Merge 4.14.82 into android-4.14-p
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / fs / ext4 / super.c
1 /*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19 #include <linux/module.h>
20 #include <linux/string.h>
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/vmalloc.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/parser.h>
29 #include <linux/buffer_head.h>
30 #include <linux/exportfs.h>
31 #include <linux/vfs.h>
32 #include <linux/random.h>
33 #include <linux/mount.h>
34 #include <linux/namei.h>
35 #include <linux/quotaops.h>
36 #include <linux/seq_file.h>
37 #include <linux/ctype.h>
38 #include <linux/log2.h>
39 #include <linux/crc16.h>
40 #include <linux/dax.h>
41 #include <linux/cleancache.h>
42 #include <linux/uaccess.h>
43
44 #include <linux/kthread.h>
45 #include <linux/freezer.h>
46
47 #include "ext4.h"
48 #include "ext4_extents.h" /* Needed for trace points definition */
49 #include "ext4_jbd2.h"
50 #include "xattr.h"
51 #include "acl.h"
52 #include "mballoc.h"
53 #include "fsmap.h"
54
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/ext4.h>
57
58 static struct ext4_lazy_init *ext4_li_info;
59 static struct mutex ext4_li_mtx;
60 static struct ratelimit_state ext4_mount_msg_ratelimit;
61
62 static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
63 unsigned long journal_devnum);
64 static int ext4_show_options(struct seq_file *seq, struct dentry *root);
65 static int ext4_commit_super(struct super_block *sb, int sync);
66 static void ext4_mark_recovery_complete(struct super_block *sb,
67 struct ext4_super_block *es);
68 static void ext4_clear_journal_err(struct super_block *sb,
69 struct ext4_super_block *es);
70 static int ext4_sync_fs(struct super_block *sb, int wait);
71 static int ext4_remount(struct super_block *sb, int *flags, char *data);
72 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
73 static int ext4_unfreeze(struct super_block *sb);
74 static int ext4_freeze(struct super_block *sb);
75 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
76 const char *dev_name, void *data);
77 static inline int ext2_feature_set_ok(struct super_block *sb);
78 static inline int ext3_feature_set_ok(struct super_block *sb);
79 static int ext4_feature_set_ok(struct super_block *sb, int readonly);
80 static void ext4_destroy_lazyinit_thread(void);
81 static void ext4_unregister_li_request(struct super_block *sb);
82 static void ext4_clear_request_list(void);
83 static struct inode *ext4_get_journal_inode(struct super_block *sb,
84 unsigned int journal_inum);
85
86 /*
87 * Lock ordering
88 *
89 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
90 * i_mmap_rwsem (inode->i_mmap_rwsem)!
91 *
92 * page fault path:
93 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
94 * page lock -> i_data_sem (rw)
95 *
96 * buffered write path:
97 * sb_start_write -> i_mutex -> mmap_sem
98 * sb_start_write -> i_mutex -> transaction start -> page lock ->
99 * i_data_sem (rw)
100 *
101 * truncate:
102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
103 * i_mmap_rwsem (w) -> page lock
104 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
105 * transaction start -> i_data_sem (rw)
106 *
107 * direct IO:
108 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
109 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
110 * transaction start -> i_data_sem (rw)
111 *
112 * writepages:
113 * transaction start -> page lock(s) -> i_data_sem (rw)
114 */
115
116 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
117 static struct file_system_type ext2_fs_type = {
118 .owner = THIS_MODULE,
119 .name = "ext2",
120 .mount = ext4_mount,
121 .kill_sb = kill_block_super,
122 .fs_flags = FS_REQUIRES_DEV,
123 };
124 MODULE_ALIAS_FS("ext2");
125 MODULE_ALIAS("ext2");
126 #define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
127 #else
128 #define IS_EXT2_SB(sb) (0)
129 #endif
130
131
132 static struct file_system_type ext3_fs_type = {
133 .owner = THIS_MODULE,
134 .name = "ext3",
135 .mount = ext4_mount,
136 .kill_sb = kill_block_super,
137 .fs_flags = FS_REQUIRES_DEV,
138 };
139 MODULE_ALIAS_FS("ext3");
140 MODULE_ALIAS("ext3");
141 #define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
142
143 static int ext4_verify_csum_type(struct super_block *sb,
144 struct ext4_super_block *es)
145 {
146 if (!ext4_has_feature_metadata_csum(sb))
147 return 1;
148
149 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
150 }
151
152 static __le32 ext4_superblock_csum(struct super_block *sb,
153 struct ext4_super_block *es)
154 {
155 struct ext4_sb_info *sbi = EXT4_SB(sb);
156 int offset = offsetof(struct ext4_super_block, s_checksum);
157 __u32 csum;
158
159 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
160
161 return cpu_to_le32(csum);
162 }
163
164 static int ext4_superblock_csum_verify(struct super_block *sb,
165 struct ext4_super_block *es)
166 {
167 if (!ext4_has_metadata_csum(sb))
168 return 1;
169
170 return es->s_checksum == ext4_superblock_csum(sb, es);
171 }
172
173 void ext4_superblock_csum_set(struct super_block *sb)
174 {
175 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
176
177 if (!ext4_has_metadata_csum(sb))
178 return;
179
180 es->s_checksum = ext4_superblock_csum(sb, es);
181 }
182
183 void *ext4_kvmalloc(size_t size, gfp_t flags)
184 {
185 void *ret;
186
187 ret = kmalloc(size, flags | __GFP_NOWARN);
188 if (!ret)
189 ret = __vmalloc(size, flags, PAGE_KERNEL);
190 return ret;
191 }
192
193 void *ext4_kvzalloc(size_t size, gfp_t flags)
194 {
195 void *ret;
196
197 ret = kzalloc(size, flags | __GFP_NOWARN);
198 if (!ret)
199 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
200 return ret;
201 }
202
203 ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
204 struct ext4_group_desc *bg)
205 {
206 return le32_to_cpu(bg->bg_block_bitmap_lo) |
207 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
208 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
209 }
210
211 ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
212 struct ext4_group_desc *bg)
213 {
214 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
215 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
216 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
217 }
218
219 ext4_fsblk_t ext4_inode_table(struct super_block *sb,
220 struct ext4_group_desc *bg)
221 {
222 return le32_to_cpu(bg->bg_inode_table_lo) |
223 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
224 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
225 }
226
227 __u32 ext4_free_group_clusters(struct super_block *sb,
228 struct ext4_group_desc *bg)
229 {
230 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
231 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
232 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
233 }
234
235 __u32 ext4_free_inodes_count(struct super_block *sb,
236 struct ext4_group_desc *bg)
237 {
238 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
239 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
240 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
241 }
242
243 __u32 ext4_used_dirs_count(struct super_block *sb,
244 struct ext4_group_desc *bg)
245 {
246 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
247 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
248 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
249 }
250
251 __u32 ext4_itable_unused_count(struct super_block *sb,
252 struct ext4_group_desc *bg)
253 {
254 return le16_to_cpu(bg->bg_itable_unused_lo) |
255 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
256 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
257 }
258
259 void ext4_block_bitmap_set(struct super_block *sb,
260 struct ext4_group_desc *bg, ext4_fsblk_t blk)
261 {
262 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
263 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
264 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
265 }
266
267 void ext4_inode_bitmap_set(struct super_block *sb,
268 struct ext4_group_desc *bg, ext4_fsblk_t blk)
269 {
270 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
271 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
272 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
273 }
274
275 void ext4_inode_table_set(struct super_block *sb,
276 struct ext4_group_desc *bg, ext4_fsblk_t blk)
277 {
278 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
279 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
280 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
281 }
282
283 void ext4_free_group_clusters_set(struct super_block *sb,
284 struct ext4_group_desc *bg, __u32 count)
285 {
286 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
287 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
288 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
289 }
290
291 void ext4_free_inodes_set(struct super_block *sb,
292 struct ext4_group_desc *bg, __u32 count)
293 {
294 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
295 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
296 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
297 }
298
299 void ext4_used_dirs_set(struct super_block *sb,
300 struct ext4_group_desc *bg, __u32 count)
301 {
302 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
303 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
304 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
305 }
306
307 void ext4_itable_unused_set(struct super_block *sb,
308 struct ext4_group_desc *bg, __u32 count)
309 {
310 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
311 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
312 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
313 }
314
315
316 static void __save_error_info(struct super_block *sb, const char *func,
317 unsigned int line)
318 {
319 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
320
321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
322 if (bdev_read_only(sb->s_bdev))
323 return;
324 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
325 es->s_last_error_time = cpu_to_le32(get_seconds());
326 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
327 es->s_last_error_line = cpu_to_le32(line);
328 if (!es->s_first_error_time) {
329 es->s_first_error_time = es->s_last_error_time;
330 strncpy(es->s_first_error_func, func,
331 sizeof(es->s_first_error_func));
332 es->s_first_error_line = cpu_to_le32(line);
333 es->s_first_error_ino = es->s_last_error_ino;
334 es->s_first_error_block = es->s_last_error_block;
335 }
336 /*
337 * Start the daily error reporting function if it hasn't been
338 * started already
339 */
340 if (!es->s_error_count)
341 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
342 le32_add_cpu(&es->s_error_count, 1);
343 }
344
345 static void save_error_info(struct super_block *sb, const char *func,
346 unsigned int line)
347 {
348 __save_error_info(sb, func, line);
349 ext4_commit_super(sb, 1);
350 }
351
352 /*
353 * The del_gendisk() function uninitializes the disk-specific data
354 * structures, including the bdi structure, without telling anyone
355 * else. Once this happens, any attempt to call mark_buffer_dirty()
356 * (for example, by ext4_commit_super), will cause a kernel OOPS.
357 * This is a kludge to prevent these oops until we can put in a proper
358 * hook in del_gendisk() to inform the VFS and file system layers.
359 */
360 static int block_device_ejected(struct super_block *sb)
361 {
362 struct inode *bd_inode = sb->s_bdev->bd_inode;
363 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
364
365 return bdi->dev == NULL;
366 }
367
368 static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
369 {
370 struct super_block *sb = journal->j_private;
371 struct ext4_sb_info *sbi = EXT4_SB(sb);
372 int error = is_journal_aborted(journal);
373 struct ext4_journal_cb_entry *jce;
374
375 BUG_ON(txn->t_state == T_FINISHED);
376
377 ext4_process_freed_data(sb, txn->t_tid);
378
379 spin_lock(&sbi->s_md_lock);
380 while (!list_empty(&txn->t_private_list)) {
381 jce = list_entry(txn->t_private_list.next,
382 struct ext4_journal_cb_entry, jce_list);
383 list_del_init(&jce->jce_list);
384 spin_unlock(&sbi->s_md_lock);
385 jce->jce_func(sb, jce, error);
386 spin_lock(&sbi->s_md_lock);
387 }
388 spin_unlock(&sbi->s_md_lock);
389 }
390
391 /* Deal with the reporting of failure conditions on a filesystem such as
392 * inconsistencies detected or read IO failures.
393 *
394 * On ext2, we can store the error state of the filesystem in the
395 * superblock. That is not possible on ext4, because we may have other
396 * write ordering constraints on the superblock which prevent us from
397 * writing it out straight away; and given that the journal is about to
398 * be aborted, we can't rely on the current, or future, transactions to
399 * write out the superblock safely.
400 *
401 * We'll just use the jbd2_journal_abort() error code to record an error in
402 * the journal instead. On recovery, the journal will complain about
403 * that error until we've noted it down and cleared it.
404 */
405
406 static void ext4_handle_error(struct super_block *sb)
407 {
408 if (sb_rdonly(sb))
409 return;
410
411 if (!test_opt(sb, ERRORS_CONT)) {
412 journal_t *journal = EXT4_SB(sb)->s_journal;
413
414 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
415 if (journal)
416 jbd2_journal_abort(journal, -EIO);
417 }
418 if (test_opt(sb, ERRORS_RO)) {
419 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
420 /*
421 * Make sure updated value of ->s_mount_flags will be visible
422 * before ->s_flags update
423 */
424 smp_wmb();
425 sb->s_flags |= MS_RDONLY;
426 }
427 if (test_opt(sb, ERRORS_PANIC)) {
428 if (EXT4_SB(sb)->s_journal &&
429 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
430 return;
431 panic("EXT4-fs (device %s): panic forced after error\n",
432 sb->s_id);
433 }
434 }
435
436 #define ext4_error_ratelimit(sb) \
437 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
438 "EXT4-fs error")
439
440 void __ext4_error(struct super_block *sb, const char *function,
441 unsigned int line, const char *fmt, ...)
442 {
443 struct va_format vaf;
444 va_list args;
445
446 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
447 return;
448
449 if (ext4_error_ratelimit(sb)) {
450 va_start(args, fmt);
451 vaf.fmt = fmt;
452 vaf.va = &args;
453 printk(KERN_CRIT
454 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
455 sb->s_id, function, line, current->comm, &vaf);
456 va_end(args);
457 }
458 save_error_info(sb, function, line);
459 ext4_handle_error(sb);
460 }
461
462 void __ext4_error_inode(struct inode *inode, const char *function,
463 unsigned int line, ext4_fsblk_t block,
464 const char *fmt, ...)
465 {
466 va_list args;
467 struct va_format vaf;
468 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
469
470 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
471 return;
472
473 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
474 es->s_last_error_block = cpu_to_le64(block);
475 if (ext4_error_ratelimit(inode->i_sb)) {
476 va_start(args, fmt);
477 vaf.fmt = fmt;
478 vaf.va = &args;
479 if (block)
480 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
481 "inode #%lu: block %llu: comm %s: %pV\n",
482 inode->i_sb->s_id, function, line, inode->i_ino,
483 block, current->comm, &vaf);
484 else
485 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
486 "inode #%lu: comm %s: %pV\n",
487 inode->i_sb->s_id, function, line, inode->i_ino,
488 current->comm, &vaf);
489 va_end(args);
490 }
491 save_error_info(inode->i_sb, function, line);
492 ext4_handle_error(inode->i_sb);
493 }
494
495 void __ext4_error_file(struct file *file, const char *function,
496 unsigned int line, ext4_fsblk_t block,
497 const char *fmt, ...)
498 {
499 va_list args;
500 struct va_format vaf;
501 struct ext4_super_block *es;
502 struct inode *inode = file_inode(file);
503 char pathname[80], *path;
504
505 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
506 return;
507
508 es = EXT4_SB(inode->i_sb)->s_es;
509 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
510 if (ext4_error_ratelimit(inode->i_sb)) {
511 path = file_path(file, pathname, sizeof(pathname));
512 if (IS_ERR(path))
513 path = "(unknown)";
514 va_start(args, fmt);
515 vaf.fmt = fmt;
516 vaf.va = &args;
517 if (block)
518 printk(KERN_CRIT
519 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
520 "block %llu: comm %s: path %s: %pV\n",
521 inode->i_sb->s_id, function, line, inode->i_ino,
522 block, current->comm, path, &vaf);
523 else
524 printk(KERN_CRIT
525 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
526 "comm %s: path %s: %pV\n",
527 inode->i_sb->s_id, function, line, inode->i_ino,
528 current->comm, path, &vaf);
529 va_end(args);
530 }
531 save_error_info(inode->i_sb, function, line);
532 ext4_handle_error(inode->i_sb);
533 }
534
535 const char *ext4_decode_error(struct super_block *sb, int errno,
536 char nbuf[16])
537 {
538 char *errstr = NULL;
539
540 switch (errno) {
541 case -EFSCORRUPTED:
542 errstr = "Corrupt filesystem";
543 break;
544 case -EFSBADCRC:
545 errstr = "Filesystem failed CRC";
546 break;
547 case -EIO:
548 errstr = "IO failure";
549 break;
550 case -ENOMEM:
551 errstr = "Out of memory";
552 break;
553 case -EROFS:
554 if (!sb || (EXT4_SB(sb)->s_journal &&
555 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
556 errstr = "Journal has aborted";
557 else
558 errstr = "Readonly filesystem";
559 break;
560 default:
561 /* If the caller passed in an extra buffer for unknown
562 * errors, textualise them now. Else we just return
563 * NULL. */
564 if (nbuf) {
565 /* Check for truncated error codes... */
566 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
567 errstr = nbuf;
568 }
569 break;
570 }
571
572 return errstr;
573 }
574
575 /* __ext4_std_error decodes expected errors from journaling functions
576 * automatically and invokes the appropriate error response. */
577
578 void __ext4_std_error(struct super_block *sb, const char *function,
579 unsigned int line, int errno)
580 {
581 char nbuf[16];
582 const char *errstr;
583
584 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
585 return;
586
587 /* Special case: if the error is EROFS, and we're not already
588 * inside a transaction, then there's really no point in logging
589 * an error. */
590 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
591 return;
592
593 if (ext4_error_ratelimit(sb)) {
594 errstr = ext4_decode_error(sb, errno, nbuf);
595 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
596 sb->s_id, function, line, errstr);
597 }
598
599 save_error_info(sb, function, line);
600 ext4_handle_error(sb);
601 }
602
603 /*
604 * ext4_abort is a much stronger failure handler than ext4_error. The
605 * abort function may be used to deal with unrecoverable failures such
606 * as journal IO errors or ENOMEM at a critical moment in log management.
607 *
608 * We unconditionally force the filesystem into an ABORT|READONLY state,
609 * unless the error response on the fs has been set to panic in which
610 * case we take the easy way out and panic immediately.
611 */
612
613 void __ext4_abort(struct super_block *sb, const char *function,
614 unsigned int line, const char *fmt, ...)
615 {
616 struct va_format vaf;
617 va_list args;
618
619 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
620 return;
621
622 save_error_info(sb, function, line);
623 va_start(args, fmt);
624 vaf.fmt = fmt;
625 vaf.va = &args;
626 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
627 sb->s_id, function, line, &vaf);
628 va_end(args);
629
630 if (sb_rdonly(sb) == 0) {
631 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
632 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
633 /*
634 * Make sure updated value of ->s_mount_flags will be visible
635 * before ->s_flags update
636 */
637 smp_wmb();
638 sb->s_flags |= MS_RDONLY;
639 if (EXT4_SB(sb)->s_journal)
640 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
641 save_error_info(sb, function, line);
642 }
643 if (test_opt(sb, ERRORS_PANIC)) {
644 if (EXT4_SB(sb)->s_journal &&
645 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
646 return;
647 panic("EXT4-fs panic from previous error\n");
648 }
649 }
650
651 void __ext4_msg(struct super_block *sb,
652 const char *prefix, const char *fmt, ...)
653 {
654 struct va_format vaf;
655 va_list args;
656
657 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
658 return;
659
660 va_start(args, fmt);
661 vaf.fmt = fmt;
662 vaf.va = &args;
663 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
664 va_end(args);
665 }
666
667 #define ext4_warning_ratelimit(sb) \
668 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
669 "EXT4-fs warning")
670
671 void __ext4_warning(struct super_block *sb, const char *function,
672 unsigned int line, const char *fmt, ...)
673 {
674 struct va_format vaf;
675 va_list args;
676
677 if (!ext4_warning_ratelimit(sb))
678 return;
679
680 va_start(args, fmt);
681 vaf.fmt = fmt;
682 vaf.va = &args;
683 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
684 sb->s_id, function, line, &vaf);
685 va_end(args);
686 }
687
688 void __ext4_warning_inode(const struct inode *inode, const char *function,
689 unsigned int line, const char *fmt, ...)
690 {
691 struct va_format vaf;
692 va_list args;
693
694 if (!ext4_warning_ratelimit(inode->i_sb))
695 return;
696
697 va_start(args, fmt);
698 vaf.fmt = fmt;
699 vaf.va = &args;
700 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
701 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
702 function, line, inode->i_ino, current->comm, &vaf);
703 va_end(args);
704 }
705
706 void __ext4_grp_locked_error(const char *function, unsigned int line,
707 struct super_block *sb, ext4_group_t grp,
708 unsigned long ino, ext4_fsblk_t block,
709 const char *fmt, ...)
710 __releases(bitlock)
711 __acquires(bitlock)
712 {
713 struct va_format vaf;
714 va_list args;
715 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
716
717 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
718 return;
719
720 es->s_last_error_ino = cpu_to_le32(ino);
721 es->s_last_error_block = cpu_to_le64(block);
722 __save_error_info(sb, function, line);
723
724 if (ext4_error_ratelimit(sb)) {
725 va_start(args, fmt);
726 vaf.fmt = fmt;
727 vaf.va = &args;
728 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
729 sb->s_id, function, line, grp);
730 if (ino)
731 printk(KERN_CONT "inode %lu: ", ino);
732 if (block)
733 printk(KERN_CONT "block %llu:",
734 (unsigned long long) block);
735 printk(KERN_CONT "%pV\n", &vaf);
736 va_end(args);
737 }
738
739 if (test_opt(sb, ERRORS_CONT)) {
740 ext4_commit_super(sb, 0);
741 return;
742 }
743
744 ext4_unlock_group(sb, grp);
745 ext4_commit_super(sb, 1);
746 ext4_handle_error(sb);
747 /*
748 * We only get here in the ERRORS_RO case; relocking the group
749 * may be dangerous, but nothing bad will happen since the
750 * filesystem will have already been marked read/only and the
751 * journal has been aborted. We return 1 as a hint to callers
752 * who might what to use the return value from
753 * ext4_grp_locked_error() to distinguish between the
754 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
755 * aggressively from the ext4 function in question, with a
756 * more appropriate error code.
757 */
758 ext4_lock_group(sb, grp);
759 return;
760 }
761
762 void ext4_update_dynamic_rev(struct super_block *sb)
763 {
764 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
765
766 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
767 return;
768
769 ext4_warning(sb,
770 "updating to rev %d because of new feature flag, "
771 "running e2fsck is recommended",
772 EXT4_DYNAMIC_REV);
773
774 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
775 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
776 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
777 /* leave es->s_feature_*compat flags alone */
778 /* es->s_uuid will be set by e2fsck if empty */
779
780 /*
781 * The rest of the superblock fields should be zero, and if not it
782 * means they are likely already in use, so leave them alone. We
783 * can leave it up to e2fsck to clean up any inconsistencies there.
784 */
785 }
786
787 /*
788 * Open the external journal device
789 */
790 static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
791 {
792 struct block_device *bdev;
793 char b[BDEVNAME_SIZE];
794
795 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
796 if (IS_ERR(bdev))
797 goto fail;
798 return bdev;
799
800 fail:
801 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
802 __bdevname(dev, b), PTR_ERR(bdev));
803 return NULL;
804 }
805
806 /*
807 * Release the journal device
808 */
809 static void ext4_blkdev_put(struct block_device *bdev)
810 {
811 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
812 }
813
814 static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
815 {
816 struct block_device *bdev;
817 bdev = sbi->journal_bdev;
818 if (bdev) {
819 ext4_blkdev_put(bdev);
820 sbi->journal_bdev = NULL;
821 }
822 }
823
824 static inline struct inode *orphan_list_entry(struct list_head *l)
825 {
826 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
827 }
828
829 static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
830 {
831 struct list_head *l;
832
833 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
834 le32_to_cpu(sbi->s_es->s_last_orphan));
835
836 printk(KERN_ERR "sb_info orphan list:\n");
837 list_for_each(l, &sbi->s_orphan) {
838 struct inode *inode = orphan_list_entry(l);
839 printk(KERN_ERR " "
840 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
841 inode->i_sb->s_id, inode->i_ino, inode,
842 inode->i_mode, inode->i_nlink,
843 NEXT_ORPHAN(inode));
844 }
845 }
846
847 #ifdef CONFIG_QUOTA
848 static int ext4_quota_off(struct super_block *sb, int type);
849
850 static inline void ext4_quota_off_umount(struct super_block *sb)
851 {
852 int type;
853
854 /* Use our quota_off function to clear inode flags etc. */
855 for (type = 0; type < EXT4_MAXQUOTAS; type++)
856 ext4_quota_off(sb, type);
857 }
858
859 /*
860 * This is a helper function which is used in the mount/remount
861 * codepaths (which holds s_umount) to fetch the quota file name.
862 */
863 static inline char *get_qf_name(struct super_block *sb,
864 struct ext4_sb_info *sbi,
865 int type)
866 {
867 return rcu_dereference_protected(sbi->s_qf_names[type],
868 lockdep_is_held(&sb->s_umount));
869 }
870 #else
871 static inline void ext4_quota_off_umount(struct super_block *sb)
872 {
873 }
874 #endif
875
876 static void ext4_put_super(struct super_block *sb)
877 {
878 struct ext4_sb_info *sbi = EXT4_SB(sb);
879 struct ext4_super_block *es = sbi->s_es;
880 int aborted = 0;
881 int i, err;
882
883 ext4_unregister_li_request(sb);
884 ext4_quota_off_umount(sb);
885
886 flush_workqueue(sbi->rsv_conversion_wq);
887 destroy_workqueue(sbi->rsv_conversion_wq);
888
889 if (sbi->s_journal) {
890 aborted = is_journal_aborted(sbi->s_journal);
891 err = jbd2_journal_destroy(sbi->s_journal);
892 sbi->s_journal = NULL;
893 if ((err < 0) && !aborted)
894 ext4_abort(sb, "Couldn't clean up the journal");
895 }
896
897 ext4_unregister_sysfs(sb);
898 ext4_es_unregister_shrinker(sbi);
899 del_timer_sync(&sbi->s_err_report);
900 ext4_release_system_zone(sb);
901 ext4_mb_release(sb);
902 ext4_ext_release(sb);
903
904 if (!sb_rdonly(sb) && !aborted) {
905 ext4_clear_feature_journal_needs_recovery(sb);
906 es->s_state = cpu_to_le16(sbi->s_mount_state);
907 }
908 if (!sb_rdonly(sb))
909 ext4_commit_super(sb, 1);
910
911 for (i = 0; i < sbi->s_gdb_count; i++)
912 brelse(sbi->s_group_desc[i]);
913 kvfree(sbi->s_group_desc);
914 kvfree(sbi->s_flex_groups);
915 percpu_counter_destroy(&sbi->s_freeclusters_counter);
916 percpu_counter_destroy(&sbi->s_freeinodes_counter);
917 percpu_counter_destroy(&sbi->s_dirs_counter);
918 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
919 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
920 #ifdef CONFIG_QUOTA
921 for (i = 0; i < EXT4_MAXQUOTAS; i++)
922 kfree(get_qf_name(sb, sbi, i));
923 #endif
924
925 /* Debugging code just in case the in-memory inode orphan list
926 * isn't empty. The on-disk one can be non-empty if we've
927 * detected an error and taken the fs readonly, but the
928 * in-memory list had better be clean by this point. */
929 if (!list_empty(&sbi->s_orphan))
930 dump_orphan_list(sb, sbi);
931 J_ASSERT(list_empty(&sbi->s_orphan));
932
933 sync_blockdev(sb->s_bdev);
934 invalidate_bdev(sb->s_bdev);
935 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
936 /*
937 * Invalidate the journal device's buffers. We don't want them
938 * floating about in memory - the physical journal device may
939 * hotswapped, and it breaks the `ro-after' testing code.
940 */
941 sync_blockdev(sbi->journal_bdev);
942 invalidate_bdev(sbi->journal_bdev);
943 ext4_blkdev_remove(sbi);
944 }
945 if (sbi->s_ea_inode_cache) {
946 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
947 sbi->s_ea_inode_cache = NULL;
948 }
949 if (sbi->s_ea_block_cache) {
950 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
951 sbi->s_ea_block_cache = NULL;
952 }
953 if (sbi->s_mmp_tsk)
954 kthread_stop(sbi->s_mmp_tsk);
955 brelse(sbi->s_sbh);
956 sb->s_fs_info = NULL;
957 /*
958 * Now that we are completely done shutting down the
959 * superblock, we need to actually destroy the kobject.
960 */
961 kobject_put(&sbi->s_kobj);
962 wait_for_completion(&sbi->s_kobj_unregister);
963 if (sbi->s_chksum_driver)
964 crypto_free_shash(sbi->s_chksum_driver);
965 kfree(sbi->s_blockgroup_lock);
966 fs_put_dax(sbi->s_daxdev);
967 kfree(sbi);
968 }
969
970 static struct kmem_cache *ext4_inode_cachep;
971
972 /*
973 * Called inside transaction, so use GFP_NOFS
974 */
975 static struct inode *ext4_alloc_inode(struct super_block *sb)
976 {
977 struct ext4_inode_info *ei;
978
979 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
980 if (!ei)
981 return NULL;
982
983 ei->vfs_inode.i_version = 1;
984 spin_lock_init(&ei->i_raw_lock);
985 INIT_LIST_HEAD(&ei->i_prealloc_list);
986 spin_lock_init(&ei->i_prealloc_lock);
987 ext4_es_init_tree(&ei->i_es_tree);
988 rwlock_init(&ei->i_es_lock);
989 INIT_LIST_HEAD(&ei->i_es_list);
990 ei->i_es_all_nr = 0;
991 ei->i_es_shk_nr = 0;
992 ei->i_es_shrink_lblk = 0;
993 ei->i_reserved_data_blocks = 0;
994 ei->i_da_metadata_calc_len = 0;
995 ei->i_da_metadata_calc_last_lblock = 0;
996 spin_lock_init(&(ei->i_block_reservation_lock));
997 #ifdef CONFIG_QUOTA
998 ei->i_reserved_quota = 0;
999 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1000 #endif
1001 ei->jinode = NULL;
1002 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1003 spin_lock_init(&ei->i_completed_io_lock);
1004 ei->i_sync_tid = 0;
1005 ei->i_datasync_tid = 0;
1006 atomic_set(&ei->i_unwritten, 0);
1007 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1008 return &ei->vfs_inode;
1009 }
1010
1011 static int ext4_drop_inode(struct inode *inode)
1012 {
1013 int drop = generic_drop_inode(inode);
1014
1015 trace_ext4_drop_inode(inode, drop);
1016 return drop;
1017 }
1018
1019 static void ext4_i_callback(struct rcu_head *head)
1020 {
1021 struct inode *inode = container_of(head, struct inode, i_rcu);
1022 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1023 }
1024
1025 static void ext4_destroy_inode(struct inode *inode)
1026 {
1027 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1028 ext4_msg(inode->i_sb, KERN_ERR,
1029 "Inode %lu (%p): orphan list check failed!",
1030 inode->i_ino, EXT4_I(inode));
1031 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1032 EXT4_I(inode), sizeof(struct ext4_inode_info),
1033 true);
1034 dump_stack();
1035 }
1036 call_rcu(&inode->i_rcu, ext4_i_callback);
1037 }
1038
1039 static void init_once(void *foo)
1040 {
1041 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1042
1043 INIT_LIST_HEAD(&ei->i_orphan);
1044 init_rwsem(&ei->xattr_sem);
1045 init_rwsem(&ei->i_data_sem);
1046 init_rwsem(&ei->i_mmap_sem);
1047 inode_init_once(&ei->vfs_inode);
1048 }
1049
1050 static int __init init_inodecache(void)
1051 {
1052 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
1053 sizeof(struct ext4_inode_info),
1054 0, (SLAB_RECLAIM_ACCOUNT|
1055 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1056 init_once);
1057 if (ext4_inode_cachep == NULL)
1058 return -ENOMEM;
1059 return 0;
1060 }
1061
1062 static void destroy_inodecache(void)
1063 {
1064 /*
1065 * Make sure all delayed rcu free inodes are flushed before we
1066 * destroy cache.
1067 */
1068 rcu_barrier();
1069 kmem_cache_destroy(ext4_inode_cachep);
1070 }
1071
1072 void ext4_clear_inode(struct inode *inode)
1073 {
1074 invalidate_inode_buffers(inode);
1075 clear_inode(inode);
1076 dquot_drop(inode);
1077 ext4_discard_preallocations(inode);
1078 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1079 if (EXT4_I(inode)->jinode) {
1080 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1081 EXT4_I(inode)->jinode);
1082 jbd2_free_inode(EXT4_I(inode)->jinode);
1083 EXT4_I(inode)->jinode = NULL;
1084 }
1085 fscrypt_put_encryption_info(inode);
1086 }
1087
1088 static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1089 u64 ino, u32 generation)
1090 {
1091 struct inode *inode;
1092
1093 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1094 return ERR_PTR(-ESTALE);
1095 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1096 return ERR_PTR(-ESTALE);
1097
1098 /* iget isn't really right if the inode is currently unallocated!!
1099 *
1100 * ext4_read_inode will return a bad_inode if the inode had been
1101 * deleted, so we should be safe.
1102 *
1103 * Currently we don't know the generation for parent directory, so
1104 * a generation of 0 means "accept any"
1105 */
1106 inode = ext4_iget_normal(sb, ino);
1107 if (IS_ERR(inode))
1108 return ERR_CAST(inode);
1109 if (generation && inode->i_generation != generation) {
1110 iput(inode);
1111 return ERR_PTR(-ESTALE);
1112 }
1113
1114 return inode;
1115 }
1116
1117 static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1118 int fh_len, int fh_type)
1119 {
1120 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1121 ext4_nfs_get_inode);
1122 }
1123
1124 static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1125 int fh_len, int fh_type)
1126 {
1127 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1128 ext4_nfs_get_inode);
1129 }
1130
1131 /*
1132 * Try to release metadata pages (indirect blocks, directories) which are
1133 * mapped via the block device. Since these pages could have journal heads
1134 * which would prevent try_to_free_buffers() from freeing them, we must use
1135 * jbd2 layer's try_to_free_buffers() function to release them.
1136 */
1137 static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1138 gfp_t wait)
1139 {
1140 journal_t *journal = EXT4_SB(sb)->s_journal;
1141
1142 WARN_ON(PageChecked(page));
1143 if (!page_has_buffers(page))
1144 return 0;
1145 if (journal)
1146 return jbd2_journal_try_to_free_buffers(journal, page,
1147 wait & ~__GFP_DIRECT_RECLAIM);
1148 return try_to_free_buffers(page);
1149 }
1150
1151 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1152 static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1153 {
1154 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1155 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1156 }
1157
1158 static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1159 void *fs_data)
1160 {
1161 handle_t *handle = fs_data;
1162 int res, res2, credits, retries = 0;
1163
1164 /*
1165 * Encrypting the root directory is not allowed because e2fsck expects
1166 * lost+found to exist and be unencrypted, and encrypting the root
1167 * directory would imply encrypting the lost+found directory as well as
1168 * the filename "lost+found" itself.
1169 */
1170 if (inode->i_ino == EXT4_ROOT_INO)
1171 return -EPERM;
1172
1173 res = ext4_convert_inline_data(inode);
1174 if (res)
1175 return res;
1176
1177 /*
1178 * If a journal handle was specified, then the encryption context is
1179 * being set on a new inode via inheritance and is part of a larger
1180 * transaction to create the inode. Otherwise the encryption context is
1181 * being set on an existing inode in its own transaction. Only in the
1182 * latter case should the "retry on ENOSPC" logic be used.
1183 */
1184
1185 if (handle) {
1186 res = ext4_xattr_set_handle(handle, inode,
1187 EXT4_XATTR_INDEX_ENCRYPTION,
1188 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1189 ctx, len, 0);
1190 if (!res) {
1191 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1192 ext4_clear_inode_state(inode,
1193 EXT4_STATE_MAY_INLINE_DATA);
1194 /*
1195 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1196 * S_DAX may be disabled
1197 */
1198 ext4_set_inode_flags(inode);
1199 }
1200 return res;
1201 }
1202
1203 res = dquot_initialize(inode);
1204 if (res)
1205 return res;
1206 retry:
1207 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1208 &credits);
1209 if (res)
1210 return res;
1211
1212 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1213 if (IS_ERR(handle))
1214 return PTR_ERR(handle);
1215
1216 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1217 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1218 ctx, len, 0);
1219 if (!res) {
1220 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1221 /*
1222 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1223 * S_DAX may be disabled
1224 */
1225 ext4_set_inode_flags(inode);
1226 res = ext4_mark_inode_dirty(handle, inode);
1227 if (res)
1228 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1229 }
1230 res2 = ext4_journal_stop(handle);
1231
1232 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1233 goto retry;
1234 if (!res)
1235 res = res2;
1236 return res;
1237 }
1238
1239 static bool ext4_dummy_context(struct inode *inode)
1240 {
1241 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1242 }
1243
1244 static unsigned ext4_max_namelen(struct inode *inode)
1245 {
1246 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1247 EXT4_NAME_LEN;
1248 }
1249
1250 static const struct fscrypt_operations ext4_cryptops = {
1251 .key_prefix = "ext4:",
1252 .get_context = ext4_get_context,
1253 .set_context = ext4_set_context,
1254 .dummy_context = ext4_dummy_context,
1255 .empty_dir = ext4_empty_dir,
1256 .max_namelen = ext4_max_namelen,
1257 };
1258 #endif
1259
1260 #ifdef CONFIG_QUOTA
1261 static const char * const quotatypes[] = INITQFNAMES;
1262 #define QTYPE2NAME(t) (quotatypes[t])
1263
1264 static int ext4_write_dquot(struct dquot *dquot);
1265 static int ext4_acquire_dquot(struct dquot *dquot);
1266 static int ext4_release_dquot(struct dquot *dquot);
1267 static int ext4_mark_dquot_dirty(struct dquot *dquot);
1268 static int ext4_write_info(struct super_block *sb, int type);
1269 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1270 const struct path *path);
1271 static int ext4_quota_on_mount(struct super_block *sb, int type);
1272 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1273 size_t len, loff_t off);
1274 static ssize_t ext4_quota_write(struct super_block *sb, int type,
1275 const char *data, size_t len, loff_t off);
1276 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1277 unsigned int flags);
1278 static int ext4_enable_quotas(struct super_block *sb);
1279 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1280
1281 static struct dquot **ext4_get_dquots(struct inode *inode)
1282 {
1283 return EXT4_I(inode)->i_dquot;
1284 }
1285
1286 static const struct dquot_operations ext4_quota_operations = {
1287 .get_reserved_space = ext4_get_reserved_space,
1288 .write_dquot = ext4_write_dquot,
1289 .acquire_dquot = ext4_acquire_dquot,
1290 .release_dquot = ext4_release_dquot,
1291 .mark_dirty = ext4_mark_dquot_dirty,
1292 .write_info = ext4_write_info,
1293 .alloc_dquot = dquot_alloc,
1294 .destroy_dquot = dquot_destroy,
1295 .get_projid = ext4_get_projid,
1296 .get_inode_usage = ext4_get_inode_usage,
1297 .get_next_id = ext4_get_next_id,
1298 };
1299
1300 static const struct quotactl_ops ext4_qctl_operations = {
1301 .quota_on = ext4_quota_on,
1302 .quota_off = ext4_quota_off,
1303 .quota_sync = dquot_quota_sync,
1304 .get_state = dquot_get_state,
1305 .set_info = dquot_set_dqinfo,
1306 .get_dqblk = dquot_get_dqblk,
1307 .set_dqblk = dquot_set_dqblk,
1308 .get_nextdqblk = dquot_get_next_dqblk,
1309 };
1310 #endif
1311
1312 static const struct super_operations ext4_sops = {
1313 .alloc_inode = ext4_alloc_inode,
1314 .destroy_inode = ext4_destroy_inode,
1315 .write_inode = ext4_write_inode,
1316 .dirty_inode = ext4_dirty_inode,
1317 .drop_inode = ext4_drop_inode,
1318 .evict_inode = ext4_evict_inode,
1319 .put_super = ext4_put_super,
1320 .sync_fs = ext4_sync_fs,
1321 .freeze_fs = ext4_freeze,
1322 .unfreeze_fs = ext4_unfreeze,
1323 .statfs = ext4_statfs,
1324 .remount_fs = ext4_remount,
1325 .show_options = ext4_show_options,
1326 #ifdef CONFIG_QUOTA
1327 .quota_read = ext4_quota_read,
1328 .quota_write = ext4_quota_write,
1329 .get_dquots = ext4_get_dquots,
1330 #endif
1331 .bdev_try_to_free_page = bdev_try_to_free_page,
1332 };
1333
1334 static const struct export_operations ext4_export_ops = {
1335 .fh_to_dentry = ext4_fh_to_dentry,
1336 .fh_to_parent = ext4_fh_to_parent,
1337 .get_parent = ext4_get_parent,
1338 };
1339
1340 enum {
1341 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1342 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1343 Opt_nouid32, Opt_debug, Opt_removed,
1344 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1345 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1346 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1347 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1348 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1349 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1350 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1351 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1352 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1353 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1354 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1355 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1356 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1357 Opt_inode_readahead_blks, Opt_journal_ioprio,
1358 Opt_dioread_nolock, Opt_dioread_lock,
1359 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1360 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1361 };
1362
1363 static const match_table_t tokens = {
1364 {Opt_bsd_df, "bsddf"},
1365 {Opt_minix_df, "minixdf"},
1366 {Opt_grpid, "grpid"},
1367 {Opt_grpid, "bsdgroups"},
1368 {Opt_nogrpid, "nogrpid"},
1369 {Opt_nogrpid, "sysvgroups"},
1370 {Opt_resgid, "resgid=%u"},
1371 {Opt_resuid, "resuid=%u"},
1372 {Opt_sb, "sb=%u"},
1373 {Opt_err_cont, "errors=continue"},
1374 {Opt_err_panic, "errors=panic"},
1375 {Opt_err_ro, "errors=remount-ro"},
1376 {Opt_nouid32, "nouid32"},
1377 {Opt_debug, "debug"},
1378 {Opt_removed, "oldalloc"},
1379 {Opt_removed, "orlov"},
1380 {Opt_user_xattr, "user_xattr"},
1381 {Opt_nouser_xattr, "nouser_xattr"},
1382 {Opt_acl, "acl"},
1383 {Opt_noacl, "noacl"},
1384 {Opt_noload, "norecovery"},
1385 {Opt_noload, "noload"},
1386 {Opt_removed, "nobh"},
1387 {Opt_removed, "bh"},
1388 {Opt_commit, "commit=%u"},
1389 {Opt_min_batch_time, "min_batch_time=%u"},
1390 {Opt_max_batch_time, "max_batch_time=%u"},
1391 {Opt_journal_dev, "journal_dev=%u"},
1392 {Opt_journal_path, "journal_path=%s"},
1393 {Opt_journal_checksum, "journal_checksum"},
1394 {Opt_nojournal_checksum, "nojournal_checksum"},
1395 {Opt_journal_async_commit, "journal_async_commit"},
1396 {Opt_abort, "abort"},
1397 {Opt_data_journal, "data=journal"},
1398 {Opt_data_ordered, "data=ordered"},
1399 {Opt_data_writeback, "data=writeback"},
1400 {Opt_data_err_abort, "data_err=abort"},
1401 {Opt_data_err_ignore, "data_err=ignore"},
1402 {Opt_offusrjquota, "usrjquota="},
1403 {Opt_usrjquota, "usrjquota=%s"},
1404 {Opt_offgrpjquota, "grpjquota="},
1405 {Opt_grpjquota, "grpjquota=%s"},
1406 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1407 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1408 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1409 {Opt_grpquota, "grpquota"},
1410 {Opt_noquota, "noquota"},
1411 {Opt_quota, "quota"},
1412 {Opt_usrquota, "usrquota"},
1413 {Opt_prjquota, "prjquota"},
1414 {Opt_barrier, "barrier=%u"},
1415 {Opt_barrier, "barrier"},
1416 {Opt_nobarrier, "nobarrier"},
1417 {Opt_i_version, "i_version"},
1418 {Opt_dax, "dax"},
1419 {Opt_stripe, "stripe=%u"},
1420 {Opt_delalloc, "delalloc"},
1421 {Opt_lazytime, "lazytime"},
1422 {Opt_nolazytime, "nolazytime"},
1423 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1424 {Opt_nodelalloc, "nodelalloc"},
1425 {Opt_removed, "mblk_io_submit"},
1426 {Opt_removed, "nomblk_io_submit"},
1427 {Opt_block_validity, "block_validity"},
1428 {Opt_noblock_validity, "noblock_validity"},
1429 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1430 {Opt_journal_ioprio, "journal_ioprio=%u"},
1431 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1432 {Opt_auto_da_alloc, "auto_da_alloc"},
1433 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1434 {Opt_dioread_nolock, "dioread_nolock"},
1435 {Opt_dioread_lock, "dioread_lock"},
1436 {Opt_discard, "discard"},
1437 {Opt_nodiscard, "nodiscard"},
1438 {Opt_init_itable, "init_itable=%u"},
1439 {Opt_init_itable, "init_itable"},
1440 {Opt_noinit_itable, "noinit_itable"},
1441 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1442 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1443 {Opt_nombcache, "nombcache"},
1444 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1445 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1446 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1447 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1448 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1449 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1450 {Opt_err, NULL},
1451 };
1452
1453 static ext4_fsblk_t get_sb_block(void **data)
1454 {
1455 ext4_fsblk_t sb_block;
1456 char *options = (char *) *data;
1457
1458 if (!options || strncmp(options, "sb=", 3) != 0)
1459 return 1; /* Default location */
1460
1461 options += 3;
1462 /* TODO: use simple_strtoll with >32bit ext4 */
1463 sb_block = simple_strtoul(options, &options, 0);
1464 if (*options && *options != ',') {
1465 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1466 (char *) *data);
1467 return 1;
1468 }
1469 if (*options == ',')
1470 options++;
1471 *data = (void *) options;
1472
1473 return sb_block;
1474 }
1475
1476 #define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1477 static const char deprecated_msg[] =
1478 "Mount option \"%s\" will be removed by %s\n"
1479 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1480
1481 #ifdef CONFIG_QUOTA
1482 static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1483 {
1484 struct ext4_sb_info *sbi = EXT4_SB(sb);
1485 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1486 int ret = -1;
1487
1488 if (sb_any_quota_loaded(sb) && !old_qname) {
1489 ext4_msg(sb, KERN_ERR,
1490 "Cannot change journaled "
1491 "quota options when quota turned on");
1492 return -1;
1493 }
1494 if (ext4_has_feature_quota(sb)) {
1495 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1496 "ignored when QUOTA feature is enabled");
1497 return 1;
1498 }
1499 qname = match_strdup(args);
1500 if (!qname) {
1501 ext4_msg(sb, KERN_ERR,
1502 "Not enough memory for storing quotafile name");
1503 return -1;
1504 }
1505 if (old_qname) {
1506 if (strcmp(old_qname, qname) == 0)
1507 ret = 1;
1508 else
1509 ext4_msg(sb, KERN_ERR,
1510 "%s quota file already specified",
1511 QTYPE2NAME(qtype));
1512 goto errout;
1513 }
1514 if (strchr(qname, '/')) {
1515 ext4_msg(sb, KERN_ERR,
1516 "quotafile must be on filesystem root");
1517 goto errout;
1518 }
1519 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1520 set_opt(sb, QUOTA);
1521 return 1;
1522 errout:
1523 kfree(qname);
1524 return ret;
1525 }
1526
1527 static int clear_qf_name(struct super_block *sb, int qtype)
1528 {
1529
1530 struct ext4_sb_info *sbi = EXT4_SB(sb);
1531 char *old_qname = get_qf_name(sb, sbi, qtype);
1532
1533 if (sb_any_quota_loaded(sb) && old_qname) {
1534 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1535 " when quota turned on");
1536 return -1;
1537 }
1538 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1539 synchronize_rcu();
1540 kfree(old_qname);
1541 return 1;
1542 }
1543 #endif
1544
1545 #define MOPT_SET 0x0001
1546 #define MOPT_CLEAR 0x0002
1547 #define MOPT_NOSUPPORT 0x0004
1548 #define MOPT_EXPLICIT 0x0008
1549 #define MOPT_CLEAR_ERR 0x0010
1550 #define MOPT_GTE0 0x0020
1551 #ifdef CONFIG_QUOTA
1552 #define MOPT_Q 0
1553 #define MOPT_QFMT 0x0040
1554 #else
1555 #define MOPT_Q MOPT_NOSUPPORT
1556 #define MOPT_QFMT MOPT_NOSUPPORT
1557 #endif
1558 #define MOPT_DATAJ 0x0080
1559 #define MOPT_NO_EXT2 0x0100
1560 #define MOPT_NO_EXT3 0x0200
1561 #define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1562 #define MOPT_STRING 0x0400
1563
1564 static const struct mount_opts {
1565 int token;
1566 int mount_opt;
1567 int flags;
1568 } ext4_mount_opts[] = {
1569 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1570 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1571 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1572 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1573 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1574 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1575 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1576 MOPT_EXT4_ONLY | MOPT_SET},
1577 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1578 MOPT_EXT4_ONLY | MOPT_CLEAR},
1579 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1580 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1581 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1582 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1583 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1584 MOPT_EXT4_ONLY | MOPT_CLEAR},
1585 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1586 MOPT_EXT4_ONLY | MOPT_CLEAR},
1587 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1588 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1589 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1590 EXT4_MOUNT_JOURNAL_CHECKSUM),
1591 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1592 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1593 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1594 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1595 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1596 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1597 MOPT_NO_EXT2},
1598 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1599 MOPT_NO_EXT2},
1600 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1601 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1602 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1603 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1604 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1605 {Opt_commit, 0, MOPT_GTE0},
1606 {Opt_max_batch_time, 0, MOPT_GTE0},
1607 {Opt_min_batch_time, 0, MOPT_GTE0},
1608 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1609 {Opt_init_itable, 0, MOPT_GTE0},
1610 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1611 {Opt_stripe, 0, MOPT_GTE0},
1612 {Opt_resuid, 0, MOPT_GTE0},
1613 {Opt_resgid, 0, MOPT_GTE0},
1614 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1615 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1616 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1617 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1618 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1619 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1620 MOPT_NO_EXT2 | MOPT_DATAJ},
1621 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1622 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1623 #ifdef CONFIG_EXT4_FS_POSIX_ACL
1624 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1625 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1626 #else
1627 {Opt_acl, 0, MOPT_NOSUPPORT},
1628 {Opt_noacl, 0, MOPT_NOSUPPORT},
1629 #endif
1630 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1631 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1632 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1633 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1634 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1635 MOPT_SET | MOPT_Q},
1636 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1637 MOPT_SET | MOPT_Q},
1638 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1639 MOPT_SET | MOPT_Q},
1640 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1641 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1642 MOPT_CLEAR | MOPT_Q},
1643 {Opt_usrjquota, 0, MOPT_Q},
1644 {Opt_grpjquota, 0, MOPT_Q},
1645 {Opt_offusrjquota, 0, MOPT_Q},
1646 {Opt_offgrpjquota, 0, MOPT_Q},
1647 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1648 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1649 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1650 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1651 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1652 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1653 {Opt_err, 0, 0}
1654 };
1655
1656 static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1657 substring_t *args, unsigned long *journal_devnum,
1658 unsigned int *journal_ioprio, int is_remount)
1659 {
1660 struct ext4_sb_info *sbi = EXT4_SB(sb);
1661 const struct mount_opts *m;
1662 kuid_t uid;
1663 kgid_t gid;
1664 int arg = 0;
1665
1666 #ifdef CONFIG_QUOTA
1667 if (token == Opt_usrjquota)
1668 return set_qf_name(sb, USRQUOTA, &args[0]);
1669 else if (token == Opt_grpjquota)
1670 return set_qf_name(sb, GRPQUOTA, &args[0]);
1671 else if (token == Opt_offusrjquota)
1672 return clear_qf_name(sb, USRQUOTA);
1673 else if (token == Opt_offgrpjquota)
1674 return clear_qf_name(sb, GRPQUOTA);
1675 #endif
1676 switch (token) {
1677 case Opt_noacl:
1678 case Opt_nouser_xattr:
1679 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1680 break;
1681 case Opt_sb:
1682 return 1; /* handled by get_sb_block() */
1683 case Opt_removed:
1684 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1685 return 1;
1686 case Opt_abort:
1687 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1688 return 1;
1689 case Opt_i_version:
1690 sb->s_flags |= SB_I_VERSION;
1691 return 1;
1692 case Opt_lazytime:
1693 sb->s_flags |= MS_LAZYTIME;
1694 return 1;
1695 case Opt_nolazytime:
1696 sb->s_flags &= ~MS_LAZYTIME;
1697 return 1;
1698 }
1699
1700 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1701 if (token == m->token)
1702 break;
1703
1704 if (m->token == Opt_err) {
1705 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1706 "or missing value", opt);
1707 return -1;
1708 }
1709
1710 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1711 ext4_msg(sb, KERN_ERR,
1712 "Mount option \"%s\" incompatible with ext2", opt);
1713 return -1;
1714 }
1715 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1716 ext4_msg(sb, KERN_ERR,
1717 "Mount option \"%s\" incompatible with ext3", opt);
1718 return -1;
1719 }
1720
1721 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1722 return -1;
1723 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1724 return -1;
1725 if (m->flags & MOPT_EXPLICIT) {
1726 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1727 set_opt2(sb, EXPLICIT_DELALLOC);
1728 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1729 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1730 } else
1731 return -1;
1732 }
1733 if (m->flags & MOPT_CLEAR_ERR)
1734 clear_opt(sb, ERRORS_MASK);
1735 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1736 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1737 "options when quota turned on");
1738 return -1;
1739 }
1740
1741 if (m->flags & MOPT_NOSUPPORT) {
1742 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1743 } else if (token == Opt_commit) {
1744 if (arg == 0)
1745 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1746 sbi->s_commit_interval = HZ * arg;
1747 } else if (token == Opt_debug_want_extra_isize) {
1748 sbi->s_want_extra_isize = arg;
1749 } else if (token == Opt_max_batch_time) {
1750 sbi->s_max_batch_time = arg;
1751 } else if (token == Opt_min_batch_time) {
1752 sbi->s_min_batch_time = arg;
1753 } else if (token == Opt_inode_readahead_blks) {
1754 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1755 ext4_msg(sb, KERN_ERR,
1756 "EXT4-fs: inode_readahead_blks must be "
1757 "0 or a power of 2 smaller than 2^31");
1758 return -1;
1759 }
1760 sbi->s_inode_readahead_blks = arg;
1761 } else if (token == Opt_init_itable) {
1762 set_opt(sb, INIT_INODE_TABLE);
1763 if (!args->from)
1764 arg = EXT4_DEF_LI_WAIT_MULT;
1765 sbi->s_li_wait_mult = arg;
1766 } else if (token == Opt_max_dir_size_kb) {
1767 sbi->s_max_dir_size_kb = arg;
1768 } else if (token == Opt_stripe) {
1769 sbi->s_stripe = arg;
1770 } else if (token == Opt_resuid) {
1771 uid = make_kuid(current_user_ns(), arg);
1772 if (!uid_valid(uid)) {
1773 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1774 return -1;
1775 }
1776 sbi->s_resuid = uid;
1777 } else if (token == Opt_resgid) {
1778 gid = make_kgid(current_user_ns(), arg);
1779 if (!gid_valid(gid)) {
1780 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1781 return -1;
1782 }
1783 sbi->s_resgid = gid;
1784 } else if (token == Opt_journal_dev) {
1785 if (is_remount) {
1786 ext4_msg(sb, KERN_ERR,
1787 "Cannot specify journal on remount");
1788 return -1;
1789 }
1790 *journal_devnum = arg;
1791 } else if (token == Opt_journal_path) {
1792 char *journal_path;
1793 struct inode *journal_inode;
1794 struct path path;
1795 int error;
1796
1797 if (is_remount) {
1798 ext4_msg(sb, KERN_ERR,
1799 "Cannot specify journal on remount");
1800 return -1;
1801 }
1802 journal_path = match_strdup(&args[0]);
1803 if (!journal_path) {
1804 ext4_msg(sb, KERN_ERR, "error: could not dup "
1805 "journal device string");
1806 return -1;
1807 }
1808
1809 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1810 if (error) {
1811 ext4_msg(sb, KERN_ERR, "error: could not find "
1812 "journal device path: error %d", error);
1813 kfree(journal_path);
1814 return -1;
1815 }
1816
1817 journal_inode = d_inode(path.dentry);
1818 if (!S_ISBLK(journal_inode->i_mode)) {
1819 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1820 "is not a block device", journal_path);
1821 path_put(&path);
1822 kfree(journal_path);
1823 return -1;
1824 }
1825
1826 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1827 path_put(&path);
1828 kfree(journal_path);
1829 } else if (token == Opt_journal_ioprio) {
1830 if (arg > 7) {
1831 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1832 " (must be 0-7)");
1833 return -1;
1834 }
1835 *journal_ioprio =
1836 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1837 } else if (token == Opt_test_dummy_encryption) {
1838 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1839 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1840 ext4_msg(sb, KERN_WARNING,
1841 "Test dummy encryption mode enabled");
1842 #else
1843 ext4_msg(sb, KERN_WARNING,
1844 "Test dummy encryption mount option ignored");
1845 #endif
1846 } else if (m->flags & MOPT_DATAJ) {
1847 if (is_remount) {
1848 if (!sbi->s_journal)
1849 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1850 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1851 ext4_msg(sb, KERN_ERR,
1852 "Cannot change data mode on remount");
1853 return -1;
1854 }
1855 } else {
1856 clear_opt(sb, DATA_FLAGS);
1857 sbi->s_mount_opt |= m->mount_opt;
1858 }
1859 #ifdef CONFIG_QUOTA
1860 } else if (m->flags & MOPT_QFMT) {
1861 if (sb_any_quota_loaded(sb) &&
1862 sbi->s_jquota_fmt != m->mount_opt) {
1863 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1864 "quota options when quota turned on");
1865 return -1;
1866 }
1867 if (ext4_has_feature_quota(sb)) {
1868 ext4_msg(sb, KERN_INFO,
1869 "Quota format mount options ignored "
1870 "when QUOTA feature is enabled");
1871 return 1;
1872 }
1873 sbi->s_jquota_fmt = m->mount_opt;
1874 #endif
1875 } else if (token == Opt_dax) {
1876 #ifdef CONFIG_FS_DAX
1877 ext4_msg(sb, KERN_WARNING,
1878 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1879 sbi->s_mount_opt |= m->mount_opt;
1880 #else
1881 ext4_msg(sb, KERN_INFO, "dax option not supported");
1882 return -1;
1883 #endif
1884 } else if (token == Opt_data_err_abort) {
1885 sbi->s_mount_opt |= m->mount_opt;
1886 } else if (token == Opt_data_err_ignore) {
1887 sbi->s_mount_opt &= ~m->mount_opt;
1888 } else {
1889 if (!args->from)
1890 arg = 1;
1891 if (m->flags & MOPT_CLEAR)
1892 arg = !arg;
1893 else if (unlikely(!(m->flags & MOPT_SET))) {
1894 ext4_msg(sb, KERN_WARNING,
1895 "buggy handling of option %s", opt);
1896 WARN_ON(1);
1897 return -1;
1898 }
1899 if (arg != 0)
1900 sbi->s_mount_opt |= m->mount_opt;
1901 else
1902 sbi->s_mount_opt &= ~m->mount_opt;
1903 }
1904 return 1;
1905 }
1906
1907 static int parse_options(char *options, struct super_block *sb,
1908 unsigned long *journal_devnum,
1909 unsigned int *journal_ioprio,
1910 int is_remount)
1911 {
1912 struct ext4_sb_info *sbi = EXT4_SB(sb);
1913 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
1914 substring_t args[MAX_OPT_ARGS];
1915 int token;
1916
1917 if (!options)
1918 return 1;
1919
1920 while ((p = strsep(&options, ",")) != NULL) {
1921 if (!*p)
1922 continue;
1923 /*
1924 * Initialize args struct so we know whether arg was
1925 * found; some options take optional arguments.
1926 */
1927 args[0].to = args[0].from = NULL;
1928 token = match_token(p, tokens, args);
1929 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1930 journal_ioprio, is_remount) < 0)
1931 return 0;
1932 }
1933 #ifdef CONFIG_QUOTA
1934 /*
1935 * We do the test below only for project quotas. 'usrquota' and
1936 * 'grpquota' mount options are allowed even without quota feature
1937 * to support legacy quotas in quota files.
1938 */
1939 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1940 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1941 "Cannot enable project quota enforcement.");
1942 return 0;
1943 }
1944 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
1945 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
1946 if (usr_qf_name || grp_qf_name) {
1947 if (test_opt(sb, USRQUOTA) && usr_qf_name)
1948 clear_opt(sb, USRQUOTA);
1949
1950 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
1951 clear_opt(sb, GRPQUOTA);
1952
1953 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1954 ext4_msg(sb, KERN_ERR, "old and new quota "
1955 "format mixing");
1956 return 0;
1957 }
1958
1959 if (!sbi->s_jquota_fmt) {
1960 ext4_msg(sb, KERN_ERR, "journaled quota format "
1961 "not specified");
1962 return 0;
1963 }
1964 }
1965 #endif
1966 if (test_opt(sb, DIOREAD_NOLOCK)) {
1967 int blocksize =
1968 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1969
1970 if (blocksize < PAGE_SIZE) {
1971 ext4_msg(sb, KERN_ERR, "can't mount with "
1972 "dioread_nolock if block size != PAGE_SIZE");
1973 return 0;
1974 }
1975 }
1976 return 1;
1977 }
1978
1979 static inline void ext4_show_quota_options(struct seq_file *seq,
1980 struct super_block *sb)
1981 {
1982 #if defined(CONFIG_QUOTA)
1983 struct ext4_sb_info *sbi = EXT4_SB(sb);
1984 char *usr_qf_name, *grp_qf_name;
1985
1986 if (sbi->s_jquota_fmt) {
1987 char *fmtname = "";
1988
1989 switch (sbi->s_jquota_fmt) {
1990 case QFMT_VFS_OLD:
1991 fmtname = "vfsold";
1992 break;
1993 case QFMT_VFS_V0:
1994 fmtname = "vfsv0";
1995 break;
1996 case QFMT_VFS_V1:
1997 fmtname = "vfsv1";
1998 break;
1999 }
2000 seq_printf(seq, ",jqfmt=%s", fmtname);
2001 }
2002
2003 rcu_read_lock();
2004 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2005 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2006 if (usr_qf_name)
2007 seq_show_option(seq, "usrjquota", usr_qf_name);
2008 if (grp_qf_name)
2009 seq_show_option(seq, "grpjquota", grp_qf_name);
2010 rcu_read_unlock();
2011 #endif
2012 }
2013
2014 static const char *token2str(int token)
2015 {
2016 const struct match_token *t;
2017
2018 for (t = tokens; t->token != Opt_err; t++)
2019 if (t->token == token && !strchr(t->pattern, '='))
2020 break;
2021 return t->pattern;
2022 }
2023
2024 /*
2025 * Show an option if
2026 * - it's set to a non-default value OR
2027 * - if the per-sb default is different from the global default
2028 */
2029 static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2030 int nodefs)
2031 {
2032 struct ext4_sb_info *sbi = EXT4_SB(sb);
2033 struct ext4_super_block *es = sbi->s_es;
2034 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
2035 const struct mount_opts *m;
2036 char sep = nodefs ? '\n' : ',';
2037
2038 #define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2039 #define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2040
2041 if (sbi->s_sb_block != 1)
2042 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2043
2044 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2045 int want_set = m->flags & MOPT_SET;
2046 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2047 (m->flags & MOPT_CLEAR_ERR))
2048 continue;
2049 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2050 continue; /* skip if same as the default */
2051 if ((want_set &&
2052 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2053 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2054 continue; /* select Opt_noFoo vs Opt_Foo */
2055 SEQ_OPTS_PRINT("%s", token2str(m->token));
2056 }
2057
2058 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2059 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2060 SEQ_OPTS_PRINT("resuid=%u",
2061 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2062 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2063 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2064 SEQ_OPTS_PRINT("resgid=%u",
2065 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2066 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2067 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2068 SEQ_OPTS_PUTS("errors=remount-ro");
2069 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2070 SEQ_OPTS_PUTS("errors=continue");
2071 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2072 SEQ_OPTS_PUTS("errors=panic");
2073 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2074 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2075 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2076 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2077 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2078 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2079 if (sb->s_flags & SB_I_VERSION)
2080 SEQ_OPTS_PUTS("i_version");
2081 if (nodefs || sbi->s_stripe)
2082 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2083 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
2084 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2085 SEQ_OPTS_PUTS("data=journal");
2086 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2087 SEQ_OPTS_PUTS("data=ordered");
2088 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2089 SEQ_OPTS_PUTS("data=writeback");
2090 }
2091 if (nodefs ||
2092 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2093 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2094 sbi->s_inode_readahead_blks);
2095
2096 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2097 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2098 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2099 if (nodefs || sbi->s_max_dir_size_kb)
2100 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2101 if (test_opt(sb, DATA_ERR_ABORT))
2102 SEQ_OPTS_PUTS("data_err=abort");
2103 if (DUMMY_ENCRYPTION_ENABLED(sbi))
2104 SEQ_OPTS_PUTS("test_dummy_encryption");
2105
2106 ext4_show_quota_options(seq, sb);
2107 return 0;
2108 }
2109
2110 static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2111 {
2112 return _ext4_show_options(seq, root->d_sb, 0);
2113 }
2114
2115 int ext4_seq_options_show(struct seq_file *seq, void *offset)
2116 {
2117 struct super_block *sb = seq->private;
2118 int rc;
2119
2120 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2121 rc = _ext4_show_options(seq, sb, 1);
2122 seq_puts(seq, "\n");
2123 return rc;
2124 }
2125
2126 static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2127 int read_only)
2128 {
2129 struct ext4_sb_info *sbi = EXT4_SB(sb);
2130 int res = 0;
2131
2132 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2133 ext4_msg(sb, KERN_ERR, "revision level too high, "
2134 "forcing read-only mode");
2135 res = MS_RDONLY;
2136 }
2137 if (read_only)
2138 goto done;
2139 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2140 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2141 "running e2fsck is recommended");
2142 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2143 ext4_msg(sb, KERN_WARNING,
2144 "warning: mounting fs with errors, "
2145 "running e2fsck is recommended");
2146 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2147 le16_to_cpu(es->s_mnt_count) >=
2148 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2149 ext4_msg(sb, KERN_WARNING,
2150 "warning: maximal mount count reached, "
2151 "running e2fsck is recommended");
2152 else if (le32_to_cpu(es->s_checkinterval) &&
2153 (le32_to_cpu(es->s_lastcheck) +
2154 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2155 ext4_msg(sb, KERN_WARNING,
2156 "warning: checktime reached, "
2157 "running e2fsck is recommended");
2158 if (!sbi->s_journal)
2159 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2160 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2161 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2162 le16_add_cpu(&es->s_mnt_count, 1);
2163 es->s_mtime = cpu_to_le32(get_seconds());
2164 ext4_update_dynamic_rev(sb);
2165 if (sbi->s_journal)
2166 ext4_set_feature_journal_needs_recovery(sb);
2167
2168 ext4_commit_super(sb, 1);
2169 done:
2170 if (test_opt(sb, DEBUG))
2171 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2172 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2173 sb->s_blocksize,
2174 sbi->s_groups_count,
2175 EXT4_BLOCKS_PER_GROUP(sb),
2176 EXT4_INODES_PER_GROUP(sb),
2177 sbi->s_mount_opt, sbi->s_mount_opt2);
2178
2179 cleancache_init_fs(sb);
2180 return res;
2181 }
2182
2183 int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2184 {
2185 struct ext4_sb_info *sbi = EXT4_SB(sb);
2186 struct flex_groups *new_groups;
2187 int size;
2188
2189 if (!sbi->s_log_groups_per_flex)
2190 return 0;
2191
2192 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2193 if (size <= sbi->s_flex_groups_allocated)
2194 return 0;
2195
2196 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2197 new_groups = kvzalloc(size, GFP_KERNEL);
2198 if (!new_groups) {
2199 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2200 size / (int) sizeof(struct flex_groups));
2201 return -ENOMEM;
2202 }
2203
2204 if (sbi->s_flex_groups) {
2205 memcpy(new_groups, sbi->s_flex_groups,
2206 (sbi->s_flex_groups_allocated *
2207 sizeof(struct flex_groups)));
2208 kvfree(sbi->s_flex_groups);
2209 }
2210 sbi->s_flex_groups = new_groups;
2211 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2212 return 0;
2213 }
2214
2215 static int ext4_fill_flex_info(struct super_block *sb)
2216 {
2217 struct ext4_sb_info *sbi = EXT4_SB(sb);
2218 struct ext4_group_desc *gdp = NULL;
2219 ext4_group_t flex_group;
2220 int i, err;
2221
2222 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2223 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2224 sbi->s_log_groups_per_flex = 0;
2225 return 1;
2226 }
2227
2228 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2229 if (err)
2230 goto failed;
2231
2232 for (i = 0; i < sbi->s_groups_count; i++) {
2233 gdp = ext4_get_group_desc(sb, i, NULL);
2234
2235 flex_group = ext4_flex_group(sbi, i);
2236 atomic_add(ext4_free_inodes_count(sb, gdp),
2237 &sbi->s_flex_groups[flex_group].free_inodes);
2238 atomic64_add(ext4_free_group_clusters(sb, gdp),
2239 &sbi->s_flex_groups[flex_group].free_clusters);
2240 atomic_add(ext4_used_dirs_count(sb, gdp),
2241 &sbi->s_flex_groups[flex_group].used_dirs);
2242 }
2243
2244 return 1;
2245 failed:
2246 return 0;
2247 }
2248
2249 static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2250 struct ext4_group_desc *gdp)
2251 {
2252 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2253 __u16 crc = 0;
2254 __le32 le_group = cpu_to_le32(block_group);
2255 struct ext4_sb_info *sbi = EXT4_SB(sb);
2256
2257 if (ext4_has_metadata_csum(sbi->s_sb)) {
2258 /* Use new metadata_csum algorithm */
2259 __u32 csum32;
2260 __u16 dummy_csum = 0;
2261
2262 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2263 sizeof(le_group));
2264 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2265 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2266 sizeof(dummy_csum));
2267 offset += sizeof(dummy_csum);
2268 if (offset < sbi->s_desc_size)
2269 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2270 sbi->s_desc_size - offset);
2271
2272 crc = csum32 & 0xFFFF;
2273 goto out;
2274 }
2275
2276 /* old crc16 code */
2277 if (!ext4_has_feature_gdt_csum(sb))
2278 return 0;
2279
2280 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2281 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2282 crc = crc16(crc, (__u8 *)gdp, offset);
2283 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2284 /* for checksum of struct ext4_group_desc do the rest...*/
2285 if (ext4_has_feature_64bit(sb) &&
2286 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2287 crc = crc16(crc, (__u8 *)gdp + offset,
2288 le16_to_cpu(sbi->s_es->s_desc_size) -
2289 offset);
2290
2291 out:
2292 return cpu_to_le16(crc);
2293 }
2294
2295 int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2296 struct ext4_group_desc *gdp)
2297 {
2298 if (ext4_has_group_desc_csum(sb) &&
2299 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2300 return 0;
2301
2302 return 1;
2303 }
2304
2305 void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2306 struct ext4_group_desc *gdp)
2307 {
2308 if (!ext4_has_group_desc_csum(sb))
2309 return;
2310 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2311 }
2312
2313 /* Called at mount-time, super-block is locked */
2314 static int ext4_check_descriptors(struct super_block *sb,
2315 ext4_fsblk_t sb_block,
2316 ext4_group_t *first_not_zeroed)
2317 {
2318 struct ext4_sb_info *sbi = EXT4_SB(sb);
2319 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2320 ext4_fsblk_t last_block;
2321 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2322 ext4_fsblk_t block_bitmap;
2323 ext4_fsblk_t inode_bitmap;
2324 ext4_fsblk_t inode_table;
2325 int flexbg_flag = 0;
2326 ext4_group_t i, grp = sbi->s_groups_count;
2327
2328 if (ext4_has_feature_flex_bg(sb))
2329 flexbg_flag = 1;
2330
2331 ext4_debug("Checking group descriptors");
2332
2333 for (i = 0; i < sbi->s_groups_count; i++) {
2334 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2335
2336 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2337 last_block = ext4_blocks_count(sbi->s_es) - 1;
2338 else
2339 last_block = first_block +
2340 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2341
2342 if ((grp == sbi->s_groups_count) &&
2343 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2344 grp = i;
2345
2346 block_bitmap = ext4_block_bitmap(sb, gdp);
2347 if (block_bitmap == sb_block) {
2348 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2349 "Block bitmap for group %u overlaps "
2350 "superblock", i);
2351 if (!sb_rdonly(sb))
2352 return 0;
2353 }
2354 if (block_bitmap >= sb_block + 1 &&
2355 block_bitmap <= last_bg_block) {
2356 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2357 "Block bitmap for group %u overlaps "
2358 "block group descriptors", i);
2359 if (!sb_rdonly(sb))
2360 return 0;
2361 }
2362 if (block_bitmap < first_block || block_bitmap > last_block) {
2363 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2364 "Block bitmap for group %u not in group "
2365 "(block %llu)!", i, block_bitmap);
2366 return 0;
2367 }
2368 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2369 if (inode_bitmap == sb_block) {
2370 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2371 "Inode bitmap for group %u overlaps "
2372 "superblock", i);
2373 if (!sb_rdonly(sb))
2374 return 0;
2375 }
2376 if (inode_bitmap >= sb_block + 1 &&
2377 inode_bitmap <= last_bg_block) {
2378 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2379 "Inode bitmap for group %u overlaps "
2380 "block group descriptors", i);
2381 if (!sb_rdonly(sb))
2382 return 0;
2383 }
2384 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2385 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2386 "Inode bitmap for group %u not in group "
2387 "(block %llu)!", i, inode_bitmap);
2388 return 0;
2389 }
2390 inode_table = ext4_inode_table(sb, gdp);
2391 if (inode_table == sb_block) {
2392 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2393 "Inode table for group %u overlaps "
2394 "superblock", i);
2395 if (!sb_rdonly(sb))
2396 return 0;
2397 }
2398 if (inode_table >= sb_block + 1 &&
2399 inode_table <= last_bg_block) {
2400 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2401 "Inode table for group %u overlaps "
2402 "block group descriptors", i);
2403 if (!sb_rdonly(sb))
2404 return 0;
2405 }
2406 if (inode_table < first_block ||
2407 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2408 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2409 "Inode table for group %u not in group "
2410 "(block %llu)!", i, inode_table);
2411 return 0;
2412 }
2413 ext4_lock_group(sb, i);
2414 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2415 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2416 "Checksum for group %u failed (%u!=%u)",
2417 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2418 gdp)), le16_to_cpu(gdp->bg_checksum));
2419 if (!sb_rdonly(sb)) {
2420 ext4_unlock_group(sb, i);
2421 return 0;
2422 }
2423 }
2424 ext4_unlock_group(sb, i);
2425 if (!flexbg_flag)
2426 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2427 }
2428 if (NULL != first_not_zeroed)
2429 *first_not_zeroed = grp;
2430 return 1;
2431 }
2432
2433 /* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2434 * the superblock) which were deleted from all directories, but held open by
2435 * a process at the time of a crash. We walk the list and try to delete these
2436 * inodes at recovery time (only with a read-write filesystem).
2437 *
2438 * In order to keep the orphan inode chain consistent during traversal (in
2439 * case of crash during recovery), we link each inode into the superblock
2440 * orphan list_head and handle it the same way as an inode deletion during
2441 * normal operation (which journals the operations for us).
2442 *
2443 * We only do an iget() and an iput() on each inode, which is very safe if we
2444 * accidentally point at an in-use or already deleted inode. The worst that
2445 * can happen in this case is that we get a "bit already cleared" message from
2446 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2447 * e2fsck was run on this filesystem, and it must have already done the orphan
2448 * inode cleanup for us, so we can safely abort without any further action.
2449 */
2450 static void ext4_orphan_cleanup(struct super_block *sb,
2451 struct ext4_super_block *es)
2452 {
2453 unsigned int s_flags = sb->s_flags;
2454 int ret, nr_orphans = 0, nr_truncates = 0;
2455 #ifdef CONFIG_QUOTA
2456 int quota_update = 0;
2457 int i;
2458 #endif
2459 if (!es->s_last_orphan) {
2460 jbd_debug(4, "no orphan inodes to clean up\n");
2461 return;
2462 }
2463
2464 if (bdev_read_only(sb->s_bdev)) {
2465 ext4_msg(sb, KERN_ERR, "write access "
2466 "unavailable, skipping orphan cleanup");
2467 return;
2468 }
2469
2470 /* Check if feature set would not allow a r/w mount */
2471 if (!ext4_feature_set_ok(sb, 0)) {
2472 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2473 "unknown ROCOMPAT features");
2474 return;
2475 }
2476
2477 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2478 /* don't clear list on RO mount w/ errors */
2479 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2480 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2481 "clearing orphan list.\n");
2482 es->s_last_orphan = 0;
2483 }
2484 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2485 return;
2486 }
2487
2488 if (s_flags & MS_RDONLY) {
2489 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2490 sb->s_flags &= ~MS_RDONLY;
2491 }
2492 #ifdef CONFIG_QUOTA
2493 /* Needed for iput() to work correctly and not trash data */
2494 sb->s_flags |= MS_ACTIVE;
2495
2496 /*
2497 * Turn on quotas which were not enabled for read-only mounts if
2498 * filesystem has quota feature, so that they are updated correctly.
2499 */
2500 if (ext4_has_feature_quota(sb) && (s_flags & MS_RDONLY)) {
2501 int ret = ext4_enable_quotas(sb);
2502
2503 if (!ret)
2504 quota_update = 1;
2505 else
2506 ext4_msg(sb, KERN_ERR,
2507 "Cannot turn on quotas: error %d", ret);
2508 }
2509
2510 /* Turn on journaled quotas used for old sytle */
2511 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2512 if (EXT4_SB(sb)->s_qf_names[i]) {
2513 int ret = ext4_quota_on_mount(sb, i);
2514
2515 if (!ret)
2516 quota_update = 1;
2517 else
2518 ext4_msg(sb, KERN_ERR,
2519 "Cannot turn on journaled "
2520 "quota: type %d: error %d", i, ret);
2521 }
2522 }
2523 #endif
2524
2525 while (es->s_last_orphan) {
2526 struct inode *inode;
2527
2528 /*
2529 * We may have encountered an error during cleanup; if
2530 * so, skip the rest.
2531 */
2532 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2533 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2534 es->s_last_orphan = 0;
2535 break;
2536 }
2537
2538 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2539 if (IS_ERR(inode)) {
2540 es->s_last_orphan = 0;
2541 break;
2542 }
2543
2544 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2545 dquot_initialize(inode);
2546 if (inode->i_nlink) {
2547 if (test_opt(sb, DEBUG))
2548 ext4_msg(sb, KERN_DEBUG,
2549 "%s: truncating inode %lu to %lld bytes",
2550 __func__, inode->i_ino, inode->i_size);
2551 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2552 inode->i_ino, inode->i_size);
2553 inode_lock(inode);
2554 truncate_inode_pages(inode->i_mapping, inode->i_size);
2555 ret = ext4_truncate(inode);
2556 if (ret)
2557 ext4_std_error(inode->i_sb, ret);
2558 inode_unlock(inode);
2559 nr_truncates++;
2560 } else {
2561 if (test_opt(sb, DEBUG))
2562 ext4_msg(sb, KERN_DEBUG,
2563 "%s: deleting unreferenced inode %lu",
2564 __func__, inode->i_ino);
2565 jbd_debug(2, "deleting unreferenced inode %lu\n",
2566 inode->i_ino);
2567 nr_orphans++;
2568 }
2569 iput(inode); /* The delete magic happens here! */
2570 }
2571
2572 #define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2573
2574 if (nr_orphans)
2575 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2576 PLURAL(nr_orphans));
2577 if (nr_truncates)
2578 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2579 PLURAL(nr_truncates));
2580 #ifdef CONFIG_QUOTA
2581 /* Turn off quotas if they were enabled for orphan cleanup */
2582 if (quota_update) {
2583 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2584 if (sb_dqopt(sb)->files[i])
2585 dquot_quota_off(sb, i);
2586 }
2587 }
2588 #endif
2589 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2590 }
2591
2592 /*
2593 * Maximal extent format file size.
2594 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2595 * extent format containers, within a sector_t, and within i_blocks
2596 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2597 * so that won't be a limiting factor.
2598 *
2599 * However there is other limiting factor. We do store extents in the form
2600 * of starting block and length, hence the resulting length of the extent
2601 * covering maximum file size must fit into on-disk format containers as
2602 * well. Given that length is always by 1 unit bigger than max unit (because
2603 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2604 *
2605 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2606 */
2607 static loff_t ext4_max_size(int blkbits, int has_huge_files)
2608 {
2609 loff_t res;
2610 loff_t upper_limit = MAX_LFS_FILESIZE;
2611
2612 /* small i_blocks in vfs inode? */
2613 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2614 /*
2615 * CONFIG_LBDAF is not enabled implies the inode
2616 * i_block represent total blocks in 512 bytes
2617 * 32 == size of vfs inode i_blocks * 8
2618 */
2619 upper_limit = (1LL << 32) - 1;
2620
2621 /* total blocks in file system block size */
2622 upper_limit >>= (blkbits - 9);
2623 upper_limit <<= blkbits;
2624 }
2625
2626 /*
2627 * 32-bit extent-start container, ee_block. We lower the maxbytes
2628 * by one fs block, so ee_len can cover the extent of maximum file
2629 * size
2630 */
2631 res = (1LL << 32) - 1;
2632 res <<= blkbits;
2633
2634 /* Sanity check against vm- & vfs- imposed limits */
2635 if (res > upper_limit)
2636 res = upper_limit;
2637
2638 return res;
2639 }
2640
2641 /*
2642 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2643 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2644 * We need to be 1 filesystem block less than the 2^48 sector limit.
2645 */
2646 static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2647 {
2648 loff_t res = EXT4_NDIR_BLOCKS;
2649 int meta_blocks;
2650 loff_t upper_limit;
2651 /* This is calculated to be the largest file size for a dense, block
2652 * mapped file such that the file's total number of 512-byte sectors,
2653 * including data and all indirect blocks, does not exceed (2^48 - 1).
2654 *
2655 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2656 * number of 512-byte sectors of the file.
2657 */
2658
2659 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2660 /*
2661 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2662 * the inode i_block field represents total file blocks in
2663 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2664 */
2665 upper_limit = (1LL << 32) - 1;
2666
2667 /* total blocks in file system block size */
2668 upper_limit >>= (bits - 9);
2669
2670 } else {
2671 /*
2672 * We use 48 bit ext4_inode i_blocks
2673 * With EXT4_HUGE_FILE_FL set the i_blocks
2674 * represent total number of blocks in
2675 * file system block size
2676 */
2677 upper_limit = (1LL << 48) - 1;
2678
2679 }
2680
2681 /* indirect blocks */
2682 meta_blocks = 1;
2683 /* double indirect blocks */
2684 meta_blocks += 1 + (1LL << (bits-2));
2685 /* tripple indirect blocks */
2686 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2687
2688 upper_limit -= meta_blocks;
2689 upper_limit <<= bits;
2690
2691 res += 1LL << (bits-2);
2692 res += 1LL << (2*(bits-2));
2693 res += 1LL << (3*(bits-2));
2694 res <<= bits;
2695 if (res > upper_limit)
2696 res = upper_limit;
2697
2698 if (res > MAX_LFS_FILESIZE)
2699 res = MAX_LFS_FILESIZE;
2700
2701 return res;
2702 }
2703
2704 static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2705 ext4_fsblk_t logical_sb_block, int nr)
2706 {
2707 struct ext4_sb_info *sbi = EXT4_SB(sb);
2708 ext4_group_t bg, first_meta_bg;
2709 int has_super = 0;
2710
2711 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2712
2713 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2714 return logical_sb_block + nr + 1;
2715 bg = sbi->s_desc_per_block * nr;
2716 if (ext4_bg_has_super(sb, bg))
2717 has_super = 1;
2718
2719 /*
2720 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2721 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2722 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2723 * compensate.
2724 */
2725 if (sb->s_blocksize == 1024 && nr == 0 &&
2726 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2727 has_super++;
2728
2729 return (has_super + ext4_group_first_block_no(sb, bg));
2730 }
2731
2732 /**
2733 * ext4_get_stripe_size: Get the stripe size.
2734 * @sbi: In memory super block info
2735 *
2736 * If we have specified it via mount option, then
2737 * use the mount option value. If the value specified at mount time is
2738 * greater than the blocks per group use the super block value.
2739 * If the super block value is greater than blocks per group return 0.
2740 * Allocator needs it be less than blocks per group.
2741 *
2742 */
2743 static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2744 {
2745 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2746 unsigned long stripe_width =
2747 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2748 int ret;
2749
2750 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2751 ret = sbi->s_stripe;
2752 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2753 ret = stripe_width;
2754 else if (stride && stride <= sbi->s_blocks_per_group)
2755 ret = stride;
2756 else
2757 ret = 0;
2758
2759 /*
2760 * If the stripe width is 1, this makes no sense and
2761 * we set it to 0 to turn off stripe handling code.
2762 */
2763 if (ret <= 1)
2764 ret = 0;
2765
2766 return ret;
2767 }
2768
2769 /*
2770 * Check whether this filesystem can be mounted based on
2771 * the features present and the RDONLY/RDWR mount requested.
2772 * Returns 1 if this filesystem can be mounted as requested,
2773 * 0 if it cannot be.
2774 */
2775 static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2776 {
2777 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2778 ext4_msg(sb, KERN_ERR,
2779 "Couldn't mount because of "
2780 "unsupported optional features (%x)",
2781 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2782 ~EXT4_FEATURE_INCOMPAT_SUPP));
2783 return 0;
2784 }
2785
2786 if (readonly)
2787 return 1;
2788
2789 if (ext4_has_feature_readonly(sb)) {
2790 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2791 sb->s_flags |= MS_RDONLY;
2792 return 1;
2793 }
2794
2795 /* Check that feature set is OK for a read-write mount */
2796 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2797 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2798 "unsupported optional features (%x)",
2799 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2800 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2801 return 0;
2802 }
2803 /*
2804 * Large file size enabled file system can only be mounted
2805 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2806 */
2807 if (ext4_has_feature_huge_file(sb)) {
2808 if (sizeof(blkcnt_t) < sizeof(u64)) {
2809 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2810 "cannot be mounted RDWR without "
2811 "CONFIG_LBDAF");
2812 return 0;
2813 }
2814 }
2815 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2816 ext4_msg(sb, KERN_ERR,
2817 "Can't support bigalloc feature without "
2818 "extents feature\n");
2819 return 0;
2820 }
2821
2822 #ifndef CONFIG_QUOTA
2823 if (ext4_has_feature_quota(sb) && !readonly) {
2824 ext4_msg(sb, KERN_ERR,
2825 "Filesystem with quota feature cannot be mounted RDWR "
2826 "without CONFIG_QUOTA");
2827 return 0;
2828 }
2829 if (ext4_has_feature_project(sb) && !readonly) {
2830 ext4_msg(sb, KERN_ERR,
2831 "Filesystem with project quota feature cannot be mounted RDWR "
2832 "without CONFIG_QUOTA");
2833 return 0;
2834 }
2835 #endif /* CONFIG_QUOTA */
2836 return 1;
2837 }
2838
2839 /*
2840 * This function is called once a day if we have errors logged
2841 * on the file system
2842 */
2843 static void print_daily_error_info(unsigned long arg)
2844 {
2845 struct super_block *sb = (struct super_block *) arg;
2846 struct ext4_sb_info *sbi;
2847 struct ext4_super_block *es;
2848
2849 sbi = EXT4_SB(sb);
2850 es = sbi->s_es;
2851
2852 if (es->s_error_count)
2853 /* fsck newer than v1.41.13 is needed to clean this condition. */
2854 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2855 le32_to_cpu(es->s_error_count));
2856 if (es->s_first_error_time) {
2857 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2858 sb->s_id, le32_to_cpu(es->s_first_error_time),
2859 (int) sizeof(es->s_first_error_func),
2860 es->s_first_error_func,
2861 le32_to_cpu(es->s_first_error_line));
2862 if (es->s_first_error_ino)
2863 printk(KERN_CONT ": inode %u",
2864 le32_to_cpu(es->s_first_error_ino));
2865 if (es->s_first_error_block)
2866 printk(KERN_CONT ": block %llu", (unsigned long long)
2867 le64_to_cpu(es->s_first_error_block));
2868 printk(KERN_CONT "\n");
2869 }
2870 if (es->s_last_error_time) {
2871 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2872 sb->s_id, le32_to_cpu(es->s_last_error_time),
2873 (int) sizeof(es->s_last_error_func),
2874 es->s_last_error_func,
2875 le32_to_cpu(es->s_last_error_line));
2876 if (es->s_last_error_ino)
2877 printk(KERN_CONT ": inode %u",
2878 le32_to_cpu(es->s_last_error_ino));
2879 if (es->s_last_error_block)
2880 printk(KERN_CONT ": block %llu", (unsigned long long)
2881 le64_to_cpu(es->s_last_error_block));
2882 printk(KERN_CONT "\n");
2883 }
2884 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2885 }
2886
2887 /* Find next suitable group and run ext4_init_inode_table */
2888 static int ext4_run_li_request(struct ext4_li_request *elr)
2889 {
2890 struct ext4_group_desc *gdp = NULL;
2891 ext4_group_t group, ngroups;
2892 struct super_block *sb;
2893 unsigned long timeout = 0;
2894 int ret = 0;
2895
2896 sb = elr->lr_super;
2897 ngroups = EXT4_SB(sb)->s_groups_count;
2898
2899 for (group = elr->lr_next_group; group < ngroups; group++) {
2900 gdp = ext4_get_group_desc(sb, group, NULL);
2901 if (!gdp) {
2902 ret = 1;
2903 break;
2904 }
2905
2906 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2907 break;
2908 }
2909
2910 if (group >= ngroups)
2911 ret = 1;
2912
2913 if (!ret) {
2914 timeout = jiffies;
2915 ret = ext4_init_inode_table(sb, group,
2916 elr->lr_timeout ? 0 : 1);
2917 if (elr->lr_timeout == 0) {
2918 timeout = (jiffies - timeout) *
2919 elr->lr_sbi->s_li_wait_mult;
2920 elr->lr_timeout = timeout;
2921 }
2922 elr->lr_next_sched = jiffies + elr->lr_timeout;
2923 elr->lr_next_group = group + 1;
2924 }
2925 return ret;
2926 }
2927
2928 /*
2929 * Remove lr_request from the list_request and free the
2930 * request structure. Should be called with li_list_mtx held
2931 */
2932 static void ext4_remove_li_request(struct ext4_li_request *elr)
2933 {
2934 struct ext4_sb_info *sbi;
2935
2936 if (!elr)
2937 return;
2938
2939 sbi = elr->lr_sbi;
2940
2941 list_del(&elr->lr_request);
2942 sbi->s_li_request = NULL;
2943 kfree(elr);
2944 }
2945
2946 static void ext4_unregister_li_request(struct super_block *sb)
2947 {
2948 mutex_lock(&ext4_li_mtx);
2949 if (!ext4_li_info) {
2950 mutex_unlock(&ext4_li_mtx);
2951 return;
2952 }
2953
2954 mutex_lock(&ext4_li_info->li_list_mtx);
2955 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2956 mutex_unlock(&ext4_li_info->li_list_mtx);
2957 mutex_unlock(&ext4_li_mtx);
2958 }
2959
2960 static struct task_struct *ext4_lazyinit_task;
2961
2962 /*
2963 * This is the function where ext4lazyinit thread lives. It walks
2964 * through the request list searching for next scheduled filesystem.
2965 * When such a fs is found, run the lazy initialization request
2966 * (ext4_rn_li_request) and keep track of the time spend in this
2967 * function. Based on that time we compute next schedule time of
2968 * the request. When walking through the list is complete, compute
2969 * next waking time and put itself into sleep.
2970 */
2971 static int ext4_lazyinit_thread(void *arg)
2972 {
2973 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2974 struct list_head *pos, *n;
2975 struct ext4_li_request *elr;
2976 unsigned long next_wakeup, cur;
2977
2978 BUG_ON(NULL == eli);
2979
2980 cont_thread:
2981 while (true) {
2982 next_wakeup = MAX_JIFFY_OFFSET;
2983
2984 mutex_lock(&eli->li_list_mtx);
2985 if (list_empty(&eli->li_request_list)) {
2986 mutex_unlock(&eli->li_list_mtx);
2987 goto exit_thread;
2988 }
2989 list_for_each_safe(pos, n, &eli->li_request_list) {
2990 int err = 0;
2991 int progress = 0;
2992 elr = list_entry(pos, struct ext4_li_request,
2993 lr_request);
2994
2995 if (time_before(jiffies, elr->lr_next_sched)) {
2996 if (time_before(elr->lr_next_sched, next_wakeup))
2997 next_wakeup = elr->lr_next_sched;
2998 continue;
2999 }
3000 if (down_read_trylock(&elr->lr_super->s_umount)) {
3001 if (sb_start_write_trylock(elr->lr_super)) {
3002 progress = 1;
3003 /*
3004 * We hold sb->s_umount, sb can not
3005 * be removed from the list, it is
3006 * now safe to drop li_list_mtx
3007 */
3008 mutex_unlock(&eli->li_list_mtx);
3009 err = ext4_run_li_request(elr);
3010 sb_end_write(elr->lr_super);
3011 mutex_lock(&eli->li_list_mtx);
3012 n = pos->next;
3013 }
3014 up_read((&elr->lr_super->s_umount));
3015 }
3016 /* error, remove the lazy_init job */
3017 if (err) {
3018 ext4_remove_li_request(elr);
3019 continue;
3020 }
3021 if (!progress) {
3022 elr->lr_next_sched = jiffies +
3023 (prandom_u32()
3024 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3025 }
3026 if (time_before(elr->lr_next_sched, next_wakeup))
3027 next_wakeup = elr->lr_next_sched;
3028 }
3029 mutex_unlock(&eli->li_list_mtx);
3030
3031 try_to_freeze();
3032
3033 cur = jiffies;
3034 if ((time_after_eq(cur, next_wakeup)) ||
3035 (MAX_JIFFY_OFFSET == next_wakeup)) {
3036 cond_resched();
3037 continue;
3038 }
3039
3040 schedule_timeout_interruptible(next_wakeup - cur);
3041
3042 if (kthread_should_stop()) {
3043 ext4_clear_request_list();
3044 goto exit_thread;
3045 }
3046 }
3047
3048 exit_thread:
3049 /*
3050 * It looks like the request list is empty, but we need
3051 * to check it under the li_list_mtx lock, to prevent any
3052 * additions into it, and of course we should lock ext4_li_mtx
3053 * to atomically free the list and ext4_li_info, because at
3054 * this point another ext4 filesystem could be registering
3055 * new one.
3056 */
3057 mutex_lock(&ext4_li_mtx);
3058 mutex_lock(&eli->li_list_mtx);
3059 if (!list_empty(&eli->li_request_list)) {
3060 mutex_unlock(&eli->li_list_mtx);
3061 mutex_unlock(&ext4_li_mtx);
3062 goto cont_thread;
3063 }
3064 mutex_unlock(&eli->li_list_mtx);
3065 kfree(ext4_li_info);
3066 ext4_li_info = NULL;
3067 mutex_unlock(&ext4_li_mtx);
3068
3069 return 0;
3070 }
3071
3072 static void ext4_clear_request_list(void)
3073 {
3074 struct list_head *pos, *n;
3075 struct ext4_li_request *elr;
3076
3077 mutex_lock(&ext4_li_info->li_list_mtx);
3078 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3079 elr = list_entry(pos, struct ext4_li_request,
3080 lr_request);
3081 ext4_remove_li_request(elr);
3082 }
3083 mutex_unlock(&ext4_li_info->li_list_mtx);
3084 }
3085
3086 static int ext4_run_lazyinit_thread(void)
3087 {
3088 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3089 ext4_li_info, "ext4lazyinit");
3090 if (IS_ERR(ext4_lazyinit_task)) {
3091 int err = PTR_ERR(ext4_lazyinit_task);
3092 ext4_clear_request_list();
3093 kfree(ext4_li_info);
3094 ext4_li_info = NULL;
3095 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3096 "initialization thread\n",
3097 err);
3098 return err;
3099 }
3100 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3101 return 0;
3102 }
3103
3104 /*
3105 * Check whether it make sense to run itable init. thread or not.
3106 * If there is at least one uninitialized inode table, return
3107 * corresponding group number, else the loop goes through all
3108 * groups and return total number of groups.
3109 */
3110 static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3111 {
3112 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3113 struct ext4_group_desc *gdp = NULL;
3114
3115 if (!ext4_has_group_desc_csum(sb))
3116 return ngroups;
3117
3118 for (group = 0; group < ngroups; group++) {
3119 gdp = ext4_get_group_desc(sb, group, NULL);
3120 if (!gdp)
3121 continue;
3122
3123 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3124 break;
3125 }
3126
3127 return group;
3128 }
3129
3130 static int ext4_li_info_new(void)
3131 {
3132 struct ext4_lazy_init *eli = NULL;
3133
3134 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3135 if (!eli)
3136 return -ENOMEM;
3137
3138 INIT_LIST_HEAD(&eli->li_request_list);
3139 mutex_init(&eli->li_list_mtx);
3140
3141 eli->li_state |= EXT4_LAZYINIT_QUIT;
3142
3143 ext4_li_info = eli;
3144
3145 return 0;
3146 }
3147
3148 static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3149 ext4_group_t start)
3150 {
3151 struct ext4_sb_info *sbi = EXT4_SB(sb);
3152 struct ext4_li_request *elr;
3153
3154 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3155 if (!elr)
3156 return NULL;
3157
3158 elr->lr_super = sb;
3159 elr->lr_sbi = sbi;
3160 elr->lr_next_group = start;
3161
3162 /*
3163 * Randomize first schedule time of the request to
3164 * spread the inode table initialization requests
3165 * better.
3166 */
3167 elr->lr_next_sched = jiffies + (prandom_u32() %
3168 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3169 return elr;
3170 }
3171
3172 int ext4_register_li_request(struct super_block *sb,
3173 ext4_group_t first_not_zeroed)
3174 {
3175 struct ext4_sb_info *sbi = EXT4_SB(sb);
3176 struct ext4_li_request *elr = NULL;
3177 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3178 int ret = 0;
3179
3180 mutex_lock(&ext4_li_mtx);
3181 if (sbi->s_li_request != NULL) {
3182 /*
3183 * Reset timeout so it can be computed again, because
3184 * s_li_wait_mult might have changed.
3185 */
3186 sbi->s_li_request->lr_timeout = 0;
3187 goto out;
3188 }
3189
3190 if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3191 !test_opt(sb, INIT_INODE_TABLE))
3192 goto out;
3193
3194 elr = ext4_li_request_new(sb, first_not_zeroed);
3195 if (!elr) {
3196 ret = -ENOMEM;
3197 goto out;
3198 }
3199
3200 if (NULL == ext4_li_info) {
3201 ret = ext4_li_info_new();
3202 if (ret)
3203 goto out;
3204 }
3205
3206 mutex_lock(&ext4_li_info->li_list_mtx);
3207 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3208 mutex_unlock(&ext4_li_info->li_list_mtx);
3209
3210 sbi->s_li_request = elr;
3211 /*
3212 * set elr to NULL here since it has been inserted to
3213 * the request_list and the removal and free of it is
3214 * handled by ext4_clear_request_list from now on.
3215 */
3216 elr = NULL;
3217
3218 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3219 ret = ext4_run_lazyinit_thread();
3220 if (ret)
3221 goto out;
3222 }
3223 out:
3224 mutex_unlock(&ext4_li_mtx);
3225 if (ret)
3226 kfree(elr);
3227 return ret;
3228 }
3229
3230 /*
3231 * We do not need to lock anything since this is called on
3232 * module unload.
3233 */
3234 static void ext4_destroy_lazyinit_thread(void)
3235 {
3236 /*
3237 * If thread exited earlier
3238 * there's nothing to be done.
3239 */
3240 if (!ext4_li_info || !ext4_lazyinit_task)
3241 return;
3242
3243 kthread_stop(ext4_lazyinit_task);
3244 }
3245
3246 static int set_journal_csum_feature_set(struct super_block *sb)
3247 {
3248 int ret = 1;
3249 int compat, incompat;
3250 struct ext4_sb_info *sbi = EXT4_SB(sb);
3251
3252 if (ext4_has_metadata_csum(sb)) {
3253 /* journal checksum v3 */
3254 compat = 0;
3255 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3256 } else {
3257 /* journal checksum v1 */
3258 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3259 incompat = 0;
3260 }
3261
3262 jbd2_journal_clear_features(sbi->s_journal,
3263 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3264 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3265 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3266 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3267 ret = jbd2_journal_set_features(sbi->s_journal,
3268 compat, 0,
3269 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3270 incompat);
3271 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3272 ret = jbd2_journal_set_features(sbi->s_journal,
3273 compat, 0,
3274 incompat);
3275 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3276 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3277 } else {
3278 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3279 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3280 }
3281
3282 return ret;
3283 }
3284
3285 /*
3286 * Note: calculating the overhead so we can be compatible with
3287 * historical BSD practice is quite difficult in the face of
3288 * clusters/bigalloc. This is because multiple metadata blocks from
3289 * different block group can end up in the same allocation cluster.
3290 * Calculating the exact overhead in the face of clustered allocation
3291 * requires either O(all block bitmaps) in memory or O(number of block
3292 * groups**2) in time. We will still calculate the superblock for
3293 * older file systems --- and if we come across with a bigalloc file
3294 * system with zero in s_overhead_clusters the estimate will be close to
3295 * correct especially for very large cluster sizes --- but for newer
3296 * file systems, it's better to calculate this figure once at mkfs
3297 * time, and store it in the superblock. If the superblock value is
3298 * present (even for non-bigalloc file systems), we will use it.
3299 */
3300 static int count_overhead(struct super_block *sb, ext4_group_t grp,
3301 char *buf)
3302 {
3303 struct ext4_sb_info *sbi = EXT4_SB(sb);
3304 struct ext4_group_desc *gdp;
3305 ext4_fsblk_t first_block, last_block, b;
3306 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3307 int s, j, count = 0;
3308
3309 if (!ext4_has_feature_bigalloc(sb))
3310 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3311 sbi->s_itb_per_group + 2);
3312
3313 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3314 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3315 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3316 for (i = 0; i < ngroups; i++) {
3317 gdp = ext4_get_group_desc(sb, i, NULL);
3318 b = ext4_block_bitmap(sb, gdp);
3319 if (b >= first_block && b <= last_block) {
3320 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3321 count++;
3322 }
3323 b = ext4_inode_bitmap(sb, gdp);
3324 if (b >= first_block && b <= last_block) {
3325 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3326 count++;
3327 }
3328 b = ext4_inode_table(sb, gdp);
3329 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3330 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3331 int c = EXT4_B2C(sbi, b - first_block);
3332 ext4_set_bit(c, buf);
3333 count++;
3334 }
3335 if (i != grp)
3336 continue;
3337 s = 0;
3338 if (ext4_bg_has_super(sb, grp)) {
3339 ext4_set_bit(s++, buf);
3340 count++;
3341 }
3342 j = ext4_bg_num_gdb(sb, grp);
3343 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3344 ext4_error(sb, "Invalid number of block group "
3345 "descriptor blocks: %d", j);
3346 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3347 }
3348 count += j;
3349 for (; j > 0; j--)
3350 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3351 }
3352 if (!count)
3353 return 0;
3354 return EXT4_CLUSTERS_PER_GROUP(sb) -
3355 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3356 }
3357
3358 /*
3359 * Compute the overhead and stash it in sbi->s_overhead
3360 */
3361 int ext4_calculate_overhead(struct super_block *sb)
3362 {
3363 struct ext4_sb_info *sbi = EXT4_SB(sb);
3364 struct ext4_super_block *es = sbi->s_es;
3365 struct inode *j_inode;
3366 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3367 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3368 ext4_fsblk_t overhead = 0;
3369 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3370
3371 if (!buf)
3372 return -ENOMEM;
3373
3374 /*
3375 * Compute the overhead (FS structures). This is constant
3376 * for a given filesystem unless the number of block groups
3377 * changes so we cache the previous value until it does.
3378 */
3379
3380 /*
3381 * All of the blocks before first_data_block are overhead
3382 */
3383 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3384
3385 /*
3386 * Add the overhead found in each block group
3387 */
3388 for (i = 0; i < ngroups; i++) {
3389 int blks;
3390
3391 blks = count_overhead(sb, i, buf);
3392 overhead += blks;
3393 if (blks)
3394 memset(buf, 0, PAGE_SIZE);
3395 cond_resched();
3396 }
3397
3398 /*
3399 * Add the internal journal blocks whether the journal has been
3400 * loaded or not
3401 */
3402 if (sbi->s_journal && !sbi->journal_bdev)
3403 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3404 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3405 j_inode = ext4_get_journal_inode(sb, j_inum);
3406 if (j_inode) {
3407 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3408 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3409 iput(j_inode);
3410 } else {
3411 ext4_msg(sb, KERN_ERR, "can't get journal size");
3412 }
3413 }
3414 sbi->s_overhead = overhead;
3415 smp_wmb();
3416 free_page((unsigned long) buf);
3417 return 0;
3418 }
3419
3420 static void ext4_set_resv_clusters(struct super_block *sb)
3421 {
3422 ext4_fsblk_t resv_clusters;
3423 struct ext4_sb_info *sbi = EXT4_SB(sb);
3424
3425 /*
3426 * There's no need to reserve anything when we aren't using extents.
3427 * The space estimates are exact, there are no unwritten extents,
3428 * hole punching doesn't need new metadata... This is needed especially
3429 * to keep ext2/3 backward compatibility.
3430 */
3431 if (!ext4_has_feature_extents(sb))
3432 return;
3433 /*
3434 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3435 * This should cover the situations where we can not afford to run
3436 * out of space like for example punch hole, or converting
3437 * unwritten extents in delalloc path. In most cases such
3438 * allocation would require 1, or 2 blocks, higher numbers are
3439 * very rare.
3440 */
3441 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3442 sbi->s_cluster_bits);
3443
3444 do_div(resv_clusters, 50);
3445 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3446
3447 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3448 }
3449
3450 static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3451 {
3452 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3453 char *orig_data = kstrdup(data, GFP_KERNEL);
3454 struct buffer_head *bh;
3455 struct ext4_super_block *es = NULL;
3456 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3457 ext4_fsblk_t block;
3458 ext4_fsblk_t sb_block = get_sb_block(&data);
3459 ext4_fsblk_t logical_sb_block;
3460 unsigned long offset = 0;
3461 unsigned long journal_devnum = 0;
3462 unsigned long def_mount_opts;
3463 struct inode *root;
3464 const char *descr;
3465 int ret = -ENOMEM;
3466 int blocksize, clustersize;
3467 unsigned int db_count;
3468 unsigned int i;
3469 int needs_recovery, has_huge_files, has_bigalloc;
3470 __u64 blocks_count;
3471 int err = 0;
3472 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3473 ext4_group_t first_not_zeroed;
3474
3475 if ((data && !orig_data) || !sbi)
3476 goto out_free_base;
3477
3478 sbi->s_daxdev = dax_dev;
3479 sbi->s_blockgroup_lock =
3480 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3481 if (!sbi->s_blockgroup_lock)
3482 goto out_free_base;
3483
3484 sb->s_fs_info = sbi;
3485 sbi->s_sb = sb;
3486 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3487 sbi->s_sb_block = sb_block;
3488 if (sb->s_bdev->bd_part)
3489 sbi->s_sectors_written_start =
3490 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3491
3492 /* Cleanup superblock name */
3493 strreplace(sb->s_id, '/', '!');
3494
3495 /* -EINVAL is default */
3496 ret = -EINVAL;
3497 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3498 if (!blocksize) {
3499 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3500 goto out_fail;
3501 }
3502
3503 /*
3504 * The ext4 superblock will not be buffer aligned for other than 1kB
3505 * block sizes. We need to calculate the offset from buffer start.
3506 */
3507 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3508 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3509 offset = do_div(logical_sb_block, blocksize);
3510 } else {
3511 logical_sb_block = sb_block;
3512 }
3513
3514 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3515 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3516 goto out_fail;
3517 }
3518 /*
3519 * Note: s_es must be initialized as soon as possible because
3520 * some ext4 macro-instructions depend on its value
3521 */
3522 es = (struct ext4_super_block *) (bh->b_data + offset);
3523 sbi->s_es = es;
3524 sb->s_magic = le16_to_cpu(es->s_magic);
3525 if (sb->s_magic != EXT4_SUPER_MAGIC)
3526 goto cantfind_ext4;
3527 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3528
3529 /* Warn if metadata_csum and gdt_csum are both set. */
3530 if (ext4_has_feature_metadata_csum(sb) &&
3531 ext4_has_feature_gdt_csum(sb))
3532 ext4_warning(sb, "metadata_csum and uninit_bg are "
3533 "redundant flags; please run fsck.");
3534
3535 /* Check for a known checksum algorithm */
3536 if (!ext4_verify_csum_type(sb, es)) {
3537 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3538 "unknown checksum algorithm.");
3539 silent = 1;
3540 goto cantfind_ext4;
3541 }
3542
3543 /* Load the checksum driver */
3544 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3545 if (IS_ERR(sbi->s_chksum_driver)) {
3546 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3547 ret = PTR_ERR(sbi->s_chksum_driver);
3548 sbi->s_chksum_driver = NULL;
3549 goto failed_mount;
3550 }
3551
3552 /* Check superblock checksum */
3553 if (!ext4_superblock_csum_verify(sb, es)) {
3554 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3555 "invalid superblock checksum. Run e2fsck?");
3556 silent = 1;
3557 ret = -EFSBADCRC;
3558 goto cantfind_ext4;
3559 }
3560
3561 /* Precompute checksum seed for all metadata */
3562 if (ext4_has_feature_csum_seed(sb))
3563 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3564 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3565 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3566 sizeof(es->s_uuid));
3567
3568 /* Set defaults before we parse the mount options */
3569 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3570 set_opt(sb, INIT_INODE_TABLE);
3571 if (def_mount_opts & EXT4_DEFM_DEBUG)
3572 set_opt(sb, DEBUG);
3573 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3574 set_opt(sb, GRPID);
3575 if (def_mount_opts & EXT4_DEFM_UID16)
3576 set_opt(sb, NO_UID32);
3577 /* xattr user namespace & acls are now defaulted on */
3578 set_opt(sb, XATTR_USER);
3579 #ifdef CONFIG_EXT4_FS_POSIX_ACL
3580 set_opt(sb, POSIX_ACL);
3581 #endif
3582 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3583 if (ext4_has_metadata_csum(sb))
3584 set_opt(sb, JOURNAL_CHECKSUM);
3585
3586 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3587 set_opt(sb, JOURNAL_DATA);
3588 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3589 set_opt(sb, ORDERED_DATA);
3590 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3591 set_opt(sb, WRITEBACK_DATA);
3592
3593 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3594 set_opt(sb, ERRORS_PANIC);
3595 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3596 set_opt(sb, ERRORS_CONT);
3597 else
3598 set_opt(sb, ERRORS_RO);
3599 /* block_validity enabled by default; disable with noblock_validity */
3600 set_opt(sb, BLOCK_VALIDITY);
3601 if (def_mount_opts & EXT4_DEFM_DISCARD)
3602 set_opt(sb, DISCARD);
3603
3604 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3605 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3606 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3607 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3608 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3609
3610 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3611 set_opt(sb, BARRIER);
3612
3613 /*
3614 * enable delayed allocation by default
3615 * Use -o nodelalloc to turn it off
3616 */
3617 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3618 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3619 set_opt(sb, DELALLOC);
3620
3621 /*
3622 * set default s_li_wait_mult for lazyinit, for the case there is
3623 * no mount option specified.
3624 */
3625 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3626
3627 if (sbi->s_es->s_mount_opts[0]) {
3628 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3629 sizeof(sbi->s_es->s_mount_opts),
3630 GFP_KERNEL);
3631 if (!s_mount_opts)
3632 goto failed_mount;
3633 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3634 &journal_ioprio, 0)) {
3635 ext4_msg(sb, KERN_WARNING,
3636 "failed to parse options in superblock: %s",
3637 s_mount_opts);
3638 }
3639 kfree(s_mount_opts);
3640 }
3641 sbi->s_def_mount_opt = sbi->s_mount_opt;
3642 if (!parse_options((char *) data, sb, &journal_devnum,
3643 &journal_ioprio, 0))
3644 goto failed_mount;
3645
3646 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3647 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3648 "with data=journal disables delayed "
3649 "allocation and O_DIRECT support!\n");
3650 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3651 ext4_msg(sb, KERN_ERR, "can't mount with "
3652 "both data=journal and delalloc");
3653 goto failed_mount;
3654 }
3655 if (test_opt(sb, DIOREAD_NOLOCK)) {
3656 ext4_msg(sb, KERN_ERR, "can't mount with "
3657 "both data=journal and dioread_nolock");
3658 goto failed_mount;
3659 }
3660 if (test_opt(sb, DAX)) {
3661 ext4_msg(sb, KERN_ERR, "can't mount with "
3662 "both data=journal and dax");
3663 goto failed_mount;
3664 }
3665 if (ext4_has_feature_encrypt(sb)) {
3666 ext4_msg(sb, KERN_WARNING,
3667 "encrypted files will use data=ordered "
3668 "instead of data journaling mode");
3669 }
3670 if (test_opt(sb, DELALLOC))
3671 clear_opt(sb, DELALLOC);
3672 } else {
3673 sb->s_iflags |= SB_I_CGROUPWB;
3674 }
3675
3676 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3677 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3678
3679 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3680 (ext4_has_compat_features(sb) ||
3681 ext4_has_ro_compat_features(sb) ||
3682 ext4_has_incompat_features(sb)))
3683 ext4_msg(sb, KERN_WARNING,
3684 "feature flags set on rev 0 fs, "
3685 "running e2fsck is recommended");
3686
3687 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3688 set_opt2(sb, HURD_COMPAT);
3689 if (ext4_has_feature_64bit(sb)) {
3690 ext4_msg(sb, KERN_ERR,
3691 "The Hurd can't support 64-bit file systems");
3692 goto failed_mount;
3693 }
3694
3695 /*
3696 * ea_inode feature uses l_i_version field which is not
3697 * available in HURD_COMPAT mode.
3698 */
3699 if (ext4_has_feature_ea_inode(sb)) {
3700 ext4_msg(sb, KERN_ERR,
3701 "ea_inode feature is not supported for Hurd");
3702 goto failed_mount;
3703 }
3704 }
3705
3706 if (IS_EXT2_SB(sb)) {
3707 if (ext2_feature_set_ok(sb))
3708 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3709 "using the ext4 subsystem");
3710 else {
3711 /*
3712 * If we're probing be silent, if this looks like
3713 * it's actually an ext[34] filesystem.
3714 */
3715 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3716 goto failed_mount;
3717 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3718 "to feature incompatibilities");
3719 goto failed_mount;
3720 }
3721 }
3722
3723 if (IS_EXT3_SB(sb)) {
3724 if (ext3_feature_set_ok(sb))
3725 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3726 "using the ext4 subsystem");
3727 else {
3728 /*
3729 * If we're probing be silent, if this looks like
3730 * it's actually an ext4 filesystem.
3731 */
3732 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3733 goto failed_mount;
3734 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3735 "to feature incompatibilities");
3736 goto failed_mount;
3737 }
3738 }
3739
3740 /*
3741 * Check feature flags regardless of the revision level, since we
3742 * previously didn't change the revision level when setting the flags,
3743 * so there is a chance incompat flags are set on a rev 0 filesystem.
3744 */
3745 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3746 goto failed_mount;
3747
3748 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3749 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3750 blocksize > EXT4_MAX_BLOCK_SIZE) {
3751 ext4_msg(sb, KERN_ERR,
3752 "Unsupported filesystem blocksize %d (%d log_block_size)",
3753 blocksize, le32_to_cpu(es->s_log_block_size));
3754 goto failed_mount;
3755 }
3756 if (le32_to_cpu(es->s_log_block_size) >
3757 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3758 ext4_msg(sb, KERN_ERR,
3759 "Invalid log block size: %u",
3760 le32_to_cpu(es->s_log_block_size));
3761 goto failed_mount;
3762 }
3763 if (le32_to_cpu(es->s_log_cluster_size) >
3764 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3765 ext4_msg(sb, KERN_ERR,
3766 "Invalid log cluster size: %u",
3767 le32_to_cpu(es->s_log_cluster_size));
3768 goto failed_mount;
3769 }
3770
3771 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3772 ext4_msg(sb, KERN_ERR,
3773 "Number of reserved GDT blocks insanely large: %d",
3774 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3775 goto failed_mount;
3776 }
3777
3778 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3779 if (ext4_has_feature_inline_data(sb)) {
3780 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3781 " that may contain inline data");
3782 goto failed_mount;
3783 }
3784 if (!bdev_dax_supported(sb->s_bdev, blocksize))
3785 goto failed_mount;
3786 }
3787
3788 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3789 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3790 es->s_encryption_level);
3791 goto failed_mount;
3792 }
3793
3794 if (sb->s_blocksize != blocksize) {
3795 /* Validate the filesystem blocksize */
3796 if (!sb_set_blocksize(sb, blocksize)) {
3797 ext4_msg(sb, KERN_ERR, "bad block size %d",
3798 blocksize);
3799 goto failed_mount;
3800 }
3801
3802 brelse(bh);
3803 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3804 offset = do_div(logical_sb_block, blocksize);
3805 bh = sb_bread_unmovable(sb, logical_sb_block);
3806 if (!bh) {
3807 ext4_msg(sb, KERN_ERR,
3808 "Can't read superblock on 2nd try");
3809 goto failed_mount;
3810 }
3811 es = (struct ext4_super_block *)(bh->b_data + offset);
3812 sbi->s_es = es;
3813 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3814 ext4_msg(sb, KERN_ERR,
3815 "Magic mismatch, very weird!");
3816 goto failed_mount;
3817 }
3818 }
3819
3820 has_huge_files = ext4_has_feature_huge_file(sb);
3821 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3822 has_huge_files);
3823 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3824
3825 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3826 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3827 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3828 } else {
3829 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3830 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3831 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
3832 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
3833 sbi->s_first_ino);
3834 goto failed_mount;
3835 }
3836 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3837 (!is_power_of_2(sbi->s_inode_size)) ||
3838 (sbi->s_inode_size > blocksize)) {
3839 ext4_msg(sb, KERN_ERR,
3840 "unsupported inode size: %d",
3841 sbi->s_inode_size);
3842 goto failed_mount;
3843 }
3844 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3845 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3846 }
3847
3848 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3849 if (ext4_has_feature_64bit(sb)) {
3850 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3851 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3852 !is_power_of_2(sbi->s_desc_size)) {
3853 ext4_msg(sb, KERN_ERR,
3854 "unsupported descriptor size %lu",
3855 sbi->s_desc_size);
3856 goto failed_mount;
3857 }
3858 } else
3859 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3860
3861 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3862 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3863
3864 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3865 if (sbi->s_inodes_per_block == 0)
3866 goto cantfind_ext4;
3867 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3868 sbi->s_inodes_per_group > blocksize * 8) {
3869 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3870 sbi->s_blocks_per_group);
3871 goto failed_mount;
3872 }
3873 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3874 sbi->s_inodes_per_block;
3875 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3876 sbi->s_sbh = bh;
3877 sbi->s_mount_state = le16_to_cpu(es->s_state);
3878 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3879 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3880
3881 for (i = 0; i < 4; i++)
3882 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3883 sbi->s_def_hash_version = es->s_def_hash_version;
3884 if (ext4_has_feature_dir_index(sb)) {
3885 i = le32_to_cpu(es->s_flags);
3886 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3887 sbi->s_hash_unsigned = 3;
3888 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3889 #ifdef __CHAR_UNSIGNED__
3890 if (!sb_rdonly(sb))
3891 es->s_flags |=
3892 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3893 sbi->s_hash_unsigned = 3;
3894 #else
3895 if (!sb_rdonly(sb))
3896 es->s_flags |=
3897 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3898 #endif
3899 }
3900 }
3901
3902 /* Handle clustersize */
3903 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3904 has_bigalloc = ext4_has_feature_bigalloc(sb);
3905 if (has_bigalloc) {
3906 if (clustersize < blocksize) {
3907 ext4_msg(sb, KERN_ERR,
3908 "cluster size (%d) smaller than "
3909 "block size (%d)", clustersize, blocksize);
3910 goto failed_mount;
3911 }
3912 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3913 le32_to_cpu(es->s_log_block_size);
3914 sbi->s_clusters_per_group =
3915 le32_to_cpu(es->s_clusters_per_group);
3916 if (sbi->s_clusters_per_group > blocksize * 8) {
3917 ext4_msg(sb, KERN_ERR,
3918 "#clusters per group too big: %lu",
3919 sbi->s_clusters_per_group);
3920 goto failed_mount;
3921 }
3922 if (sbi->s_blocks_per_group !=
3923 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3924 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3925 "clusters per group (%lu) inconsistent",
3926 sbi->s_blocks_per_group,
3927 sbi->s_clusters_per_group);
3928 goto failed_mount;
3929 }
3930 } else {
3931 if (clustersize != blocksize) {
3932 ext4_msg(sb, KERN_ERR,
3933 "fragment/cluster size (%d) != "
3934 "block size (%d)", clustersize, blocksize);
3935 goto failed_mount;
3936 }
3937 if (sbi->s_blocks_per_group > blocksize * 8) {
3938 ext4_msg(sb, KERN_ERR,
3939 "#blocks per group too big: %lu",
3940 sbi->s_blocks_per_group);
3941 goto failed_mount;
3942 }
3943 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3944 sbi->s_cluster_bits = 0;
3945 }
3946 sbi->s_cluster_ratio = clustersize / blocksize;
3947
3948 /* Do we have standard group size of clustersize * 8 blocks ? */
3949 if (sbi->s_blocks_per_group == clustersize << 3)
3950 set_opt2(sb, STD_GROUP_SIZE);
3951
3952 /*
3953 * Test whether we have more sectors than will fit in sector_t,
3954 * and whether the max offset is addressable by the page cache.
3955 */
3956 err = generic_check_addressable(sb->s_blocksize_bits,
3957 ext4_blocks_count(es));
3958 if (err) {
3959 ext4_msg(sb, KERN_ERR, "filesystem"
3960 " too large to mount safely on this system");
3961 if (sizeof(sector_t) < 8)
3962 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3963 goto failed_mount;
3964 }
3965
3966 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3967 goto cantfind_ext4;
3968
3969 /* check blocks count against device size */
3970 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3971 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3972 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3973 "exceeds size of device (%llu blocks)",
3974 ext4_blocks_count(es), blocks_count);
3975 goto failed_mount;
3976 }
3977
3978 /*
3979 * It makes no sense for the first data block to be beyond the end
3980 * of the filesystem.
3981 */
3982 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3983 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3984 "block %u is beyond end of filesystem (%llu)",
3985 le32_to_cpu(es->s_first_data_block),
3986 ext4_blocks_count(es));
3987 goto failed_mount;
3988 }
3989 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
3990 (sbi->s_cluster_ratio == 1)) {
3991 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3992 "block is 0 with a 1k block and cluster size");
3993 goto failed_mount;
3994 }
3995
3996 blocks_count = (ext4_blocks_count(es) -
3997 le32_to_cpu(es->s_first_data_block) +
3998 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3999 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4000 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4001 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
4002 "(block count %llu, first data block %u, "
4003 "blocks per group %lu)", sbi->s_groups_count,
4004 ext4_blocks_count(es),
4005 le32_to_cpu(es->s_first_data_block),
4006 EXT4_BLOCKS_PER_GROUP(sb));
4007 goto failed_mount;
4008 }
4009 sbi->s_groups_count = blocks_count;
4010 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4011 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4012 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4013 le32_to_cpu(es->s_inodes_count)) {
4014 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4015 le32_to_cpu(es->s_inodes_count),
4016 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4017 ret = -EINVAL;
4018 goto failed_mount;
4019 }
4020 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4021 EXT4_DESC_PER_BLOCK(sb);
4022 if (ext4_has_feature_meta_bg(sb)) {
4023 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4024 ext4_msg(sb, KERN_WARNING,
4025 "first meta block group too large: %u "
4026 "(group descriptor block count %u)",
4027 le32_to_cpu(es->s_first_meta_bg), db_count);
4028 goto failed_mount;
4029 }
4030 }
4031 sbi->s_group_desc = kvmalloc(db_count *
4032 sizeof(struct buffer_head *),
4033 GFP_KERNEL);
4034 if (sbi->s_group_desc == NULL) {
4035 ext4_msg(sb, KERN_ERR, "not enough memory");
4036 ret = -ENOMEM;
4037 goto failed_mount;
4038 }
4039
4040 bgl_lock_init(sbi->s_blockgroup_lock);
4041
4042 /* Pre-read the descriptors into the buffer cache */
4043 for (i = 0; i < db_count; i++) {
4044 block = descriptor_loc(sb, logical_sb_block, i);
4045 sb_breadahead(sb, block);
4046 }
4047
4048 for (i = 0; i < db_count; i++) {
4049 block = descriptor_loc(sb, logical_sb_block, i);
4050 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
4051 if (!sbi->s_group_desc[i]) {
4052 ext4_msg(sb, KERN_ERR,
4053 "can't read group descriptor %d", i);
4054 db_count = i;
4055 goto failed_mount2;
4056 }
4057 }
4058 sbi->s_gdb_count = db_count;
4059 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4060 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4061 ret = -EFSCORRUPTED;
4062 goto failed_mount2;
4063 }
4064
4065 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
4066 spin_lock_init(&sbi->s_next_gen_lock);
4067
4068 setup_timer(&sbi->s_err_report, print_daily_error_info,
4069 (unsigned long) sb);
4070
4071 /* Register extent status tree shrinker */
4072 if (ext4_es_register_shrinker(sbi))
4073 goto failed_mount3;
4074
4075 sbi->s_stripe = ext4_get_stripe_size(sbi);
4076 sbi->s_extent_max_zeroout_kb = 32;
4077
4078 /*
4079 * set up enough so that it can read an inode
4080 */
4081 sb->s_op = &ext4_sops;
4082 sb->s_export_op = &ext4_export_ops;
4083 sb->s_xattr = ext4_xattr_handlers;
4084 #ifdef CONFIG_EXT4_FS_ENCRYPTION
4085 sb->s_cop = &ext4_cryptops;
4086 #endif
4087 #ifdef CONFIG_QUOTA
4088 sb->dq_op = &ext4_quota_operations;
4089 if (ext4_has_feature_quota(sb))
4090 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4091 else
4092 sb->s_qcop = &ext4_qctl_operations;
4093 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4094 #endif
4095 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4096
4097 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4098 mutex_init(&sbi->s_orphan_lock);
4099
4100 sb->s_root = NULL;
4101
4102 needs_recovery = (es->s_last_orphan != 0 ||
4103 ext4_has_feature_journal_needs_recovery(sb));
4104
4105 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4106 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4107 goto failed_mount3a;
4108
4109 /*
4110 * The first inode we look at is the journal inode. Don't try
4111 * root first: it may be modified in the journal!
4112 */
4113 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4114 err = ext4_load_journal(sb, es, journal_devnum);
4115 if (err)
4116 goto failed_mount3a;
4117 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4118 ext4_has_feature_journal_needs_recovery(sb)) {
4119 ext4_msg(sb, KERN_ERR, "required journal recovery "
4120 "suppressed and not mounted read-only");
4121 goto failed_mount_wq;
4122 } else {
4123 /* Nojournal mode, all journal mount options are illegal */
4124 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4125 ext4_msg(sb, KERN_ERR, "can't mount with "
4126 "journal_checksum, fs mounted w/o journal");
4127 goto failed_mount_wq;
4128 }
4129 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4130 ext4_msg(sb, KERN_ERR, "can't mount with "
4131 "journal_async_commit, fs mounted w/o journal");
4132 goto failed_mount_wq;
4133 }
4134 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4135 ext4_msg(sb, KERN_ERR, "can't mount with "
4136 "commit=%lu, fs mounted w/o journal",
4137 sbi->s_commit_interval / HZ);
4138 goto failed_mount_wq;
4139 }
4140 if (EXT4_MOUNT_DATA_FLAGS &
4141 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4142 ext4_msg(sb, KERN_ERR, "can't mount with "
4143 "data=, fs mounted w/o journal");
4144 goto failed_mount_wq;
4145 }
4146 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4147 clear_opt(sb, JOURNAL_CHECKSUM);
4148 clear_opt(sb, DATA_FLAGS);
4149 sbi->s_journal = NULL;
4150 needs_recovery = 0;
4151 goto no_journal;
4152 }
4153
4154 if (ext4_has_feature_64bit(sb) &&
4155 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4156 JBD2_FEATURE_INCOMPAT_64BIT)) {
4157 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4158 goto failed_mount_wq;
4159 }
4160
4161 if (!set_journal_csum_feature_set(sb)) {
4162 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4163 "feature set");
4164 goto failed_mount_wq;
4165 }
4166
4167 /* We have now updated the journal if required, so we can
4168 * validate the data journaling mode. */
4169 switch (test_opt(sb, DATA_FLAGS)) {
4170 case 0:
4171 /* No mode set, assume a default based on the journal
4172 * capabilities: ORDERED_DATA if the journal can
4173 * cope, else JOURNAL_DATA
4174 */
4175 if (jbd2_journal_check_available_features
4176 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
4177 set_opt(sb, ORDERED_DATA);
4178 else
4179 set_opt(sb, JOURNAL_DATA);
4180 break;
4181
4182 case EXT4_MOUNT_ORDERED_DATA:
4183 case EXT4_MOUNT_WRITEBACK_DATA:
4184 if (!jbd2_journal_check_available_features
4185 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4186 ext4_msg(sb, KERN_ERR, "Journal does not support "
4187 "requested data journaling mode");
4188 goto failed_mount_wq;
4189 }
4190 default:
4191 break;
4192 }
4193
4194 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4195 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4196 ext4_msg(sb, KERN_ERR, "can't mount with "
4197 "journal_async_commit in data=ordered mode");
4198 goto failed_mount_wq;
4199 }
4200
4201 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4202
4203 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4204
4205 no_journal:
4206 if (!test_opt(sb, NO_MBCACHE)) {
4207 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4208 if (!sbi->s_ea_block_cache) {
4209 ext4_msg(sb, KERN_ERR,
4210 "Failed to create ea_block_cache");
4211 goto failed_mount_wq;
4212 }
4213
4214 if (ext4_has_feature_ea_inode(sb)) {
4215 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4216 if (!sbi->s_ea_inode_cache) {
4217 ext4_msg(sb, KERN_ERR,
4218 "Failed to create ea_inode_cache");
4219 goto failed_mount_wq;
4220 }
4221 }
4222 }
4223
4224 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4225 (blocksize != PAGE_SIZE)) {
4226 ext4_msg(sb, KERN_ERR,
4227 "Unsupported blocksize for fs encryption");
4228 goto failed_mount_wq;
4229 }
4230
4231 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4232 !ext4_has_feature_encrypt(sb)) {
4233 ext4_set_feature_encrypt(sb);
4234 ext4_commit_super(sb, 1);
4235 }
4236
4237 /*
4238 * Get the # of file system overhead blocks from the
4239 * superblock if present.
4240 */
4241 if (es->s_overhead_clusters)
4242 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4243 else {
4244 err = ext4_calculate_overhead(sb);
4245 if (err)
4246 goto failed_mount_wq;
4247 }
4248
4249 /*
4250 * The maximum number of concurrent works can be high and
4251 * concurrency isn't really necessary. Limit it to 1.
4252 */
4253 EXT4_SB(sb)->rsv_conversion_wq =
4254 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4255 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4256 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4257 ret = -ENOMEM;
4258 goto failed_mount4;
4259 }
4260
4261 /*
4262 * The jbd2_journal_load will have done any necessary log recovery,
4263 * so we can safely mount the rest of the filesystem now.
4264 */
4265
4266 root = ext4_iget(sb, EXT4_ROOT_INO);
4267 if (IS_ERR(root)) {
4268 ext4_msg(sb, KERN_ERR, "get root inode failed");
4269 ret = PTR_ERR(root);
4270 root = NULL;
4271 goto failed_mount4;
4272 }
4273 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4274 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4275 iput(root);
4276 goto failed_mount4;
4277 }
4278 sb->s_root = d_make_root(root);
4279 if (!sb->s_root) {
4280 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4281 ret = -ENOMEM;
4282 goto failed_mount4;
4283 }
4284
4285 if (ext4_setup_super(sb, es, sb_rdonly(sb)))
4286 sb->s_flags |= MS_RDONLY;
4287
4288 /* determine the minimum size of new large inodes, if present */
4289 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4290 sbi->s_want_extra_isize == 0) {
4291 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4292 EXT4_GOOD_OLD_INODE_SIZE;
4293 if (ext4_has_feature_extra_isize(sb)) {
4294 if (sbi->s_want_extra_isize <
4295 le16_to_cpu(es->s_want_extra_isize))
4296 sbi->s_want_extra_isize =
4297 le16_to_cpu(es->s_want_extra_isize);
4298 if (sbi->s_want_extra_isize <
4299 le16_to_cpu(es->s_min_extra_isize))
4300 sbi->s_want_extra_isize =
4301 le16_to_cpu(es->s_min_extra_isize);
4302 }
4303 }
4304 /* Check if enough inode space is available */
4305 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4306 sbi->s_inode_size) {
4307 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4308 EXT4_GOOD_OLD_INODE_SIZE;
4309 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4310 "available");
4311 }
4312
4313 ext4_set_resv_clusters(sb);
4314
4315 err = ext4_setup_system_zone(sb);
4316 if (err) {
4317 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4318 "zone (%d)", err);
4319 goto failed_mount4a;
4320 }
4321
4322 ext4_ext_init(sb);
4323 err = ext4_mb_init(sb);
4324 if (err) {
4325 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4326 err);
4327 goto failed_mount5;
4328 }
4329
4330 block = ext4_count_free_clusters(sb);
4331 ext4_free_blocks_count_set(sbi->s_es,
4332 EXT4_C2B(sbi, block));
4333 ext4_superblock_csum_set(sb);
4334 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4335 GFP_KERNEL);
4336 if (!err) {
4337 unsigned long freei = ext4_count_free_inodes(sb);
4338 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4339 ext4_superblock_csum_set(sb);
4340 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4341 GFP_KERNEL);
4342 }
4343 if (!err)
4344 err = percpu_counter_init(&sbi->s_dirs_counter,
4345 ext4_count_dirs(sb), GFP_KERNEL);
4346 if (!err)
4347 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4348 GFP_KERNEL);
4349 if (!err)
4350 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4351
4352 if (err) {
4353 ext4_msg(sb, KERN_ERR, "insufficient memory");
4354 goto failed_mount6;
4355 }
4356
4357 if (ext4_has_feature_flex_bg(sb))
4358 if (!ext4_fill_flex_info(sb)) {
4359 ext4_msg(sb, KERN_ERR,
4360 "unable to initialize "
4361 "flex_bg meta info!");
4362 goto failed_mount6;
4363 }
4364
4365 err = ext4_register_li_request(sb, first_not_zeroed);
4366 if (err)
4367 goto failed_mount6;
4368
4369 err = ext4_register_sysfs(sb);
4370 if (err)
4371 goto failed_mount7;
4372
4373 #ifdef CONFIG_QUOTA
4374 /* Enable quota usage during mount. */
4375 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4376 err = ext4_enable_quotas(sb);
4377 if (err)
4378 goto failed_mount8;
4379 }
4380 #endif /* CONFIG_QUOTA */
4381
4382 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4383 ext4_orphan_cleanup(sb, es);
4384 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4385 if (needs_recovery) {
4386 ext4_msg(sb, KERN_INFO, "recovery complete");
4387 ext4_mark_recovery_complete(sb, es);
4388 }
4389 if (EXT4_SB(sb)->s_journal) {
4390 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4391 descr = " journalled data mode";
4392 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4393 descr = " ordered data mode";
4394 else
4395 descr = " writeback data mode";
4396 } else
4397 descr = "out journal";
4398
4399 if (test_opt(sb, DISCARD)) {
4400 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4401 if (!blk_queue_discard(q))
4402 ext4_msg(sb, KERN_WARNING,
4403 "mounting with \"discard\" option, but "
4404 "the device does not support discard");
4405 }
4406
4407 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4408 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4409 "Opts: %.*s%s%s", descr,
4410 (int) sizeof(sbi->s_es->s_mount_opts),
4411 sbi->s_es->s_mount_opts,
4412 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4413
4414 if (es->s_error_count)
4415 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4416
4417 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4418 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4419 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4420 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4421
4422 kfree(orig_data);
4423 return 0;
4424
4425 cantfind_ext4:
4426 if (!silent)
4427 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4428 goto failed_mount;
4429
4430 #ifdef CONFIG_QUOTA
4431 failed_mount8:
4432 ext4_unregister_sysfs(sb);
4433 #endif
4434 failed_mount7:
4435 ext4_unregister_li_request(sb);
4436 failed_mount6:
4437 ext4_mb_release(sb);
4438 if (sbi->s_flex_groups)
4439 kvfree(sbi->s_flex_groups);
4440 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4441 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4442 percpu_counter_destroy(&sbi->s_dirs_counter);
4443 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4444 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
4445 failed_mount5:
4446 ext4_ext_release(sb);
4447 ext4_release_system_zone(sb);
4448 failed_mount4a:
4449 dput(sb->s_root);
4450 sb->s_root = NULL;
4451 failed_mount4:
4452 ext4_msg(sb, KERN_ERR, "mount failed");
4453 if (EXT4_SB(sb)->rsv_conversion_wq)
4454 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4455 failed_mount_wq:
4456 if (sbi->s_ea_inode_cache) {
4457 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4458 sbi->s_ea_inode_cache = NULL;
4459 }
4460 if (sbi->s_ea_block_cache) {
4461 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4462 sbi->s_ea_block_cache = NULL;
4463 }
4464 if (sbi->s_journal) {
4465 jbd2_journal_destroy(sbi->s_journal);
4466 sbi->s_journal = NULL;
4467 }
4468 failed_mount3a:
4469 ext4_es_unregister_shrinker(sbi);
4470 failed_mount3:
4471 del_timer_sync(&sbi->s_err_report);
4472 if (sbi->s_mmp_tsk)
4473 kthread_stop(sbi->s_mmp_tsk);
4474 failed_mount2:
4475 for (i = 0; i < db_count; i++)
4476 brelse(sbi->s_group_desc[i]);
4477 kvfree(sbi->s_group_desc);
4478 failed_mount:
4479 if (sbi->s_chksum_driver)
4480 crypto_free_shash(sbi->s_chksum_driver);
4481 #ifdef CONFIG_QUOTA
4482 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4483 kfree(sbi->s_qf_names[i]);
4484 #endif
4485 ext4_blkdev_remove(sbi);
4486 brelse(bh);
4487 out_fail:
4488 sb->s_fs_info = NULL;
4489 kfree(sbi->s_blockgroup_lock);
4490 out_free_base:
4491 kfree(sbi);
4492 kfree(orig_data);
4493 fs_put_dax(dax_dev);
4494 return err ? err : ret;
4495 }
4496
4497 /*
4498 * Setup any per-fs journal parameters now. We'll do this both on
4499 * initial mount, once the journal has been initialised but before we've
4500 * done any recovery; and again on any subsequent remount.
4501 */
4502 static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4503 {
4504 struct ext4_sb_info *sbi = EXT4_SB(sb);
4505
4506 journal->j_commit_interval = sbi->s_commit_interval;
4507 journal->j_min_batch_time = sbi->s_min_batch_time;
4508 journal->j_max_batch_time = sbi->s_max_batch_time;
4509
4510 write_lock(&journal->j_state_lock);
4511 if (test_opt(sb, BARRIER))
4512 journal->j_flags |= JBD2_BARRIER;
4513 else
4514 journal->j_flags &= ~JBD2_BARRIER;
4515 if (test_opt(sb, DATA_ERR_ABORT))
4516 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4517 else
4518 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4519 write_unlock(&journal->j_state_lock);
4520 }
4521
4522 static struct inode *ext4_get_journal_inode(struct super_block *sb,
4523 unsigned int journal_inum)
4524 {
4525 struct inode *journal_inode;
4526
4527 /*
4528 * Test for the existence of a valid inode on disk. Bad things
4529 * happen if we iget() an unused inode, as the subsequent iput()
4530 * will try to delete it.
4531 */
4532 journal_inode = ext4_iget(sb, journal_inum);
4533 if (IS_ERR(journal_inode)) {
4534 ext4_msg(sb, KERN_ERR, "no journal found");
4535 return NULL;
4536 }
4537 if (!journal_inode->i_nlink) {
4538 make_bad_inode(journal_inode);
4539 iput(journal_inode);
4540 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4541 return NULL;
4542 }
4543
4544 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4545 journal_inode, journal_inode->i_size);
4546 if (!S_ISREG(journal_inode->i_mode)) {
4547 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4548 iput(journal_inode);
4549 return NULL;
4550 }
4551 return journal_inode;
4552 }
4553
4554 static journal_t *ext4_get_journal(struct super_block *sb,
4555 unsigned int journal_inum)
4556 {
4557 struct inode *journal_inode;
4558 journal_t *journal;
4559
4560 BUG_ON(!ext4_has_feature_journal(sb));
4561
4562 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4563 if (!journal_inode)
4564 return NULL;
4565
4566 journal = jbd2_journal_init_inode(journal_inode);
4567 if (!journal) {
4568 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4569 iput(journal_inode);
4570 return NULL;
4571 }
4572 journal->j_private = sb;
4573 ext4_init_journal_params(sb, journal);
4574 return journal;
4575 }
4576
4577 static journal_t *ext4_get_dev_journal(struct super_block *sb,
4578 dev_t j_dev)
4579 {
4580 struct buffer_head *bh;
4581 journal_t *journal;
4582 ext4_fsblk_t start;
4583 ext4_fsblk_t len;
4584 int hblock, blocksize;
4585 ext4_fsblk_t sb_block;
4586 unsigned long offset;
4587 struct ext4_super_block *es;
4588 struct block_device *bdev;
4589
4590 BUG_ON(!ext4_has_feature_journal(sb));
4591
4592 bdev = ext4_blkdev_get(j_dev, sb);
4593 if (bdev == NULL)
4594 return NULL;
4595
4596 blocksize = sb->s_blocksize;
4597 hblock = bdev_logical_block_size(bdev);
4598 if (blocksize < hblock) {
4599 ext4_msg(sb, KERN_ERR,
4600 "blocksize too small for journal device");
4601 goto out_bdev;
4602 }
4603
4604 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4605 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4606 set_blocksize(bdev, blocksize);
4607 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4608 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4609 "external journal");
4610 goto out_bdev;
4611 }
4612
4613 es = (struct ext4_super_block *) (bh->b_data + offset);
4614 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4615 !(le32_to_cpu(es->s_feature_incompat) &
4616 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4617 ext4_msg(sb, KERN_ERR, "external journal has "
4618 "bad superblock");
4619 brelse(bh);
4620 goto out_bdev;
4621 }
4622
4623 if ((le32_to_cpu(es->s_feature_ro_compat) &
4624 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4625 es->s_checksum != ext4_superblock_csum(sb, es)) {
4626 ext4_msg(sb, KERN_ERR, "external journal has "
4627 "corrupt superblock");
4628 brelse(bh);
4629 goto out_bdev;
4630 }
4631
4632 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4633 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4634 brelse(bh);
4635 goto out_bdev;
4636 }
4637
4638 len = ext4_blocks_count(es);
4639 start = sb_block + 1;
4640 brelse(bh); /* we're done with the superblock */
4641
4642 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4643 start, len, blocksize);
4644 if (!journal) {
4645 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4646 goto out_bdev;
4647 }
4648 journal->j_private = sb;
4649 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4650 wait_on_buffer(journal->j_sb_buffer);
4651 if (!buffer_uptodate(journal->j_sb_buffer)) {
4652 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4653 goto out_journal;
4654 }
4655 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4656 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4657 "user (unsupported) - %d",
4658 be32_to_cpu(journal->j_superblock->s_nr_users));
4659 goto out_journal;
4660 }
4661 EXT4_SB(sb)->journal_bdev = bdev;
4662 ext4_init_journal_params(sb, journal);
4663 return journal;
4664
4665 out_journal:
4666 jbd2_journal_destroy(journal);
4667 out_bdev:
4668 ext4_blkdev_put(bdev);
4669 return NULL;
4670 }
4671
4672 static int ext4_load_journal(struct super_block *sb,
4673 struct ext4_super_block *es,
4674 unsigned long journal_devnum)
4675 {
4676 journal_t *journal;
4677 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4678 dev_t journal_dev;
4679 int err = 0;
4680 int really_read_only;
4681
4682 BUG_ON(!ext4_has_feature_journal(sb));
4683
4684 if (journal_devnum &&
4685 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4686 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4687 "numbers have changed");
4688 journal_dev = new_decode_dev(journal_devnum);
4689 } else
4690 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4691
4692 really_read_only = bdev_read_only(sb->s_bdev);
4693
4694 /*
4695 * Are we loading a blank journal or performing recovery after a
4696 * crash? For recovery, we need to check in advance whether we
4697 * can get read-write access to the device.
4698 */
4699 if (ext4_has_feature_journal_needs_recovery(sb)) {
4700 if (sb_rdonly(sb)) {
4701 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4702 "required on readonly filesystem");
4703 if (really_read_only) {
4704 ext4_msg(sb, KERN_ERR, "write access "
4705 "unavailable, cannot proceed");
4706 return -EROFS;
4707 }
4708 ext4_msg(sb, KERN_INFO, "write access will "
4709 "be enabled during recovery");
4710 }
4711 }
4712
4713 if (journal_inum && journal_dev) {
4714 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4715 "and inode journals!");
4716 return -EINVAL;
4717 }
4718
4719 if (journal_inum) {
4720 if (!(journal = ext4_get_journal(sb, journal_inum)))
4721 return -EINVAL;
4722 } else {
4723 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4724 return -EINVAL;
4725 }
4726
4727 if (!(journal->j_flags & JBD2_BARRIER))
4728 ext4_msg(sb, KERN_INFO, "barriers disabled");
4729
4730 if (!ext4_has_feature_journal_needs_recovery(sb))
4731 err = jbd2_journal_wipe(journal, !really_read_only);
4732 if (!err) {
4733 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4734 if (save)
4735 memcpy(save, ((char *) es) +
4736 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4737 err = jbd2_journal_load(journal);
4738 if (save)
4739 memcpy(((char *) es) + EXT4_S_ERR_START,
4740 save, EXT4_S_ERR_LEN);
4741 kfree(save);
4742 }
4743
4744 if (err) {
4745 ext4_msg(sb, KERN_ERR, "error loading journal");
4746 jbd2_journal_destroy(journal);
4747 return err;
4748 }
4749
4750 EXT4_SB(sb)->s_journal = journal;
4751 ext4_clear_journal_err(sb, es);
4752
4753 if (!really_read_only && journal_devnum &&
4754 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4755 es->s_journal_dev = cpu_to_le32(journal_devnum);
4756
4757 /* Make sure we flush the recovery flag to disk. */
4758 ext4_commit_super(sb, 1);
4759 }
4760
4761 return 0;
4762 }
4763
4764 static int ext4_commit_super(struct super_block *sb, int sync)
4765 {
4766 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4767 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4768 int error = 0;
4769
4770 if (!sbh || block_device_ejected(sb))
4771 return error;
4772
4773 /*
4774 * The superblock bh should be mapped, but it might not be if the
4775 * device was hot-removed. Not much we can do but fail the I/O.
4776 */
4777 if (!buffer_mapped(sbh))
4778 return error;
4779
4780 /*
4781 * If the file system is mounted read-only, don't update the
4782 * superblock write time. This avoids updating the superblock
4783 * write time when we are mounting the root file system
4784 * read/only but we need to replay the journal; at that point,
4785 * for people who are east of GMT and who make their clock
4786 * tick in localtime for Windows bug-for-bug compatibility,
4787 * the clock is set in the future, and this will cause e2fsck
4788 * to complain and force a full file system check.
4789 */
4790 if (!(sb->s_flags & MS_RDONLY))
4791 es->s_wtime = cpu_to_le32(get_seconds());
4792 if (sb->s_bdev->bd_part)
4793 es->s_kbytes_written =
4794 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4795 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4796 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4797 else
4798 es->s_kbytes_written =
4799 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4800 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4801 ext4_free_blocks_count_set(es,
4802 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4803 &EXT4_SB(sb)->s_freeclusters_counter)));
4804 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4805 es->s_free_inodes_count =
4806 cpu_to_le32(percpu_counter_sum_positive(
4807 &EXT4_SB(sb)->s_freeinodes_counter));
4808 BUFFER_TRACE(sbh, "marking dirty");
4809 ext4_superblock_csum_set(sb);
4810 if (sync)
4811 lock_buffer(sbh);
4812 if (buffer_write_io_error(sbh)) {
4813 /*
4814 * Oh, dear. A previous attempt to write the
4815 * superblock failed. This could happen because the
4816 * USB device was yanked out. Or it could happen to
4817 * be a transient write error and maybe the block will
4818 * be remapped. Nothing we can do but to retry the
4819 * write and hope for the best.
4820 */
4821 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4822 "superblock detected");
4823 clear_buffer_write_io_error(sbh);
4824 set_buffer_uptodate(sbh);
4825 }
4826 mark_buffer_dirty(sbh);
4827 if (sync) {
4828 unlock_buffer(sbh);
4829 error = __sync_dirty_buffer(sbh,
4830 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4831 if (error)
4832 return error;
4833
4834 error = buffer_write_io_error(sbh);
4835 if (error) {
4836 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4837 "superblock");
4838 clear_buffer_write_io_error(sbh);
4839 set_buffer_uptodate(sbh);
4840 }
4841 }
4842 return error;
4843 }
4844
4845 /*
4846 * Have we just finished recovery? If so, and if we are mounting (or
4847 * remounting) the filesystem readonly, then we will end up with a
4848 * consistent fs on disk. Record that fact.
4849 */
4850 static void ext4_mark_recovery_complete(struct super_block *sb,
4851 struct ext4_super_block *es)
4852 {
4853 journal_t *journal = EXT4_SB(sb)->s_journal;
4854
4855 if (!ext4_has_feature_journal(sb)) {
4856 BUG_ON(journal != NULL);
4857 return;
4858 }
4859 jbd2_journal_lock_updates(journal);
4860 if (jbd2_journal_flush(journal) < 0)
4861 goto out;
4862
4863 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
4864 ext4_clear_feature_journal_needs_recovery(sb);
4865 ext4_commit_super(sb, 1);
4866 }
4867
4868 out:
4869 jbd2_journal_unlock_updates(journal);
4870 }
4871
4872 /*
4873 * If we are mounting (or read-write remounting) a filesystem whose journal
4874 * has recorded an error from a previous lifetime, move that error to the
4875 * main filesystem now.
4876 */
4877 static void ext4_clear_journal_err(struct super_block *sb,
4878 struct ext4_super_block *es)
4879 {
4880 journal_t *journal;
4881 int j_errno;
4882 const char *errstr;
4883
4884 BUG_ON(!ext4_has_feature_journal(sb));
4885
4886 journal = EXT4_SB(sb)->s_journal;
4887
4888 /*
4889 * Now check for any error status which may have been recorded in the
4890 * journal by a prior ext4_error() or ext4_abort()
4891 */
4892
4893 j_errno = jbd2_journal_errno(journal);
4894 if (j_errno) {
4895 char nbuf[16];
4896
4897 errstr = ext4_decode_error(sb, j_errno, nbuf);
4898 ext4_warning(sb, "Filesystem error recorded "
4899 "from previous mount: %s", errstr);
4900 ext4_warning(sb, "Marking fs in need of filesystem check.");
4901
4902 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4903 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4904 ext4_commit_super(sb, 1);
4905
4906 jbd2_journal_clear_err(journal);
4907 jbd2_journal_update_sb_errno(journal);
4908 }
4909 }
4910
4911 /*
4912 * Force the running and committing transactions to commit,
4913 * and wait on the commit.
4914 */
4915 int ext4_force_commit(struct super_block *sb)
4916 {
4917 journal_t *journal;
4918
4919 if (sb_rdonly(sb))
4920 return 0;
4921
4922 journal = EXT4_SB(sb)->s_journal;
4923 return ext4_journal_force_commit(journal);
4924 }
4925
4926 static int ext4_sync_fs(struct super_block *sb, int wait)
4927 {
4928 int ret = 0;
4929 tid_t target;
4930 bool needs_barrier = false;
4931 struct ext4_sb_info *sbi = EXT4_SB(sb);
4932
4933 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
4934 return 0;
4935
4936 trace_ext4_sync_fs(sb, wait);
4937 flush_workqueue(sbi->rsv_conversion_wq);
4938 /*
4939 * Writeback quota in non-journalled quota case - journalled quota has
4940 * no dirty dquots
4941 */
4942 dquot_writeback_dquots(sb, -1);
4943 /*
4944 * Data writeback is possible w/o journal transaction, so barrier must
4945 * being sent at the end of the function. But we can skip it if
4946 * transaction_commit will do it for us.
4947 */
4948 if (sbi->s_journal) {
4949 target = jbd2_get_latest_transaction(sbi->s_journal);
4950 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4951 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4952 needs_barrier = true;
4953
4954 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4955 if (wait)
4956 ret = jbd2_log_wait_commit(sbi->s_journal,
4957 target);
4958 }
4959 } else if (wait && test_opt(sb, BARRIER))
4960 needs_barrier = true;
4961 if (needs_barrier) {
4962 int err;
4963 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4964 if (!ret)
4965 ret = err;
4966 }
4967
4968 return ret;
4969 }
4970
4971 /*
4972 * LVM calls this function before a (read-only) snapshot is created. This
4973 * gives us a chance to flush the journal completely and mark the fs clean.
4974 *
4975 * Note that only this function cannot bring a filesystem to be in a clean
4976 * state independently. It relies on upper layer to stop all data & metadata
4977 * modifications.
4978 */
4979 static int ext4_freeze(struct super_block *sb)
4980 {
4981 int error = 0;
4982 journal_t *journal;
4983
4984 if (sb_rdonly(sb))
4985 return 0;
4986
4987 journal = EXT4_SB(sb)->s_journal;
4988
4989 if (journal) {
4990 /* Now we set up the journal barrier. */
4991 jbd2_journal_lock_updates(journal);
4992
4993 /*
4994 * Don't clear the needs_recovery flag if we failed to
4995 * flush the journal.
4996 */
4997 error = jbd2_journal_flush(journal);
4998 if (error < 0)
4999 goto out;
5000
5001 /* Journal blocked and flushed, clear needs_recovery flag. */
5002 ext4_clear_feature_journal_needs_recovery(sb);
5003 }
5004
5005 error = ext4_commit_super(sb, 1);
5006 out:
5007 if (journal)
5008 /* we rely on upper layer to stop further updates */
5009 jbd2_journal_unlock_updates(journal);
5010 return error;
5011 }
5012
5013 /*
5014 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5015 * flag here, even though the filesystem is not technically dirty yet.
5016 */
5017 static int ext4_unfreeze(struct super_block *sb)
5018 {
5019 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5020 return 0;
5021
5022 if (EXT4_SB(sb)->s_journal) {
5023 /* Reset the needs_recovery flag before the fs is unlocked. */
5024 ext4_set_feature_journal_needs_recovery(sb);
5025 }
5026
5027 ext4_commit_super(sb, 1);
5028 return 0;
5029 }
5030
5031 /*
5032 * Structure to save mount options for ext4_remount's benefit
5033 */
5034 struct ext4_mount_options {
5035 unsigned long s_mount_opt;
5036 unsigned long s_mount_opt2;
5037 kuid_t s_resuid;
5038 kgid_t s_resgid;
5039 unsigned long s_commit_interval;
5040 u32 s_min_batch_time, s_max_batch_time;
5041 #ifdef CONFIG_QUOTA
5042 int s_jquota_fmt;
5043 char *s_qf_names[EXT4_MAXQUOTAS];
5044 #endif
5045 };
5046
5047 static int ext4_remount(struct super_block *sb, int *flags, char *data)
5048 {
5049 struct ext4_super_block *es;
5050 struct ext4_sb_info *sbi = EXT4_SB(sb);
5051 unsigned long old_sb_flags;
5052 struct ext4_mount_options old_opts;
5053 int enable_quota = 0;
5054 ext4_group_t g;
5055 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5056 int err = 0;
5057 #ifdef CONFIG_QUOTA
5058 int i, j;
5059 char *to_free[EXT4_MAXQUOTAS];
5060 #endif
5061 char *orig_data = kstrdup(data, GFP_KERNEL);
5062
5063 /* Store the original options */
5064 old_sb_flags = sb->s_flags;
5065 old_opts.s_mount_opt = sbi->s_mount_opt;
5066 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5067 old_opts.s_resuid = sbi->s_resuid;
5068 old_opts.s_resgid = sbi->s_resgid;
5069 old_opts.s_commit_interval = sbi->s_commit_interval;
5070 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5071 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5072 #ifdef CONFIG_QUOTA
5073 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5074 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5075 if (sbi->s_qf_names[i]) {
5076 char *qf_name = get_qf_name(sb, sbi, i);
5077
5078 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5079 if (!old_opts.s_qf_names[i]) {
5080 for (j = 0; j < i; j++)
5081 kfree(old_opts.s_qf_names[j]);
5082 kfree(orig_data);
5083 return -ENOMEM;
5084 }
5085 } else
5086 old_opts.s_qf_names[i] = NULL;
5087 #endif
5088 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5089 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
5090
5091 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5092 err = -EINVAL;
5093 goto restore_opts;
5094 }
5095
5096 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5097 test_opt(sb, JOURNAL_CHECKSUM)) {
5098 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5099 "during remount not supported; ignoring");
5100 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5101 }
5102
5103 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5104 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5105 ext4_msg(sb, KERN_ERR, "can't mount with "
5106 "both data=journal and delalloc");
5107 err = -EINVAL;
5108 goto restore_opts;
5109 }
5110 if (test_opt(sb, DIOREAD_NOLOCK)) {
5111 ext4_msg(sb, KERN_ERR, "can't mount with "
5112 "both data=journal and dioread_nolock");
5113 err = -EINVAL;
5114 goto restore_opts;
5115 }
5116 if (test_opt(sb, DAX)) {
5117 ext4_msg(sb, KERN_ERR, "can't mount with "
5118 "both data=journal and dax");
5119 err = -EINVAL;
5120 goto restore_opts;
5121 }
5122 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5123 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5124 ext4_msg(sb, KERN_ERR, "can't mount with "
5125 "journal_async_commit in data=ordered mode");
5126 err = -EINVAL;
5127 goto restore_opts;
5128 }
5129 }
5130
5131 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5132 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5133 err = -EINVAL;
5134 goto restore_opts;
5135 }
5136
5137 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5138 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5139 "dax flag with busy inodes while remounting");
5140 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5141 }
5142
5143 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5144 ext4_abort(sb, "Abort forced by user");
5145
5146 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
5147 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
5148
5149 es = sbi->s_es;
5150
5151 if (sbi->s_journal) {
5152 ext4_init_journal_params(sb, sbi->s_journal);
5153 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5154 }
5155
5156 if (*flags & MS_LAZYTIME)
5157 sb->s_flags |= MS_LAZYTIME;
5158
5159 if ((bool)(*flags & MS_RDONLY) != sb_rdonly(sb)) {
5160 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5161 err = -EROFS;
5162 goto restore_opts;
5163 }
5164
5165 if (*flags & MS_RDONLY) {
5166 err = sync_filesystem(sb);
5167 if (err < 0)
5168 goto restore_opts;
5169 err = dquot_suspend(sb, -1);
5170 if (err < 0)
5171 goto restore_opts;
5172
5173 /*
5174 * First of all, the unconditional stuff we have to do
5175 * to disable replay of the journal when we next remount
5176 */
5177 sb->s_flags |= MS_RDONLY;
5178
5179 /*
5180 * OK, test if we are remounting a valid rw partition
5181 * readonly, and if so set the rdonly flag and then
5182 * mark the partition as valid again.
5183 */
5184 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5185 (sbi->s_mount_state & EXT4_VALID_FS))
5186 es->s_state = cpu_to_le16(sbi->s_mount_state);
5187
5188 if (sbi->s_journal)
5189 ext4_mark_recovery_complete(sb, es);
5190 if (sbi->s_mmp_tsk)
5191 kthread_stop(sbi->s_mmp_tsk);
5192 } else {
5193 /* Make sure we can mount this feature set readwrite */
5194 if (ext4_has_feature_readonly(sb) ||
5195 !ext4_feature_set_ok(sb, 0)) {
5196 err = -EROFS;
5197 goto restore_opts;
5198 }
5199 /*
5200 * Make sure the group descriptor checksums
5201 * are sane. If they aren't, refuse to remount r/w.
5202 */
5203 for (g = 0; g < sbi->s_groups_count; g++) {
5204 struct ext4_group_desc *gdp =
5205 ext4_get_group_desc(sb, g, NULL);
5206
5207 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5208 ext4_msg(sb, KERN_ERR,
5209 "ext4_remount: Checksum for group %u failed (%u!=%u)",
5210 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5211 le16_to_cpu(gdp->bg_checksum));
5212 err = -EFSBADCRC;
5213 goto restore_opts;
5214 }
5215 }
5216
5217 /*
5218 * If we have an unprocessed orphan list hanging
5219 * around from a previously readonly bdev mount,
5220 * require a full umount/remount for now.
5221 */
5222 if (es->s_last_orphan) {
5223 ext4_msg(sb, KERN_WARNING, "Couldn't "
5224 "remount RDWR because of unprocessed "
5225 "orphan inode list. Please "
5226 "umount/remount instead");
5227 err = -EINVAL;
5228 goto restore_opts;
5229 }
5230
5231 /*
5232 * Mounting a RDONLY partition read-write, so reread
5233 * and store the current valid flag. (It may have
5234 * been changed by e2fsck since we originally mounted
5235 * the partition.)
5236 */
5237 if (sbi->s_journal)
5238 ext4_clear_journal_err(sb, es);
5239 sbi->s_mount_state = le16_to_cpu(es->s_state);
5240 if (!ext4_setup_super(sb, es, 0))
5241 sb->s_flags &= ~MS_RDONLY;
5242 if (ext4_has_feature_mmp(sb))
5243 if (ext4_multi_mount_protect(sb,
5244 le64_to_cpu(es->s_mmp_block))) {
5245 err = -EROFS;
5246 goto restore_opts;
5247 }
5248 enable_quota = 1;
5249 }
5250 }
5251
5252 /*
5253 * Reinitialize lazy itable initialization thread based on
5254 * current settings
5255 */
5256 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5257 ext4_unregister_li_request(sb);
5258 else {
5259 ext4_group_t first_not_zeroed;
5260 first_not_zeroed = ext4_has_uninit_itable(sb);
5261 ext4_register_li_request(sb, first_not_zeroed);
5262 }
5263
5264 ext4_setup_system_zone(sb);
5265 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5266 ext4_commit_super(sb, 1);
5267
5268 #ifdef CONFIG_QUOTA
5269 /* Release old quota file names */
5270 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5271 kfree(old_opts.s_qf_names[i]);
5272 if (enable_quota) {
5273 if (sb_any_quota_suspended(sb))
5274 dquot_resume(sb, -1);
5275 else if (ext4_has_feature_quota(sb)) {
5276 err = ext4_enable_quotas(sb);
5277 if (err)
5278 goto restore_opts;
5279 }
5280 }
5281 #endif
5282
5283 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5284 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5285 kfree(orig_data);
5286 return 0;
5287
5288 restore_opts:
5289 sb->s_flags = old_sb_flags;
5290 sbi->s_mount_opt = old_opts.s_mount_opt;
5291 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5292 sbi->s_resuid = old_opts.s_resuid;
5293 sbi->s_resgid = old_opts.s_resgid;
5294 sbi->s_commit_interval = old_opts.s_commit_interval;
5295 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5296 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5297 #ifdef CONFIG_QUOTA
5298 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5299 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5300 to_free[i] = get_qf_name(sb, sbi, i);
5301 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
5302 }
5303 synchronize_rcu();
5304 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5305 kfree(to_free[i]);
5306 #endif
5307 kfree(orig_data);
5308 return err;
5309 }
5310
5311 #ifdef CONFIG_QUOTA
5312 static int ext4_statfs_project(struct super_block *sb,
5313 kprojid_t projid, struct kstatfs *buf)
5314 {
5315 struct kqid qid;
5316 struct dquot *dquot;
5317 u64 limit;
5318 u64 curblock;
5319
5320 qid = make_kqid_projid(projid);
5321 dquot = dqget(sb, qid);
5322 if (IS_ERR(dquot))
5323 return PTR_ERR(dquot);
5324 spin_lock(&dquot->dq_dqb_lock);
5325
5326 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5327 dquot->dq_dqb.dqb_bsoftlimit :
5328 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5329 if (limit && buf->f_blocks > limit) {
5330 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5331 buf->f_blocks = limit;
5332 buf->f_bfree = buf->f_bavail =
5333 (buf->f_blocks > curblock) ?
5334 (buf->f_blocks - curblock) : 0;
5335 }
5336
5337 limit = dquot->dq_dqb.dqb_isoftlimit ?
5338 dquot->dq_dqb.dqb_isoftlimit :
5339 dquot->dq_dqb.dqb_ihardlimit;
5340 if (limit && buf->f_files > limit) {
5341 buf->f_files = limit;
5342 buf->f_ffree =
5343 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5344 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5345 }
5346
5347 spin_unlock(&dquot->dq_dqb_lock);
5348 dqput(dquot);
5349 return 0;
5350 }
5351 #endif
5352
5353 static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5354 {
5355 struct super_block *sb = dentry->d_sb;
5356 struct ext4_sb_info *sbi = EXT4_SB(sb);
5357 struct ext4_super_block *es = sbi->s_es;
5358 ext4_fsblk_t overhead = 0, resv_blocks;
5359 u64 fsid;
5360 s64 bfree;
5361 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5362
5363 if (!test_opt(sb, MINIX_DF))
5364 overhead = sbi->s_overhead;
5365
5366 buf->f_type = EXT4_SUPER_MAGIC;
5367 buf->f_bsize = sb->s_blocksize;
5368 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5369 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5370 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5371 /* prevent underflow in case that few free space is available */
5372 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5373 buf->f_bavail = buf->f_bfree -
5374 (ext4_r_blocks_count(es) + resv_blocks);
5375 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5376 buf->f_bavail = 0;
5377 buf->f_files = le32_to_cpu(es->s_inodes_count);
5378 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5379 buf->f_namelen = EXT4_NAME_LEN;
5380 fsid = le64_to_cpup((void *)es->s_uuid) ^
5381 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5382 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5383 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5384
5385 #ifdef CONFIG_QUOTA
5386 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5387 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5388 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5389 #endif
5390 return 0;
5391 }
5392
5393
5394 #ifdef CONFIG_QUOTA
5395
5396 /*
5397 * Helper functions so that transaction is started before we acquire dqio_sem
5398 * to keep correct lock ordering of transaction > dqio_sem
5399 */
5400 static inline struct inode *dquot_to_inode(struct dquot *dquot)
5401 {
5402 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5403 }
5404
5405 static int ext4_write_dquot(struct dquot *dquot)
5406 {
5407 int ret, err;
5408 handle_t *handle;
5409 struct inode *inode;
5410
5411 inode = dquot_to_inode(dquot);
5412 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5413 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5414 if (IS_ERR(handle))
5415 return PTR_ERR(handle);
5416 ret = dquot_commit(dquot);
5417 err = ext4_journal_stop(handle);
5418 if (!ret)
5419 ret = err;
5420 return ret;
5421 }
5422
5423 static int ext4_acquire_dquot(struct dquot *dquot)
5424 {
5425 int ret, err;
5426 handle_t *handle;
5427
5428 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5429 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5430 if (IS_ERR(handle))
5431 return PTR_ERR(handle);
5432 ret = dquot_acquire(dquot);
5433 err = ext4_journal_stop(handle);
5434 if (!ret)
5435 ret = err;
5436 return ret;
5437 }
5438
5439 static int ext4_release_dquot(struct dquot *dquot)
5440 {
5441 int ret, err;
5442 handle_t *handle;
5443
5444 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5445 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5446 if (IS_ERR(handle)) {
5447 /* Release dquot anyway to avoid endless cycle in dqput() */
5448 dquot_release(dquot);
5449 return PTR_ERR(handle);
5450 }
5451 ret = dquot_release(dquot);
5452 err = ext4_journal_stop(handle);
5453 if (!ret)
5454 ret = err;
5455 return ret;
5456 }
5457
5458 static int ext4_mark_dquot_dirty(struct dquot *dquot)
5459 {
5460 struct super_block *sb = dquot->dq_sb;
5461 struct ext4_sb_info *sbi = EXT4_SB(sb);
5462
5463 /* Are we journaling quotas? */
5464 if (ext4_has_feature_quota(sb) ||
5465 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5466 dquot_mark_dquot_dirty(dquot);
5467 return ext4_write_dquot(dquot);
5468 } else {
5469 return dquot_mark_dquot_dirty(dquot);
5470 }
5471 }
5472
5473 static int ext4_write_info(struct super_block *sb, int type)
5474 {
5475 int ret, err;
5476 handle_t *handle;
5477
5478 /* Data block + inode block */
5479 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5480 if (IS_ERR(handle))
5481 return PTR_ERR(handle);
5482 ret = dquot_commit_info(sb, type);
5483 err = ext4_journal_stop(handle);
5484 if (!ret)
5485 ret = err;
5486 return ret;
5487 }
5488
5489 /*
5490 * Turn on quotas during mount time - we need to find
5491 * the quota file and such...
5492 */
5493 static int ext4_quota_on_mount(struct super_block *sb, int type)
5494 {
5495 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
5496 EXT4_SB(sb)->s_jquota_fmt, type);
5497 }
5498
5499 static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5500 {
5501 struct ext4_inode_info *ei = EXT4_I(inode);
5502
5503 /* The first argument of lockdep_set_subclass has to be
5504 * *exactly* the same as the argument to init_rwsem() --- in
5505 * this case, in init_once() --- or lockdep gets unhappy
5506 * because the name of the lock is set using the
5507 * stringification of the argument to init_rwsem().
5508 */
5509 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5510 lockdep_set_subclass(&ei->i_data_sem, subclass);
5511 }
5512
5513 /*
5514 * Standard function to be called on quota_on
5515 */
5516 static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5517 const struct path *path)
5518 {
5519 int err;
5520
5521 if (!test_opt(sb, QUOTA))
5522 return -EINVAL;
5523
5524 /* Quotafile not on the same filesystem? */
5525 if (path->dentry->d_sb != sb)
5526 return -EXDEV;
5527 /* Journaling quota? */
5528 if (EXT4_SB(sb)->s_qf_names[type]) {
5529 /* Quotafile not in fs root? */
5530 if (path->dentry->d_parent != sb->s_root)
5531 ext4_msg(sb, KERN_WARNING,
5532 "Quota file not on filesystem root. "
5533 "Journaled quota will not work");
5534 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5535 } else {
5536 /*
5537 * Clear the flag just in case mount options changed since
5538 * last time.
5539 */
5540 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5541 }
5542
5543 /*
5544 * When we journal data on quota file, we have to flush journal to see
5545 * all updates to the file when we bypass pagecache...
5546 */
5547 if (EXT4_SB(sb)->s_journal &&
5548 ext4_should_journal_data(d_inode(path->dentry))) {
5549 /*
5550 * We don't need to lock updates but journal_flush() could
5551 * otherwise be livelocked...
5552 */
5553 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5554 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5555 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5556 if (err)
5557 return err;
5558 }
5559
5560 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5561 err = dquot_quota_on(sb, type, format_id, path);
5562 if (err) {
5563 lockdep_set_quota_inode(path->dentry->d_inode,
5564 I_DATA_SEM_NORMAL);
5565 } else {
5566 struct inode *inode = d_inode(path->dentry);
5567 handle_t *handle;
5568
5569 /*
5570 * Set inode flags to prevent userspace from messing with quota
5571 * files. If this fails, we return success anyway since quotas
5572 * are already enabled and this is not a hard failure.
5573 */
5574 inode_lock(inode);
5575 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5576 if (IS_ERR(handle))
5577 goto unlock_inode;
5578 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5579 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5580 S_NOATIME | S_IMMUTABLE);
5581 ext4_mark_inode_dirty(handle, inode);
5582 ext4_journal_stop(handle);
5583 unlock_inode:
5584 inode_unlock(inode);
5585 }
5586 return err;
5587 }
5588
5589 static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5590 unsigned int flags)
5591 {
5592 int err;
5593 struct inode *qf_inode;
5594 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5595 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5596 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5597 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5598 };
5599
5600 BUG_ON(!ext4_has_feature_quota(sb));
5601
5602 if (!qf_inums[type])
5603 return -EPERM;
5604
5605 qf_inode = ext4_iget(sb, qf_inums[type]);
5606 if (IS_ERR(qf_inode)) {
5607 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5608 return PTR_ERR(qf_inode);
5609 }
5610
5611 /* Don't account quota for quota files to avoid recursion */
5612 qf_inode->i_flags |= S_NOQUOTA;
5613 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5614 err = dquot_enable(qf_inode, type, format_id, flags);
5615 iput(qf_inode);
5616 if (err)
5617 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5618
5619 return err;
5620 }
5621
5622 /* Enable usage tracking for all quota types. */
5623 static int ext4_enable_quotas(struct super_block *sb)
5624 {
5625 int type, err = 0;
5626 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5627 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5628 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5629 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5630 };
5631 bool quota_mopt[EXT4_MAXQUOTAS] = {
5632 test_opt(sb, USRQUOTA),
5633 test_opt(sb, GRPQUOTA),
5634 test_opt(sb, PRJQUOTA),
5635 };
5636
5637 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5638 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5639 if (qf_inums[type]) {
5640 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5641 DQUOT_USAGE_ENABLED |
5642 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5643 if (err) {
5644 for (type--; type >= 0; type--)
5645 dquot_quota_off(sb, type);
5646
5647 ext4_warning(sb,
5648 "Failed to enable quota tracking "
5649 "(type=%d, err=%d). Please run "
5650 "e2fsck to fix.", type, err);
5651 return err;
5652 }
5653 }
5654 }
5655 return 0;
5656 }
5657
5658 static int ext4_quota_off(struct super_block *sb, int type)
5659 {
5660 struct inode *inode = sb_dqopt(sb)->files[type];
5661 handle_t *handle;
5662 int err;
5663
5664 /* Force all delayed allocation blocks to be allocated.
5665 * Caller already holds s_umount sem */
5666 if (test_opt(sb, DELALLOC))
5667 sync_filesystem(sb);
5668
5669 if (!inode || !igrab(inode))
5670 goto out;
5671
5672 err = dquot_quota_off(sb, type);
5673 if (err || ext4_has_feature_quota(sb))
5674 goto out_put;
5675
5676 inode_lock(inode);
5677 /*
5678 * Update modification times of quota files when userspace can
5679 * start looking at them. If we fail, we return success anyway since
5680 * this is not a hard failure and quotas are already disabled.
5681 */
5682 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5683 if (IS_ERR(handle))
5684 goto out_unlock;
5685 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5686 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5687 inode->i_mtime = inode->i_ctime = current_time(inode);
5688 ext4_mark_inode_dirty(handle, inode);
5689 ext4_journal_stop(handle);
5690 out_unlock:
5691 inode_unlock(inode);
5692 out_put:
5693 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5694 iput(inode);
5695 return err;
5696 out:
5697 return dquot_quota_off(sb, type);
5698 }
5699
5700 /* Read data from quotafile - avoid pagecache and such because we cannot afford
5701 * acquiring the locks... As quota files are never truncated and quota code
5702 * itself serializes the operations (and no one else should touch the files)
5703 * we don't have to be afraid of races */
5704 static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5705 size_t len, loff_t off)
5706 {
5707 struct inode *inode = sb_dqopt(sb)->files[type];
5708 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5709 int offset = off & (sb->s_blocksize - 1);
5710 int tocopy;
5711 size_t toread;
5712 struct buffer_head *bh;
5713 loff_t i_size = i_size_read(inode);
5714
5715 if (off > i_size)
5716 return 0;
5717 if (off+len > i_size)
5718 len = i_size-off;
5719 toread = len;
5720 while (toread > 0) {
5721 tocopy = sb->s_blocksize - offset < toread ?
5722 sb->s_blocksize - offset : toread;
5723 bh = ext4_bread(NULL, inode, blk, 0);
5724 if (IS_ERR(bh))
5725 return PTR_ERR(bh);
5726 if (!bh) /* A hole? */
5727 memset(data, 0, tocopy);
5728 else
5729 memcpy(data, bh->b_data+offset, tocopy);
5730 brelse(bh);
5731 offset = 0;
5732 toread -= tocopy;
5733 data += tocopy;
5734 blk++;
5735 }
5736 return len;
5737 }
5738
5739 /* Write to quotafile (we know the transaction is already started and has
5740 * enough credits) */
5741 static ssize_t ext4_quota_write(struct super_block *sb, int type,
5742 const char *data, size_t len, loff_t off)
5743 {
5744 struct inode *inode = sb_dqopt(sb)->files[type];
5745 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5746 int err, offset = off & (sb->s_blocksize - 1);
5747 int retries = 0;
5748 struct buffer_head *bh;
5749 handle_t *handle = journal_current_handle();
5750
5751 if (EXT4_SB(sb)->s_journal && !handle) {
5752 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5753 " cancelled because transaction is not started",
5754 (unsigned long long)off, (unsigned long long)len);
5755 return -EIO;
5756 }
5757 /*
5758 * Since we account only one data block in transaction credits,
5759 * then it is impossible to cross a block boundary.
5760 */
5761 if (sb->s_blocksize - offset < len) {
5762 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5763 " cancelled because not block aligned",
5764 (unsigned long long)off, (unsigned long long)len);
5765 return -EIO;
5766 }
5767
5768 do {
5769 bh = ext4_bread(handle, inode, blk,
5770 EXT4_GET_BLOCKS_CREATE |
5771 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5772 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5773 ext4_should_retry_alloc(inode->i_sb, &retries));
5774 if (IS_ERR(bh))
5775 return PTR_ERR(bh);
5776 if (!bh)
5777 goto out;
5778 BUFFER_TRACE(bh, "get write access");
5779 err = ext4_journal_get_write_access(handle, bh);
5780 if (err) {
5781 brelse(bh);
5782 return err;
5783 }
5784 lock_buffer(bh);
5785 memcpy(bh->b_data+offset, data, len);
5786 flush_dcache_page(bh->b_page);
5787 unlock_buffer(bh);
5788 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5789 brelse(bh);
5790 out:
5791 if (inode->i_size < off + len) {
5792 i_size_write(inode, off + len);
5793 EXT4_I(inode)->i_disksize = inode->i_size;
5794 ext4_mark_inode_dirty(handle, inode);
5795 }
5796 return len;
5797 }
5798
5799 static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5800 {
5801 const struct quota_format_ops *ops;
5802
5803 if (!sb_has_quota_loaded(sb, qid->type))
5804 return -ESRCH;
5805 ops = sb_dqopt(sb)->ops[qid->type];
5806 if (!ops || !ops->get_next_id)
5807 return -ENOSYS;
5808 return dquot_get_next_id(sb, qid);
5809 }
5810 #endif
5811
5812 static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5813 const char *dev_name, void *data)
5814 {
5815 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5816 }
5817
5818 #if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5819 static inline void register_as_ext2(void)
5820 {
5821 int err = register_filesystem(&ext2_fs_type);
5822 if (err)
5823 printk(KERN_WARNING
5824 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5825 }
5826
5827 static inline void unregister_as_ext2(void)
5828 {
5829 unregister_filesystem(&ext2_fs_type);
5830 }
5831
5832 static inline int ext2_feature_set_ok(struct super_block *sb)
5833 {
5834 if (ext4_has_unknown_ext2_incompat_features(sb))
5835 return 0;
5836 if (sb_rdonly(sb))
5837 return 1;
5838 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5839 return 0;
5840 return 1;
5841 }
5842 #else
5843 static inline void register_as_ext2(void) { }
5844 static inline void unregister_as_ext2(void) { }
5845 static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5846 #endif
5847
5848 static inline void register_as_ext3(void)
5849 {
5850 int err = register_filesystem(&ext3_fs_type);
5851 if (err)
5852 printk(KERN_WARNING
5853 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5854 }
5855
5856 static inline void unregister_as_ext3(void)
5857 {
5858 unregister_filesystem(&ext3_fs_type);
5859 }
5860
5861 static inline int ext3_feature_set_ok(struct super_block *sb)
5862 {
5863 if (ext4_has_unknown_ext3_incompat_features(sb))
5864 return 0;
5865 if (!ext4_has_feature_journal(sb))
5866 return 0;
5867 if (sb_rdonly(sb))
5868 return 1;
5869 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5870 return 0;
5871 return 1;
5872 }
5873
5874 static struct file_system_type ext4_fs_type = {
5875 .owner = THIS_MODULE,
5876 .name = "ext4",
5877 .mount = ext4_mount,
5878 .kill_sb = kill_block_super,
5879 .fs_flags = FS_REQUIRES_DEV,
5880 };
5881 MODULE_ALIAS_FS("ext4");
5882
5883 /* Shared across all ext4 file systems */
5884 wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5885
5886 static int __init ext4_init_fs(void)
5887 {
5888 int i, err;
5889
5890 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5891 ext4_li_info = NULL;
5892 mutex_init(&ext4_li_mtx);
5893
5894 /* Build-time check for flags consistency */
5895 ext4_check_flag_values();
5896
5897 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5898 init_waitqueue_head(&ext4__ioend_wq[i]);
5899
5900 err = ext4_init_es();
5901 if (err)
5902 return err;
5903
5904 err = ext4_init_pageio();
5905 if (err)
5906 goto out5;
5907
5908 err = ext4_init_system_zone();
5909 if (err)
5910 goto out4;
5911
5912 err = ext4_init_sysfs();
5913 if (err)
5914 goto out3;
5915
5916 err = ext4_init_mballoc();
5917 if (err)
5918 goto out2;
5919 err = init_inodecache();
5920 if (err)
5921 goto out1;
5922 register_as_ext3();
5923 register_as_ext2();
5924 err = register_filesystem(&ext4_fs_type);
5925 if (err)
5926 goto out;
5927
5928 return 0;
5929 out:
5930 unregister_as_ext2();
5931 unregister_as_ext3();
5932 destroy_inodecache();
5933 out1:
5934 ext4_exit_mballoc();
5935 out2:
5936 ext4_exit_sysfs();
5937 out3:
5938 ext4_exit_system_zone();
5939 out4:
5940 ext4_exit_pageio();
5941 out5:
5942 ext4_exit_es();
5943
5944 return err;
5945 }
5946
5947 static void __exit ext4_exit_fs(void)
5948 {
5949 ext4_destroy_lazyinit_thread();
5950 unregister_as_ext2();
5951 unregister_as_ext3();
5952 unregister_filesystem(&ext4_fs_type);
5953 destroy_inodecache();
5954 ext4_exit_mballoc();
5955 ext4_exit_sysfs();
5956 ext4_exit_system_zone();
5957 ext4_exit_pageio();
5958 ext4_exit_es();
5959 }
5960
5961 MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5962 MODULE_DESCRIPTION("Fourth Extended Filesystem");
5963 MODULE_LICENSE("GPL");
5964 MODULE_SOFTDEP("pre: crc32c");
5965 module_init(ext4_init_fs)
5966 module_exit(ext4_exit_fs)