeclusters_counter)));
4362 es->s_free_inodes_count =
4363 cpu_to_le32(percpu_counter_sum_positive(
4364 &EXT4_SB(sb)->s_freeinodes_counter));
4365 BUFFER_TRACE(sbh, "marking dirty");
4366 ext4_superblock_csum_set(sb, es);
4367 mark_buffer_dirty(sbh);
4368 if (sync) {
4369 error = sync_dirty_buffer(sbh);
4370 if (error)
4371 return error;
4372
4373 error = buffer_write_io_error(sbh);
4374 if (error) {
4375 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4376 "superblock");
4377 clear_buffer_write_io_error(sbh);
4378 set_buffer_uptodate(sbh);
4379 }
4380 }
4381 return error;
4382 }
4383
4384 /*
4385 * Have we just finished recovery? If so, and if we are mounting (or
4386 * remounting) the filesystem readonly, then we will end up with a
4387 * consistent fs on disk. Record that fact.
4388 */
4389 static void ext4_mark_recovery_complete(struct super_block *sb,
4390 struct ext4_super_block *es)
4391 {
4392 journal_t *journal = EXT4_SB(sb)->s_journal;
4393
4394 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
4395 BUG_ON(journal != NULL);
4396 return;
4397 }
4398 jbd2_journal_lock_updates(journal);
4399 if (jbd2_journal_flush(journal) < 0)
4400 goto out;
4401
4402 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
4403 sb->s_flags & MS_RDONLY) {
4404 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4405 ext4_commit_super(sb, 1);
4406 }
4407
4408 out:
4409 jbd2_journal_unlock_updates(journal);
4410 }
4411
4412 /*
4413 * If we are mounting (or read-write remounting) a filesystem whose journal
4414 * has recorded an error from a previous lifetime, move that error to the
4415 * main filesystem now.
4416 */
4417 static void ext4_clear_journal_err(struct super_block *sb,
4418 struct ext4_super_block *es)
4419 {
4420 journal_t *journal;
4421 int j_errno;
4422 const char *errstr;
4423
4424 BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
4425
4426 journal = EXT4_SB(sb)->s_journal;
4427
4428 /*
4429 * Now check for any error status which may have been recorded in the
4430 * journal by a prior ext4_error() or ext4_abort()
4431 */
4432
4433 j_errno = jbd2_journal_errno(journal);
4434 if (j_errno) {
4435 char nbuf[16];
4436
4437 errstr = ext4_decode_error(sb, j_errno, nbuf);
4438 ext4_warning(sb, "Filesystem error recorded "
4439 "from previous mount: %s", errstr);
4440 ext4_warning(sb, "Marking fs in need of filesystem check.");
4441
4442 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4443 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4444 ext4_commit_super(sb, 1);
4445
4446 jbd2_journal_clear_err(journal);
4447 }
4448 }
4449
4450 /*
4451 * Force the running and committing transactions to commit,
4452 * and wait on the commit.
4453 */
4454 int ext4_force_commit(struct super_block *sb)
4455 {
4456 journal_t *journal;
4457 int ret = 0;
4458
4459 if (sb->s_flags & MS_RDONLY)
4460 return 0;
4461
4462 journal = EXT4_SB(sb)->s_journal;
4463 if (journal) {
4464 vfs_check_frozen(sb, SB_FREEZE_TRANS);
4465 ret = ext4_journal_force_commit(journal);
4466 }
4467
4468 return ret;
4469 }
4470
4471 static int ext4_sync_fs(struct super_block *sb, int wait)
4472 {
4473 int ret = 0;
4474 tid_t target;
4475 struct ext4_sb_info *sbi = EXT4_SB(sb);
4476
4477 trace_ext4_sync_fs(sb, wait);
4478 flush_workqueue(sbi->dio_unwritten_wq);
4479 /*
4480 * Writeback quota in non-journalled quota case - journalled quota has
4481 * no dirty dquots
4482 */
4483 dquot_writeback_dquots(sb, -1);
4484 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4485 if (wait)
4486 jbd2_log_wait_commit(sbi->s_journal, target);
4487 }
4488 return ret;
4489 }
4490
4491 /*
4492 * LVM calls this function before a (read-only) snapshot is created. This
4493 * gives us a chance to flush the journal completely and mark the fs clean.
4494 *
4495 * Note that only this function cannot bring a filesystem to be in a clean
4496 * state independently, because ext4 prevents a new handle from being started
4497 * by @sb->s_frozen, which stays in an upper layer. It thus needs help from
4498 * the upper layer.
4499 */
4500 static int ext4_freeze(struct super_block *sb)
4501 {
4502 int error = 0;
4503 journal_t *journal;
4504
4505 if (sb->s_flags & MS_RDONLY)
4506 return 0;
4507
4508 journal = EXT4_SB(sb)->s_journal;
4509
4510 /* Now we set up the journal barrier. */
4511 jbd2_journal_lock_updates(journal);
4512
4513 /*
4514 * Don't clear the needs_recovery flag if we failed to flush
4515 * the journal.
4516 */
4517 error = jbd2_journal_flush(journal);
4518 if (error < 0)
4519 goto out;
4520
4521 /* Journal blocked and flushed, clear needs_recovery flag. */
4522 EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4523 error = ext4_commit_super(sb, 1);
4524 out:
4525 /* we rely on s_frozen to stop further updates */
4526 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4527 return error;
4528 }
4529
4530 /*
4531 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4532 * flag here, even though the filesystem is not technically dirty yet.
4533 */
4534 static int ext4_unfreeze(struct super_block *sb)
4535 {
4536 if (sb->s_flags & MS_RDONLY)
4537 return 0;
4538
4539 lock_super(sb);
4540 /* Reset the needs_recovery flag before the fs is unlocked. */
4541 EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
4542 ext4_commit_super(sb, 1);
4543 unlock_super(sb);
4544 return 0;
4545 }
4546
4547 /*
4548 * Structure to save mount options for ext4_remount's benefit
4549 */
4550 struct ext4_mount_options {
4551 unsigned long s_mount_opt;
4552 unsigned long s_mount_opt2;
4553 kuid_t s_resuid;
4554 kgid_t s_resgid;
4555 unsigned long s_commit_interval;
4556 u32 s_min_batch_time, s_max_batch_time;
4557 #ifdef CONFIG_QUOTA
4558 int s_jquota_fmt;
4559 char *s_qf_names[MAXQUOTAS];
4560 #endif
4561 };
4562
4563 static int ext4_remount(struct super_block *sb, int *flags, char *data)
4564 {
4565 struct ext4_super_block *es;
4566 struct ext4_sb_info *sbi = EXT4_SB(sb);
4567 unsigned long old_sb_flags;
4568 struct ext4_mount_options old_opts;
4569 int enable_quota = 0;
4570 ext4_group_t g;
4571 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4572 int err = 0;
4573 #ifdef CONFIG_QUOTA
4574 int i;
4575 #endif
4576 char *orig_data = kstrdup(data, GFP_KERNEL);
4577
4578 /* Store the original options */
4579 lock_super(sb);
4580 old_sb_flags = sb->s_flags;
4581 old_opts.s_mount_opt = sbi->s_mount_opt;
4582 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4583 old_opts.s_resuid = sbi->s_resuid;
4584 old_opts.s_resgid = sbi->s_resgid;
4585 old_opts.s_commit_interval = sbi->s_commit_interval;
4586 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4587 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4588 #ifdef CONFIG_QUOTA
4589 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4590 for (i = 0; i < MAXQUOTAS; i++)
4591 old_opts.s_qf_names[i] = sbi->s_qf_names[i];
4592 #endif
4593 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4594 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4595
4596 /*
4597 * Allow the "check" option to be passed as a remount option.
4598 */
4599 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4600 err = -EINVAL;
4601 goto restore_opts;
4602 }
4603
4604 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4605 ext4_abort(sb, "Abort forced by user");
4606
4607 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4608 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4609
4610 es = sbi->s_es;
4611
4612 if (sbi->s_journal) {
4613 ext4_init_journal_params(sb, sbi->s_journal);
4614 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4615 }
4616
4617 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4618 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4619 err = -EROFS;
4620 goto restore_opts;
4621 }
4622
4623 if (*flags & MS_RDONLY) {
4624 err = dquot_suspend(sb, -1);
4625 if (err < 0)
4626 goto restore_opts;
4627
4628 /*
4629 * First of all, the unconditional stuff we have to do
4630 * to disable replay of the journal when we next remount
4631 */
4632 sb->s_flags |= MS_RDONLY;
4633
4634 /*
4635 * OK, test if we are remounting a valid rw partition
4636 * readonly, and if so set the rdonly flag and then
4637 * mark the partition as valid again.
4638 */
4639 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4640 (sbi->s_mount_state & EXT4_VALID_FS))
4641 es->s_state = cpu_to_le16(sbi->s_mount_state);
4642
4643 if (sbi->s_journal)
4644 ext4_mark_recovery_complete(sb, es);
4645 } else {
4646 /* Make sure we can mount this feature set readwrite */
4647 if (!ext4_feature_set_ok(sb, 0)) {
4648 err = -EROFS;
4649 goto restore_opts;
4650 }
4651 /*
4652 * Make sure the group descriptor checksums
4653 * are sane. If they aren't, refuse to remount r/w.
4654 */
4655 for (g = 0; g < sbi->s_groups_count; g++) {
4656 struct ext4_group_desc *gdp =
4657 ext4_get_group_desc(sb, g, NULL);
4658
4659 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4660 ext4_msg(sb, KERN_ERR,
4661 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4662 g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
4663 le16_to_cpu(gdp->bg_checksum));
4664 err = -EINVAL;
4665 goto restore_opts;
4666 }
4667 }
4668
4669 /*
4670 * If we have an unprocessed orphan list hanging
4671 * around from a previously readonly bdev mount,
4672 * require a full umount/remount for now.
4673 */
4674 if (es->s_last_orphan) {
4675 ext4_msg(sb, KERN_WARNING, "Couldn't "
4676 "remount RDWR because of unprocessed "
4677 "orphan inode list. Please "
4678 "umount/remount instead");
4679 err = -EINVAL;
4680 goto restore_opts;
4681 }
4682
4683 /*
4684 * Mounting a RDONLY partition read-write, so reread
4685 * and store the current valid flag. (It may have
4686 * been changed by e2fsck since we originally mounted
4687 * the partition.)
4688 */
4689 if (sbi->s_journal)
4690 ext4_clear_journal_err(sb, es);
4691 sbi->s_mount_state = le16_to_cpu(es->s_state);
4692 if (!ext4_setup_super(sb, es, 0))
4693 sb->s_flags &= ~MS_RDONLY;
4694 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
4695 EXT4_FEATURE_INCOMPAT_MMP))
4696 if (ext4_multi_mount_protect(sb,
4697 le64_to_cpu(es->s_mmp_block))) {
4698 err = -EROFS;
4699 goto restore_opts;
4700 }
4701 enable_quota = 1;
4702 }
4703 }
4704
4705 /*
4706 * Reinitialize lazy itable initialization thread based on
4707 * current settings
4708 */
4709 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
4710 ext4_unregister_li_request(sb);
4711 else {
4712 ext4_group_t first_not_zeroed;
4713 first_not_zeroed = ext4_has_uninit_itable(sb);
4714 ext4_register_li_request(sb, first_not_zeroed);
4715 }
4716
4717 ext4_setup_system_zone(sb);
4718 if (sbi->s_journal == NULL)
4719 ext4_commit_super(sb, 1);
4720
4721 unlock_super(sb);
4722 #ifdef CONFIG_QUOTA
4723 /* Release old quota file names */
4724 for (i = 0; i < MAXQUOTAS; i++)
4725 if (old_opts.s_qf_names[i] &&
4726 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4727 kfree(old_opts.s_qf_names[i]);
4728 if (enable_quota) {
4729 if (sb_any_quota_suspended(sb))
4730 dquot_resume(sb, -1);
4731 else if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4732 EXT4_FEATURE_RO_COMPAT_QUOTA)) {
4733 err = ext4_enable_quotas(sb);
4734 if (err) {
4735 lock_super(sb);
4736 goto restore_opts;
4737 }
4738 }
4739 }
4740 #endif
4741
4742 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
4743 kfree(orig_data);
4744 return 0;
4745
4746 restore_opts:
4747 sb->s_flags = old_sb_flags;
4748 sbi->s_mount_opt = old_opts.s_mount_opt;
4749 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
4750 sbi->s_resuid = old_opts.s_resuid;
4751 sbi->s_resgid = old_opts.s_resgid;
4752 sbi->s_commit_interval = old_opts.s_commit_interval;
4753 sbi->s_min_batch_time = old_opts.s_min_batch_time;
4754 sbi->s_max_batch_time = old_opts.s_max_batch_time;
4755 #ifdef CONFIG_QUOTA
4756 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
4757 for (i = 0; i < MAXQUOTAS; i++) {
4758 if (sbi->s_qf_names[i] &&
4759 old_opts.s_qf_names[i] != sbi->s_qf_names[i])
4760 kfree(sbi->s_qf_names[i]);
4761 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
4762 }
4763 #endif
4764 unlock_super(sb);
4765 kfree(orig_data);
4766 return err;
4767 }
4768
4769 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
4770 {
4771 struct super_block *sb = dentry->d_sb;
4772 struct ext4_sb_info *sbi = EXT4_SB(sb);
4773 struct ext4_super_block *es = sbi->s_es;
4774 ext4_fsblk_t overhead = 0;
4775 u64 fsid;
4776 s64 bfree;
4777
4778 if (!test_opt(sb, MINIX_DF))
4779 overhead = sbi->s_overhead;
4780
4781 buf->f_type = EXT4_SUPER_MAGIC;
4782 buf->f_bsize = sb->s_blocksize;
4783 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, sbi->s_overhead);
4784 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
4785 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
4786 /* prevent underflow in case that few free space is available */
4787 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
4788 buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
4789 if (buf->f_bfree < ext4_r_blocks_count(es))
4790 buf->f_bavail = 0;
4791 buf->f_files = le32_to_cpu(es->s_inodes_count);
4792 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
4793 buf->f_namelen = EXT4_NAME_LEN;
4794 fsid = le64_to_cpup((void *)es->s_uuid) ^
4795 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
4796 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
4797 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
4798
4799 return 0;
4800 }
4801
4802 /* Helper function for writing quotas on sync - we need to start transaction
4803 * before quota file is locked for write. Otherwise the are possible deadlocks:
4804 * Process 1 Process 2
4805 * ext4_create() quota_sync()
4806 * jbd2_journal_start() write_dquot()
4807 * dquot_initialize() down(dqio_mutex)
4808 * down(dqio_mutex) jbd2_journal_start()
4809 *
4810 */
4811
4812 #ifdef CONFIG_QUOTA
4813
4814 static inline struct inode *dquot_to_inode(struct dquot *dquot)
4815 {
4816 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
4817 }
4818
4819 static int ext4_write_dquot(struct dquot *dquot)
4820 {
4821 int ret, err;
4822 handle_t *handle;
4823 struct inode *inode;
4824
4825 inode = dquot_to_inode(dquot);
4826 handle = ext4_journal_start(inode,
4827 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
4828 if (IS_ERR(handle))
4829 return PTR_ERR(handle);
4830 ret = dquot_commit(dquot);
4831 err = ext4_journal_stop(handle);
4832 if (!ret)
4833 ret = err;
4834 return ret;
4835 }
4836
4837 static int ext4_acquire_dquot(struct dquot *dquot)
4838 {
4839 int ret, err;
4840 handle_t *handle;
4841
4842 handle = ext4_journal_start(dquot_to_inode(dquot),
4843 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
4844 if (IS_ERR(handle))
4845 return PTR_ERR(handle);
4846 ret = dquot_acquire(dquot);
4847 err = ext4_journal_stop(handle);
4848 if (!ret)
4849 ret = err;
4850 return ret;
4851 }
4852
4853 static int ext4_release_dquot(struct dquot *dquot)
4854 {
4855 int ret, err;
4856 handle_t *handle;
4857
4858 handle = ext4_journal_start(dquot_to_inode(dquot),
4859 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
4860 if (IS_ERR(handle)) {
4861 /* Release dquot anyway to avoid endless cycle in dqput() */
4862 dquot_release(dquot);
4863 return PTR_ERR(handle);
4864 }
4865 ret = dquot_release(dquot);
4866 err = ext4_journal_stop(handle);
4867 if (!ret)
4868 ret = err;
4869 return ret;
4870 }
4871
4872 static int ext4_mark_dquot_dirty(struct dquot *dquot)
4873 {
4874 /* Are we journaling quotas? */
4875 if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
4876 EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
4877 dquot_mark_dquot_dirty(dquot);
4878 return ext4_write_dquot(dquot);
4879 } else {
4880 return dquot_mark_dquot_dirty(dquot);
4881 }
4882 }
4883
4884 static int ext4_write_info(struct super_block *sb, int type)
4885 {
4886 int ret, err;
4887 handle_t *handle;
4888
4889 /* Data block + inode block */
4890 handle = ext4_journal_start(sb->s_root->d_inode, 2);
4891 if (IS_ERR(handle))
4892 return PTR_ERR(handle);
4893 ret = dquot_commit_info(sb, type);
4894 err = ext4_journal_stop(handle);
4895 if (!ret)
4896 ret = err;
4897 return ret;
4898 }
4899
4900 /*
4901 * Turn on quotas during mount time - we need to find
4902 * the quota file and such...
4903 */
4904 static int ext4_quota_on_mount(struct super_block *sb, int type)
4905 {
4906 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
4907 EXT4_SB(sb)->s_jquota_fmt, type);
4908 }
4909
4910 /*
4911 * Standard function to be called on quota_on
4912 */
4913 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
4914 struct path *path)
4915 {
4916 int err;
4917
4918 if (!test_opt(sb, QUOTA))
4919 return -EINVAL;
4920
4921 /* Quotafile not on the same filesystem? */
4922 if (path->dentry->d_sb != sb)
4923 return -EXDEV;
4924 /* Journaling quota? */
4925 if (EXT4_SB(sb)->s_qf_names[type]) {
4926 /* Quotafile not in fs root? */
4927 if (path->dentry->d_parent != sb->s_root)
4928 ext4_msg(sb, KERN_WARNING,
4929 "Quota file not on filesystem root. "
4930 "Journaled quota will not work");
4931 }
4932
4933 /*
4934 * When we journal data on quota file, we have to flush journal to see
4935 * all updates to the file when we bypass pagecache...
4936 */
4937 if (EXT4_SB(sb)->s_journal &&
4938 ext4_should_journal_data(path->dentry->d_inode)) {
4939 /*
4940 * We don't need to lock updates but journal_flush() could
4941 * otherwise be livelocked...
4942 */
4943 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
4944 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
4945 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
4946 if (err)
4947 return err;
4948 }
4949
4950 return dquot_quota_on(sb, type, format_id, path);
4951 }
4952
4953 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
4954 unsigned int flags)
4955 {
4956 int err;
4957 struct inode *qf_inode;
4958 unsigned long qf_inums[MAXQUOTAS] = {
4959 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
4960 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
4961 };
4962
4963 BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA));
4964
4965 if (!qf_inums[type])
4966 return -EPERM;
4967
4968 qf_inode = ext4_iget(sb, qf_inums[type]);
4969 if (IS_ERR(qf_inode)) {
4970 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
4971 return PTR_ERR(qf_inode);
4972 }
4973
4974 err = dquot_enable(qf_inode, type, format_id, flags);
4975 iput(qf_inode);
4976
4977 return err;
4978 }
4979
4980 /* Enable usage tracking for all quota types. */
4981 static int ext4_enable_quotas(struct super_block *sb)
4982 {
4983 int type, err = 0;
4984 unsigned long qf_inums[MAXQUOTAS] = {
4985 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
4986 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum)
4987 };
4988
4989 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
4990 for (type = 0; type < MAXQUOTAS; type++) {
4991 if (qf_inums[type]) {
4992 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
4993 DQUOT_USAGE_ENABLED);
4994 if (err) {
4995 ext4_warning(sb,
4996 "Failed to enable quota (type=%d) "
4997 "tracking. Please run e2fsck to fix.",
4998 type);
4999 return err;
5000 }
5001 }
5002 }
5003 return 0;
5004 }
5005
5006 /*
5007 * quota_on function that is used when QUOTA feature is set.
5008 */
5009 static int ext4_quota_on_sysfile(struct super_block *sb, int type,
5010 int format_id)
5011 {
5012 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5013 return -EINVAL;
5014
5015 /*
5016 * USAGE was enabled at mount time. Only need to enable LIMITS now.
5017 */
5018 return ext4_quota_enable(sb, type, format_id, DQUOT_LIMITS_ENABLED);
5019 }
5020
5021 static int ext4_quota_off(struct super_block *sb, int type)
5022 {
5023 struct inode *inode = sb_dqopt(sb)->files[type];
5024 handle_t *handle;
5025
5026 /* Force all delayed allocation blocks to be allocated.
5027 * Caller already holds s_umount sem */
5028 if (test_opt(sb, DELALLOC))
5029 sync_filesystem(sb);
5030
5031 if (!inode)
5032 goto out;
5033
5034 /* Update modification times of quota files when userspace can
5035 * start looking at them */
5036 handle = ext4_journal_start(inode, 1);
5037 if (IS_ERR(handle))
5038 goto out;
5039 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
5040 ext4_mark_inode_dirty(handle, inode);
5041 ext4_journal_stop(handle);
5042
5043 out:
5044 return dquot_quota_off(sb, type);
5045 }
5046
5047 /*
5048 * quota_off function that is used when QUOTA feature is set.
5049 */
5050 static int ext4_quota_off_sysfile(struct super_block *sb, int type)
5051 {
5052 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_QUOTA))
5053 return -EINVAL;
5054
5055 /* Disable only the limits. */
5056 return dquot_disable(sb, type, DQUOT_LIMITS_ENABLED);
5057 }
5058
5059 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5060 * acquiring the locks... As quota files are never truncated and quota code
5061 * itself serializes the operations (and no one else should touch the files)
5062 * we don't have to be afraid of races */
5063 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5064 size_t len, loff_t off)
5065 {
5066 struct inode *inode = sb_dqopt(sb)->files[type];
5067 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5068 int err = 0;
5069 int offset = off & (sb->s_blocksize - 1);
5070 int tocopy;
5071 size_t toread;
5072 struct buffer_head *bh;
5073 loff_t i_size = i_size_read(inode);
5074
5075 if (off > i_size)
5076 return 0;
5077 if (off+len > i_size)
5078 len = i_size-off;
5079 toread = len;
5080 while (toread > 0) {
5081 tocopy = sb->s_blocksize - offset < toread ?
5082 sb->s_blocksize - offset : toread;
5083 bh = ext4_bread(NULL, inode, blk, 0, &err);
5084 if (err)
5085 return err;
5086 if (!bh) /* A hole? */
5087 memset(data, 0, tocopy);
5088 else
5089 memcpy(data, bh->b_data+offset, tocopy);
5090 brelse(bh);
5091 offset = 0;
5092 toread -= tocopy;
5093 data += tocopy;
5094 blk++;
5095 }
5096 return len;
5097 }
5098
5099 /* Write to quotafile (we know the transaction is already started and has
5100 * enough credits) */
5101 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5102 const char *data, size_t len, loff_t off)
5103 {
5104 struct inode *inode = sb_dqopt(sb)->files[type];
5105 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5106 int err = 0;
5107 int offset = off & (sb->s_blocksize - 1);
5108 struct buffer_head *bh;
5109 handle_t *handle = journal_current_handle();
5110
5111 if (EXT4_SB(sb)->s_journal && !handle) {
5112 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5113 " cancelled because transaction is not started",
5114 (unsigned long long)off, (unsigned long long)len);
5115 return -EIO;
5116 }
5117 /*
5118 * Since we account only one data block in transaction credits,
5119 * then it is impossible to cross a block boundary.
5120 */
5121 if (sb->s_blocksize - offset < len) {
5122 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5123 " cancelled because not block aligned",
5124 (unsigned long long)off, (unsigned long long)len);
5125 return -EIO;
5126 }
5127
5128 bh = ext4_bread(handle, inode, blk, 1, &err);
5129 if (!bh)
5130 goto out;
5131 err = ext4_journal_get_write_access(handle, bh);
5132 if (err) {
5133 brelse(bh);
5134 goto out;
5135 }
5136 lock_buffer(bh);
5137 memcpy(bh->b_data+offset, data, len);
5138 flush_dcache_page(bh->b_page);
5139 unlock_buffer(bh);
5140 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5141 brelse(bh);
5142 out:
5143 if (err)
5144 return err;
5145 if (inode->i_size < off + len) {
5146 i_size_write(inode, off + len);
5147 EXT4_I(inode)->i_disksize = inode->i_size;
5148 ext4_mark_inode_dirty(handle, inode);
5149 }
5150 return len;
5151 }
5152
5153 #endif
5154
5155 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5156 const char *dev_name, void *data)
5157 {
5158 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5159 }
5160
5161 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5162 static inline void register_as_ext2(void)
5163 {
5164 int err = register_filesystem(&ext2_fs_type);
5165 if (err)
5166 printk(KERN_WARNING
5167 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5168 }
5169
5170 static inline void unregister_as_ext2(void)
5171 {
5172 unregister_filesystem(&ext2_fs_type);
5173 }
5174
5175 static inline int ext2_feature_set_ok(struct super_block *sb)
5176 {
5177 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT2_FEATURE_INCOMPAT_SUPP))
5178 return 0;
5179 if (sb->s_flags & MS_RDONLY)
5180 return 1;
5181 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT2_FEATURE_RO_COMPAT_SUPP))
5182 return 0;
5183 return 1;
5184 }
5185 MODULE_ALIAS("ext2");
5186 #else
5187 static inline void register_as_ext2(void) { }
5188 static inline void unregister_as_ext2(void) { }
5189 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5190 #endif
5191
5192 #if !defined(CONFIG_EXT3_FS) && !defined(CONFIG_EXT3_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT23)
5193 static inline void register_as_ext3(void)
5194 {
5195 int err = register_filesystem(&ext3_fs_type);
5196 if (err)
5197 printk(KERN_WARNING
5198 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5199 }
5200
5201 static inline void unregister_as_ext3(void)
5202 {
5203 unregister_filesystem(&ext3_fs_type);
5204 }
5205
5206 static inline int ext3_feature_set_ok(struct super_block *sb)
5207 {
5208 if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT3_FEATURE_INCOMPAT_SUPP))
5209 return 0;
5210 if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
5211 return 0;
5212 if (sb->s_flags & MS_RDONLY)
5213 return 1;
5214 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT3_FEATURE_RO_COMPAT_SUPP))
5215 return 0;
5216 return 1;
5217 }
5218 MODULE_ALIAS("ext3");
5219 #else
5220 static inline void register_as_ext3(void) { }
5221 static inline void unregister_as_ext3(void) { }
5222 static inline int ext3_feature_set_ok(struct super_block *sb) { return 0; }
5223 #endif
5224
5225 static struct file_system_type ext4_fs_type = {
5226 .owner = THIS_MODULE,
5227 .name = "ext4",
5228 .mount = ext4_mount,
5229 .kill_sb = kill_block_super,
5230 .fs_flags = FS_REQUIRES_DEV,
5231 };
5232
5233 static int __init ext4_init_feat_adverts(void)
5234 {
5235 struct ext4_features *ef;
5236 int ret = -ENOMEM;
5237
5238 ef = kzalloc(sizeof(struct ext4_features), GFP_KERNEL);
5239 if (!ef)
5240 goto out;
5241
5242 ef->f_kobj.kset = ext4_kset;
5243 init_completion(&ef->f_kobj_unregister);
5244 ret = kobject_init_and_add(&ef->f_kobj, &ext4_feat_ktype, NULL,
5245 "features");
5246 if (ret) {
5247 kfree(ef);
5248 goto out;
5249 }
5250
5251 ext4_feat = ef;
5252 ret = 0;
5253 out:
5254 return ret;
5255 }
5256
5257 static void ext4_exit_feat_adverts(void)
5258 {
5259 kobject_put(&ext4_feat->f_kobj);
5260 wait_for_completion(&ext4_feat->f_kobj_unregister);
5261 kfree(ext4_feat);
5262 }
5263
5264 /* Shared across all ext4 file systems */
5265 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5266 struct mutex ext4__aio_mutex[EXT4_WQ_HASH_SZ];
5267
5268 static int __init ext4_init_fs(void)
5269 {
5270 int i, err;
5271
5272 ext4_li_info = NULL;
5273 mutex_init(&ext4_li_mtx);
5274
5275 ext4_check_flag_values();
5276
5277 for (i = 0; i < EXT4_WQ_HASH_SZ; i++) {
5278 mutex_init(&ext4__aio_mutex[i]);
5279 init_waitqueue_head(&ext4__ioend_wq[i]);
5280 }
5281
5282 err = ext4_init_pageio();
5283 if (err)
5284 return err;
5285 err = ext4_init_system_zone();
5286 if (err)
5287 goto out6;
5288 ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
5289 if (!ext4_kset)
5290 goto out5;
5291 ext4_proc_root = proc_mkdir("fs/ext4", NULL);
5292
5293 err = ext4_init_feat_adverts();
5294 if (err)
5295 goto out4;
5296
5297 err = ext4_init_mballoc();
5298 if (err)
5299 goto out3;
5300
5301 err = ext4_init_xattr();
5302 if (err)
5303 goto out2;
5304 err = init_inodecache();
5305 if (err)
5306 goto out1;
5307 register_as_ext3();
5308 register_as_ext2();
5309 err = register_filesystem(&ext4_fs_type);
5310 if (err)
5311 goto out;
5312
5313 return 0;
5314 out:
5315 unregister_as_ext2();
5316 unregister_as_ext3();
5317 destroy_inodecache();
5318 out1:
5319 ext4_exit_xattr();
5320 out2:
5321 ext4_exit_mballoc();
5322 out3:
5323 ext4_exit_feat_adverts();
5324 out4:
5325 if (ext4_proc_root)
5326 remove_proc_entry("fs/ext4", NULL);
5327 kset_unregister(ext4_kset);
5328 out5:
5329 ext4_exit_system_zone();
5330 out6:
5331 ext4_exit_pageio();
5332 return err;
5333 }
5334
5335 static void __exit ext4_exit_fs(void)
5336 {
5337 ext4_destroy_lazyinit_thread();
5338 unregister_as_ext2();
5339 unregister_as_ext3();
5340 unregister_filesystem(&ext4_fs_type);
5341 destroy_inodecache();
5342 ext4_exit_xattr();
5343 ext4_exit_mballoc();
5344 ext4_exit_feat_adverts();
5345 remove_proc_entry("fs/ext4", NULL);
5346 kset_unregister(ext4_kset);
5347 ext4_exit_system_zone();
5348 ext4_exit_pageio();
5349 }
5350
5351 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5352 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5353 MODULE_LICENSE("GPL");
5354 module_init(ext4_init_fs)
5355 module_exit(ext4_exit_fs)