Merge tag 'for-linus-20130509' of git://git.infradead.org/~dwmw2/random-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / page-io.c
1 /*
2 * linux/fs/ext4/page-io.c
3 *
4 * This contains the new page_io functions for ext4
5 *
6 * Written by Theodore Ts'o, 2010.
7 */
8
9 #include <linux/fs.h>
10 #include <linux/time.h>
11 #include <linux/jbd2.h>
12 #include <linux/highuid.h>
13 #include <linux/pagemap.h>
14 #include <linux/quotaops.h>
15 #include <linux/string.h>
16 #include <linux/buffer_head.h>
17 #include <linux/writeback.h>
18 #include <linux/pagevec.h>
19 #include <linux/mpage.h>
20 #include <linux/namei.h>
21 #include <linux/aio.h>
22 #include <linux/uio.h>
23 #include <linux/bio.h>
24 #include <linux/workqueue.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
32
33 static struct kmem_cache *io_end_cachep;
34
35 int __init ext4_init_pageio(void)
36 {
37 io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
38 if (io_end_cachep == NULL)
39 return -ENOMEM;
40 return 0;
41 }
42
43 void ext4_exit_pageio(void)
44 {
45 kmem_cache_destroy(io_end_cachep);
46 }
47
48 /*
49 * This function is called by ext4_evict_inode() to make sure there is
50 * no more pending I/O completion work left to do.
51 */
52 void ext4_ioend_shutdown(struct inode *inode)
53 {
54 wait_queue_head_t *wq = ext4_ioend_wq(inode);
55
56 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_ioend_count) == 0));
57 /*
58 * We need to make sure the work structure is finished being
59 * used before we let the inode get destroyed.
60 */
61 if (work_pending(&EXT4_I(inode)->i_unwritten_work))
62 cancel_work_sync(&EXT4_I(inode)->i_unwritten_work);
63 }
64
65 static void ext4_release_io_end(ext4_io_end_t *io_end)
66 {
67 BUG_ON(!list_empty(&io_end->list));
68 BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
69
70 if (atomic_dec_and_test(&EXT4_I(io_end->inode)->i_ioend_count))
71 wake_up_all(ext4_ioend_wq(io_end->inode));
72 if (io_end->flag & EXT4_IO_END_DIRECT)
73 inode_dio_done(io_end->inode);
74 if (io_end->iocb)
75 aio_complete(io_end->iocb, io_end->result, 0);
76 kmem_cache_free(io_end_cachep, io_end);
77 }
78
79 static void ext4_clear_io_unwritten_flag(ext4_io_end_t *io_end)
80 {
81 struct inode *inode = io_end->inode;
82
83 io_end->flag &= ~EXT4_IO_END_UNWRITTEN;
84 /* Wake up anyone waiting on unwritten extent conversion */
85 if (atomic_dec_and_test(&EXT4_I(inode)->i_unwritten))
86 wake_up_all(ext4_ioend_wq(inode));
87 }
88
89 /* check a range of space and convert unwritten extents to written. */
90 static int ext4_end_io(ext4_io_end_t *io)
91 {
92 struct inode *inode = io->inode;
93 loff_t offset = io->offset;
94 ssize_t size = io->size;
95 int ret = 0;
96
97 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
98 "list->prev 0x%p\n",
99 io, inode->i_ino, io->list.next, io->list.prev);
100
101 ret = ext4_convert_unwritten_extents(inode, offset, size);
102 if (ret < 0) {
103 ext4_msg(inode->i_sb, KERN_EMERG,
104 "failed to convert unwritten extents to written "
105 "extents -- potential data loss! "
106 "(inode %lu, offset %llu, size %zd, error %d)",
107 inode->i_ino, offset, size, ret);
108 }
109 ext4_clear_io_unwritten_flag(io);
110 ext4_release_io_end(io);
111 return ret;
112 }
113
114 static void dump_completed_IO(struct inode *inode)
115 {
116 #ifdef EXT4FS_DEBUG
117 struct list_head *cur, *before, *after;
118 ext4_io_end_t *io, *io0, *io1;
119
120 if (list_empty(&EXT4_I(inode)->i_completed_io_list)) {
121 ext4_debug("inode %lu completed_io list is empty\n",
122 inode->i_ino);
123 return;
124 }
125
126 ext4_debug("Dump inode %lu completed_io list\n", inode->i_ino);
127 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list) {
128 cur = &io->list;
129 before = cur->prev;
130 io0 = container_of(before, ext4_io_end_t, list);
131 after = cur->next;
132 io1 = container_of(after, ext4_io_end_t, list);
133
134 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
135 io, inode->i_ino, io0, io1);
136 }
137 #endif
138 }
139
140 /* Add the io_end to per-inode completed end_io list. */
141 static void ext4_add_complete_io(ext4_io_end_t *io_end)
142 {
143 struct ext4_inode_info *ei = EXT4_I(io_end->inode);
144 struct workqueue_struct *wq;
145 unsigned long flags;
146
147 BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
148 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
149
150 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
151 if (list_empty(&ei->i_completed_io_list))
152 queue_work(wq, &ei->i_unwritten_work);
153 list_add_tail(&io_end->list, &ei->i_completed_io_list);
154 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
155 }
156
157 static int ext4_do_flush_completed_IO(struct inode *inode)
158 {
159 ext4_io_end_t *io;
160 struct list_head unwritten;
161 unsigned long flags;
162 struct ext4_inode_info *ei = EXT4_I(inode);
163 int err, ret = 0;
164
165 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
166 dump_completed_IO(inode);
167 list_replace_init(&ei->i_completed_io_list, &unwritten);
168 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
169
170 while (!list_empty(&unwritten)) {
171 io = list_entry(unwritten.next, ext4_io_end_t, list);
172 BUG_ON(!(io->flag & EXT4_IO_END_UNWRITTEN));
173 list_del_init(&io->list);
174
175 err = ext4_end_io(io);
176 if (unlikely(!ret && err))
177 ret = err;
178 }
179 return ret;
180 }
181
182 /*
183 * work on completed aio dio IO, to convert unwritten extents to extents
184 */
185 void ext4_end_io_work(struct work_struct *work)
186 {
187 struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
188 i_unwritten_work);
189 ext4_do_flush_completed_IO(&ei->vfs_inode);
190 }
191
192 int ext4_flush_unwritten_io(struct inode *inode)
193 {
194 int ret;
195 WARN_ON_ONCE(!mutex_is_locked(&inode->i_mutex) &&
196 !(inode->i_state & I_FREEING));
197 ret = ext4_do_flush_completed_IO(inode);
198 ext4_unwritten_wait(inode);
199 return ret;
200 }
201
202 ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
203 {
204 ext4_io_end_t *io = kmem_cache_zalloc(io_end_cachep, flags);
205 if (io) {
206 atomic_inc(&EXT4_I(inode)->i_ioend_count);
207 io->inode = inode;
208 INIT_LIST_HEAD(&io->list);
209 atomic_set(&io->count, 1);
210 }
211 return io;
212 }
213
214 void ext4_put_io_end_defer(ext4_io_end_t *io_end)
215 {
216 if (atomic_dec_and_test(&io_end->count)) {
217 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) || !io_end->size) {
218 ext4_release_io_end(io_end);
219 return;
220 }
221 ext4_add_complete_io(io_end);
222 }
223 }
224
225 int ext4_put_io_end(ext4_io_end_t *io_end)
226 {
227 int err = 0;
228
229 if (atomic_dec_and_test(&io_end->count)) {
230 if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
231 err = ext4_convert_unwritten_extents(io_end->inode,
232 io_end->offset, io_end->size);
233 ext4_clear_io_unwritten_flag(io_end);
234 }
235 ext4_release_io_end(io_end);
236 }
237 return err;
238 }
239
240 ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
241 {
242 atomic_inc(&io_end->count);
243 return io_end;
244 }
245
246 /*
247 * Print an buffer I/O error compatible with the fs/buffer.c. This
248 * provides compatibility with dmesg scrapers that look for a specific
249 * buffer I/O error message. We really need a unified error reporting
250 * structure to userspace ala Digital Unix's uerf system, but it's
251 * probably not going to happen in my lifetime, due to LKML politics...
252 */
253 static void buffer_io_error(struct buffer_head *bh)
254 {
255 char b[BDEVNAME_SIZE];
256 printk(KERN_ERR "Buffer I/O error on device %s, logical block %llu\n",
257 bdevname(bh->b_bdev, b),
258 (unsigned long long)bh->b_blocknr);
259 }
260
261 static void ext4_end_bio(struct bio *bio, int error)
262 {
263 ext4_io_end_t *io_end = bio->bi_private;
264 struct inode *inode;
265 int i;
266 int blocksize;
267 sector_t bi_sector = bio->bi_sector;
268
269 BUG_ON(!io_end);
270 inode = io_end->inode;
271 blocksize = 1 << inode->i_blkbits;
272 bio->bi_private = NULL;
273 bio->bi_end_io = NULL;
274 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
275 error = 0;
276 for (i = 0; i < bio->bi_vcnt; i++) {
277 struct bio_vec *bvec = &bio->bi_io_vec[i];
278 struct page *page = bvec->bv_page;
279 struct buffer_head *bh, *head;
280 unsigned bio_start = bvec->bv_offset;
281 unsigned bio_end = bio_start + bvec->bv_len;
282 unsigned under_io = 0;
283 unsigned long flags;
284
285 if (!page)
286 continue;
287
288 if (error) {
289 SetPageError(page);
290 set_bit(AS_EIO, &page->mapping->flags);
291 }
292 bh = head = page_buffers(page);
293 /*
294 * We check all buffers in the page under BH_Uptodate_Lock
295 * to avoid races with other end io clearing async_write flags
296 */
297 local_irq_save(flags);
298 bit_spin_lock(BH_Uptodate_Lock, &head->b_state);
299 do {
300 if (bh_offset(bh) < bio_start ||
301 bh_offset(bh) + blocksize > bio_end) {
302 if (buffer_async_write(bh))
303 under_io++;
304 continue;
305 }
306 clear_buffer_async_write(bh);
307 if (error)
308 buffer_io_error(bh);
309 } while ((bh = bh->b_this_page) != head);
310 bit_spin_unlock(BH_Uptodate_Lock, &head->b_state);
311 local_irq_restore(flags);
312 if (!under_io)
313 end_page_writeback(page);
314 }
315 bio_put(bio);
316
317 if (error) {
318 io_end->flag |= EXT4_IO_END_ERROR;
319 ext4_warning(inode->i_sb, "I/O error writing to inode %lu "
320 "(offset %llu size %ld starting block %llu)",
321 inode->i_ino,
322 (unsigned long long) io_end->offset,
323 (long) io_end->size,
324 (unsigned long long)
325 bi_sector >> (inode->i_blkbits - 9));
326 }
327
328 ext4_put_io_end_defer(io_end);
329 }
330
331 void ext4_io_submit(struct ext4_io_submit *io)
332 {
333 struct bio *bio = io->io_bio;
334
335 if (bio) {
336 bio_get(io->io_bio);
337 submit_bio(io->io_op, io->io_bio);
338 BUG_ON(bio_flagged(io->io_bio, BIO_EOPNOTSUPP));
339 bio_put(io->io_bio);
340 }
341 io->io_bio = NULL;
342 }
343
344 void ext4_io_submit_init(struct ext4_io_submit *io,
345 struct writeback_control *wbc)
346 {
347 io->io_op = (wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE);
348 io->io_bio = NULL;
349 io->io_end = NULL;
350 }
351
352 static int io_submit_init_bio(struct ext4_io_submit *io,
353 struct buffer_head *bh)
354 {
355 int nvecs = bio_get_nr_vecs(bh->b_bdev);
356 struct bio *bio;
357
358 bio = bio_alloc(GFP_NOIO, min(nvecs, BIO_MAX_PAGES));
359 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
360 bio->bi_bdev = bh->b_bdev;
361 bio->bi_end_io = ext4_end_bio;
362 bio->bi_private = ext4_get_io_end(io->io_end);
363 if (!io->io_end->size)
364 io->io_end->offset = (bh->b_page->index << PAGE_CACHE_SHIFT)
365 + bh_offset(bh);
366 io->io_bio = bio;
367 io->io_next_block = bh->b_blocknr;
368 return 0;
369 }
370
371 static int io_submit_add_bh(struct ext4_io_submit *io,
372 struct inode *inode,
373 struct buffer_head *bh)
374 {
375 ext4_io_end_t *io_end;
376 int ret;
377
378 if (io->io_bio && bh->b_blocknr != io->io_next_block) {
379 submit_and_retry:
380 ext4_io_submit(io);
381 }
382 if (io->io_bio == NULL) {
383 ret = io_submit_init_bio(io, bh);
384 if (ret)
385 return ret;
386 }
387 ret = bio_add_page(io->io_bio, bh->b_page, bh->b_size, bh_offset(bh));
388 if (ret != bh->b_size)
389 goto submit_and_retry;
390 io_end = io->io_end;
391 if (test_clear_buffer_uninit(bh))
392 ext4_set_io_unwritten_flag(inode, io_end);
393 io_end->size += bh->b_size;
394 io->io_next_block++;
395 return 0;
396 }
397
398 int ext4_bio_write_page(struct ext4_io_submit *io,
399 struct page *page,
400 int len,
401 struct writeback_control *wbc)
402 {
403 struct inode *inode = page->mapping->host;
404 unsigned block_start, blocksize;
405 struct buffer_head *bh, *head;
406 int ret = 0;
407 int nr_submitted = 0;
408
409 blocksize = 1 << inode->i_blkbits;
410
411 BUG_ON(!PageLocked(page));
412 BUG_ON(PageWriteback(page));
413
414 set_page_writeback(page);
415 ClearPageError(page);
416
417 /*
418 * In the first loop we prepare and mark buffers to submit. We have to
419 * mark all buffers in the page before submitting so that
420 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
421 * on the first buffer finishes and we are still working on submitting
422 * the second buffer.
423 */
424 bh = head = page_buffers(page);
425 do {
426 block_start = bh_offset(bh);
427 if (block_start >= len) {
428 /*
429 * Comments copied from block_write_full_page_endio:
430 *
431 * The page straddles i_size. It must be zeroed out on
432 * each and every writepage invocation because it may
433 * be mmapped. "A file is mapped in multiples of the
434 * page size. For a file that is not a multiple of
435 * the page size, the remaining memory is zeroed when
436 * mapped, and writes to that region are not written
437 * out to the file."
438 */
439 zero_user_segment(page, block_start,
440 block_start + blocksize);
441 clear_buffer_dirty(bh);
442 set_buffer_uptodate(bh);
443 continue;
444 }
445 if (!buffer_dirty(bh) || buffer_delay(bh) ||
446 !buffer_mapped(bh) || buffer_unwritten(bh)) {
447 /* A hole? We can safely clear the dirty bit */
448 if (!buffer_mapped(bh))
449 clear_buffer_dirty(bh);
450 if (io->io_bio)
451 ext4_io_submit(io);
452 continue;
453 }
454 if (buffer_new(bh)) {
455 clear_buffer_new(bh);
456 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
457 }
458 set_buffer_async_write(bh);
459 } while ((bh = bh->b_this_page) != head);
460
461 /* Now submit buffers to write */
462 bh = head = page_buffers(page);
463 do {
464 if (!buffer_async_write(bh))
465 continue;
466 ret = io_submit_add_bh(io, inode, bh);
467 if (ret) {
468 /*
469 * We only get here on ENOMEM. Not much else
470 * we can do but mark the page as dirty, and
471 * better luck next time.
472 */
473 redirty_page_for_writepage(wbc, page);
474 break;
475 }
476 nr_submitted++;
477 clear_buffer_dirty(bh);
478 } while ((bh = bh->b_this_page) != head);
479
480 /* Error stopped previous loop? Clean up buffers... */
481 if (ret) {
482 do {
483 clear_buffer_async_write(bh);
484 bh = bh->b_this_page;
485 } while (bh != head);
486 }
487 unlock_page(page);
488 /* Nothing submitted - we have to end page writeback */
489 if (!nr_submitted)
490 end_page_writeback(page);
491 return ret;
492 }