include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / mballoc.c
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public Licens
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
17 */
18
19
20 /*
21 * mballoc.c contains the multiblocks allocation routines
22 */
23
24 #include "mballoc.h"
25 #include <linux/debugfs.h>
26 #include <linux/slab.h>
27 #include <trace/events/ext4.h>
28
29 /*
30 * MUSTDO:
31 * - test ext4_ext_search_left() and ext4_ext_search_right()
32 * - search for metadata in few groups
33 *
34 * TODO v4:
35 * - normalization should take into account whether file is still open
36 * - discard preallocations if no free space left (policy?)
37 * - don't normalize tails
38 * - quota
39 * - reservation for superuser
40 *
41 * TODO v3:
42 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
43 * - track min/max extents in each group for better group selection
44 * - mb_mark_used() may allocate chunk right after splitting buddy
45 * - tree of groups sorted by number of free blocks
46 * - error handling
47 */
48
49 /*
50 * The allocation request involve request for multiple number of blocks
51 * near to the goal(block) value specified.
52 *
53 * During initialization phase of the allocator we decide to use the
54 * group preallocation or inode preallocation depending on the size of
55 * the file. The size of the file could be the resulting file size we
56 * would have after allocation, or the current file size, which ever
57 * is larger. If the size is less than sbi->s_mb_stream_request we
58 * select to use the group preallocation. The default value of
59 * s_mb_stream_request is 16 blocks. This can also be tuned via
60 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
61 * terms of number of blocks.
62 *
63 * The main motivation for having small file use group preallocation is to
64 * ensure that we have small files closer together on the disk.
65 *
66 * First stage the allocator looks at the inode prealloc list,
67 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
68 * spaces for this particular inode. The inode prealloc space is
69 * represented as:
70 *
71 * pa_lstart -> the logical start block for this prealloc space
72 * pa_pstart -> the physical start block for this prealloc space
73 * pa_len -> length for this prealloc space
74 * pa_free -> free space available in this prealloc space
75 *
76 * The inode preallocation space is used looking at the _logical_ start
77 * block. If only the logical file block falls within the range of prealloc
78 * space we will consume the particular prealloc space. This make sure that
79 * that the we have contiguous physical blocks representing the file blocks
80 *
81 * The important thing to be noted in case of inode prealloc space is that
82 * we don't modify the values associated to inode prealloc space except
83 * pa_free.
84 *
85 * If we are not able to find blocks in the inode prealloc space and if we
86 * have the group allocation flag set then we look at the locality group
87 * prealloc space. These are per CPU prealloc list repreasented as
88 *
89 * ext4_sb_info.s_locality_groups[smp_processor_id()]
90 *
91 * The reason for having a per cpu locality group is to reduce the contention
92 * between CPUs. It is possible to get scheduled at this point.
93 *
94 * The locality group prealloc space is used looking at whether we have
95 * enough free space (pa_free) withing the prealloc space.
96 *
97 * If we can't allocate blocks via inode prealloc or/and locality group
98 * prealloc then we look at the buddy cache. The buddy cache is represented
99 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
100 * mapped to the buddy and bitmap information regarding different
101 * groups. The buddy information is attached to buddy cache inode so that
102 * we can access them through the page cache. The information regarding
103 * each group is loaded via ext4_mb_load_buddy. The information involve
104 * block bitmap and buddy information. The information are stored in the
105 * inode as:
106 *
107 * { page }
108 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
109 *
110 *
111 * one block each for bitmap and buddy information. So for each group we
112 * take up 2 blocks. A page can contain blocks_per_page (PAGE_CACHE_SIZE /
113 * blocksize) blocks. So it can have information regarding groups_per_page
114 * which is blocks_per_page/2
115 *
116 * The buddy cache inode is not stored on disk. The inode is thrown
117 * away when the filesystem is unmounted.
118 *
119 * We look for count number of blocks in the buddy cache. If we were able
120 * to locate that many free blocks we return with additional information
121 * regarding rest of the contiguous physical block available
122 *
123 * Before allocating blocks via buddy cache we normalize the request
124 * blocks. This ensure we ask for more blocks that we needed. The extra
125 * blocks that we get after allocation is added to the respective prealloc
126 * list. In case of inode preallocation we follow a list of heuristics
127 * based on file size. This can be found in ext4_mb_normalize_request. If
128 * we are doing a group prealloc we try to normalize the request to
129 * sbi->s_mb_group_prealloc. Default value of s_mb_group_prealloc is
130 * 512 blocks. This can be tuned via
131 * /sys/fs/ext4/<partition/mb_group_prealloc. The value is represented in
132 * terms of number of blocks. If we have mounted the file system with -O
133 * stripe=<value> option the group prealloc request is normalized to the
134 * stripe value (sbi->s_stripe)
135 *
136 * The regular allocator(using the buddy cache) supports few tunables.
137 *
138 * /sys/fs/ext4/<partition>/mb_min_to_scan
139 * /sys/fs/ext4/<partition>/mb_max_to_scan
140 * /sys/fs/ext4/<partition>/mb_order2_req
141 *
142 * The regular allocator uses buddy scan only if the request len is power of
143 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
144 * value of s_mb_order2_reqs can be tuned via
145 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
146 * stripe size (sbi->s_stripe), we try to search for contiguous block in
147 * stripe size. This should result in better allocation on RAID setups. If
148 * not, we search in the specific group using bitmap for best extents. The
149 * tunable min_to_scan and max_to_scan control the behaviour here.
150 * min_to_scan indicate how long the mballoc __must__ look for a best
151 * extent and max_to_scan indicates how long the mballoc __can__ look for a
152 * best extent in the found extents. Searching for the blocks starts with
153 * the group specified as the goal value in allocation context via
154 * ac_g_ex. Each group is first checked based on the criteria whether it
155 * can used for allocation. ext4_mb_good_group explains how the groups are
156 * checked.
157 *
158 * Both the prealloc space are getting populated as above. So for the first
159 * request we will hit the buddy cache which will result in this prealloc
160 * space getting filled. The prealloc space is then later used for the
161 * subsequent request.
162 */
163
164 /*
165 * mballoc operates on the following data:
166 * - on-disk bitmap
167 * - in-core buddy (actually includes buddy and bitmap)
168 * - preallocation descriptors (PAs)
169 *
170 * there are two types of preallocations:
171 * - inode
172 * assiged to specific inode and can be used for this inode only.
173 * it describes part of inode's space preallocated to specific
174 * physical blocks. any block from that preallocated can be used
175 * independent. the descriptor just tracks number of blocks left
176 * unused. so, before taking some block from descriptor, one must
177 * make sure corresponded logical block isn't allocated yet. this
178 * also means that freeing any block within descriptor's range
179 * must discard all preallocated blocks.
180 * - locality group
181 * assigned to specific locality group which does not translate to
182 * permanent set of inodes: inode can join and leave group. space
183 * from this type of preallocation can be used for any inode. thus
184 * it's consumed from the beginning to the end.
185 *
186 * relation between them can be expressed as:
187 * in-core buddy = on-disk bitmap + preallocation descriptors
188 *
189 * this mean blocks mballoc considers used are:
190 * - allocated blocks (persistent)
191 * - preallocated blocks (non-persistent)
192 *
193 * consistency in mballoc world means that at any time a block is either
194 * free or used in ALL structures. notice: "any time" should not be read
195 * literally -- time is discrete and delimited by locks.
196 *
197 * to keep it simple, we don't use block numbers, instead we count number of
198 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
199 *
200 * all operations can be expressed as:
201 * - init buddy: buddy = on-disk + PAs
202 * - new PA: buddy += N; PA = N
203 * - use inode PA: on-disk += N; PA -= N
204 * - discard inode PA buddy -= on-disk - PA; PA = 0
205 * - use locality group PA on-disk += N; PA -= N
206 * - discard locality group PA buddy -= PA; PA = 0
207 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
208 * is used in real operation because we can't know actual used
209 * bits from PA, only from on-disk bitmap
210 *
211 * if we follow this strict logic, then all operations above should be atomic.
212 * given some of them can block, we'd have to use something like semaphores
213 * killing performance on high-end SMP hardware. let's try to relax it using
214 * the following knowledge:
215 * 1) if buddy is referenced, it's already initialized
216 * 2) while block is used in buddy and the buddy is referenced,
217 * nobody can re-allocate that block
218 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
219 * bit set and PA claims same block, it's OK. IOW, one can set bit in
220 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
221 * block
222 *
223 * so, now we're building a concurrency table:
224 * - init buddy vs.
225 * - new PA
226 * blocks for PA are allocated in the buddy, buddy must be referenced
227 * until PA is linked to allocation group to avoid concurrent buddy init
228 * - use inode PA
229 * we need to make sure that either on-disk bitmap or PA has uptodate data
230 * given (3) we care that PA-=N operation doesn't interfere with init
231 * - discard inode PA
232 * the simplest way would be to have buddy initialized by the discard
233 * - use locality group PA
234 * again PA-=N must be serialized with init
235 * - discard locality group PA
236 * the simplest way would be to have buddy initialized by the discard
237 * - new PA vs.
238 * - use inode PA
239 * i_data_sem serializes them
240 * - discard inode PA
241 * discard process must wait until PA isn't used by another process
242 * - use locality group PA
243 * some mutex should serialize them
244 * - discard locality group PA
245 * discard process must wait until PA isn't used by another process
246 * - use inode PA
247 * - use inode PA
248 * i_data_sem or another mutex should serializes them
249 * - discard inode PA
250 * discard process must wait until PA isn't used by another process
251 * - use locality group PA
252 * nothing wrong here -- they're different PAs covering different blocks
253 * - discard locality group PA
254 * discard process must wait until PA isn't used by another process
255 *
256 * now we're ready to make few consequences:
257 * - PA is referenced and while it is no discard is possible
258 * - PA is referenced until block isn't marked in on-disk bitmap
259 * - PA changes only after on-disk bitmap
260 * - discard must not compete with init. either init is done before
261 * any discard or they're serialized somehow
262 * - buddy init as sum of on-disk bitmap and PAs is done atomically
263 *
264 * a special case when we've used PA to emptiness. no need to modify buddy
265 * in this case, but we should care about concurrent init
266 *
267 */
268
269 /*
270 * Logic in few words:
271 *
272 * - allocation:
273 * load group
274 * find blocks
275 * mark bits in on-disk bitmap
276 * release group
277 *
278 * - use preallocation:
279 * find proper PA (per-inode or group)
280 * load group
281 * mark bits in on-disk bitmap
282 * release group
283 * release PA
284 *
285 * - free:
286 * load group
287 * mark bits in on-disk bitmap
288 * release group
289 *
290 * - discard preallocations in group:
291 * mark PAs deleted
292 * move them onto local list
293 * load on-disk bitmap
294 * load group
295 * remove PA from object (inode or locality group)
296 * mark free blocks in-core
297 *
298 * - discard inode's preallocations:
299 */
300
301 /*
302 * Locking rules
303 *
304 * Locks:
305 * - bitlock on a group (group)
306 * - object (inode/locality) (object)
307 * - per-pa lock (pa)
308 *
309 * Paths:
310 * - new pa
311 * object
312 * group
313 *
314 * - find and use pa:
315 * pa
316 *
317 * - release consumed pa:
318 * pa
319 * group
320 * object
321 *
322 * - generate in-core bitmap:
323 * group
324 * pa
325 *
326 * - discard all for given object (inode, locality group):
327 * object
328 * pa
329 * group
330 *
331 * - discard all for given group:
332 * group
333 * pa
334 * group
335 * object
336 *
337 */
338 static struct kmem_cache *ext4_pspace_cachep;
339 static struct kmem_cache *ext4_ac_cachep;
340 static struct kmem_cache *ext4_free_ext_cachep;
341 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
342 ext4_group_t group);
343 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
344 ext4_group_t group);
345 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn);
346
347 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
348 {
349 #if BITS_PER_LONG == 64
350 *bit += ((unsigned long) addr & 7UL) << 3;
351 addr = (void *) ((unsigned long) addr & ~7UL);
352 #elif BITS_PER_LONG == 32
353 *bit += ((unsigned long) addr & 3UL) << 3;
354 addr = (void *) ((unsigned long) addr & ~3UL);
355 #else
356 #error "how many bits you are?!"
357 #endif
358 return addr;
359 }
360
361 static inline int mb_test_bit(int bit, void *addr)
362 {
363 /*
364 * ext4_test_bit on architecture like powerpc
365 * needs unsigned long aligned address
366 */
367 addr = mb_correct_addr_and_bit(&bit, addr);
368 return ext4_test_bit(bit, addr);
369 }
370
371 static inline void mb_set_bit(int bit, void *addr)
372 {
373 addr = mb_correct_addr_and_bit(&bit, addr);
374 ext4_set_bit(bit, addr);
375 }
376
377 static inline void mb_clear_bit(int bit, void *addr)
378 {
379 addr = mb_correct_addr_and_bit(&bit, addr);
380 ext4_clear_bit(bit, addr);
381 }
382
383 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
384 {
385 int fix = 0, ret, tmpmax;
386 addr = mb_correct_addr_and_bit(&fix, addr);
387 tmpmax = max + fix;
388 start += fix;
389
390 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
391 if (ret > max)
392 return max;
393 return ret;
394 }
395
396 static inline int mb_find_next_bit(void *addr, int max, int start)
397 {
398 int fix = 0, ret, tmpmax;
399 addr = mb_correct_addr_and_bit(&fix, addr);
400 tmpmax = max + fix;
401 start += fix;
402
403 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
404 if (ret > max)
405 return max;
406 return ret;
407 }
408
409 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
410 {
411 char *bb;
412
413 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
414 BUG_ON(max == NULL);
415
416 if (order > e4b->bd_blkbits + 1) {
417 *max = 0;
418 return NULL;
419 }
420
421 /* at order 0 we see each particular block */
422 *max = 1 << (e4b->bd_blkbits + 3);
423 if (order == 0)
424 return EXT4_MB_BITMAP(e4b);
425
426 bb = EXT4_MB_BUDDY(e4b) + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
427 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
428
429 return bb;
430 }
431
432 #ifdef DOUBLE_CHECK
433 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
434 int first, int count)
435 {
436 int i;
437 struct super_block *sb = e4b->bd_sb;
438
439 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
440 return;
441 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
442 for (i = 0; i < count; i++) {
443 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
444 ext4_fsblk_t blocknr;
445
446 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
447 blocknr += first + i;
448 ext4_grp_locked_error(sb, e4b->bd_group,
449 __func__, "double-free of inode"
450 " %lu's block %llu(bit %u in group %u)",
451 inode ? inode->i_ino : 0, blocknr,
452 first + i, e4b->bd_group);
453 }
454 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
455 }
456 }
457
458 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
459 {
460 int i;
461
462 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
463 return;
464 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
465 for (i = 0; i < count; i++) {
466 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
467 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
468 }
469 }
470
471 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
472 {
473 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
474 unsigned char *b1, *b2;
475 int i;
476 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
477 b2 = (unsigned char *) bitmap;
478 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
479 if (b1[i] != b2[i]) {
480 printk(KERN_ERR "corruption in group %u "
481 "at byte %u(%u): %x in copy != %x "
482 "on disk/prealloc\n",
483 e4b->bd_group, i, i * 8, b1[i], b2[i]);
484 BUG();
485 }
486 }
487 }
488 }
489
490 #else
491 static inline void mb_free_blocks_double(struct inode *inode,
492 struct ext4_buddy *e4b, int first, int count)
493 {
494 return;
495 }
496 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
497 int first, int count)
498 {
499 return;
500 }
501 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
502 {
503 return;
504 }
505 #endif
506
507 #ifdef AGGRESSIVE_CHECK
508
509 #define MB_CHECK_ASSERT(assert) \
510 do { \
511 if (!(assert)) { \
512 printk(KERN_EMERG \
513 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
514 function, file, line, # assert); \
515 BUG(); \
516 } \
517 } while (0)
518
519 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
520 const char *function, int line)
521 {
522 struct super_block *sb = e4b->bd_sb;
523 int order = e4b->bd_blkbits + 1;
524 int max;
525 int max2;
526 int i;
527 int j;
528 int k;
529 int count;
530 struct ext4_group_info *grp;
531 int fragments = 0;
532 int fstart;
533 struct list_head *cur;
534 void *buddy;
535 void *buddy2;
536
537 {
538 static int mb_check_counter;
539 if (mb_check_counter++ % 100 != 0)
540 return 0;
541 }
542
543 while (order > 1) {
544 buddy = mb_find_buddy(e4b, order, &max);
545 MB_CHECK_ASSERT(buddy);
546 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
547 MB_CHECK_ASSERT(buddy2);
548 MB_CHECK_ASSERT(buddy != buddy2);
549 MB_CHECK_ASSERT(max * 2 == max2);
550
551 count = 0;
552 for (i = 0; i < max; i++) {
553
554 if (mb_test_bit(i, buddy)) {
555 /* only single bit in buddy2 may be 1 */
556 if (!mb_test_bit(i << 1, buddy2)) {
557 MB_CHECK_ASSERT(
558 mb_test_bit((i<<1)+1, buddy2));
559 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
560 MB_CHECK_ASSERT(
561 mb_test_bit(i << 1, buddy2));
562 }
563 continue;
564 }
565
566 /* both bits in buddy2 must be 0 */
567 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
568 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
569
570 for (j = 0; j < (1 << order); j++) {
571 k = (i * (1 << order)) + j;
572 MB_CHECK_ASSERT(
573 !mb_test_bit(k, EXT4_MB_BITMAP(e4b)));
574 }
575 count++;
576 }
577 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
578 order--;
579 }
580
581 fstart = -1;
582 buddy = mb_find_buddy(e4b, 0, &max);
583 for (i = 0; i < max; i++) {
584 if (!mb_test_bit(i, buddy)) {
585 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
586 if (fstart == -1) {
587 fragments++;
588 fstart = i;
589 }
590 continue;
591 }
592 fstart = -1;
593 /* check used bits only */
594 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
595 buddy2 = mb_find_buddy(e4b, j, &max2);
596 k = i >> j;
597 MB_CHECK_ASSERT(k < max2);
598 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
599 }
600 }
601 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
602 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
603
604 grp = ext4_get_group_info(sb, e4b->bd_group);
605 buddy = mb_find_buddy(e4b, 0, &max);
606 list_for_each(cur, &grp->bb_prealloc_list) {
607 ext4_group_t groupnr;
608 struct ext4_prealloc_space *pa;
609 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
610 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
611 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
612 for (i = 0; i < pa->pa_len; i++)
613 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
614 }
615 return 0;
616 }
617 #undef MB_CHECK_ASSERT
618 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
619 __FILE__, __func__, __LINE__)
620 #else
621 #define mb_check_buddy(e4b)
622 #endif
623
624 /* FIXME!! need more doc */
625 static void ext4_mb_mark_free_simple(struct super_block *sb,
626 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
627 struct ext4_group_info *grp)
628 {
629 struct ext4_sb_info *sbi = EXT4_SB(sb);
630 ext4_grpblk_t min;
631 ext4_grpblk_t max;
632 ext4_grpblk_t chunk;
633 unsigned short border;
634
635 BUG_ON(len > EXT4_BLOCKS_PER_GROUP(sb));
636
637 border = 2 << sb->s_blocksize_bits;
638
639 while (len > 0) {
640 /* find how many blocks can be covered since this position */
641 max = ffs(first | border) - 1;
642
643 /* find how many blocks of power 2 we need to mark */
644 min = fls(len) - 1;
645
646 if (max < min)
647 min = max;
648 chunk = 1 << min;
649
650 /* mark multiblock chunks only */
651 grp->bb_counters[min]++;
652 if (min > 0)
653 mb_clear_bit(first >> min,
654 buddy + sbi->s_mb_offsets[min]);
655
656 len -= chunk;
657 first += chunk;
658 }
659 }
660
661 static noinline_for_stack
662 void ext4_mb_generate_buddy(struct super_block *sb,
663 void *buddy, void *bitmap, ext4_group_t group)
664 {
665 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
666 ext4_grpblk_t max = EXT4_BLOCKS_PER_GROUP(sb);
667 ext4_grpblk_t i = 0;
668 ext4_grpblk_t first;
669 ext4_grpblk_t len;
670 unsigned free = 0;
671 unsigned fragments = 0;
672 unsigned long long period = get_cycles();
673
674 /* initialize buddy from bitmap which is aggregation
675 * of on-disk bitmap and preallocations */
676 i = mb_find_next_zero_bit(bitmap, max, 0);
677 grp->bb_first_free = i;
678 while (i < max) {
679 fragments++;
680 first = i;
681 i = mb_find_next_bit(bitmap, max, i);
682 len = i - first;
683 free += len;
684 if (len > 1)
685 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
686 else
687 grp->bb_counters[0]++;
688 if (i < max)
689 i = mb_find_next_zero_bit(bitmap, max, i);
690 }
691 grp->bb_fragments = fragments;
692
693 if (free != grp->bb_free) {
694 ext4_grp_locked_error(sb, group, __func__,
695 "EXT4-fs: group %u: %u blocks in bitmap, %u in gd",
696 group, free, grp->bb_free);
697 /*
698 * If we intent to continue, we consider group descritor
699 * corrupt and update bb_free using bitmap value
700 */
701 grp->bb_free = free;
702 }
703
704 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
705
706 period = get_cycles() - period;
707 spin_lock(&EXT4_SB(sb)->s_bal_lock);
708 EXT4_SB(sb)->s_mb_buddies_generated++;
709 EXT4_SB(sb)->s_mb_generation_time += period;
710 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
711 }
712
713 /* The buddy information is attached the buddy cache inode
714 * for convenience. The information regarding each group
715 * is loaded via ext4_mb_load_buddy. The information involve
716 * block bitmap and buddy information. The information are
717 * stored in the inode as
718 *
719 * { page }
720 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
721 *
722 *
723 * one block each for bitmap and buddy information.
724 * So for each group we take up 2 blocks. A page can
725 * contain blocks_per_page (PAGE_CACHE_SIZE / blocksize) blocks.
726 * So it can have information regarding groups_per_page which
727 * is blocks_per_page/2
728 */
729
730 static int ext4_mb_init_cache(struct page *page, char *incore)
731 {
732 ext4_group_t ngroups;
733 int blocksize;
734 int blocks_per_page;
735 int groups_per_page;
736 int err = 0;
737 int i;
738 ext4_group_t first_group;
739 int first_block;
740 struct super_block *sb;
741 struct buffer_head *bhs;
742 struct buffer_head **bh;
743 struct inode *inode;
744 char *data;
745 char *bitmap;
746
747 mb_debug(1, "init page %lu\n", page->index);
748
749 inode = page->mapping->host;
750 sb = inode->i_sb;
751 ngroups = ext4_get_groups_count(sb);
752 blocksize = 1 << inode->i_blkbits;
753 blocks_per_page = PAGE_CACHE_SIZE / blocksize;
754
755 groups_per_page = blocks_per_page >> 1;
756 if (groups_per_page == 0)
757 groups_per_page = 1;
758
759 /* allocate buffer_heads to read bitmaps */
760 if (groups_per_page > 1) {
761 err = -ENOMEM;
762 i = sizeof(struct buffer_head *) * groups_per_page;
763 bh = kzalloc(i, GFP_NOFS);
764 if (bh == NULL)
765 goto out;
766 } else
767 bh = &bhs;
768
769 first_group = page->index * blocks_per_page / 2;
770
771 /* read all groups the page covers into the cache */
772 for (i = 0; i < groups_per_page; i++) {
773 struct ext4_group_desc *desc;
774
775 if (first_group + i >= ngroups)
776 break;
777
778 err = -EIO;
779 desc = ext4_get_group_desc(sb, first_group + i, NULL);
780 if (desc == NULL)
781 goto out;
782
783 err = -ENOMEM;
784 bh[i] = sb_getblk(sb, ext4_block_bitmap(sb, desc));
785 if (bh[i] == NULL)
786 goto out;
787
788 if (bitmap_uptodate(bh[i]))
789 continue;
790
791 lock_buffer(bh[i]);
792 if (bitmap_uptodate(bh[i])) {
793 unlock_buffer(bh[i]);
794 continue;
795 }
796 ext4_lock_group(sb, first_group + i);
797 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
798 ext4_init_block_bitmap(sb, bh[i],
799 first_group + i, desc);
800 set_bitmap_uptodate(bh[i]);
801 set_buffer_uptodate(bh[i]);
802 ext4_unlock_group(sb, first_group + i);
803 unlock_buffer(bh[i]);
804 continue;
805 }
806 ext4_unlock_group(sb, first_group + i);
807 if (buffer_uptodate(bh[i])) {
808 /*
809 * if not uninit if bh is uptodate,
810 * bitmap is also uptodate
811 */
812 set_bitmap_uptodate(bh[i]);
813 unlock_buffer(bh[i]);
814 continue;
815 }
816 get_bh(bh[i]);
817 /*
818 * submit the buffer_head for read. We can
819 * safely mark the bitmap as uptodate now.
820 * We do it here so the bitmap uptodate bit
821 * get set with buffer lock held.
822 */
823 set_bitmap_uptodate(bh[i]);
824 bh[i]->b_end_io = end_buffer_read_sync;
825 submit_bh(READ, bh[i]);
826 mb_debug(1, "read bitmap for group %u\n", first_group + i);
827 }
828
829 /* wait for I/O completion */
830 for (i = 0; i < groups_per_page && bh[i]; i++)
831 wait_on_buffer(bh[i]);
832
833 err = -EIO;
834 for (i = 0; i < groups_per_page && bh[i]; i++)
835 if (!buffer_uptodate(bh[i]))
836 goto out;
837
838 err = 0;
839 first_block = page->index * blocks_per_page;
840 /* init the page */
841 memset(page_address(page), 0xff, PAGE_CACHE_SIZE);
842 for (i = 0; i < blocks_per_page; i++) {
843 int group;
844 struct ext4_group_info *grinfo;
845
846 group = (first_block + i) >> 1;
847 if (group >= ngroups)
848 break;
849
850 /*
851 * data carry information regarding this
852 * particular group in the format specified
853 * above
854 *
855 */
856 data = page_address(page) + (i * blocksize);
857 bitmap = bh[group - first_group]->b_data;
858
859 /*
860 * We place the buddy block and bitmap block
861 * close together
862 */
863 if ((first_block + i) & 1) {
864 /* this is block of buddy */
865 BUG_ON(incore == NULL);
866 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
867 group, page->index, i * blocksize);
868 grinfo = ext4_get_group_info(sb, group);
869 grinfo->bb_fragments = 0;
870 memset(grinfo->bb_counters, 0,
871 sizeof(*grinfo->bb_counters) *
872 (sb->s_blocksize_bits+2));
873 /*
874 * incore got set to the group block bitmap below
875 */
876 ext4_lock_group(sb, group);
877 ext4_mb_generate_buddy(sb, data, incore, group);
878 ext4_unlock_group(sb, group);
879 incore = NULL;
880 } else {
881 /* this is block of bitmap */
882 BUG_ON(incore != NULL);
883 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
884 group, page->index, i * blocksize);
885
886 /* see comments in ext4_mb_put_pa() */
887 ext4_lock_group(sb, group);
888 memcpy(data, bitmap, blocksize);
889
890 /* mark all preallocated blks used in in-core bitmap */
891 ext4_mb_generate_from_pa(sb, data, group);
892 ext4_mb_generate_from_freelist(sb, data, group);
893 ext4_unlock_group(sb, group);
894
895 /* set incore so that the buddy information can be
896 * generated using this
897 */
898 incore = data;
899 }
900 }
901 SetPageUptodate(page);
902
903 out:
904 if (bh) {
905 for (i = 0; i < groups_per_page && bh[i]; i++)
906 brelse(bh[i]);
907 if (bh != &bhs)
908 kfree(bh);
909 }
910 return err;
911 }
912
913 static noinline_for_stack
914 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group)
915 {
916
917 int ret = 0;
918 void *bitmap;
919 int blocks_per_page;
920 int block, pnum, poff;
921 int num_grp_locked = 0;
922 struct ext4_group_info *this_grp;
923 struct ext4_sb_info *sbi = EXT4_SB(sb);
924 struct inode *inode = sbi->s_buddy_cache;
925 struct page *page = NULL, *bitmap_page = NULL;
926
927 mb_debug(1, "init group %u\n", group);
928 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
929 this_grp = ext4_get_group_info(sb, group);
930 /*
931 * This ensures that we don't reinit the buddy cache
932 * page which map to the group from which we are already
933 * allocating. If we are looking at the buddy cache we would
934 * have taken a reference using ext4_mb_load_buddy and that
935 * would have taken the alloc_sem lock.
936 */
937 num_grp_locked = ext4_mb_get_buddy_cache_lock(sb, group);
938 if (!EXT4_MB_GRP_NEED_INIT(this_grp)) {
939 /*
940 * somebody initialized the group
941 * return without doing anything
942 */
943 ret = 0;
944 goto err;
945 }
946 /*
947 * the buddy cache inode stores the block bitmap
948 * and buddy information in consecutive blocks.
949 * So for each group we need two blocks.
950 */
951 block = group * 2;
952 pnum = block / blocks_per_page;
953 poff = block % blocks_per_page;
954 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
955 if (page) {
956 BUG_ON(page->mapping != inode->i_mapping);
957 ret = ext4_mb_init_cache(page, NULL);
958 if (ret) {
959 unlock_page(page);
960 goto err;
961 }
962 unlock_page(page);
963 }
964 if (page == NULL || !PageUptodate(page)) {
965 ret = -EIO;
966 goto err;
967 }
968 mark_page_accessed(page);
969 bitmap_page = page;
970 bitmap = page_address(page) + (poff * sb->s_blocksize);
971
972 /* init buddy cache */
973 block++;
974 pnum = block / blocks_per_page;
975 poff = block % blocks_per_page;
976 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
977 if (page == bitmap_page) {
978 /*
979 * If both the bitmap and buddy are in
980 * the same page we don't need to force
981 * init the buddy
982 */
983 unlock_page(page);
984 } else if (page) {
985 BUG_ON(page->mapping != inode->i_mapping);
986 ret = ext4_mb_init_cache(page, bitmap);
987 if (ret) {
988 unlock_page(page);
989 goto err;
990 }
991 unlock_page(page);
992 }
993 if (page == NULL || !PageUptodate(page)) {
994 ret = -EIO;
995 goto err;
996 }
997 mark_page_accessed(page);
998 err:
999 ext4_mb_put_buddy_cache_lock(sb, group, num_grp_locked);
1000 if (bitmap_page)
1001 page_cache_release(bitmap_page);
1002 if (page)
1003 page_cache_release(page);
1004 return ret;
1005 }
1006
1007 static noinline_for_stack int
1008 ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1009 struct ext4_buddy *e4b)
1010 {
1011 int blocks_per_page;
1012 int block;
1013 int pnum;
1014 int poff;
1015 struct page *page;
1016 int ret;
1017 struct ext4_group_info *grp;
1018 struct ext4_sb_info *sbi = EXT4_SB(sb);
1019 struct inode *inode = sbi->s_buddy_cache;
1020
1021 mb_debug(1, "load group %u\n", group);
1022
1023 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1024 grp = ext4_get_group_info(sb, group);
1025
1026 e4b->bd_blkbits = sb->s_blocksize_bits;
1027 e4b->bd_info = ext4_get_group_info(sb, group);
1028 e4b->bd_sb = sb;
1029 e4b->bd_group = group;
1030 e4b->bd_buddy_page = NULL;
1031 e4b->bd_bitmap_page = NULL;
1032 e4b->alloc_semp = &grp->alloc_sem;
1033
1034 /* Take the read lock on the group alloc
1035 * sem. This would make sure a parallel
1036 * ext4_mb_init_group happening on other
1037 * groups mapped by the page is blocked
1038 * till we are done with allocation
1039 */
1040 repeat_load_buddy:
1041 down_read(e4b->alloc_semp);
1042
1043 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1044 /* we need to check for group need init flag
1045 * with alloc_semp held so that we can be sure
1046 * that new blocks didn't get added to the group
1047 * when we are loading the buddy cache
1048 */
1049 up_read(e4b->alloc_semp);
1050 /*
1051 * we need full data about the group
1052 * to make a good selection
1053 */
1054 ret = ext4_mb_init_group(sb, group);
1055 if (ret)
1056 return ret;
1057 goto repeat_load_buddy;
1058 }
1059
1060 /*
1061 * the buddy cache inode stores the block bitmap
1062 * and buddy information in consecutive blocks.
1063 * So for each group we need two blocks.
1064 */
1065 block = group * 2;
1066 pnum = block / blocks_per_page;
1067 poff = block % blocks_per_page;
1068
1069 /* we could use find_or_create_page(), but it locks page
1070 * what we'd like to avoid in fast path ... */
1071 page = find_get_page(inode->i_mapping, pnum);
1072 if (page == NULL || !PageUptodate(page)) {
1073 if (page)
1074 /*
1075 * drop the page reference and try
1076 * to get the page with lock. If we
1077 * are not uptodate that implies
1078 * somebody just created the page but
1079 * is yet to initialize the same. So
1080 * wait for it to initialize.
1081 */
1082 page_cache_release(page);
1083 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1084 if (page) {
1085 BUG_ON(page->mapping != inode->i_mapping);
1086 if (!PageUptodate(page)) {
1087 ret = ext4_mb_init_cache(page, NULL);
1088 if (ret) {
1089 unlock_page(page);
1090 goto err;
1091 }
1092 mb_cmp_bitmaps(e4b, page_address(page) +
1093 (poff * sb->s_blocksize));
1094 }
1095 unlock_page(page);
1096 }
1097 }
1098 if (page == NULL || !PageUptodate(page)) {
1099 ret = -EIO;
1100 goto err;
1101 }
1102 e4b->bd_bitmap_page = page;
1103 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1104 mark_page_accessed(page);
1105
1106 block++;
1107 pnum = block / blocks_per_page;
1108 poff = block % blocks_per_page;
1109
1110 page = find_get_page(inode->i_mapping, pnum);
1111 if (page == NULL || !PageUptodate(page)) {
1112 if (page)
1113 page_cache_release(page);
1114 page = find_or_create_page(inode->i_mapping, pnum, GFP_NOFS);
1115 if (page) {
1116 BUG_ON(page->mapping != inode->i_mapping);
1117 if (!PageUptodate(page)) {
1118 ret = ext4_mb_init_cache(page, e4b->bd_bitmap);
1119 if (ret) {
1120 unlock_page(page);
1121 goto err;
1122 }
1123 }
1124 unlock_page(page);
1125 }
1126 }
1127 if (page == NULL || !PageUptodate(page)) {
1128 ret = -EIO;
1129 goto err;
1130 }
1131 e4b->bd_buddy_page = page;
1132 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1133 mark_page_accessed(page);
1134
1135 BUG_ON(e4b->bd_bitmap_page == NULL);
1136 BUG_ON(e4b->bd_buddy_page == NULL);
1137
1138 return 0;
1139
1140 err:
1141 if (e4b->bd_bitmap_page)
1142 page_cache_release(e4b->bd_bitmap_page);
1143 if (e4b->bd_buddy_page)
1144 page_cache_release(e4b->bd_buddy_page);
1145 e4b->bd_buddy = NULL;
1146 e4b->bd_bitmap = NULL;
1147
1148 /* Done with the buddy cache */
1149 up_read(e4b->alloc_semp);
1150 return ret;
1151 }
1152
1153 static void ext4_mb_release_desc(struct ext4_buddy *e4b)
1154 {
1155 if (e4b->bd_bitmap_page)
1156 page_cache_release(e4b->bd_bitmap_page);
1157 if (e4b->bd_buddy_page)
1158 page_cache_release(e4b->bd_buddy_page);
1159 /* Done with the buddy cache */
1160 if (e4b->alloc_semp)
1161 up_read(e4b->alloc_semp);
1162 }
1163
1164
1165 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1166 {
1167 int order = 1;
1168 void *bb;
1169
1170 BUG_ON(EXT4_MB_BITMAP(e4b) == EXT4_MB_BUDDY(e4b));
1171 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1172
1173 bb = EXT4_MB_BUDDY(e4b);
1174 while (order <= e4b->bd_blkbits + 1) {
1175 block = block >> 1;
1176 if (!mb_test_bit(block, bb)) {
1177 /* this block is part of buddy of order 'order' */
1178 return order;
1179 }
1180 bb += 1 << (e4b->bd_blkbits - order);
1181 order++;
1182 }
1183 return 0;
1184 }
1185
1186 static void mb_clear_bits(void *bm, int cur, int len)
1187 {
1188 __u32 *addr;
1189
1190 len = cur + len;
1191 while (cur < len) {
1192 if ((cur & 31) == 0 && (len - cur) >= 32) {
1193 /* fast path: clear whole word at once */
1194 addr = bm + (cur >> 3);
1195 *addr = 0;
1196 cur += 32;
1197 continue;
1198 }
1199 mb_clear_bit(cur, bm);
1200 cur++;
1201 }
1202 }
1203
1204 static void mb_set_bits(void *bm, int cur, int len)
1205 {
1206 __u32 *addr;
1207
1208 len = cur + len;
1209 while (cur < len) {
1210 if ((cur & 31) == 0 && (len - cur) >= 32) {
1211 /* fast path: set whole word at once */
1212 addr = bm + (cur >> 3);
1213 *addr = 0xffffffff;
1214 cur += 32;
1215 continue;
1216 }
1217 mb_set_bit(cur, bm);
1218 cur++;
1219 }
1220 }
1221
1222 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1223 int first, int count)
1224 {
1225 int block = 0;
1226 int max = 0;
1227 int order;
1228 void *buddy;
1229 void *buddy2;
1230 struct super_block *sb = e4b->bd_sb;
1231
1232 BUG_ON(first + count > (sb->s_blocksize << 3));
1233 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1234 mb_check_buddy(e4b);
1235 mb_free_blocks_double(inode, e4b, first, count);
1236
1237 e4b->bd_info->bb_free += count;
1238 if (first < e4b->bd_info->bb_first_free)
1239 e4b->bd_info->bb_first_free = first;
1240
1241 /* let's maintain fragments counter */
1242 if (first != 0)
1243 block = !mb_test_bit(first - 1, EXT4_MB_BITMAP(e4b));
1244 if (first + count < EXT4_SB(sb)->s_mb_maxs[0])
1245 max = !mb_test_bit(first + count, EXT4_MB_BITMAP(e4b));
1246 if (block && max)
1247 e4b->bd_info->bb_fragments--;
1248 else if (!block && !max)
1249 e4b->bd_info->bb_fragments++;
1250
1251 /* let's maintain buddy itself */
1252 while (count-- > 0) {
1253 block = first++;
1254 order = 0;
1255
1256 if (!mb_test_bit(block, EXT4_MB_BITMAP(e4b))) {
1257 ext4_fsblk_t blocknr;
1258
1259 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1260 blocknr += block;
1261 ext4_grp_locked_error(sb, e4b->bd_group,
1262 __func__, "double-free of inode"
1263 " %lu's block %llu(bit %u in group %u)",
1264 inode ? inode->i_ino : 0, blocknr, block,
1265 e4b->bd_group);
1266 }
1267 mb_clear_bit(block, EXT4_MB_BITMAP(e4b));
1268 e4b->bd_info->bb_counters[order]++;
1269
1270 /* start of the buddy */
1271 buddy = mb_find_buddy(e4b, order, &max);
1272
1273 do {
1274 block &= ~1UL;
1275 if (mb_test_bit(block, buddy) ||
1276 mb_test_bit(block + 1, buddy))
1277 break;
1278
1279 /* both the buddies are free, try to coalesce them */
1280 buddy2 = mb_find_buddy(e4b, order + 1, &max);
1281
1282 if (!buddy2)
1283 break;
1284
1285 if (order > 0) {
1286 /* for special purposes, we don't set
1287 * free bits in bitmap */
1288 mb_set_bit(block, buddy);
1289 mb_set_bit(block + 1, buddy);
1290 }
1291 e4b->bd_info->bb_counters[order]--;
1292 e4b->bd_info->bb_counters[order]--;
1293
1294 block = block >> 1;
1295 order++;
1296 e4b->bd_info->bb_counters[order]++;
1297
1298 mb_clear_bit(block, buddy2);
1299 buddy = buddy2;
1300 } while (1);
1301 }
1302 mb_check_buddy(e4b);
1303 }
1304
1305 static int mb_find_extent(struct ext4_buddy *e4b, int order, int block,
1306 int needed, struct ext4_free_extent *ex)
1307 {
1308 int next = block;
1309 int max;
1310 int ord;
1311 void *buddy;
1312
1313 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1314 BUG_ON(ex == NULL);
1315
1316 buddy = mb_find_buddy(e4b, order, &max);
1317 BUG_ON(buddy == NULL);
1318 BUG_ON(block >= max);
1319 if (mb_test_bit(block, buddy)) {
1320 ex->fe_len = 0;
1321 ex->fe_start = 0;
1322 ex->fe_group = 0;
1323 return 0;
1324 }
1325
1326 /* FIXME dorp order completely ? */
1327 if (likely(order == 0)) {
1328 /* find actual order */
1329 order = mb_find_order_for_block(e4b, block);
1330 block = block >> order;
1331 }
1332
1333 ex->fe_len = 1 << order;
1334 ex->fe_start = block << order;
1335 ex->fe_group = e4b->bd_group;
1336
1337 /* calc difference from given start */
1338 next = next - ex->fe_start;
1339 ex->fe_len -= next;
1340 ex->fe_start += next;
1341
1342 while (needed > ex->fe_len &&
1343 (buddy = mb_find_buddy(e4b, order, &max))) {
1344
1345 if (block + 1 >= max)
1346 break;
1347
1348 next = (block + 1) * (1 << order);
1349 if (mb_test_bit(next, EXT4_MB_BITMAP(e4b)))
1350 break;
1351
1352 ord = mb_find_order_for_block(e4b, next);
1353
1354 order = ord;
1355 block = next >> order;
1356 ex->fe_len += 1 << order;
1357 }
1358
1359 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1360 return ex->fe_len;
1361 }
1362
1363 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1364 {
1365 int ord;
1366 int mlen = 0;
1367 int max = 0;
1368 int cur;
1369 int start = ex->fe_start;
1370 int len = ex->fe_len;
1371 unsigned ret = 0;
1372 int len0 = len;
1373 void *buddy;
1374
1375 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1376 BUG_ON(e4b->bd_group != ex->fe_group);
1377 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1378 mb_check_buddy(e4b);
1379 mb_mark_used_double(e4b, start, len);
1380
1381 e4b->bd_info->bb_free -= len;
1382 if (e4b->bd_info->bb_first_free == start)
1383 e4b->bd_info->bb_first_free += len;
1384
1385 /* let's maintain fragments counter */
1386 if (start != 0)
1387 mlen = !mb_test_bit(start - 1, EXT4_MB_BITMAP(e4b));
1388 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1389 max = !mb_test_bit(start + len, EXT4_MB_BITMAP(e4b));
1390 if (mlen && max)
1391 e4b->bd_info->bb_fragments++;
1392 else if (!mlen && !max)
1393 e4b->bd_info->bb_fragments--;
1394
1395 /* let's maintain buddy itself */
1396 while (len) {
1397 ord = mb_find_order_for_block(e4b, start);
1398
1399 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1400 /* the whole chunk may be allocated at once! */
1401 mlen = 1 << ord;
1402 buddy = mb_find_buddy(e4b, ord, &max);
1403 BUG_ON((start >> ord) >= max);
1404 mb_set_bit(start >> ord, buddy);
1405 e4b->bd_info->bb_counters[ord]--;
1406 start += mlen;
1407 len -= mlen;
1408 BUG_ON(len < 0);
1409 continue;
1410 }
1411
1412 /* store for history */
1413 if (ret == 0)
1414 ret = len | (ord << 16);
1415
1416 /* we have to split large buddy */
1417 BUG_ON(ord <= 0);
1418 buddy = mb_find_buddy(e4b, ord, &max);
1419 mb_set_bit(start >> ord, buddy);
1420 e4b->bd_info->bb_counters[ord]--;
1421
1422 ord--;
1423 cur = (start >> ord) & ~1U;
1424 buddy = mb_find_buddy(e4b, ord, &max);
1425 mb_clear_bit(cur, buddy);
1426 mb_clear_bit(cur + 1, buddy);
1427 e4b->bd_info->bb_counters[ord]++;
1428 e4b->bd_info->bb_counters[ord]++;
1429 }
1430
1431 mb_set_bits(EXT4_MB_BITMAP(e4b), ex->fe_start, len0);
1432 mb_check_buddy(e4b);
1433
1434 return ret;
1435 }
1436
1437 /*
1438 * Must be called under group lock!
1439 */
1440 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1441 struct ext4_buddy *e4b)
1442 {
1443 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1444 int ret;
1445
1446 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1447 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1448
1449 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1450 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1451 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1452
1453 /* preallocation can change ac_b_ex, thus we store actually
1454 * allocated blocks for history */
1455 ac->ac_f_ex = ac->ac_b_ex;
1456
1457 ac->ac_status = AC_STATUS_FOUND;
1458 ac->ac_tail = ret & 0xffff;
1459 ac->ac_buddy = ret >> 16;
1460
1461 /*
1462 * take the page reference. We want the page to be pinned
1463 * so that we don't get a ext4_mb_init_cache_call for this
1464 * group until we update the bitmap. That would mean we
1465 * double allocate blocks. The reference is dropped
1466 * in ext4_mb_release_context
1467 */
1468 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1469 get_page(ac->ac_bitmap_page);
1470 ac->ac_buddy_page = e4b->bd_buddy_page;
1471 get_page(ac->ac_buddy_page);
1472 /* on allocation we use ac to track the held semaphore */
1473 ac->alloc_semp = e4b->alloc_semp;
1474 e4b->alloc_semp = NULL;
1475 /* store last allocated for subsequent stream allocation */
1476 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1477 spin_lock(&sbi->s_md_lock);
1478 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1479 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1480 spin_unlock(&sbi->s_md_lock);
1481 }
1482 }
1483
1484 /*
1485 * regular allocator, for general purposes allocation
1486 */
1487
1488 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1489 struct ext4_buddy *e4b,
1490 int finish_group)
1491 {
1492 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1493 struct ext4_free_extent *bex = &ac->ac_b_ex;
1494 struct ext4_free_extent *gex = &ac->ac_g_ex;
1495 struct ext4_free_extent ex;
1496 int max;
1497
1498 if (ac->ac_status == AC_STATUS_FOUND)
1499 return;
1500 /*
1501 * We don't want to scan for a whole year
1502 */
1503 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1504 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1505 ac->ac_status = AC_STATUS_BREAK;
1506 return;
1507 }
1508
1509 /*
1510 * Haven't found good chunk so far, let's continue
1511 */
1512 if (bex->fe_len < gex->fe_len)
1513 return;
1514
1515 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1516 && bex->fe_group == e4b->bd_group) {
1517 /* recheck chunk's availability - we don't know
1518 * when it was found (within this lock-unlock
1519 * period or not) */
1520 max = mb_find_extent(e4b, 0, bex->fe_start, gex->fe_len, &ex);
1521 if (max >= gex->fe_len) {
1522 ext4_mb_use_best_found(ac, e4b);
1523 return;
1524 }
1525 }
1526 }
1527
1528 /*
1529 * The routine checks whether found extent is good enough. If it is,
1530 * then the extent gets marked used and flag is set to the context
1531 * to stop scanning. Otherwise, the extent is compared with the
1532 * previous found extent and if new one is better, then it's stored
1533 * in the context. Later, the best found extent will be used, if
1534 * mballoc can't find good enough extent.
1535 *
1536 * FIXME: real allocation policy is to be designed yet!
1537 */
1538 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1539 struct ext4_free_extent *ex,
1540 struct ext4_buddy *e4b)
1541 {
1542 struct ext4_free_extent *bex = &ac->ac_b_ex;
1543 struct ext4_free_extent *gex = &ac->ac_g_ex;
1544
1545 BUG_ON(ex->fe_len <= 0);
1546 BUG_ON(ex->fe_len > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1547 BUG_ON(ex->fe_start >= EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
1548 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1549
1550 ac->ac_found++;
1551
1552 /*
1553 * The special case - take what you catch first
1554 */
1555 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1556 *bex = *ex;
1557 ext4_mb_use_best_found(ac, e4b);
1558 return;
1559 }
1560
1561 /*
1562 * Let's check whether the chuck is good enough
1563 */
1564 if (ex->fe_len == gex->fe_len) {
1565 *bex = *ex;
1566 ext4_mb_use_best_found(ac, e4b);
1567 return;
1568 }
1569
1570 /*
1571 * If this is first found extent, just store it in the context
1572 */
1573 if (bex->fe_len == 0) {
1574 *bex = *ex;
1575 return;
1576 }
1577
1578 /*
1579 * If new found extent is better, store it in the context
1580 */
1581 if (bex->fe_len < gex->fe_len) {
1582 /* if the request isn't satisfied, any found extent
1583 * larger than previous best one is better */
1584 if (ex->fe_len > bex->fe_len)
1585 *bex = *ex;
1586 } else if (ex->fe_len > gex->fe_len) {
1587 /* if the request is satisfied, then we try to find
1588 * an extent that still satisfy the request, but is
1589 * smaller than previous one */
1590 if (ex->fe_len < bex->fe_len)
1591 *bex = *ex;
1592 }
1593
1594 ext4_mb_check_limits(ac, e4b, 0);
1595 }
1596
1597 static noinline_for_stack
1598 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1599 struct ext4_buddy *e4b)
1600 {
1601 struct ext4_free_extent ex = ac->ac_b_ex;
1602 ext4_group_t group = ex.fe_group;
1603 int max;
1604 int err;
1605
1606 BUG_ON(ex.fe_len <= 0);
1607 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1608 if (err)
1609 return err;
1610
1611 ext4_lock_group(ac->ac_sb, group);
1612 max = mb_find_extent(e4b, 0, ex.fe_start, ex.fe_len, &ex);
1613
1614 if (max > 0) {
1615 ac->ac_b_ex = ex;
1616 ext4_mb_use_best_found(ac, e4b);
1617 }
1618
1619 ext4_unlock_group(ac->ac_sb, group);
1620 ext4_mb_release_desc(e4b);
1621
1622 return 0;
1623 }
1624
1625 static noinline_for_stack
1626 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1627 struct ext4_buddy *e4b)
1628 {
1629 ext4_group_t group = ac->ac_g_ex.fe_group;
1630 int max;
1631 int err;
1632 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1633 struct ext4_free_extent ex;
1634
1635 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1636 return 0;
1637
1638 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1639 if (err)
1640 return err;
1641
1642 ext4_lock_group(ac->ac_sb, group);
1643 max = mb_find_extent(e4b, 0, ac->ac_g_ex.fe_start,
1644 ac->ac_g_ex.fe_len, &ex);
1645
1646 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1647 ext4_fsblk_t start;
1648
1649 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1650 ex.fe_start;
1651 /* use do_div to get remainder (would be 64-bit modulo) */
1652 if (do_div(start, sbi->s_stripe) == 0) {
1653 ac->ac_found++;
1654 ac->ac_b_ex = ex;
1655 ext4_mb_use_best_found(ac, e4b);
1656 }
1657 } else if (max >= ac->ac_g_ex.fe_len) {
1658 BUG_ON(ex.fe_len <= 0);
1659 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1660 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1661 ac->ac_found++;
1662 ac->ac_b_ex = ex;
1663 ext4_mb_use_best_found(ac, e4b);
1664 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1665 /* Sometimes, caller may want to merge even small
1666 * number of blocks to an existing extent */
1667 BUG_ON(ex.fe_len <= 0);
1668 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1669 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1670 ac->ac_found++;
1671 ac->ac_b_ex = ex;
1672 ext4_mb_use_best_found(ac, e4b);
1673 }
1674 ext4_unlock_group(ac->ac_sb, group);
1675 ext4_mb_release_desc(e4b);
1676
1677 return 0;
1678 }
1679
1680 /*
1681 * The routine scans buddy structures (not bitmap!) from given order
1682 * to max order and tries to find big enough chunk to satisfy the req
1683 */
1684 static noinline_for_stack
1685 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1686 struct ext4_buddy *e4b)
1687 {
1688 struct super_block *sb = ac->ac_sb;
1689 struct ext4_group_info *grp = e4b->bd_info;
1690 void *buddy;
1691 int i;
1692 int k;
1693 int max;
1694
1695 BUG_ON(ac->ac_2order <= 0);
1696 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1697 if (grp->bb_counters[i] == 0)
1698 continue;
1699
1700 buddy = mb_find_buddy(e4b, i, &max);
1701 BUG_ON(buddy == NULL);
1702
1703 k = mb_find_next_zero_bit(buddy, max, 0);
1704 BUG_ON(k >= max);
1705
1706 ac->ac_found++;
1707
1708 ac->ac_b_ex.fe_len = 1 << i;
1709 ac->ac_b_ex.fe_start = k << i;
1710 ac->ac_b_ex.fe_group = e4b->bd_group;
1711
1712 ext4_mb_use_best_found(ac, e4b);
1713
1714 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1715
1716 if (EXT4_SB(sb)->s_mb_stats)
1717 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1718
1719 break;
1720 }
1721 }
1722
1723 /*
1724 * The routine scans the group and measures all found extents.
1725 * In order to optimize scanning, caller must pass number of
1726 * free blocks in the group, so the routine can know upper limit.
1727 */
1728 static noinline_for_stack
1729 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1730 struct ext4_buddy *e4b)
1731 {
1732 struct super_block *sb = ac->ac_sb;
1733 void *bitmap = EXT4_MB_BITMAP(e4b);
1734 struct ext4_free_extent ex;
1735 int i;
1736 int free;
1737
1738 free = e4b->bd_info->bb_free;
1739 BUG_ON(free <= 0);
1740
1741 i = e4b->bd_info->bb_first_free;
1742
1743 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1744 i = mb_find_next_zero_bit(bitmap,
1745 EXT4_BLOCKS_PER_GROUP(sb), i);
1746 if (i >= EXT4_BLOCKS_PER_GROUP(sb)) {
1747 /*
1748 * IF we have corrupt bitmap, we won't find any
1749 * free blocks even though group info says we
1750 * we have free blocks
1751 */
1752 ext4_grp_locked_error(sb, e4b->bd_group,
1753 __func__, "%d free blocks as per "
1754 "group info. But bitmap says 0",
1755 free);
1756 break;
1757 }
1758
1759 mb_find_extent(e4b, 0, i, ac->ac_g_ex.fe_len, &ex);
1760 BUG_ON(ex.fe_len <= 0);
1761 if (free < ex.fe_len) {
1762 ext4_grp_locked_error(sb, e4b->bd_group,
1763 __func__, "%d free blocks as per "
1764 "group info. But got %d blocks",
1765 free, ex.fe_len);
1766 /*
1767 * The number of free blocks differs. This mostly
1768 * indicate that the bitmap is corrupt. So exit
1769 * without claiming the space.
1770 */
1771 break;
1772 }
1773
1774 ext4_mb_measure_extent(ac, &ex, e4b);
1775
1776 i += ex.fe_len;
1777 free -= ex.fe_len;
1778 }
1779
1780 ext4_mb_check_limits(ac, e4b, 1);
1781 }
1782
1783 /*
1784 * This is a special case for storages like raid5
1785 * we try to find stripe-aligned chunks for stripe-size requests
1786 * XXX should do so at least for multiples of stripe size as well
1787 */
1788 static noinline_for_stack
1789 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1790 struct ext4_buddy *e4b)
1791 {
1792 struct super_block *sb = ac->ac_sb;
1793 struct ext4_sb_info *sbi = EXT4_SB(sb);
1794 void *bitmap = EXT4_MB_BITMAP(e4b);
1795 struct ext4_free_extent ex;
1796 ext4_fsblk_t first_group_block;
1797 ext4_fsblk_t a;
1798 ext4_grpblk_t i;
1799 int max;
1800
1801 BUG_ON(sbi->s_stripe == 0);
1802
1803 /* find first stripe-aligned block in group */
1804 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
1805
1806 a = first_group_block + sbi->s_stripe - 1;
1807 do_div(a, sbi->s_stripe);
1808 i = (a * sbi->s_stripe) - first_group_block;
1809
1810 while (i < EXT4_BLOCKS_PER_GROUP(sb)) {
1811 if (!mb_test_bit(i, bitmap)) {
1812 max = mb_find_extent(e4b, 0, i, sbi->s_stripe, &ex);
1813 if (max >= sbi->s_stripe) {
1814 ac->ac_found++;
1815 ac->ac_b_ex = ex;
1816 ext4_mb_use_best_found(ac, e4b);
1817 break;
1818 }
1819 }
1820 i += sbi->s_stripe;
1821 }
1822 }
1823
1824 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
1825 ext4_group_t group, int cr)
1826 {
1827 unsigned free, fragments;
1828 unsigned i, bits;
1829 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
1830 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1831
1832 BUG_ON(cr < 0 || cr >= 4);
1833 BUG_ON(EXT4_MB_GRP_NEED_INIT(grp));
1834
1835 free = grp->bb_free;
1836 fragments = grp->bb_fragments;
1837 if (free == 0)
1838 return 0;
1839 if (fragments == 0)
1840 return 0;
1841
1842 switch (cr) {
1843 case 0:
1844 BUG_ON(ac->ac_2order == 0);
1845
1846 /* Avoid using the first bg of a flexgroup for data files */
1847 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
1848 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
1849 ((group % flex_size) == 0))
1850 return 0;
1851
1852 bits = ac->ac_sb->s_blocksize_bits + 1;
1853 for (i = ac->ac_2order; i <= bits; i++)
1854 if (grp->bb_counters[i] > 0)
1855 return 1;
1856 break;
1857 case 1:
1858 if ((free / fragments) >= ac->ac_g_ex.fe_len)
1859 return 1;
1860 break;
1861 case 2:
1862 if (free >= ac->ac_g_ex.fe_len)
1863 return 1;
1864 break;
1865 case 3:
1866 return 1;
1867 default:
1868 BUG();
1869 }
1870
1871 return 0;
1872 }
1873
1874 /*
1875 * lock the group_info alloc_sem of all the groups
1876 * belonging to the same buddy cache page. This
1877 * make sure other parallel operation on the buddy
1878 * cache doesn't happen whild holding the buddy cache
1879 * lock
1880 */
1881 int ext4_mb_get_buddy_cache_lock(struct super_block *sb, ext4_group_t group)
1882 {
1883 int i;
1884 int block, pnum;
1885 int blocks_per_page;
1886 int groups_per_page;
1887 ext4_group_t ngroups = ext4_get_groups_count(sb);
1888 ext4_group_t first_group;
1889 struct ext4_group_info *grp;
1890
1891 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1892 /*
1893 * the buddy cache inode stores the block bitmap
1894 * and buddy information in consecutive blocks.
1895 * So for each group we need two blocks.
1896 */
1897 block = group * 2;
1898 pnum = block / blocks_per_page;
1899 first_group = pnum * blocks_per_page / 2;
1900
1901 groups_per_page = blocks_per_page >> 1;
1902 if (groups_per_page == 0)
1903 groups_per_page = 1;
1904 /* read all groups the page covers into the cache */
1905 for (i = 0; i < groups_per_page; i++) {
1906
1907 if ((first_group + i) >= ngroups)
1908 break;
1909 grp = ext4_get_group_info(sb, first_group + i);
1910 /* take all groups write allocation
1911 * semaphore. This make sure there is
1912 * no block allocation going on in any
1913 * of that groups
1914 */
1915 down_write_nested(&grp->alloc_sem, i);
1916 }
1917 return i;
1918 }
1919
1920 void ext4_mb_put_buddy_cache_lock(struct super_block *sb,
1921 ext4_group_t group, int locked_group)
1922 {
1923 int i;
1924 int block, pnum;
1925 int blocks_per_page;
1926 ext4_group_t first_group;
1927 struct ext4_group_info *grp;
1928
1929 blocks_per_page = PAGE_CACHE_SIZE / sb->s_blocksize;
1930 /*
1931 * the buddy cache inode stores the block bitmap
1932 * and buddy information in consecutive blocks.
1933 * So for each group we need two blocks.
1934 */
1935 block = group * 2;
1936 pnum = block / blocks_per_page;
1937 first_group = pnum * blocks_per_page / 2;
1938 /* release locks on all the groups */
1939 for (i = 0; i < locked_group; i++) {
1940
1941 grp = ext4_get_group_info(sb, first_group + i);
1942 /* take all groups write allocation
1943 * semaphore. This make sure there is
1944 * no block allocation going on in any
1945 * of that groups
1946 */
1947 up_write(&grp->alloc_sem);
1948 }
1949
1950 }
1951
1952 static noinline_for_stack int
1953 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
1954 {
1955 ext4_group_t ngroups, group, i;
1956 int cr;
1957 int err = 0;
1958 int bsbits;
1959 struct ext4_sb_info *sbi;
1960 struct super_block *sb;
1961 struct ext4_buddy e4b;
1962
1963 sb = ac->ac_sb;
1964 sbi = EXT4_SB(sb);
1965 ngroups = ext4_get_groups_count(sb);
1966 /* non-extent files are limited to low blocks/groups */
1967 if (!(EXT4_I(ac->ac_inode)->i_flags & EXT4_EXTENTS_FL))
1968 ngroups = sbi->s_blockfile_groups;
1969
1970 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1971
1972 /* first, try the goal */
1973 err = ext4_mb_find_by_goal(ac, &e4b);
1974 if (err || ac->ac_status == AC_STATUS_FOUND)
1975 goto out;
1976
1977 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
1978 goto out;
1979
1980 /*
1981 * ac->ac2_order is set only if the fe_len is a power of 2
1982 * if ac2_order is set we also set criteria to 0 so that we
1983 * try exact allocation using buddy.
1984 */
1985 i = fls(ac->ac_g_ex.fe_len);
1986 ac->ac_2order = 0;
1987 /*
1988 * We search using buddy data only if the order of the request
1989 * is greater than equal to the sbi_s_mb_order2_reqs
1990 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
1991 */
1992 if (i >= sbi->s_mb_order2_reqs) {
1993 /*
1994 * This should tell if fe_len is exactly power of 2
1995 */
1996 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
1997 ac->ac_2order = i - 1;
1998 }
1999
2000 bsbits = ac->ac_sb->s_blocksize_bits;
2001
2002 /* if stream allocation is enabled, use global goal */
2003 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2004 /* TBD: may be hot point */
2005 spin_lock(&sbi->s_md_lock);
2006 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2007 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2008 spin_unlock(&sbi->s_md_lock);
2009 }
2010
2011 /* Let's just scan groups to find more-less suitable blocks */
2012 cr = ac->ac_2order ? 0 : 1;
2013 /*
2014 * cr == 0 try to get exact allocation,
2015 * cr == 3 try to get anything
2016 */
2017 repeat:
2018 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2019 ac->ac_criteria = cr;
2020 /*
2021 * searching for the right group start
2022 * from the goal value specified
2023 */
2024 group = ac->ac_g_ex.fe_group;
2025
2026 for (i = 0; i < ngroups; group++, i++) {
2027 struct ext4_group_info *grp;
2028 struct ext4_group_desc *desc;
2029
2030 if (group == ngroups)
2031 group = 0;
2032
2033 /* quick check to skip empty groups */
2034 grp = ext4_get_group_info(sb, group);
2035 if (grp->bb_free == 0)
2036 continue;
2037
2038 err = ext4_mb_load_buddy(sb, group, &e4b);
2039 if (err)
2040 goto out;
2041
2042 ext4_lock_group(sb, group);
2043 if (!ext4_mb_good_group(ac, group, cr)) {
2044 /* someone did allocation from this group */
2045 ext4_unlock_group(sb, group);
2046 ext4_mb_release_desc(&e4b);
2047 continue;
2048 }
2049
2050 ac->ac_groups_scanned++;
2051 desc = ext4_get_group_desc(sb, group, NULL);
2052 if (cr == 0)
2053 ext4_mb_simple_scan_group(ac, &e4b);
2054 else if (cr == 1 &&
2055 ac->ac_g_ex.fe_len == sbi->s_stripe)
2056 ext4_mb_scan_aligned(ac, &e4b);
2057 else
2058 ext4_mb_complex_scan_group(ac, &e4b);
2059
2060 ext4_unlock_group(sb, group);
2061 ext4_mb_release_desc(&e4b);
2062
2063 if (ac->ac_status != AC_STATUS_CONTINUE)
2064 break;
2065 }
2066 }
2067
2068 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2069 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2070 /*
2071 * We've been searching too long. Let's try to allocate
2072 * the best chunk we've found so far
2073 */
2074
2075 ext4_mb_try_best_found(ac, &e4b);
2076 if (ac->ac_status != AC_STATUS_FOUND) {
2077 /*
2078 * Someone more lucky has already allocated it.
2079 * The only thing we can do is just take first
2080 * found block(s)
2081 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2082 */
2083 ac->ac_b_ex.fe_group = 0;
2084 ac->ac_b_ex.fe_start = 0;
2085 ac->ac_b_ex.fe_len = 0;
2086 ac->ac_status = AC_STATUS_CONTINUE;
2087 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2088 cr = 3;
2089 atomic_inc(&sbi->s_mb_lost_chunks);
2090 goto repeat;
2091 }
2092 }
2093 out:
2094 return err;
2095 }
2096
2097 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2098 {
2099 struct super_block *sb = seq->private;
2100 ext4_group_t group;
2101
2102 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2103 return NULL;
2104 group = *pos + 1;
2105 return (void *) ((unsigned long) group);
2106 }
2107
2108 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2109 {
2110 struct super_block *sb = seq->private;
2111 ext4_group_t group;
2112
2113 ++*pos;
2114 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2115 return NULL;
2116 group = *pos + 1;
2117 return (void *) ((unsigned long) group);
2118 }
2119
2120 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2121 {
2122 struct super_block *sb = seq->private;
2123 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2124 int i;
2125 int err;
2126 struct ext4_buddy e4b;
2127 struct sg {
2128 struct ext4_group_info info;
2129 ext4_grpblk_t counters[16];
2130 } sg;
2131
2132 group--;
2133 if (group == 0)
2134 seq_printf(seq, "#%-5s: %-5s %-5s %-5s "
2135 "[ %-5s %-5s %-5s %-5s %-5s %-5s %-5s "
2136 "%-5s %-5s %-5s %-5s %-5s %-5s %-5s ]\n",
2137 "group", "free", "frags", "first",
2138 "2^0", "2^1", "2^2", "2^3", "2^4", "2^5", "2^6",
2139 "2^7", "2^8", "2^9", "2^10", "2^11", "2^12", "2^13");
2140
2141 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2142 sizeof(struct ext4_group_info);
2143 err = ext4_mb_load_buddy(sb, group, &e4b);
2144 if (err) {
2145 seq_printf(seq, "#%-5u: I/O error\n", group);
2146 return 0;
2147 }
2148 ext4_lock_group(sb, group);
2149 memcpy(&sg, ext4_get_group_info(sb, group), i);
2150 ext4_unlock_group(sb, group);
2151 ext4_mb_release_desc(&e4b);
2152
2153 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2154 sg.info.bb_fragments, sg.info.bb_first_free);
2155 for (i = 0; i <= 13; i++)
2156 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2157 sg.info.bb_counters[i] : 0);
2158 seq_printf(seq, " ]\n");
2159
2160 return 0;
2161 }
2162
2163 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2164 {
2165 }
2166
2167 static const struct seq_operations ext4_mb_seq_groups_ops = {
2168 .start = ext4_mb_seq_groups_start,
2169 .next = ext4_mb_seq_groups_next,
2170 .stop = ext4_mb_seq_groups_stop,
2171 .show = ext4_mb_seq_groups_show,
2172 };
2173
2174 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2175 {
2176 struct super_block *sb = PDE(inode)->data;
2177 int rc;
2178
2179 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2180 if (rc == 0) {
2181 struct seq_file *m = (struct seq_file *)file->private_data;
2182 m->private = sb;
2183 }
2184 return rc;
2185
2186 }
2187
2188 static const struct file_operations ext4_mb_seq_groups_fops = {
2189 .owner = THIS_MODULE,
2190 .open = ext4_mb_seq_groups_open,
2191 .read = seq_read,
2192 .llseek = seq_lseek,
2193 .release = seq_release,
2194 };
2195
2196
2197 /* Create and initialize ext4_group_info data for the given group. */
2198 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2199 struct ext4_group_desc *desc)
2200 {
2201 int i, len;
2202 int metalen = 0;
2203 struct ext4_sb_info *sbi = EXT4_SB(sb);
2204 struct ext4_group_info **meta_group_info;
2205
2206 /*
2207 * First check if this group is the first of a reserved block.
2208 * If it's true, we have to allocate a new table of pointers
2209 * to ext4_group_info structures
2210 */
2211 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2212 metalen = sizeof(*meta_group_info) <<
2213 EXT4_DESC_PER_BLOCK_BITS(sb);
2214 meta_group_info = kmalloc(metalen, GFP_KERNEL);
2215 if (meta_group_info == NULL) {
2216 printk(KERN_ERR "EXT4-fs: can't allocate mem for a "
2217 "buddy group\n");
2218 goto exit_meta_group_info;
2219 }
2220 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)] =
2221 meta_group_info;
2222 }
2223
2224 /*
2225 * calculate needed size. if change bb_counters size,
2226 * don't forget about ext4_mb_generate_buddy()
2227 */
2228 len = offsetof(typeof(**meta_group_info),
2229 bb_counters[sb->s_blocksize_bits + 2]);
2230
2231 meta_group_info =
2232 sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)];
2233 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2234
2235 meta_group_info[i] = kzalloc(len, GFP_KERNEL);
2236 if (meta_group_info[i] == NULL) {
2237 printk(KERN_ERR "EXT4-fs: can't allocate buddy mem\n");
2238 goto exit_group_info;
2239 }
2240 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2241 &(meta_group_info[i]->bb_state));
2242
2243 /*
2244 * initialize bb_free to be able to skip
2245 * empty groups without initialization
2246 */
2247 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2248 meta_group_info[i]->bb_free =
2249 ext4_free_blocks_after_init(sb, group, desc);
2250 } else {
2251 meta_group_info[i]->bb_free =
2252 ext4_free_blks_count(sb, desc);
2253 }
2254
2255 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2256 init_rwsem(&meta_group_info[i]->alloc_sem);
2257 meta_group_info[i]->bb_free_root = RB_ROOT;
2258
2259 #ifdef DOUBLE_CHECK
2260 {
2261 struct buffer_head *bh;
2262 meta_group_info[i]->bb_bitmap =
2263 kmalloc(sb->s_blocksize, GFP_KERNEL);
2264 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2265 bh = ext4_read_block_bitmap(sb, group);
2266 BUG_ON(bh == NULL);
2267 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2268 sb->s_blocksize);
2269 put_bh(bh);
2270 }
2271 #endif
2272
2273 return 0;
2274
2275 exit_group_info:
2276 /* If a meta_group_info table has been allocated, release it now */
2277 if (group % EXT4_DESC_PER_BLOCK(sb) == 0)
2278 kfree(sbi->s_group_info[group >> EXT4_DESC_PER_BLOCK_BITS(sb)]);
2279 exit_meta_group_info:
2280 return -ENOMEM;
2281 } /* ext4_mb_add_groupinfo */
2282
2283 static int ext4_mb_init_backend(struct super_block *sb)
2284 {
2285 ext4_group_t ngroups = ext4_get_groups_count(sb);
2286 ext4_group_t i;
2287 struct ext4_sb_info *sbi = EXT4_SB(sb);
2288 struct ext4_super_block *es = sbi->s_es;
2289 int num_meta_group_infos;
2290 int num_meta_group_infos_max;
2291 int array_size;
2292 struct ext4_group_desc *desc;
2293
2294 /* This is the number of blocks used by GDT */
2295 num_meta_group_infos = (ngroups + EXT4_DESC_PER_BLOCK(sb) -
2296 1) >> EXT4_DESC_PER_BLOCK_BITS(sb);
2297
2298 /*
2299 * This is the total number of blocks used by GDT including
2300 * the number of reserved blocks for GDT.
2301 * The s_group_info array is allocated with this value
2302 * to allow a clean online resize without a complex
2303 * manipulation of pointer.
2304 * The drawback is the unused memory when no resize
2305 * occurs but it's very low in terms of pages
2306 * (see comments below)
2307 * Need to handle this properly when META_BG resizing is allowed
2308 */
2309 num_meta_group_infos_max = num_meta_group_infos +
2310 le16_to_cpu(es->s_reserved_gdt_blocks);
2311
2312 /*
2313 * array_size is the size of s_group_info array. We round it
2314 * to the next power of two because this approximation is done
2315 * internally by kmalloc so we can have some more memory
2316 * for free here (e.g. may be used for META_BG resize).
2317 */
2318 array_size = 1;
2319 while (array_size < sizeof(*sbi->s_group_info) *
2320 num_meta_group_infos_max)
2321 array_size = array_size << 1;
2322 /* An 8TB filesystem with 64-bit pointers requires a 4096 byte
2323 * kmalloc. A 128kb malloc should suffice for a 256TB filesystem.
2324 * So a two level scheme suffices for now. */
2325 sbi->s_group_info = kmalloc(array_size, GFP_KERNEL);
2326 if (sbi->s_group_info == NULL) {
2327 printk(KERN_ERR "EXT4-fs: can't allocate buddy meta group\n");
2328 return -ENOMEM;
2329 }
2330 sbi->s_buddy_cache = new_inode(sb);
2331 if (sbi->s_buddy_cache == NULL) {
2332 printk(KERN_ERR "EXT4-fs: can't get new inode\n");
2333 goto err_freesgi;
2334 }
2335 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2336 for (i = 0; i < ngroups; i++) {
2337 desc = ext4_get_group_desc(sb, i, NULL);
2338 if (desc == NULL) {
2339 printk(KERN_ERR
2340 "EXT4-fs: can't read descriptor %u\n", i);
2341 goto err_freebuddy;
2342 }
2343 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2344 goto err_freebuddy;
2345 }
2346
2347 return 0;
2348
2349 err_freebuddy:
2350 while (i-- > 0)
2351 kfree(ext4_get_group_info(sb, i));
2352 i = num_meta_group_infos;
2353 while (i-- > 0)
2354 kfree(sbi->s_group_info[i]);
2355 iput(sbi->s_buddy_cache);
2356 err_freesgi:
2357 kfree(sbi->s_group_info);
2358 return -ENOMEM;
2359 }
2360
2361 int ext4_mb_init(struct super_block *sb, int needs_recovery)
2362 {
2363 struct ext4_sb_info *sbi = EXT4_SB(sb);
2364 unsigned i, j;
2365 unsigned offset;
2366 unsigned max;
2367 int ret;
2368
2369 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2370
2371 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2372 if (sbi->s_mb_offsets == NULL) {
2373 return -ENOMEM;
2374 }
2375
2376 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2377 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2378 if (sbi->s_mb_maxs == NULL) {
2379 kfree(sbi->s_mb_offsets);
2380 return -ENOMEM;
2381 }
2382
2383 /* order 0 is regular bitmap */
2384 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2385 sbi->s_mb_offsets[0] = 0;
2386
2387 i = 1;
2388 offset = 0;
2389 max = sb->s_blocksize << 2;
2390 do {
2391 sbi->s_mb_offsets[i] = offset;
2392 sbi->s_mb_maxs[i] = max;
2393 offset += 1 << (sb->s_blocksize_bits - i);
2394 max = max >> 1;
2395 i++;
2396 } while (i <= sb->s_blocksize_bits + 1);
2397
2398 /* init file for buddy data */
2399 ret = ext4_mb_init_backend(sb);
2400 if (ret != 0) {
2401 kfree(sbi->s_mb_offsets);
2402 kfree(sbi->s_mb_maxs);
2403 return ret;
2404 }
2405
2406 spin_lock_init(&sbi->s_md_lock);
2407 spin_lock_init(&sbi->s_bal_lock);
2408
2409 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2410 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2411 sbi->s_mb_stats = MB_DEFAULT_STATS;
2412 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2413 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2414 sbi->s_mb_group_prealloc = MB_DEFAULT_GROUP_PREALLOC;
2415
2416 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2417 if (sbi->s_locality_groups == NULL) {
2418 kfree(sbi->s_mb_offsets);
2419 kfree(sbi->s_mb_maxs);
2420 return -ENOMEM;
2421 }
2422 for_each_possible_cpu(i) {
2423 struct ext4_locality_group *lg;
2424 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2425 mutex_init(&lg->lg_mutex);
2426 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2427 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2428 spin_lock_init(&lg->lg_prealloc_lock);
2429 }
2430
2431 if (sbi->s_proc)
2432 proc_create_data("mb_groups", S_IRUGO, sbi->s_proc,
2433 &ext4_mb_seq_groups_fops, sb);
2434
2435 if (sbi->s_journal)
2436 sbi->s_journal->j_commit_callback = release_blocks_on_commit;
2437 return 0;
2438 }
2439
2440 /* need to called with the ext4 group lock held */
2441 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2442 {
2443 struct ext4_prealloc_space *pa;
2444 struct list_head *cur, *tmp;
2445 int count = 0;
2446
2447 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2448 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2449 list_del(&pa->pa_group_list);
2450 count++;
2451 kmem_cache_free(ext4_pspace_cachep, pa);
2452 }
2453 if (count)
2454 mb_debug(1, "mballoc: %u PAs left\n", count);
2455
2456 }
2457
2458 int ext4_mb_release(struct super_block *sb)
2459 {
2460 ext4_group_t ngroups = ext4_get_groups_count(sb);
2461 ext4_group_t i;
2462 int num_meta_group_infos;
2463 struct ext4_group_info *grinfo;
2464 struct ext4_sb_info *sbi = EXT4_SB(sb);
2465
2466 if (sbi->s_group_info) {
2467 for (i = 0; i < ngroups; i++) {
2468 grinfo = ext4_get_group_info(sb, i);
2469 #ifdef DOUBLE_CHECK
2470 kfree(grinfo->bb_bitmap);
2471 #endif
2472 ext4_lock_group(sb, i);
2473 ext4_mb_cleanup_pa(grinfo);
2474 ext4_unlock_group(sb, i);
2475 kfree(grinfo);
2476 }
2477 num_meta_group_infos = (ngroups +
2478 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2479 EXT4_DESC_PER_BLOCK_BITS(sb);
2480 for (i = 0; i < num_meta_group_infos; i++)
2481 kfree(sbi->s_group_info[i]);
2482 kfree(sbi->s_group_info);
2483 }
2484 kfree(sbi->s_mb_offsets);
2485 kfree(sbi->s_mb_maxs);
2486 if (sbi->s_buddy_cache)
2487 iput(sbi->s_buddy_cache);
2488 if (sbi->s_mb_stats) {
2489 printk(KERN_INFO
2490 "EXT4-fs: mballoc: %u blocks %u reqs (%u success)\n",
2491 atomic_read(&sbi->s_bal_allocated),
2492 atomic_read(&sbi->s_bal_reqs),
2493 atomic_read(&sbi->s_bal_success));
2494 printk(KERN_INFO
2495 "EXT4-fs: mballoc: %u extents scanned, %u goal hits, "
2496 "%u 2^N hits, %u breaks, %u lost\n",
2497 atomic_read(&sbi->s_bal_ex_scanned),
2498 atomic_read(&sbi->s_bal_goals),
2499 atomic_read(&sbi->s_bal_2orders),
2500 atomic_read(&sbi->s_bal_breaks),
2501 atomic_read(&sbi->s_mb_lost_chunks));
2502 printk(KERN_INFO
2503 "EXT4-fs: mballoc: %lu generated and it took %Lu\n",
2504 sbi->s_mb_buddies_generated++,
2505 sbi->s_mb_generation_time);
2506 printk(KERN_INFO
2507 "EXT4-fs: mballoc: %u preallocated, %u discarded\n",
2508 atomic_read(&sbi->s_mb_preallocated),
2509 atomic_read(&sbi->s_mb_discarded));
2510 }
2511
2512 free_percpu(sbi->s_locality_groups);
2513 if (sbi->s_proc)
2514 remove_proc_entry("mb_groups", sbi->s_proc);
2515
2516 return 0;
2517 }
2518
2519 /*
2520 * This function is called by the jbd2 layer once the commit has finished,
2521 * so we know we can free the blocks that were released with that commit.
2522 */
2523 static void release_blocks_on_commit(journal_t *journal, transaction_t *txn)
2524 {
2525 struct super_block *sb = journal->j_private;
2526 struct ext4_buddy e4b;
2527 struct ext4_group_info *db;
2528 int err, count = 0, count2 = 0;
2529 struct ext4_free_data *entry;
2530 struct list_head *l, *ltmp;
2531
2532 list_for_each_safe(l, ltmp, &txn->t_private_list) {
2533 entry = list_entry(l, struct ext4_free_data, list);
2534
2535 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2536 entry->count, entry->group, entry);
2537
2538 err = ext4_mb_load_buddy(sb, entry->group, &e4b);
2539 /* we expect to find existing buddy because it's pinned */
2540 BUG_ON(err != 0);
2541
2542 db = e4b.bd_info;
2543 /* there are blocks to put in buddy to make them really free */
2544 count += entry->count;
2545 count2++;
2546 ext4_lock_group(sb, entry->group);
2547 /* Take it out of per group rb tree */
2548 rb_erase(&entry->node, &(db->bb_free_root));
2549 mb_free_blocks(NULL, &e4b, entry->start_blk, entry->count);
2550
2551 if (!db->bb_free_root.rb_node) {
2552 /* No more items in the per group rb tree
2553 * balance refcounts from ext4_mb_free_metadata()
2554 */
2555 page_cache_release(e4b.bd_buddy_page);
2556 page_cache_release(e4b.bd_bitmap_page);
2557 }
2558 ext4_unlock_group(sb, entry->group);
2559 if (test_opt(sb, DISCARD)) {
2560 ext4_fsblk_t discard_block;
2561
2562 discard_block = entry->start_blk +
2563 ext4_group_first_block_no(sb, entry->group);
2564 trace_ext4_discard_blocks(sb,
2565 (unsigned long long)discard_block,
2566 entry->count);
2567 sb_issue_discard(sb, discard_block, entry->count);
2568 }
2569 kmem_cache_free(ext4_free_ext_cachep, entry);
2570 ext4_mb_release_desc(&e4b);
2571 }
2572
2573 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2574 }
2575
2576 #ifdef CONFIG_EXT4_DEBUG
2577 u8 mb_enable_debug __read_mostly;
2578
2579 static struct dentry *debugfs_dir;
2580 static struct dentry *debugfs_debug;
2581
2582 static void __init ext4_create_debugfs_entry(void)
2583 {
2584 debugfs_dir = debugfs_create_dir("ext4", NULL);
2585 if (debugfs_dir)
2586 debugfs_debug = debugfs_create_u8("mballoc-debug",
2587 S_IRUGO | S_IWUSR,
2588 debugfs_dir,
2589 &mb_enable_debug);
2590 }
2591
2592 static void ext4_remove_debugfs_entry(void)
2593 {
2594 debugfs_remove(debugfs_debug);
2595 debugfs_remove(debugfs_dir);
2596 }
2597
2598 #else
2599
2600 static void __init ext4_create_debugfs_entry(void)
2601 {
2602 }
2603
2604 static void ext4_remove_debugfs_entry(void)
2605 {
2606 }
2607
2608 #endif
2609
2610 int __init init_ext4_mballoc(void)
2611 {
2612 ext4_pspace_cachep =
2613 kmem_cache_create("ext4_prealloc_space",
2614 sizeof(struct ext4_prealloc_space),
2615 0, SLAB_RECLAIM_ACCOUNT, NULL);
2616 if (ext4_pspace_cachep == NULL)
2617 return -ENOMEM;
2618
2619 ext4_ac_cachep =
2620 kmem_cache_create("ext4_alloc_context",
2621 sizeof(struct ext4_allocation_context),
2622 0, SLAB_RECLAIM_ACCOUNT, NULL);
2623 if (ext4_ac_cachep == NULL) {
2624 kmem_cache_destroy(ext4_pspace_cachep);
2625 return -ENOMEM;
2626 }
2627
2628 ext4_free_ext_cachep =
2629 kmem_cache_create("ext4_free_block_extents",
2630 sizeof(struct ext4_free_data),
2631 0, SLAB_RECLAIM_ACCOUNT, NULL);
2632 if (ext4_free_ext_cachep == NULL) {
2633 kmem_cache_destroy(ext4_pspace_cachep);
2634 kmem_cache_destroy(ext4_ac_cachep);
2635 return -ENOMEM;
2636 }
2637 ext4_create_debugfs_entry();
2638 return 0;
2639 }
2640
2641 void exit_ext4_mballoc(void)
2642 {
2643 /*
2644 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2645 * before destroying the slab cache.
2646 */
2647 rcu_barrier();
2648 kmem_cache_destroy(ext4_pspace_cachep);
2649 kmem_cache_destroy(ext4_ac_cachep);
2650 kmem_cache_destroy(ext4_free_ext_cachep);
2651 ext4_remove_debugfs_entry();
2652 }
2653
2654
2655 /*
2656 * Check quota and mark choosed space (ac->ac_b_ex) non-free in bitmaps
2657 * Returns 0 if success or error code
2658 */
2659 static noinline_for_stack int
2660 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2661 handle_t *handle, unsigned int reserv_blks)
2662 {
2663 struct buffer_head *bitmap_bh = NULL;
2664 struct ext4_super_block *es;
2665 struct ext4_group_desc *gdp;
2666 struct buffer_head *gdp_bh;
2667 struct ext4_sb_info *sbi;
2668 struct super_block *sb;
2669 ext4_fsblk_t block;
2670 int err, len;
2671
2672 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2673 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2674
2675 sb = ac->ac_sb;
2676 sbi = EXT4_SB(sb);
2677 es = sbi->s_es;
2678
2679
2680 err = -EIO;
2681 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2682 if (!bitmap_bh)
2683 goto out_err;
2684
2685 err = ext4_journal_get_write_access(handle, bitmap_bh);
2686 if (err)
2687 goto out_err;
2688
2689 err = -EIO;
2690 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2691 if (!gdp)
2692 goto out_err;
2693
2694 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2695 ext4_free_blks_count(sb, gdp));
2696
2697 err = ext4_journal_get_write_access(handle, gdp_bh);
2698 if (err)
2699 goto out_err;
2700
2701 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2702
2703 len = ac->ac_b_ex.fe_len;
2704 if (!ext4_data_block_valid(sbi, block, len)) {
2705 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2706 "fs metadata\n", block, block+len);
2707 /* File system mounted not to panic on error
2708 * Fix the bitmap and repeat the block allocation
2709 * We leak some of the blocks here.
2710 */
2711 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2712 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2713 ac->ac_b_ex.fe_len);
2714 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2715 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2716 if (!err)
2717 err = -EAGAIN;
2718 goto out_err;
2719 }
2720
2721 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2722 #ifdef AGGRESSIVE_CHECK
2723 {
2724 int i;
2725 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2726 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2727 bitmap_bh->b_data));
2728 }
2729 }
2730 #endif
2731 mb_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,ac->ac_b_ex.fe_len);
2732 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
2733 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2734 ext4_free_blks_set(sb, gdp,
2735 ext4_free_blocks_after_init(sb,
2736 ac->ac_b_ex.fe_group, gdp));
2737 }
2738 len = ext4_free_blks_count(sb, gdp) - ac->ac_b_ex.fe_len;
2739 ext4_free_blks_set(sb, gdp, len);
2740 gdp->bg_checksum = ext4_group_desc_csum(sbi, ac->ac_b_ex.fe_group, gdp);
2741
2742 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2743 percpu_counter_sub(&sbi->s_freeblocks_counter, ac->ac_b_ex.fe_len);
2744 /*
2745 * Now reduce the dirty block count also. Should not go negative
2746 */
2747 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
2748 /* release all the reserved blocks if non delalloc */
2749 percpu_counter_sub(&sbi->s_dirtyblocks_counter, reserv_blks);
2750
2751 if (sbi->s_log_groups_per_flex) {
2752 ext4_group_t flex_group = ext4_flex_group(sbi,
2753 ac->ac_b_ex.fe_group);
2754 atomic_sub(ac->ac_b_ex.fe_len,
2755 &sbi->s_flex_groups[flex_group].free_blocks);
2756 }
2757
2758 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2759 if (err)
2760 goto out_err;
2761 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
2762
2763 out_err:
2764 sb->s_dirt = 1;
2765 brelse(bitmap_bh);
2766 return err;
2767 }
2768
2769 /*
2770 * here we normalize request for locality group
2771 * Group request are normalized to s_strip size if we set the same via mount
2772 * option. If not we set it to s_mb_group_prealloc which can be configured via
2773 * /sys/fs/ext4/<partition>/mb_group_prealloc
2774 *
2775 * XXX: should we try to preallocate more than the group has now?
2776 */
2777 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
2778 {
2779 struct super_block *sb = ac->ac_sb;
2780 struct ext4_locality_group *lg = ac->ac_lg;
2781
2782 BUG_ON(lg == NULL);
2783 if (EXT4_SB(sb)->s_stripe)
2784 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_stripe;
2785 else
2786 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
2787 mb_debug(1, "#%u: goal %u blocks for locality group\n",
2788 current->pid, ac->ac_g_ex.fe_len);
2789 }
2790
2791 /*
2792 * Normalization means making request better in terms of
2793 * size and alignment
2794 */
2795 static noinline_for_stack void
2796 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
2797 struct ext4_allocation_request *ar)
2798 {
2799 int bsbits, max;
2800 ext4_lblk_t end;
2801 loff_t size, orig_size, start_off;
2802 ext4_lblk_t start, orig_start;
2803 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
2804 struct ext4_prealloc_space *pa;
2805
2806 /* do normalize only data requests, metadata requests
2807 do not need preallocation */
2808 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
2809 return;
2810
2811 /* sometime caller may want exact blocks */
2812 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2813 return;
2814
2815 /* caller may indicate that preallocation isn't
2816 * required (it's a tail, for example) */
2817 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
2818 return;
2819
2820 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
2821 ext4_mb_normalize_group_request(ac);
2822 return ;
2823 }
2824
2825 bsbits = ac->ac_sb->s_blocksize_bits;
2826
2827 /* first, let's learn actual file size
2828 * given current request is allocated */
2829 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
2830 size = size << bsbits;
2831 if (size < i_size_read(ac->ac_inode))
2832 size = i_size_read(ac->ac_inode);
2833
2834 /* max size of free chunks */
2835 max = 2 << bsbits;
2836
2837 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
2838 (req <= (size) || max <= (chunk_size))
2839
2840 /* first, try to predict filesize */
2841 /* XXX: should this table be tunable? */
2842 start_off = 0;
2843 if (size <= 16 * 1024) {
2844 size = 16 * 1024;
2845 } else if (size <= 32 * 1024) {
2846 size = 32 * 1024;
2847 } else if (size <= 64 * 1024) {
2848 size = 64 * 1024;
2849 } else if (size <= 128 * 1024) {
2850 size = 128 * 1024;
2851 } else if (size <= 256 * 1024) {
2852 size = 256 * 1024;
2853 } else if (size <= 512 * 1024) {
2854 size = 512 * 1024;
2855 } else if (size <= 1024 * 1024) {
2856 size = 1024 * 1024;
2857 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
2858 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2859 (21 - bsbits)) << 21;
2860 size = 2 * 1024 * 1024;
2861 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
2862 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2863 (22 - bsbits)) << 22;
2864 size = 4 * 1024 * 1024;
2865 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
2866 (8<<20)>>bsbits, max, 8 * 1024)) {
2867 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
2868 (23 - bsbits)) << 23;
2869 size = 8 * 1024 * 1024;
2870 } else {
2871 start_off = (loff_t)ac->ac_o_ex.fe_logical << bsbits;
2872 size = ac->ac_o_ex.fe_len << bsbits;
2873 }
2874 orig_size = size = size >> bsbits;
2875 orig_start = start = start_off >> bsbits;
2876
2877 /* don't cover already allocated blocks in selected range */
2878 if (ar->pleft && start <= ar->lleft) {
2879 size -= ar->lleft + 1 - start;
2880 start = ar->lleft + 1;
2881 }
2882 if (ar->pright && start + size - 1 >= ar->lright)
2883 size -= start + size - ar->lright;
2884
2885 end = start + size;
2886
2887 /* check we don't cross already preallocated blocks */
2888 rcu_read_lock();
2889 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2890 ext4_lblk_t pa_end;
2891
2892 if (pa->pa_deleted)
2893 continue;
2894 spin_lock(&pa->pa_lock);
2895 if (pa->pa_deleted) {
2896 spin_unlock(&pa->pa_lock);
2897 continue;
2898 }
2899
2900 pa_end = pa->pa_lstart + pa->pa_len;
2901
2902 /* PA must not overlap original request */
2903 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
2904 ac->ac_o_ex.fe_logical < pa->pa_lstart));
2905
2906 /* skip PAs this normalized request doesn't overlap with */
2907 if (pa->pa_lstart >= end || pa_end <= start) {
2908 spin_unlock(&pa->pa_lock);
2909 continue;
2910 }
2911 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
2912
2913 /* adjust start or end to be adjacent to this pa */
2914 if (pa_end <= ac->ac_o_ex.fe_logical) {
2915 BUG_ON(pa_end < start);
2916 start = pa_end;
2917 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
2918 BUG_ON(pa->pa_lstart > end);
2919 end = pa->pa_lstart;
2920 }
2921 spin_unlock(&pa->pa_lock);
2922 }
2923 rcu_read_unlock();
2924 size = end - start;
2925
2926 /* XXX: extra loop to check we really don't overlap preallocations */
2927 rcu_read_lock();
2928 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
2929 ext4_lblk_t pa_end;
2930 spin_lock(&pa->pa_lock);
2931 if (pa->pa_deleted == 0) {
2932 pa_end = pa->pa_lstart + pa->pa_len;
2933 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
2934 }
2935 spin_unlock(&pa->pa_lock);
2936 }
2937 rcu_read_unlock();
2938
2939 if (start + size <= ac->ac_o_ex.fe_logical &&
2940 start > ac->ac_o_ex.fe_logical) {
2941 printk(KERN_ERR "start %lu, size %lu, fe_logical %lu\n",
2942 (unsigned long) start, (unsigned long) size,
2943 (unsigned long) ac->ac_o_ex.fe_logical);
2944 }
2945 BUG_ON(start + size <= ac->ac_o_ex.fe_logical &&
2946 start > ac->ac_o_ex.fe_logical);
2947 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
2948
2949 /* now prepare goal request */
2950
2951 /* XXX: is it better to align blocks WRT to logical
2952 * placement or satisfy big request as is */
2953 ac->ac_g_ex.fe_logical = start;
2954 ac->ac_g_ex.fe_len = size;
2955
2956 /* define goal start in order to merge */
2957 if (ar->pright && (ar->lright == (start + size))) {
2958 /* merge to the right */
2959 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
2960 &ac->ac_f_ex.fe_group,
2961 &ac->ac_f_ex.fe_start);
2962 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
2963 }
2964 if (ar->pleft && (ar->lleft + 1 == start)) {
2965 /* merge to the left */
2966 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
2967 &ac->ac_f_ex.fe_group,
2968 &ac->ac_f_ex.fe_start);
2969 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
2970 }
2971
2972 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
2973 (unsigned) orig_size, (unsigned) start);
2974 }
2975
2976 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
2977 {
2978 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
2979
2980 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
2981 atomic_inc(&sbi->s_bal_reqs);
2982 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
2983 if (ac->ac_o_ex.fe_len >= ac->ac_g_ex.fe_len)
2984 atomic_inc(&sbi->s_bal_success);
2985 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
2986 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
2987 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
2988 atomic_inc(&sbi->s_bal_goals);
2989 if (ac->ac_found > sbi->s_mb_max_to_scan)
2990 atomic_inc(&sbi->s_bal_breaks);
2991 }
2992
2993 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
2994 trace_ext4_mballoc_alloc(ac);
2995 else
2996 trace_ext4_mballoc_prealloc(ac);
2997 }
2998
2999 /*
3000 * Called on failure; free up any blocks from the inode PA for this
3001 * context. We don't need this for MB_GROUP_PA because we only change
3002 * pa_free in ext4_mb_release_context(), but on failure, we've already
3003 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3004 */
3005 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3006 {
3007 struct ext4_prealloc_space *pa = ac->ac_pa;
3008 int len;
3009
3010 if (pa && pa->pa_type == MB_INODE_PA) {
3011 len = ac->ac_b_ex.fe_len;
3012 pa->pa_free += len;
3013 }
3014
3015 }
3016
3017 /*
3018 * use blocks preallocated to inode
3019 */
3020 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3021 struct ext4_prealloc_space *pa)
3022 {
3023 ext4_fsblk_t start;
3024 ext4_fsblk_t end;
3025 int len;
3026
3027 /* found preallocated blocks, use them */
3028 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3029 end = min(pa->pa_pstart + pa->pa_len, start + ac->ac_o_ex.fe_len);
3030 len = end - start;
3031 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3032 &ac->ac_b_ex.fe_start);
3033 ac->ac_b_ex.fe_len = len;
3034 ac->ac_status = AC_STATUS_FOUND;
3035 ac->ac_pa = pa;
3036
3037 BUG_ON(start < pa->pa_pstart);
3038 BUG_ON(start + len > pa->pa_pstart + pa->pa_len);
3039 BUG_ON(pa->pa_free < len);
3040 pa->pa_free -= len;
3041
3042 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3043 }
3044
3045 /*
3046 * use blocks preallocated to locality group
3047 */
3048 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3049 struct ext4_prealloc_space *pa)
3050 {
3051 unsigned int len = ac->ac_o_ex.fe_len;
3052
3053 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3054 &ac->ac_b_ex.fe_group,
3055 &ac->ac_b_ex.fe_start);
3056 ac->ac_b_ex.fe_len = len;
3057 ac->ac_status = AC_STATUS_FOUND;
3058 ac->ac_pa = pa;
3059
3060 /* we don't correct pa_pstart or pa_plen here to avoid
3061 * possible race when the group is being loaded concurrently
3062 * instead we correct pa later, after blocks are marked
3063 * in on-disk bitmap -- see ext4_mb_release_context()
3064 * Other CPUs are prevented from allocating from this pa by lg_mutex
3065 */
3066 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3067 }
3068
3069 /*
3070 * Return the prealloc space that have minimal distance
3071 * from the goal block. @cpa is the prealloc
3072 * space that is having currently known minimal distance
3073 * from the goal block.
3074 */
3075 static struct ext4_prealloc_space *
3076 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3077 struct ext4_prealloc_space *pa,
3078 struct ext4_prealloc_space *cpa)
3079 {
3080 ext4_fsblk_t cur_distance, new_distance;
3081
3082 if (cpa == NULL) {
3083 atomic_inc(&pa->pa_count);
3084 return pa;
3085 }
3086 cur_distance = abs(goal_block - cpa->pa_pstart);
3087 new_distance = abs(goal_block - pa->pa_pstart);
3088
3089 if (cur_distance < new_distance)
3090 return cpa;
3091
3092 /* drop the previous reference */
3093 atomic_dec(&cpa->pa_count);
3094 atomic_inc(&pa->pa_count);
3095 return pa;
3096 }
3097
3098 /*
3099 * search goal blocks in preallocated space
3100 */
3101 static noinline_for_stack int
3102 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3103 {
3104 int order, i;
3105 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3106 struct ext4_locality_group *lg;
3107 struct ext4_prealloc_space *pa, *cpa = NULL;
3108 ext4_fsblk_t goal_block;
3109
3110 /* only data can be preallocated */
3111 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3112 return 0;
3113
3114 /* first, try per-file preallocation */
3115 rcu_read_lock();
3116 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3117
3118 /* all fields in this condition don't change,
3119 * so we can skip locking for them */
3120 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3121 ac->ac_o_ex.fe_logical >= pa->pa_lstart + pa->pa_len)
3122 continue;
3123
3124 /* non-extent files can't have physical blocks past 2^32 */
3125 if (!(EXT4_I(ac->ac_inode)->i_flags & EXT4_EXTENTS_FL) &&
3126 pa->pa_pstart + pa->pa_len > EXT4_MAX_BLOCK_FILE_PHYS)
3127 continue;
3128
3129 /* found preallocated blocks, use them */
3130 spin_lock(&pa->pa_lock);
3131 if (pa->pa_deleted == 0 && pa->pa_free) {
3132 atomic_inc(&pa->pa_count);
3133 ext4_mb_use_inode_pa(ac, pa);
3134 spin_unlock(&pa->pa_lock);
3135 ac->ac_criteria = 10;
3136 rcu_read_unlock();
3137 return 1;
3138 }
3139 spin_unlock(&pa->pa_lock);
3140 }
3141 rcu_read_unlock();
3142
3143 /* can we use group allocation? */
3144 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3145 return 0;
3146
3147 /* inode may have no locality group for some reason */
3148 lg = ac->ac_lg;
3149 if (lg == NULL)
3150 return 0;
3151 order = fls(ac->ac_o_ex.fe_len) - 1;
3152 if (order > PREALLOC_TB_SIZE - 1)
3153 /* The max size of hash table is PREALLOC_TB_SIZE */
3154 order = PREALLOC_TB_SIZE - 1;
3155
3156 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3157 /*
3158 * search for the prealloc space that is having
3159 * minimal distance from the goal block.
3160 */
3161 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3162 rcu_read_lock();
3163 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3164 pa_inode_list) {
3165 spin_lock(&pa->pa_lock);
3166 if (pa->pa_deleted == 0 &&
3167 pa->pa_free >= ac->ac_o_ex.fe_len) {
3168
3169 cpa = ext4_mb_check_group_pa(goal_block,
3170 pa, cpa);
3171 }
3172 spin_unlock(&pa->pa_lock);
3173 }
3174 rcu_read_unlock();
3175 }
3176 if (cpa) {
3177 ext4_mb_use_group_pa(ac, cpa);
3178 ac->ac_criteria = 20;
3179 return 1;
3180 }
3181 return 0;
3182 }
3183
3184 /*
3185 * the function goes through all block freed in the group
3186 * but not yet committed and marks them used in in-core bitmap.
3187 * buddy must be generated from this bitmap
3188 * Need to be called with the ext4 group lock held
3189 */
3190 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3191 ext4_group_t group)
3192 {
3193 struct rb_node *n;
3194 struct ext4_group_info *grp;
3195 struct ext4_free_data *entry;
3196
3197 grp = ext4_get_group_info(sb, group);
3198 n = rb_first(&(grp->bb_free_root));
3199
3200 while (n) {
3201 entry = rb_entry(n, struct ext4_free_data, node);
3202 mb_set_bits(bitmap, entry->start_blk, entry->count);
3203 n = rb_next(n);
3204 }
3205 return;
3206 }
3207
3208 /*
3209 * the function goes through all preallocation in this group and marks them
3210 * used in in-core bitmap. buddy must be generated from this bitmap
3211 * Need to be called with ext4 group lock held
3212 */
3213 static noinline_for_stack
3214 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3215 ext4_group_t group)
3216 {
3217 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3218 struct ext4_prealloc_space *pa;
3219 struct list_head *cur;
3220 ext4_group_t groupnr;
3221 ext4_grpblk_t start;
3222 int preallocated = 0;
3223 int count = 0;
3224 int len;
3225
3226 /* all form of preallocation discards first load group,
3227 * so the only competing code is preallocation use.
3228 * we don't need any locking here
3229 * notice we do NOT ignore preallocations with pa_deleted
3230 * otherwise we could leave used blocks available for
3231 * allocation in buddy when concurrent ext4_mb_put_pa()
3232 * is dropping preallocation
3233 */
3234 list_for_each(cur, &grp->bb_prealloc_list) {
3235 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3236 spin_lock(&pa->pa_lock);
3237 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3238 &groupnr, &start);
3239 len = pa->pa_len;
3240 spin_unlock(&pa->pa_lock);
3241 if (unlikely(len == 0))
3242 continue;
3243 BUG_ON(groupnr != group);
3244 mb_set_bits(bitmap, start, len);
3245 preallocated += len;
3246 count++;
3247 }
3248 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3249 }
3250
3251 static void ext4_mb_pa_callback(struct rcu_head *head)
3252 {
3253 struct ext4_prealloc_space *pa;
3254 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3255 kmem_cache_free(ext4_pspace_cachep, pa);
3256 }
3257
3258 /*
3259 * drops a reference to preallocated space descriptor
3260 * if this was the last reference and the space is consumed
3261 */
3262 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3263 struct super_block *sb, struct ext4_prealloc_space *pa)
3264 {
3265 ext4_group_t grp;
3266 ext4_fsblk_t grp_blk;
3267
3268 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0)
3269 return;
3270
3271 /* in this short window concurrent discard can set pa_deleted */
3272 spin_lock(&pa->pa_lock);
3273 if (pa->pa_deleted == 1) {
3274 spin_unlock(&pa->pa_lock);
3275 return;
3276 }
3277
3278 pa->pa_deleted = 1;
3279 spin_unlock(&pa->pa_lock);
3280
3281 grp_blk = pa->pa_pstart;
3282 /*
3283 * If doing group-based preallocation, pa_pstart may be in the
3284 * next group when pa is used up
3285 */
3286 if (pa->pa_type == MB_GROUP_PA)
3287 grp_blk--;
3288
3289 ext4_get_group_no_and_offset(sb, grp_blk, &grp, NULL);
3290
3291 /*
3292 * possible race:
3293 *
3294 * P1 (buddy init) P2 (regular allocation)
3295 * find block B in PA
3296 * copy on-disk bitmap to buddy
3297 * mark B in on-disk bitmap
3298 * drop PA from group
3299 * mark all PAs in buddy
3300 *
3301 * thus, P1 initializes buddy with B available. to prevent this
3302 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3303 * against that pair
3304 */
3305 ext4_lock_group(sb, grp);
3306 list_del(&pa->pa_group_list);
3307 ext4_unlock_group(sb, grp);
3308
3309 spin_lock(pa->pa_obj_lock);
3310 list_del_rcu(&pa->pa_inode_list);
3311 spin_unlock(pa->pa_obj_lock);
3312
3313 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3314 }
3315
3316 /*
3317 * creates new preallocated space for given inode
3318 */
3319 static noinline_for_stack int
3320 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3321 {
3322 struct super_block *sb = ac->ac_sb;
3323 struct ext4_prealloc_space *pa;
3324 struct ext4_group_info *grp;
3325 struct ext4_inode_info *ei;
3326
3327 /* preallocate only when found space is larger then requested */
3328 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3329 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3330 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3331
3332 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3333 if (pa == NULL)
3334 return -ENOMEM;
3335
3336 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3337 int winl;
3338 int wins;
3339 int win;
3340 int offs;
3341
3342 /* we can't allocate as much as normalizer wants.
3343 * so, found space must get proper lstart
3344 * to cover original request */
3345 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3346 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3347
3348 /* we're limited by original request in that
3349 * logical block must be covered any way
3350 * winl is window we can move our chunk within */
3351 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3352
3353 /* also, we should cover whole original request */
3354 wins = ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len;
3355
3356 /* the smallest one defines real window */
3357 win = min(winl, wins);
3358
3359 offs = ac->ac_o_ex.fe_logical % ac->ac_b_ex.fe_len;
3360 if (offs && offs < win)
3361 win = offs;
3362
3363 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical - win;
3364 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3365 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3366 }
3367
3368 /* preallocation can change ac_b_ex, thus we store actually
3369 * allocated blocks for history */
3370 ac->ac_f_ex = ac->ac_b_ex;
3371
3372 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3373 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3374 pa->pa_len = ac->ac_b_ex.fe_len;
3375 pa->pa_free = pa->pa_len;
3376 atomic_set(&pa->pa_count, 1);
3377 spin_lock_init(&pa->pa_lock);
3378 INIT_LIST_HEAD(&pa->pa_inode_list);
3379 INIT_LIST_HEAD(&pa->pa_group_list);
3380 pa->pa_deleted = 0;
3381 pa->pa_type = MB_INODE_PA;
3382
3383 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3384 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3385 trace_ext4_mb_new_inode_pa(ac, pa);
3386
3387 ext4_mb_use_inode_pa(ac, pa);
3388 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3389
3390 ei = EXT4_I(ac->ac_inode);
3391 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3392
3393 pa->pa_obj_lock = &ei->i_prealloc_lock;
3394 pa->pa_inode = ac->ac_inode;
3395
3396 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3397 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3398 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3399
3400 spin_lock(pa->pa_obj_lock);
3401 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3402 spin_unlock(pa->pa_obj_lock);
3403
3404 return 0;
3405 }
3406
3407 /*
3408 * creates new preallocated space for locality group inodes belongs to
3409 */
3410 static noinline_for_stack int
3411 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3412 {
3413 struct super_block *sb = ac->ac_sb;
3414 struct ext4_locality_group *lg;
3415 struct ext4_prealloc_space *pa;
3416 struct ext4_group_info *grp;
3417
3418 /* preallocate only when found space is larger then requested */
3419 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3420 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3421 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3422
3423 BUG_ON(ext4_pspace_cachep == NULL);
3424 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3425 if (pa == NULL)
3426 return -ENOMEM;
3427
3428 /* preallocation can change ac_b_ex, thus we store actually
3429 * allocated blocks for history */
3430 ac->ac_f_ex = ac->ac_b_ex;
3431
3432 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3433 pa->pa_lstart = pa->pa_pstart;
3434 pa->pa_len = ac->ac_b_ex.fe_len;
3435 pa->pa_free = pa->pa_len;
3436 atomic_set(&pa->pa_count, 1);
3437 spin_lock_init(&pa->pa_lock);
3438 INIT_LIST_HEAD(&pa->pa_inode_list);
3439 INIT_LIST_HEAD(&pa->pa_group_list);
3440 pa->pa_deleted = 0;
3441 pa->pa_type = MB_GROUP_PA;
3442
3443 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3444 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3445 trace_ext4_mb_new_group_pa(ac, pa);
3446
3447 ext4_mb_use_group_pa(ac, pa);
3448 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3449
3450 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3451 lg = ac->ac_lg;
3452 BUG_ON(lg == NULL);
3453
3454 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3455 pa->pa_inode = NULL;
3456
3457 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3458 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3459 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3460
3461 /*
3462 * We will later add the new pa to the right bucket
3463 * after updating the pa_free in ext4_mb_release_context
3464 */
3465 return 0;
3466 }
3467
3468 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3469 {
3470 int err;
3471
3472 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3473 err = ext4_mb_new_group_pa(ac);
3474 else
3475 err = ext4_mb_new_inode_pa(ac);
3476 return err;
3477 }
3478
3479 /*
3480 * finds all unused blocks in on-disk bitmap, frees them in
3481 * in-core bitmap and buddy.
3482 * @pa must be unlinked from inode and group lists, so that
3483 * nobody else can find/use it.
3484 * the caller MUST hold group/inode locks.
3485 * TODO: optimize the case when there are no in-core structures yet
3486 */
3487 static noinline_for_stack int
3488 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3489 struct ext4_prealloc_space *pa,
3490 struct ext4_allocation_context *ac)
3491 {
3492 struct super_block *sb = e4b->bd_sb;
3493 struct ext4_sb_info *sbi = EXT4_SB(sb);
3494 unsigned int end;
3495 unsigned int next;
3496 ext4_group_t group;
3497 ext4_grpblk_t bit;
3498 unsigned long long grp_blk_start;
3499 sector_t start;
3500 int err = 0;
3501 int free = 0;
3502
3503 BUG_ON(pa->pa_deleted == 0);
3504 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3505 grp_blk_start = pa->pa_pstart - bit;
3506 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3507 end = bit + pa->pa_len;
3508
3509 if (ac) {
3510 ac->ac_sb = sb;
3511 ac->ac_inode = pa->pa_inode;
3512 }
3513
3514 while (bit < end) {
3515 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3516 if (bit >= end)
3517 break;
3518 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3519 start = ext4_group_first_block_no(sb, group) + bit;
3520 mb_debug(1, " free preallocated %u/%u in group %u\n",
3521 (unsigned) start, (unsigned) next - bit,
3522 (unsigned) group);
3523 free += next - bit;
3524
3525 if (ac) {
3526 ac->ac_b_ex.fe_group = group;
3527 ac->ac_b_ex.fe_start = bit;
3528 ac->ac_b_ex.fe_len = next - bit;
3529 ac->ac_b_ex.fe_logical = 0;
3530 trace_ext4_mballoc_discard(ac);
3531 }
3532
3533 trace_ext4_mb_release_inode_pa(ac, pa, grp_blk_start + bit,
3534 next - bit);
3535 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3536 bit = next + 1;
3537 }
3538 if (free != pa->pa_free) {
3539 printk(KERN_CRIT "pa %p: logic %lu, phys. %lu, len %lu\n",
3540 pa, (unsigned long) pa->pa_lstart,
3541 (unsigned long) pa->pa_pstart,
3542 (unsigned long) pa->pa_len);
3543 ext4_grp_locked_error(sb, group,
3544 __func__, "free %u, pa_free %u",
3545 free, pa->pa_free);
3546 /*
3547 * pa is already deleted so we use the value obtained
3548 * from the bitmap and continue.
3549 */
3550 }
3551 atomic_add(free, &sbi->s_mb_discarded);
3552
3553 return err;
3554 }
3555
3556 static noinline_for_stack int
3557 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3558 struct ext4_prealloc_space *pa,
3559 struct ext4_allocation_context *ac)
3560 {
3561 struct super_block *sb = e4b->bd_sb;
3562 ext4_group_t group;
3563 ext4_grpblk_t bit;
3564
3565 trace_ext4_mb_release_group_pa(ac, pa);
3566 BUG_ON(pa->pa_deleted == 0);
3567 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3568 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3569 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3570 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3571
3572 if (ac) {
3573 ac->ac_sb = sb;
3574 ac->ac_inode = NULL;
3575 ac->ac_b_ex.fe_group = group;
3576 ac->ac_b_ex.fe_start = bit;
3577 ac->ac_b_ex.fe_len = pa->pa_len;
3578 ac->ac_b_ex.fe_logical = 0;
3579 trace_ext4_mballoc_discard(ac);
3580 }
3581
3582 return 0;
3583 }
3584
3585 /*
3586 * releases all preallocations in given group
3587 *
3588 * first, we need to decide discard policy:
3589 * - when do we discard
3590 * 1) ENOSPC
3591 * - how many do we discard
3592 * 1) how many requested
3593 */
3594 static noinline_for_stack int
3595 ext4_mb_discard_group_preallocations(struct super_block *sb,
3596 ext4_group_t group, int needed)
3597 {
3598 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3599 struct buffer_head *bitmap_bh = NULL;
3600 struct ext4_prealloc_space *pa, *tmp;
3601 struct ext4_allocation_context *ac;
3602 struct list_head list;
3603 struct ext4_buddy e4b;
3604 int err;
3605 int busy = 0;
3606 int free = 0;
3607
3608 mb_debug(1, "discard preallocation for group %u\n", group);
3609
3610 if (list_empty(&grp->bb_prealloc_list))
3611 return 0;
3612
3613 bitmap_bh = ext4_read_block_bitmap(sb, group);
3614 if (bitmap_bh == NULL) {
3615 ext4_error(sb, "Error reading block bitmap for %u", group);
3616 return 0;
3617 }
3618
3619 err = ext4_mb_load_buddy(sb, group, &e4b);
3620 if (err) {
3621 ext4_error(sb, "Error loading buddy information for %u", group);
3622 put_bh(bitmap_bh);
3623 return 0;
3624 }
3625
3626 if (needed == 0)
3627 needed = EXT4_BLOCKS_PER_GROUP(sb) + 1;
3628
3629 INIT_LIST_HEAD(&list);
3630 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3631 if (ac)
3632 ac->ac_sb = sb;
3633 repeat:
3634 ext4_lock_group(sb, group);
3635 list_for_each_entry_safe(pa, tmp,
3636 &grp->bb_prealloc_list, pa_group_list) {
3637 spin_lock(&pa->pa_lock);
3638 if (atomic_read(&pa->pa_count)) {
3639 spin_unlock(&pa->pa_lock);
3640 busy = 1;
3641 continue;
3642 }
3643 if (pa->pa_deleted) {
3644 spin_unlock(&pa->pa_lock);
3645 continue;
3646 }
3647
3648 /* seems this one can be freed ... */
3649 pa->pa_deleted = 1;
3650
3651 /* we can trust pa_free ... */
3652 free += pa->pa_free;
3653
3654 spin_unlock(&pa->pa_lock);
3655
3656 list_del(&pa->pa_group_list);
3657 list_add(&pa->u.pa_tmp_list, &list);
3658 }
3659
3660 /* if we still need more blocks and some PAs were used, try again */
3661 if (free < needed && busy) {
3662 busy = 0;
3663 ext4_unlock_group(sb, group);
3664 /*
3665 * Yield the CPU here so that we don't get soft lockup
3666 * in non preempt case.
3667 */
3668 yield();
3669 goto repeat;
3670 }
3671
3672 /* found anything to free? */
3673 if (list_empty(&list)) {
3674 BUG_ON(free != 0);
3675 goto out;
3676 }
3677
3678 /* now free all selected PAs */
3679 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3680
3681 /* remove from object (inode or locality group) */
3682 spin_lock(pa->pa_obj_lock);
3683 list_del_rcu(&pa->pa_inode_list);
3684 spin_unlock(pa->pa_obj_lock);
3685
3686 if (pa->pa_type == MB_GROUP_PA)
3687 ext4_mb_release_group_pa(&e4b, pa, ac);
3688 else
3689 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3690
3691 list_del(&pa->u.pa_tmp_list);
3692 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3693 }
3694
3695 out:
3696 ext4_unlock_group(sb, group);
3697 if (ac)
3698 kmem_cache_free(ext4_ac_cachep, ac);
3699 ext4_mb_release_desc(&e4b);
3700 put_bh(bitmap_bh);
3701 return free;
3702 }
3703
3704 /*
3705 * releases all non-used preallocated blocks for given inode
3706 *
3707 * It's important to discard preallocations under i_data_sem
3708 * We don't want another block to be served from the prealloc
3709 * space when we are discarding the inode prealloc space.
3710 *
3711 * FIXME!! Make sure it is valid at all the call sites
3712 */
3713 void ext4_discard_preallocations(struct inode *inode)
3714 {
3715 struct ext4_inode_info *ei = EXT4_I(inode);
3716 struct super_block *sb = inode->i_sb;
3717 struct buffer_head *bitmap_bh = NULL;
3718 struct ext4_prealloc_space *pa, *tmp;
3719 struct ext4_allocation_context *ac;
3720 ext4_group_t group = 0;
3721 struct list_head list;
3722 struct ext4_buddy e4b;
3723 int err;
3724
3725 if (!S_ISREG(inode->i_mode)) {
3726 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
3727 return;
3728 }
3729
3730 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
3731 trace_ext4_discard_preallocations(inode);
3732
3733 INIT_LIST_HEAD(&list);
3734
3735 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
3736 if (ac) {
3737 ac->ac_sb = sb;
3738 ac->ac_inode = inode;
3739 }
3740 repeat:
3741 /* first, collect all pa's in the inode */
3742 spin_lock(&ei->i_prealloc_lock);
3743 while (!list_empty(&ei->i_prealloc_list)) {
3744 pa = list_entry(ei->i_prealloc_list.next,
3745 struct ext4_prealloc_space, pa_inode_list);
3746 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
3747 spin_lock(&pa->pa_lock);
3748 if (atomic_read(&pa->pa_count)) {
3749 /* this shouldn't happen often - nobody should
3750 * use preallocation while we're discarding it */
3751 spin_unlock(&pa->pa_lock);
3752 spin_unlock(&ei->i_prealloc_lock);
3753 printk(KERN_ERR "uh-oh! used pa while discarding\n");
3754 WARN_ON(1);
3755 schedule_timeout_uninterruptible(HZ);
3756 goto repeat;
3757
3758 }
3759 if (pa->pa_deleted == 0) {
3760 pa->pa_deleted = 1;
3761 spin_unlock(&pa->pa_lock);
3762 list_del_rcu(&pa->pa_inode_list);
3763 list_add(&pa->u.pa_tmp_list, &list);
3764 continue;
3765 }
3766
3767 /* someone is deleting pa right now */
3768 spin_unlock(&pa->pa_lock);
3769 spin_unlock(&ei->i_prealloc_lock);
3770
3771 /* we have to wait here because pa_deleted
3772 * doesn't mean pa is already unlinked from
3773 * the list. as we might be called from
3774 * ->clear_inode() the inode will get freed
3775 * and concurrent thread which is unlinking
3776 * pa from inode's list may access already
3777 * freed memory, bad-bad-bad */
3778
3779 /* XXX: if this happens too often, we can
3780 * add a flag to force wait only in case
3781 * of ->clear_inode(), but not in case of
3782 * regular truncate */
3783 schedule_timeout_uninterruptible(HZ);
3784 goto repeat;
3785 }
3786 spin_unlock(&ei->i_prealloc_lock);
3787
3788 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3789 BUG_ON(pa->pa_type != MB_INODE_PA);
3790 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
3791
3792 err = ext4_mb_load_buddy(sb, group, &e4b);
3793 if (err) {
3794 ext4_error(sb, "Error loading buddy information for %u",
3795 group);
3796 continue;
3797 }
3798
3799 bitmap_bh = ext4_read_block_bitmap(sb, group);
3800 if (bitmap_bh == NULL) {
3801 ext4_error(sb, "Error reading block bitmap for %u",
3802 group);
3803 ext4_mb_release_desc(&e4b);
3804 continue;
3805 }
3806
3807 ext4_lock_group(sb, group);
3808 list_del(&pa->pa_group_list);
3809 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa, ac);
3810 ext4_unlock_group(sb, group);
3811
3812 ext4_mb_release_desc(&e4b);
3813 put_bh(bitmap_bh);
3814
3815 list_del(&pa->u.pa_tmp_list);
3816 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3817 }
3818 if (ac)
3819 kmem_cache_free(ext4_ac_cachep, ac);
3820 }
3821
3822 /*
3823 * finds all preallocated spaces and return blocks being freed to them
3824 * if preallocated space becomes full (no block is used from the space)
3825 * then the function frees space in buddy
3826 * XXX: at the moment, truncate (which is the only way to free blocks)
3827 * discards all preallocations
3828 */
3829 static void ext4_mb_return_to_preallocation(struct inode *inode,
3830 struct ext4_buddy *e4b,
3831 sector_t block, int count)
3832 {
3833 BUG_ON(!list_empty(&EXT4_I(inode)->i_prealloc_list));
3834 }
3835 #ifdef CONFIG_EXT4_DEBUG
3836 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3837 {
3838 struct super_block *sb = ac->ac_sb;
3839 ext4_group_t ngroups, i;
3840
3841 printk(KERN_ERR "EXT4-fs: Can't allocate:"
3842 " Allocation context details:\n");
3843 printk(KERN_ERR "EXT4-fs: status %d flags %d\n",
3844 ac->ac_status, ac->ac_flags);
3845 printk(KERN_ERR "EXT4-fs: orig %lu/%lu/%lu@%lu, goal %lu/%lu/%lu@%lu, "
3846 "best %lu/%lu/%lu@%lu cr %d\n",
3847 (unsigned long)ac->ac_o_ex.fe_group,
3848 (unsigned long)ac->ac_o_ex.fe_start,
3849 (unsigned long)ac->ac_o_ex.fe_len,
3850 (unsigned long)ac->ac_o_ex.fe_logical,
3851 (unsigned long)ac->ac_g_ex.fe_group,
3852 (unsigned long)ac->ac_g_ex.fe_start,
3853 (unsigned long)ac->ac_g_ex.fe_len,
3854 (unsigned long)ac->ac_g_ex.fe_logical,
3855 (unsigned long)ac->ac_b_ex.fe_group,
3856 (unsigned long)ac->ac_b_ex.fe_start,
3857 (unsigned long)ac->ac_b_ex.fe_len,
3858 (unsigned long)ac->ac_b_ex.fe_logical,
3859 (int)ac->ac_criteria);
3860 printk(KERN_ERR "EXT4-fs: %lu scanned, %d found\n", ac->ac_ex_scanned,
3861 ac->ac_found);
3862 printk(KERN_ERR "EXT4-fs: groups: \n");
3863 ngroups = ext4_get_groups_count(sb);
3864 for (i = 0; i < ngroups; i++) {
3865 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
3866 struct ext4_prealloc_space *pa;
3867 ext4_grpblk_t start;
3868 struct list_head *cur;
3869 ext4_lock_group(sb, i);
3870 list_for_each(cur, &grp->bb_prealloc_list) {
3871 pa = list_entry(cur, struct ext4_prealloc_space,
3872 pa_group_list);
3873 spin_lock(&pa->pa_lock);
3874 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3875 NULL, &start);
3876 spin_unlock(&pa->pa_lock);
3877 printk(KERN_ERR "PA:%u:%d:%u \n", i,
3878 start, pa->pa_len);
3879 }
3880 ext4_unlock_group(sb, i);
3881
3882 if (grp->bb_free == 0)
3883 continue;
3884 printk(KERN_ERR "%u: %d/%d \n",
3885 i, grp->bb_free, grp->bb_fragments);
3886 }
3887 printk(KERN_ERR "\n");
3888 }
3889 #else
3890 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
3891 {
3892 return;
3893 }
3894 #endif
3895
3896 /*
3897 * We use locality group preallocation for small size file. The size of the
3898 * file is determined by the current size or the resulting size after
3899 * allocation which ever is larger
3900 *
3901 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
3902 */
3903 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
3904 {
3905 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3906 int bsbits = ac->ac_sb->s_blocksize_bits;
3907 loff_t size, isize;
3908
3909 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3910 return;
3911
3912 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3913 return;
3914
3915 size = ac->ac_o_ex.fe_logical + ac->ac_o_ex.fe_len;
3916 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
3917 >> bsbits;
3918
3919 if ((size == isize) &&
3920 !ext4_fs_is_busy(sbi) &&
3921 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
3922 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
3923 return;
3924 }
3925
3926 /* don't use group allocation for large files */
3927 size = max(size, isize);
3928 if (size > sbi->s_mb_stream_request) {
3929 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
3930 return;
3931 }
3932
3933 BUG_ON(ac->ac_lg != NULL);
3934 /*
3935 * locality group prealloc space are per cpu. The reason for having
3936 * per cpu locality group is to reduce the contention between block
3937 * request from multiple CPUs.
3938 */
3939 ac->ac_lg = __this_cpu_ptr(sbi->s_locality_groups);
3940
3941 /* we're going to use group allocation */
3942 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
3943
3944 /* serialize all allocations in the group */
3945 mutex_lock(&ac->ac_lg->lg_mutex);
3946 }
3947
3948 static noinline_for_stack int
3949 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
3950 struct ext4_allocation_request *ar)
3951 {
3952 struct super_block *sb = ar->inode->i_sb;
3953 struct ext4_sb_info *sbi = EXT4_SB(sb);
3954 struct ext4_super_block *es = sbi->s_es;
3955 ext4_group_t group;
3956 unsigned int len;
3957 ext4_fsblk_t goal;
3958 ext4_grpblk_t block;
3959
3960 /* we can't allocate > group size */
3961 len = ar->len;
3962
3963 /* just a dirty hack to filter too big requests */
3964 if (len >= EXT4_BLOCKS_PER_GROUP(sb) - 10)
3965 len = EXT4_BLOCKS_PER_GROUP(sb) - 10;
3966
3967 /* start searching from the goal */
3968 goal = ar->goal;
3969 if (goal < le32_to_cpu(es->s_first_data_block) ||
3970 goal >= ext4_blocks_count(es))
3971 goal = le32_to_cpu(es->s_first_data_block);
3972 ext4_get_group_no_and_offset(sb, goal, &group, &block);
3973
3974 /* set up allocation goals */
3975 memset(ac, 0, sizeof(struct ext4_allocation_context));
3976 ac->ac_b_ex.fe_logical = ar->logical;
3977 ac->ac_status = AC_STATUS_CONTINUE;
3978 ac->ac_sb = sb;
3979 ac->ac_inode = ar->inode;
3980 ac->ac_o_ex.fe_logical = ar->logical;
3981 ac->ac_o_ex.fe_group = group;
3982 ac->ac_o_ex.fe_start = block;
3983 ac->ac_o_ex.fe_len = len;
3984 ac->ac_g_ex.fe_logical = ar->logical;
3985 ac->ac_g_ex.fe_group = group;
3986 ac->ac_g_ex.fe_start = block;
3987 ac->ac_g_ex.fe_len = len;
3988 ac->ac_flags = ar->flags;
3989
3990 /* we have to define context: we'll we work with a file or
3991 * locality group. this is a policy, actually */
3992 ext4_mb_group_or_file(ac);
3993
3994 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
3995 "left: %u/%u, right %u/%u to %swritable\n",
3996 (unsigned) ar->len, (unsigned) ar->logical,
3997 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
3998 (unsigned) ar->lleft, (unsigned) ar->pleft,
3999 (unsigned) ar->lright, (unsigned) ar->pright,
4000 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4001 return 0;
4002
4003 }
4004
4005 static noinline_for_stack void
4006 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4007 struct ext4_locality_group *lg,
4008 int order, int total_entries)
4009 {
4010 ext4_group_t group = 0;
4011 struct ext4_buddy e4b;
4012 struct list_head discard_list;
4013 struct ext4_prealloc_space *pa, *tmp;
4014 struct ext4_allocation_context *ac;
4015
4016 mb_debug(1, "discard locality group preallocation\n");
4017
4018 INIT_LIST_HEAD(&discard_list);
4019 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4020 if (ac)
4021 ac->ac_sb = sb;
4022
4023 spin_lock(&lg->lg_prealloc_lock);
4024 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4025 pa_inode_list) {
4026 spin_lock(&pa->pa_lock);
4027 if (atomic_read(&pa->pa_count)) {
4028 /*
4029 * This is the pa that we just used
4030 * for block allocation. So don't
4031 * free that
4032 */
4033 spin_unlock(&pa->pa_lock);
4034 continue;
4035 }
4036 if (pa->pa_deleted) {
4037 spin_unlock(&pa->pa_lock);
4038 continue;
4039 }
4040 /* only lg prealloc space */
4041 BUG_ON(pa->pa_type != MB_GROUP_PA);
4042
4043 /* seems this one can be freed ... */
4044 pa->pa_deleted = 1;
4045 spin_unlock(&pa->pa_lock);
4046
4047 list_del_rcu(&pa->pa_inode_list);
4048 list_add(&pa->u.pa_tmp_list, &discard_list);
4049
4050 total_entries--;
4051 if (total_entries <= 5) {
4052 /*
4053 * we want to keep only 5 entries
4054 * allowing it to grow to 8. This
4055 * mak sure we don't call discard
4056 * soon for this list.
4057 */
4058 break;
4059 }
4060 }
4061 spin_unlock(&lg->lg_prealloc_lock);
4062
4063 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4064
4065 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, NULL);
4066 if (ext4_mb_load_buddy(sb, group, &e4b)) {
4067 ext4_error(sb, "Error loading buddy information for %u",
4068 group);
4069 continue;
4070 }
4071 ext4_lock_group(sb, group);
4072 list_del(&pa->pa_group_list);
4073 ext4_mb_release_group_pa(&e4b, pa, ac);
4074 ext4_unlock_group(sb, group);
4075
4076 ext4_mb_release_desc(&e4b);
4077 list_del(&pa->u.pa_tmp_list);
4078 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4079 }
4080 if (ac)
4081 kmem_cache_free(ext4_ac_cachep, ac);
4082 }
4083
4084 /*
4085 * We have incremented pa_count. So it cannot be freed at this
4086 * point. Also we hold lg_mutex. So no parallel allocation is
4087 * possible from this lg. That means pa_free cannot be updated.
4088 *
4089 * A parallel ext4_mb_discard_group_preallocations is possible.
4090 * which can cause the lg_prealloc_list to be updated.
4091 */
4092
4093 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4094 {
4095 int order, added = 0, lg_prealloc_count = 1;
4096 struct super_block *sb = ac->ac_sb;
4097 struct ext4_locality_group *lg = ac->ac_lg;
4098 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4099
4100 order = fls(pa->pa_free) - 1;
4101 if (order > PREALLOC_TB_SIZE - 1)
4102 /* The max size of hash table is PREALLOC_TB_SIZE */
4103 order = PREALLOC_TB_SIZE - 1;
4104 /* Add the prealloc space to lg */
4105 rcu_read_lock();
4106 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4107 pa_inode_list) {
4108 spin_lock(&tmp_pa->pa_lock);
4109 if (tmp_pa->pa_deleted) {
4110 spin_unlock(&tmp_pa->pa_lock);
4111 continue;
4112 }
4113 if (!added && pa->pa_free < tmp_pa->pa_free) {
4114 /* Add to the tail of the previous entry */
4115 list_add_tail_rcu(&pa->pa_inode_list,
4116 &tmp_pa->pa_inode_list);
4117 added = 1;
4118 /*
4119 * we want to count the total
4120 * number of entries in the list
4121 */
4122 }
4123 spin_unlock(&tmp_pa->pa_lock);
4124 lg_prealloc_count++;
4125 }
4126 if (!added)
4127 list_add_tail_rcu(&pa->pa_inode_list,
4128 &lg->lg_prealloc_list[order]);
4129 rcu_read_unlock();
4130
4131 /* Now trim the list to be not more than 8 elements */
4132 if (lg_prealloc_count > 8) {
4133 ext4_mb_discard_lg_preallocations(sb, lg,
4134 order, lg_prealloc_count);
4135 return;
4136 }
4137 return ;
4138 }
4139
4140 /*
4141 * release all resource we used in allocation
4142 */
4143 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4144 {
4145 struct ext4_prealloc_space *pa = ac->ac_pa;
4146 if (pa) {
4147 if (pa->pa_type == MB_GROUP_PA) {
4148 /* see comment in ext4_mb_use_group_pa() */
4149 spin_lock(&pa->pa_lock);
4150 pa->pa_pstart += ac->ac_b_ex.fe_len;
4151 pa->pa_lstart += ac->ac_b_ex.fe_len;
4152 pa->pa_free -= ac->ac_b_ex.fe_len;
4153 pa->pa_len -= ac->ac_b_ex.fe_len;
4154 spin_unlock(&pa->pa_lock);
4155 }
4156 }
4157 if (ac->alloc_semp)
4158 up_read(ac->alloc_semp);
4159 if (pa) {
4160 /*
4161 * We want to add the pa to the right bucket.
4162 * Remove it from the list and while adding
4163 * make sure the list to which we are adding
4164 * doesn't grow big. We need to release
4165 * alloc_semp before calling ext4_mb_add_n_trim()
4166 */
4167 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4168 spin_lock(pa->pa_obj_lock);
4169 list_del_rcu(&pa->pa_inode_list);
4170 spin_unlock(pa->pa_obj_lock);
4171 ext4_mb_add_n_trim(ac);
4172 }
4173 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4174 }
4175 if (ac->ac_bitmap_page)
4176 page_cache_release(ac->ac_bitmap_page);
4177 if (ac->ac_buddy_page)
4178 page_cache_release(ac->ac_buddy_page);
4179 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4180 mutex_unlock(&ac->ac_lg->lg_mutex);
4181 ext4_mb_collect_stats(ac);
4182 return 0;
4183 }
4184
4185 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4186 {
4187 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4188 int ret;
4189 int freed = 0;
4190
4191 trace_ext4_mb_discard_preallocations(sb, needed);
4192 for (i = 0; i < ngroups && needed > 0; i++) {
4193 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4194 freed += ret;
4195 needed -= ret;
4196 }
4197
4198 return freed;
4199 }
4200
4201 /*
4202 * Main entry point into mballoc to allocate blocks
4203 * it tries to use preallocation first, then falls back
4204 * to usual allocation
4205 */
4206 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4207 struct ext4_allocation_request *ar, int *errp)
4208 {
4209 int freed;
4210 struct ext4_allocation_context *ac = NULL;
4211 struct ext4_sb_info *sbi;
4212 struct super_block *sb;
4213 ext4_fsblk_t block = 0;
4214 unsigned int inquota = 0;
4215 unsigned int reserv_blks = 0;
4216
4217 sb = ar->inode->i_sb;
4218 sbi = EXT4_SB(sb);
4219
4220 trace_ext4_request_blocks(ar);
4221
4222 /*
4223 * For delayed allocation, we could skip the ENOSPC and
4224 * EDQUOT check, as blocks and quotas have been already
4225 * reserved when data being copied into pagecache.
4226 */
4227 if (EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4228 ar->flags |= EXT4_MB_DELALLOC_RESERVED;
4229 else {
4230 /* Without delayed allocation we need to verify
4231 * there is enough free blocks to do block allocation
4232 * and verify allocation doesn't exceed the quota limits.
4233 */
4234 while (ar->len && ext4_claim_free_blocks(sbi, ar->len)) {
4235 /* let others to free the space */
4236 yield();
4237 ar->len = ar->len >> 1;
4238 }
4239 if (!ar->len) {
4240 *errp = -ENOSPC;
4241 return 0;
4242 }
4243 reserv_blks = ar->len;
4244 while (ar->len && dquot_alloc_block(ar->inode, ar->len)) {
4245 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4246 ar->len--;
4247 }
4248 inquota = ar->len;
4249 if (ar->len == 0) {
4250 *errp = -EDQUOT;
4251 goto out3;
4252 }
4253 }
4254
4255 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4256 if (!ac) {
4257 ar->len = 0;
4258 *errp = -ENOMEM;
4259 goto out1;
4260 }
4261
4262 *errp = ext4_mb_initialize_context(ac, ar);
4263 if (*errp) {
4264 ar->len = 0;
4265 goto out2;
4266 }
4267
4268 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4269 if (!ext4_mb_use_preallocated(ac)) {
4270 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4271 ext4_mb_normalize_request(ac, ar);
4272 repeat:
4273 /* allocate space in core */
4274 ext4_mb_regular_allocator(ac);
4275
4276 /* as we've just preallocated more space than
4277 * user requested orinally, we store allocated
4278 * space in a special descriptor */
4279 if (ac->ac_status == AC_STATUS_FOUND &&
4280 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4281 ext4_mb_new_preallocation(ac);
4282 }
4283 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4284 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_blks);
4285 if (*errp == -EAGAIN) {
4286 /*
4287 * drop the reference that we took
4288 * in ext4_mb_use_best_found
4289 */
4290 ext4_mb_release_context(ac);
4291 ac->ac_b_ex.fe_group = 0;
4292 ac->ac_b_ex.fe_start = 0;
4293 ac->ac_b_ex.fe_len = 0;
4294 ac->ac_status = AC_STATUS_CONTINUE;
4295 goto repeat;
4296 } else if (*errp) {
4297 ext4_discard_allocated_blocks(ac);
4298 ac->ac_b_ex.fe_len = 0;
4299 ar->len = 0;
4300 ext4_mb_show_ac(ac);
4301 } else {
4302 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4303 ar->len = ac->ac_b_ex.fe_len;
4304 }
4305 } else {
4306 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4307 if (freed)
4308 goto repeat;
4309 *errp = -ENOSPC;
4310 ac->ac_b_ex.fe_len = 0;
4311 ar->len = 0;
4312 ext4_mb_show_ac(ac);
4313 }
4314
4315 ext4_mb_release_context(ac);
4316
4317 out2:
4318 kmem_cache_free(ext4_ac_cachep, ac);
4319 out1:
4320 if (inquota && ar->len < inquota)
4321 dquot_free_block(ar->inode, inquota - ar->len);
4322 out3:
4323 if (!ar->len) {
4324 if (!EXT4_I(ar->inode)->i_delalloc_reserved_flag)
4325 /* release all the reserved blocks if non delalloc */
4326 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
4327 reserv_blks);
4328 }
4329
4330 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4331
4332 return block;
4333 }
4334
4335 /*
4336 * We can merge two free data extents only if the physical blocks
4337 * are contiguous, AND the extents were freed by the same transaction,
4338 * AND the blocks are associated with the same group.
4339 */
4340 static int can_merge(struct ext4_free_data *entry1,
4341 struct ext4_free_data *entry2)
4342 {
4343 if ((entry1->t_tid == entry2->t_tid) &&
4344 (entry1->group == entry2->group) &&
4345 ((entry1->start_blk + entry1->count) == entry2->start_blk))
4346 return 1;
4347 return 0;
4348 }
4349
4350 static noinline_for_stack int
4351 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4352 struct ext4_free_data *new_entry)
4353 {
4354 ext4_grpblk_t block;
4355 struct ext4_free_data *entry;
4356 struct ext4_group_info *db = e4b->bd_info;
4357 struct super_block *sb = e4b->bd_sb;
4358 struct ext4_sb_info *sbi = EXT4_SB(sb);
4359 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4360 struct rb_node *parent = NULL, *new_node;
4361
4362 BUG_ON(!ext4_handle_valid(handle));
4363 BUG_ON(e4b->bd_bitmap_page == NULL);
4364 BUG_ON(e4b->bd_buddy_page == NULL);
4365
4366 new_node = &new_entry->node;
4367 block = new_entry->start_blk;
4368
4369 if (!*n) {
4370 /* first free block exent. We need to
4371 protect buddy cache from being freed,
4372 * otherwise we'll refresh it from
4373 * on-disk bitmap and lose not-yet-available
4374 * blocks */
4375 page_cache_get(e4b->bd_buddy_page);
4376 page_cache_get(e4b->bd_bitmap_page);
4377 }
4378 while (*n) {
4379 parent = *n;
4380 entry = rb_entry(parent, struct ext4_free_data, node);
4381 if (block < entry->start_blk)
4382 n = &(*n)->rb_left;
4383 else if (block >= (entry->start_blk + entry->count))
4384 n = &(*n)->rb_right;
4385 else {
4386 ext4_grp_locked_error(sb, e4b->bd_group, __func__,
4387 "Double free of blocks %d (%d %d)",
4388 block, entry->start_blk, entry->count);
4389 return 0;
4390 }
4391 }
4392
4393 rb_link_node(new_node, parent, n);
4394 rb_insert_color(new_node, &db->bb_free_root);
4395
4396 /* Now try to see the extent can be merged to left and right */
4397 node = rb_prev(new_node);
4398 if (node) {
4399 entry = rb_entry(node, struct ext4_free_data, node);
4400 if (can_merge(entry, new_entry)) {
4401 new_entry->start_blk = entry->start_blk;
4402 new_entry->count += entry->count;
4403 rb_erase(node, &(db->bb_free_root));
4404 spin_lock(&sbi->s_md_lock);
4405 list_del(&entry->list);
4406 spin_unlock(&sbi->s_md_lock);
4407 kmem_cache_free(ext4_free_ext_cachep, entry);
4408 }
4409 }
4410
4411 node = rb_next(new_node);
4412 if (node) {
4413 entry = rb_entry(node, struct ext4_free_data, node);
4414 if (can_merge(new_entry, entry)) {
4415 new_entry->count += entry->count;
4416 rb_erase(node, &(db->bb_free_root));
4417 spin_lock(&sbi->s_md_lock);
4418 list_del(&entry->list);
4419 spin_unlock(&sbi->s_md_lock);
4420 kmem_cache_free(ext4_free_ext_cachep, entry);
4421 }
4422 }
4423 /* Add the extent to transaction's private list */
4424 spin_lock(&sbi->s_md_lock);
4425 list_add(&new_entry->list, &handle->h_transaction->t_private_list);
4426 spin_unlock(&sbi->s_md_lock);
4427 return 0;
4428 }
4429
4430 /**
4431 * ext4_free_blocks() -- Free given blocks and update quota
4432 * @handle: handle for this transaction
4433 * @inode: inode
4434 * @block: start physical block to free
4435 * @count: number of blocks to count
4436 * @metadata: Are these metadata blocks
4437 */
4438 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4439 struct buffer_head *bh, ext4_fsblk_t block,
4440 unsigned long count, int flags)
4441 {
4442 struct buffer_head *bitmap_bh = NULL;
4443 struct super_block *sb = inode->i_sb;
4444 struct ext4_allocation_context *ac = NULL;
4445 struct ext4_group_desc *gdp;
4446 struct ext4_super_block *es;
4447 unsigned long freed = 0;
4448 unsigned int overflow;
4449 ext4_grpblk_t bit;
4450 struct buffer_head *gd_bh;
4451 ext4_group_t block_group;
4452 struct ext4_sb_info *sbi;
4453 struct ext4_buddy e4b;
4454 int err = 0;
4455 int ret;
4456
4457 if (bh) {
4458 if (block)
4459 BUG_ON(block != bh->b_blocknr);
4460 else
4461 block = bh->b_blocknr;
4462 }
4463
4464 sbi = EXT4_SB(sb);
4465 es = EXT4_SB(sb)->s_es;
4466 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4467 !ext4_data_block_valid(sbi, block, count)) {
4468 ext4_error(sb, "Freeing blocks not in datazone - "
4469 "block = %llu, count = %lu", block, count);
4470 goto error_return;
4471 }
4472
4473 ext4_debug("freeing block %llu\n", block);
4474 trace_ext4_free_blocks(inode, block, count, flags);
4475
4476 if (flags & EXT4_FREE_BLOCKS_FORGET) {
4477 struct buffer_head *tbh = bh;
4478 int i;
4479
4480 BUG_ON(bh && (count > 1));
4481
4482 for (i = 0; i < count; i++) {
4483 if (!bh)
4484 tbh = sb_find_get_block(inode->i_sb,
4485 block + i);
4486 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4487 inode, tbh, block + i);
4488 }
4489 }
4490
4491 /*
4492 * We need to make sure we don't reuse the freed block until
4493 * after the transaction is committed, which we can do by
4494 * treating the block as metadata, below. We make an
4495 * exception if the inode is to be written in writeback mode
4496 * since writeback mode has weak data consistency guarantees.
4497 */
4498 if (!ext4_should_writeback_data(inode))
4499 flags |= EXT4_FREE_BLOCKS_METADATA;
4500
4501 ac = kmem_cache_alloc(ext4_ac_cachep, GFP_NOFS);
4502 if (ac) {
4503 ac->ac_inode = inode;
4504 ac->ac_sb = sb;
4505 }
4506
4507 do_more:
4508 overflow = 0;
4509 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4510
4511 /*
4512 * Check to see if we are freeing blocks across a group
4513 * boundary.
4514 */
4515 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4516 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
4517 count -= overflow;
4518 }
4519 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4520 if (!bitmap_bh) {
4521 err = -EIO;
4522 goto error_return;
4523 }
4524 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4525 if (!gdp) {
4526 err = -EIO;
4527 goto error_return;
4528 }
4529
4530 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4531 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4532 in_range(block, ext4_inode_table(sb, gdp),
4533 EXT4_SB(sb)->s_itb_per_group) ||
4534 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4535 EXT4_SB(sb)->s_itb_per_group)) {
4536
4537 ext4_error(sb, "Freeing blocks in system zone - "
4538 "Block = %llu, count = %lu", block, count);
4539 /* err = 0. ext4_std_error should be a no op */
4540 goto error_return;
4541 }
4542
4543 BUFFER_TRACE(bitmap_bh, "getting write access");
4544 err = ext4_journal_get_write_access(handle, bitmap_bh);
4545 if (err)
4546 goto error_return;
4547
4548 /*
4549 * We are about to modify some metadata. Call the journal APIs
4550 * to unshare ->b_data if a currently-committing transaction is
4551 * using it
4552 */
4553 BUFFER_TRACE(gd_bh, "get_write_access");
4554 err = ext4_journal_get_write_access(handle, gd_bh);
4555 if (err)
4556 goto error_return;
4557 #ifdef AGGRESSIVE_CHECK
4558 {
4559 int i;
4560 for (i = 0; i < count; i++)
4561 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4562 }
4563 #endif
4564 if (ac) {
4565 ac->ac_b_ex.fe_group = block_group;
4566 ac->ac_b_ex.fe_start = bit;
4567 ac->ac_b_ex.fe_len = count;
4568 trace_ext4_mballoc_free(ac);
4569 }
4570
4571 err = ext4_mb_load_buddy(sb, block_group, &e4b);
4572 if (err)
4573 goto error_return;
4574
4575 if ((flags & EXT4_FREE_BLOCKS_METADATA) && ext4_handle_valid(handle)) {
4576 struct ext4_free_data *new_entry;
4577 /*
4578 * blocks being freed are metadata. these blocks shouldn't
4579 * be used until this transaction is committed
4580 */
4581 new_entry = kmem_cache_alloc(ext4_free_ext_cachep, GFP_NOFS);
4582 new_entry->start_blk = bit;
4583 new_entry->group = block_group;
4584 new_entry->count = count;
4585 new_entry->t_tid = handle->h_transaction->t_tid;
4586
4587 ext4_lock_group(sb, block_group);
4588 mb_clear_bits(bitmap_bh->b_data, bit, count);
4589 ext4_mb_free_metadata(handle, &e4b, new_entry);
4590 } else {
4591 /* need to update group_info->bb_free and bitmap
4592 * with group lock held. generate_buddy look at
4593 * them with group lock_held
4594 */
4595 ext4_lock_group(sb, block_group);
4596 mb_clear_bits(bitmap_bh->b_data, bit, count);
4597 mb_free_blocks(inode, &e4b, bit, count);
4598 ext4_mb_return_to_preallocation(inode, &e4b, block, count);
4599 }
4600
4601 ret = ext4_free_blks_count(sb, gdp) + count;
4602 ext4_free_blks_set(sb, gdp, ret);
4603 gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
4604 ext4_unlock_group(sb, block_group);
4605 percpu_counter_add(&sbi->s_freeblocks_counter, count);
4606
4607 if (sbi->s_log_groups_per_flex) {
4608 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4609 atomic_add(count, &sbi->s_flex_groups[flex_group].free_blocks);
4610 }
4611
4612 ext4_mb_release_desc(&e4b);
4613
4614 freed += count;
4615
4616 /* We dirtied the bitmap block */
4617 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4618 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4619
4620 /* And the group descriptor block */
4621 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4622 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4623 if (!err)
4624 err = ret;
4625
4626 if (overflow && !err) {
4627 block += count;
4628 count = overflow;
4629 put_bh(bitmap_bh);
4630 goto do_more;
4631 }
4632 sb->s_dirt = 1;
4633 error_return:
4634 if (freed)
4635 dquot_free_block(inode, freed);
4636 brelse(bitmap_bh);
4637 ext4_std_error(sb, err);
4638 if (ac)
4639 kmem_cache_free(ext4_ac_cachep, ac);
4640 return;
4641 }