Merge branch 'tip/perf/urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/roste...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/jbd2.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51 struct ext4_inode_info *ei)
52 {
53 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54 __u16 csum_lo;
55 __u16 csum_hi = 0;
56 __u32 csum;
57
58 csum_lo = raw->i_checksum_lo;
59 raw->i_checksum_lo = 0;
60 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
61 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
62 csum_hi = raw->i_checksum_hi;
63 raw->i_checksum_hi = 0;
64 }
65
66 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
67 EXT4_INODE_SIZE(inode->i_sb));
68
69 raw->i_checksum_lo = csum_lo;
70 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
71 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
72 raw->i_checksum_hi = csum_hi;
73
74 return csum;
75 }
76
77 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
78 struct ext4_inode_info *ei)
79 {
80 __u32 provided, calculated;
81
82 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
83 cpu_to_le32(EXT4_OS_LINUX) ||
84 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
85 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
86 return 1;
87
88 provided = le16_to_cpu(raw->i_checksum_lo);
89 calculated = ext4_inode_csum(inode, raw, ei);
90 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
91 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
92 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
93 else
94 calculated &= 0xFFFF;
95
96 return provided == calculated;
97 }
98
99 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
100 struct ext4_inode_info *ei)
101 {
102 __u32 csum;
103
104 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
105 cpu_to_le32(EXT4_OS_LINUX) ||
106 !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
107 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
108 return;
109
110 csum = ext4_inode_csum(inode, raw, ei);
111 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
112 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
113 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
114 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
115 }
116
117 static inline int ext4_begin_ordered_truncate(struct inode *inode,
118 loff_t new_size)
119 {
120 trace_ext4_begin_ordered_truncate(inode, new_size);
121 /*
122 * If jinode is zero, then we never opened the file for
123 * writing, so there's no need to call
124 * jbd2_journal_begin_ordered_truncate() since there's no
125 * outstanding writes we need to flush.
126 */
127 if (!EXT4_I(inode)->jinode)
128 return 0;
129 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
130 EXT4_I(inode)->jinode,
131 new_size);
132 }
133
134 static void ext4_invalidatepage(struct page *page, unsigned long offset);
135 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
136 struct buffer_head *bh_result, int create);
137 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
138 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
142 struct inode *inode, struct page *page, loff_t from,
143 loff_t length, int flags);
144
145 /*
146 * Test whether an inode is a fast symlink.
147 */
148 static int ext4_inode_is_fast_symlink(struct inode *inode)
149 {
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 (inode->i_sb->s_blocksize >> 9) : 0;
152
153 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
154 }
155
156 /*
157 * Restart the transaction associated with *handle. This does a commit,
158 * so before we call here everything must be consistently dirtied against
159 * this transaction.
160 */
161 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
162 int nblocks)
163 {
164 int ret;
165
166 /*
167 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
168 * moment, get_block can be called only for blocks inside i_size since
169 * page cache has been already dropped and writes are blocked by
170 * i_mutex. So we can safely drop the i_data_sem here.
171 */
172 BUG_ON(EXT4_JOURNAL(inode) == NULL);
173 jbd_debug(2, "restarting handle %p\n", handle);
174 up_write(&EXT4_I(inode)->i_data_sem);
175 ret = ext4_journal_restart(handle, nblocks);
176 down_write(&EXT4_I(inode)->i_data_sem);
177 ext4_discard_preallocations(inode);
178
179 return ret;
180 }
181
182 /*
183 * Called at the last iput() if i_nlink is zero.
184 */
185 void ext4_evict_inode(struct inode *inode)
186 {
187 handle_t *handle;
188 int err;
189
190 trace_ext4_evict_inode(inode);
191
192 ext4_ioend_wait(inode);
193
194 if (inode->i_nlink) {
195 /*
196 * When journalling data dirty buffers are tracked only in the
197 * journal. So although mm thinks everything is clean and
198 * ready for reaping the inode might still have some pages to
199 * write in the running transaction or waiting to be
200 * checkpointed. Thus calling jbd2_journal_invalidatepage()
201 * (via truncate_inode_pages()) to discard these buffers can
202 * cause data loss. Also even if we did not discard these
203 * buffers, we would have no way to find them after the inode
204 * is reaped and thus user could see stale data if he tries to
205 * read them before the transaction is checkpointed. So be
206 * careful and force everything to disk here... We use
207 * ei->i_datasync_tid to store the newest transaction
208 * containing inode's data.
209 *
210 * Note that directories do not have this problem because they
211 * don't use page cache.
212 */
213 if (ext4_should_journal_data(inode) &&
214 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
215 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
216 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
217
218 jbd2_log_start_commit(journal, commit_tid);
219 jbd2_log_wait_commit(journal, commit_tid);
220 filemap_write_and_wait(&inode->i_data);
221 }
222 truncate_inode_pages(&inode->i_data, 0);
223 goto no_delete;
224 }
225
226 if (!is_bad_inode(inode))
227 dquot_initialize(inode);
228
229 if (ext4_should_order_data(inode))
230 ext4_begin_ordered_truncate(inode, 0);
231 truncate_inode_pages(&inode->i_data, 0);
232
233 if (is_bad_inode(inode))
234 goto no_delete;
235
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
241 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
242 if (IS_ERR(handle)) {
243 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244 /*
245 * If we're going to skip the normal cleanup, we still need to
246 * make sure that the in-core orphan linked list is properly
247 * cleaned up.
248 */
249 ext4_orphan_del(NULL, inode);
250 sb_end_intwrite(inode->i_sb);
251 goto no_delete;
252 }
253
254 if (IS_SYNC(inode))
255 ext4_handle_sync(handle);
256 inode->i_size = 0;
257 err = ext4_mark_inode_dirty(handle, inode);
258 if (err) {
259 ext4_warning(inode->i_sb,
260 "couldn't mark inode dirty (err %d)", err);
261 goto stop_handle;
262 }
263 if (inode->i_blocks)
264 ext4_truncate(inode);
265
266 /*
267 * ext4_ext_truncate() doesn't reserve any slop when it
268 * restarts journal transactions; therefore there may not be
269 * enough credits left in the handle to remove the inode from
270 * the orphan list and set the dtime field.
271 */
272 if (!ext4_handle_has_enough_credits(handle, 3)) {
273 err = ext4_journal_extend(handle, 3);
274 if (err > 0)
275 err = ext4_journal_restart(handle, 3);
276 if (err != 0) {
277 ext4_warning(inode->i_sb,
278 "couldn't extend journal (err %d)", err);
279 stop_handle:
280 ext4_journal_stop(handle);
281 ext4_orphan_del(NULL, inode);
282 sb_end_intwrite(inode->i_sb);
283 goto no_delete;
284 }
285 }
286
287 /*
288 * Kill off the orphan record which ext4_truncate created.
289 * AKPM: I think this can be inside the above `if'.
290 * Note that ext4_orphan_del() has to be able to cope with the
291 * deletion of a non-existent orphan - this is because we don't
292 * know if ext4_truncate() actually created an orphan record.
293 * (Well, we could do this if we need to, but heck - it works)
294 */
295 ext4_orphan_del(handle, inode);
296 EXT4_I(inode)->i_dtime = get_seconds();
297
298 /*
299 * One subtle ordering requirement: if anything has gone wrong
300 * (transaction abort, IO errors, whatever), then we can still
301 * do these next steps (the fs will already have been marked as
302 * having errors), but we can't free the inode if the mark_dirty
303 * fails.
304 */
305 if (ext4_mark_inode_dirty(handle, inode))
306 /* If that failed, just do the required in-core inode clear. */
307 ext4_clear_inode(inode);
308 else
309 ext4_free_inode(handle, inode);
310 ext4_journal_stop(handle);
311 sb_end_intwrite(inode->i_sb);
312 return;
313 no_delete:
314 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320 return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325 * Calculate the number of metadata blocks need to reserve
326 * to allocate a block located at @lblock
327 */
328 static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
329 {
330 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
331 return ext4_ext_calc_metadata_amount(inode, lblock);
332
333 return ext4_ind_calc_metadata_amount(inode, lblock);
334 }
335
336 /*
337 * Called with i_data_sem down, which is important since we can call
338 * ext4_discard_preallocations() from here.
339 */
340 void ext4_da_update_reserve_space(struct inode *inode,
341 int used, int quota_claim)
342 {
343 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344 struct ext4_inode_info *ei = EXT4_I(inode);
345
346 spin_lock(&ei->i_block_reservation_lock);
347 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348 if (unlikely(used > ei->i_reserved_data_blocks)) {
349 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
350 "with only %d reserved data blocks",
351 __func__, inode->i_ino, used,
352 ei->i_reserved_data_blocks);
353 WARN_ON(1);
354 used = ei->i_reserved_data_blocks;
355 }
356
357 if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
358 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, allocated %d "
359 "with only %d reserved metadata blocks\n", __func__,
360 inode->i_ino, ei->i_allocated_meta_blocks,
361 ei->i_reserved_meta_blocks);
362 WARN_ON(1);
363 ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
364 }
365
366 /* Update per-inode reservations */
367 ei->i_reserved_data_blocks -= used;
368 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
369 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
370 used + ei->i_allocated_meta_blocks);
371 ei->i_allocated_meta_blocks = 0;
372
373 if (ei->i_reserved_data_blocks == 0) {
374 /*
375 * We can release all of the reserved metadata blocks
376 * only when we have written all of the delayed
377 * allocation blocks.
378 */
379 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
380 ei->i_reserved_meta_blocks);
381 ei->i_reserved_meta_blocks = 0;
382 ei->i_da_metadata_calc_len = 0;
383 }
384 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
385
386 /* Update quota subsystem for data blocks */
387 if (quota_claim)
388 dquot_claim_block(inode, EXT4_C2B(sbi, used));
389 else {
390 /*
391 * We did fallocate with an offset that is already delayed
392 * allocated. So on delayed allocated writeback we should
393 * not re-claim the quota for fallocated blocks.
394 */
395 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
396 }
397
398 /*
399 * If we have done all the pending block allocations and if
400 * there aren't any writers on the inode, we can discard the
401 * inode's preallocations.
402 */
403 if ((ei->i_reserved_data_blocks == 0) &&
404 (atomic_read(&inode->i_writecount) == 0))
405 ext4_discard_preallocations(inode);
406 }
407
408 static int __check_block_validity(struct inode *inode, const char *func,
409 unsigned int line,
410 struct ext4_map_blocks *map)
411 {
412 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
413 map->m_len)) {
414 ext4_error_inode(inode, func, line, map->m_pblk,
415 "lblock %lu mapped to illegal pblock "
416 "(length %d)", (unsigned long) map->m_lblk,
417 map->m_len);
418 return -EIO;
419 }
420 return 0;
421 }
422
423 #define check_block_validity(inode, map) \
424 __check_block_validity((inode), __func__, __LINE__, (map))
425
426 /*
427 * Return the number of contiguous dirty pages in a given inode
428 * starting at page frame idx.
429 */
430 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
431 unsigned int max_pages)
432 {
433 struct address_space *mapping = inode->i_mapping;
434 pgoff_t index;
435 struct pagevec pvec;
436 pgoff_t num = 0;
437 int i, nr_pages, done = 0;
438
439 if (max_pages == 0)
440 return 0;
441 pagevec_init(&pvec, 0);
442 while (!done) {
443 index = idx;
444 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
445 PAGECACHE_TAG_DIRTY,
446 (pgoff_t)PAGEVEC_SIZE);
447 if (nr_pages == 0)
448 break;
449 for (i = 0; i < nr_pages; i++) {
450 struct page *page = pvec.pages[i];
451 struct buffer_head *bh, *head;
452
453 lock_page(page);
454 if (unlikely(page->mapping != mapping) ||
455 !PageDirty(page) ||
456 PageWriteback(page) ||
457 page->index != idx) {
458 done = 1;
459 unlock_page(page);
460 break;
461 }
462 if (page_has_buffers(page)) {
463 bh = head = page_buffers(page);
464 do {
465 if (!buffer_delay(bh) &&
466 !buffer_unwritten(bh))
467 done = 1;
468 bh = bh->b_this_page;
469 } while (!done && (bh != head));
470 }
471 unlock_page(page);
472 if (done)
473 break;
474 idx++;
475 num++;
476 if (num >= max_pages) {
477 done = 1;
478 break;
479 }
480 }
481 pagevec_release(&pvec);
482 }
483 return num;
484 }
485
486 /*
487 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
488 */
489 static void set_buffers_da_mapped(struct inode *inode,
490 struct ext4_map_blocks *map)
491 {
492 struct address_space *mapping = inode->i_mapping;
493 struct pagevec pvec;
494 int i, nr_pages;
495 pgoff_t index, end;
496
497 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
498 end = (map->m_lblk + map->m_len - 1) >>
499 (PAGE_CACHE_SHIFT - inode->i_blkbits);
500
501 pagevec_init(&pvec, 0);
502 while (index <= end) {
503 nr_pages = pagevec_lookup(&pvec, mapping, index,
504 min(end - index + 1,
505 (pgoff_t)PAGEVEC_SIZE));
506 if (nr_pages == 0)
507 break;
508 for (i = 0; i < nr_pages; i++) {
509 struct page *page = pvec.pages[i];
510 struct buffer_head *bh, *head;
511
512 if (unlikely(page->mapping != mapping) ||
513 !PageDirty(page))
514 break;
515
516 if (page_has_buffers(page)) {
517 bh = head = page_buffers(page);
518 do {
519 set_buffer_da_mapped(bh);
520 bh = bh->b_this_page;
521 } while (bh != head);
522 }
523 index++;
524 }
525 pagevec_release(&pvec);
526 }
527 }
528
529 /*
530 * The ext4_map_blocks() function tries to look up the requested blocks,
531 * and returns if the blocks are already mapped.
532 *
533 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
534 * and store the allocated blocks in the result buffer head and mark it
535 * mapped.
536 *
537 * If file type is extents based, it will call ext4_ext_map_blocks(),
538 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
539 * based files
540 *
541 * On success, it returns the number of blocks being mapped or allocate.
542 * if create==0 and the blocks are pre-allocated and uninitialized block,
543 * the result buffer head is unmapped. If the create ==1, it will make sure
544 * the buffer head is mapped.
545 *
546 * It returns 0 if plain look up failed (blocks have not been allocated), in
547 * that case, buffer head is unmapped
548 *
549 * It returns the error in case of allocation failure.
550 */
551 int ext4_map_blocks(handle_t *handle, struct inode *inode,
552 struct ext4_map_blocks *map, int flags)
553 {
554 int retval;
555
556 map->m_flags = 0;
557 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
558 "logical block %lu\n", inode->i_ino, flags, map->m_len,
559 (unsigned long) map->m_lblk);
560 /*
561 * Try to see if we can get the block without requesting a new
562 * file system block.
563 */
564 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
565 down_read((&EXT4_I(inode)->i_data_sem));
566 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
567 retval = ext4_ext_map_blocks(handle, inode, map, flags &
568 EXT4_GET_BLOCKS_KEEP_SIZE);
569 } else {
570 retval = ext4_ind_map_blocks(handle, inode, map, flags &
571 EXT4_GET_BLOCKS_KEEP_SIZE);
572 }
573 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
574 up_read((&EXT4_I(inode)->i_data_sem));
575
576 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
577 int ret = check_block_validity(inode, map);
578 if (ret != 0)
579 return ret;
580 }
581
582 /* If it is only a block(s) look up */
583 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
584 return retval;
585
586 /*
587 * Returns if the blocks have already allocated
588 *
589 * Note that if blocks have been preallocated
590 * ext4_ext_get_block() returns the create = 0
591 * with buffer head unmapped.
592 */
593 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
594 return retval;
595
596 /*
597 * When we call get_blocks without the create flag, the
598 * BH_Unwritten flag could have gotten set if the blocks
599 * requested were part of a uninitialized extent. We need to
600 * clear this flag now that we are committed to convert all or
601 * part of the uninitialized extent to be an initialized
602 * extent. This is because we need to avoid the combination
603 * of BH_Unwritten and BH_Mapped flags being simultaneously
604 * set on the buffer_head.
605 */
606 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
607
608 /*
609 * New blocks allocate and/or writing to uninitialized extent
610 * will possibly result in updating i_data, so we take
611 * the write lock of i_data_sem, and call get_blocks()
612 * with create == 1 flag.
613 */
614 down_write((&EXT4_I(inode)->i_data_sem));
615
616 /*
617 * if the caller is from delayed allocation writeout path
618 * we have already reserved fs blocks for allocation
619 * let the underlying get_block() function know to
620 * avoid double accounting
621 */
622 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
623 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
624 /*
625 * We need to check for EXT4 here because migrate
626 * could have changed the inode type in between
627 */
628 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
629 retval = ext4_ext_map_blocks(handle, inode, map, flags);
630 } else {
631 retval = ext4_ind_map_blocks(handle, inode, map, flags);
632
633 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
634 /*
635 * We allocated new blocks which will result in
636 * i_data's format changing. Force the migrate
637 * to fail by clearing migrate flags
638 */
639 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
640 }
641
642 /*
643 * Update reserved blocks/metadata blocks after successful
644 * block allocation which had been deferred till now. We don't
645 * support fallocate for non extent files. So we can update
646 * reserve space here.
647 */
648 if ((retval > 0) &&
649 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
650 ext4_da_update_reserve_space(inode, retval, 1);
651 }
652 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
653 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
654
655 /* If we have successfully mapped the delayed allocated blocks,
656 * set the BH_Da_Mapped bit on them. Its important to do this
657 * under the protection of i_data_sem.
658 */
659 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
660 set_buffers_da_mapped(inode, map);
661 }
662
663 up_write((&EXT4_I(inode)->i_data_sem));
664 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
665 int ret = check_block_validity(inode, map);
666 if (ret != 0)
667 return ret;
668 }
669 return retval;
670 }
671
672 /* Maximum number of blocks we map for direct IO at once. */
673 #define DIO_MAX_BLOCKS 4096
674
675 static int _ext4_get_block(struct inode *inode, sector_t iblock,
676 struct buffer_head *bh, int flags)
677 {
678 handle_t *handle = ext4_journal_current_handle();
679 struct ext4_map_blocks map;
680 int ret = 0, started = 0;
681 int dio_credits;
682
683 map.m_lblk = iblock;
684 map.m_len = bh->b_size >> inode->i_blkbits;
685
686 if (flags && !handle) {
687 /* Direct IO write... */
688 if (map.m_len > DIO_MAX_BLOCKS)
689 map.m_len = DIO_MAX_BLOCKS;
690 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
691 handle = ext4_journal_start(inode, dio_credits);
692 if (IS_ERR(handle)) {
693 ret = PTR_ERR(handle);
694 return ret;
695 }
696 started = 1;
697 }
698
699 ret = ext4_map_blocks(handle, inode, &map, flags);
700 if (ret > 0) {
701 map_bh(bh, inode->i_sb, map.m_pblk);
702 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
703 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
704 ret = 0;
705 }
706 if (started)
707 ext4_journal_stop(handle);
708 return ret;
709 }
710
711 int ext4_get_block(struct inode *inode, sector_t iblock,
712 struct buffer_head *bh, int create)
713 {
714 return _ext4_get_block(inode, iblock, bh,
715 create ? EXT4_GET_BLOCKS_CREATE : 0);
716 }
717
718 /*
719 * `handle' can be NULL if create is zero
720 */
721 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
722 ext4_lblk_t block, int create, int *errp)
723 {
724 struct ext4_map_blocks map;
725 struct buffer_head *bh;
726 int fatal = 0, err;
727
728 J_ASSERT(handle != NULL || create == 0);
729
730 map.m_lblk = block;
731 map.m_len = 1;
732 err = ext4_map_blocks(handle, inode, &map,
733 create ? EXT4_GET_BLOCKS_CREATE : 0);
734
735 /* ensure we send some value back into *errp */
736 *errp = 0;
737
738 if (err < 0)
739 *errp = err;
740 if (err <= 0)
741 return NULL;
742
743 bh = sb_getblk(inode->i_sb, map.m_pblk);
744 if (!bh) {
745 *errp = -EIO;
746 return NULL;
747 }
748 if (map.m_flags & EXT4_MAP_NEW) {
749 J_ASSERT(create != 0);
750 J_ASSERT(handle != NULL);
751
752 /*
753 * Now that we do not always journal data, we should
754 * keep in mind whether this should always journal the
755 * new buffer as metadata. For now, regular file
756 * writes use ext4_get_block instead, so it's not a
757 * problem.
758 */
759 lock_buffer(bh);
760 BUFFER_TRACE(bh, "call get_create_access");
761 fatal = ext4_journal_get_create_access(handle, bh);
762 if (!fatal && !buffer_uptodate(bh)) {
763 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
764 set_buffer_uptodate(bh);
765 }
766 unlock_buffer(bh);
767 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
768 err = ext4_handle_dirty_metadata(handle, inode, bh);
769 if (!fatal)
770 fatal = err;
771 } else {
772 BUFFER_TRACE(bh, "not a new buffer");
773 }
774 if (fatal) {
775 *errp = fatal;
776 brelse(bh);
777 bh = NULL;
778 }
779 return bh;
780 }
781
782 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
783 ext4_lblk_t block, int create, int *err)
784 {
785 struct buffer_head *bh;
786
787 bh = ext4_getblk(handle, inode, block, create, err);
788 if (!bh)
789 return bh;
790 if (buffer_uptodate(bh))
791 return bh;
792 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
793 wait_on_buffer(bh);
794 if (buffer_uptodate(bh))
795 return bh;
796 put_bh(bh);
797 *err = -EIO;
798 return NULL;
799 }
800
801 static int walk_page_buffers(handle_t *handle,
802 struct buffer_head *head,
803 unsigned from,
804 unsigned to,
805 int *partial,
806 int (*fn)(handle_t *handle,
807 struct buffer_head *bh))
808 {
809 struct buffer_head *bh;
810 unsigned block_start, block_end;
811 unsigned blocksize = head->b_size;
812 int err, ret = 0;
813 struct buffer_head *next;
814
815 for (bh = head, block_start = 0;
816 ret == 0 && (bh != head || !block_start);
817 block_start = block_end, bh = next) {
818 next = bh->b_this_page;
819 block_end = block_start + blocksize;
820 if (block_end <= from || block_start >= to) {
821 if (partial && !buffer_uptodate(bh))
822 *partial = 1;
823 continue;
824 }
825 err = (*fn)(handle, bh);
826 if (!ret)
827 ret = err;
828 }
829 return ret;
830 }
831
832 /*
833 * To preserve ordering, it is essential that the hole instantiation and
834 * the data write be encapsulated in a single transaction. We cannot
835 * close off a transaction and start a new one between the ext4_get_block()
836 * and the commit_write(). So doing the jbd2_journal_start at the start of
837 * prepare_write() is the right place.
838 *
839 * Also, this function can nest inside ext4_writepage() ->
840 * block_write_full_page(). In that case, we *know* that ext4_writepage()
841 * has generated enough buffer credits to do the whole page. So we won't
842 * block on the journal in that case, which is good, because the caller may
843 * be PF_MEMALLOC.
844 *
845 * By accident, ext4 can be reentered when a transaction is open via
846 * quota file writes. If we were to commit the transaction while thus
847 * reentered, there can be a deadlock - we would be holding a quota
848 * lock, and the commit would never complete if another thread had a
849 * transaction open and was blocking on the quota lock - a ranking
850 * violation.
851 *
852 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
853 * will _not_ run commit under these circumstances because handle->h_ref
854 * is elevated. We'll still have enough credits for the tiny quotafile
855 * write.
856 */
857 static int do_journal_get_write_access(handle_t *handle,
858 struct buffer_head *bh)
859 {
860 int dirty = buffer_dirty(bh);
861 int ret;
862
863 if (!buffer_mapped(bh) || buffer_freed(bh))
864 return 0;
865 /*
866 * __block_write_begin() could have dirtied some buffers. Clean
867 * the dirty bit as jbd2_journal_get_write_access() could complain
868 * otherwise about fs integrity issues. Setting of the dirty bit
869 * by __block_write_begin() isn't a real problem here as we clear
870 * the bit before releasing a page lock and thus writeback cannot
871 * ever write the buffer.
872 */
873 if (dirty)
874 clear_buffer_dirty(bh);
875 ret = ext4_journal_get_write_access(handle, bh);
876 if (!ret && dirty)
877 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
878 return ret;
879 }
880
881 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
882 struct buffer_head *bh_result, int create);
883 static int ext4_write_begin(struct file *file, struct address_space *mapping,
884 loff_t pos, unsigned len, unsigned flags,
885 struct page **pagep, void **fsdata)
886 {
887 struct inode *inode = mapping->host;
888 int ret, needed_blocks;
889 handle_t *handle;
890 int retries = 0;
891 struct page *page;
892 pgoff_t index;
893 unsigned from, to;
894
895 trace_ext4_write_begin(inode, pos, len, flags);
896 /*
897 * Reserve one block more for addition to orphan list in case
898 * we allocate blocks but write fails for some reason
899 */
900 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
901 index = pos >> PAGE_CACHE_SHIFT;
902 from = pos & (PAGE_CACHE_SIZE - 1);
903 to = from + len;
904
905 retry:
906 handle = ext4_journal_start(inode, needed_blocks);
907 if (IS_ERR(handle)) {
908 ret = PTR_ERR(handle);
909 goto out;
910 }
911
912 /* We cannot recurse into the filesystem as the transaction is already
913 * started */
914 flags |= AOP_FLAG_NOFS;
915
916 page = grab_cache_page_write_begin(mapping, index, flags);
917 if (!page) {
918 ext4_journal_stop(handle);
919 ret = -ENOMEM;
920 goto out;
921 }
922 *pagep = page;
923
924 if (ext4_should_dioread_nolock(inode))
925 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
926 else
927 ret = __block_write_begin(page, pos, len, ext4_get_block);
928
929 if (!ret && ext4_should_journal_data(inode)) {
930 ret = walk_page_buffers(handle, page_buffers(page),
931 from, to, NULL, do_journal_get_write_access);
932 }
933
934 if (ret) {
935 unlock_page(page);
936 page_cache_release(page);
937 /*
938 * __block_write_begin may have instantiated a few blocks
939 * outside i_size. Trim these off again. Don't need
940 * i_size_read because we hold i_mutex.
941 *
942 * Add inode to orphan list in case we crash before
943 * truncate finishes
944 */
945 if (pos + len > inode->i_size && ext4_can_truncate(inode))
946 ext4_orphan_add(handle, inode);
947
948 ext4_journal_stop(handle);
949 if (pos + len > inode->i_size) {
950 ext4_truncate_failed_write(inode);
951 /*
952 * If truncate failed early the inode might
953 * still be on the orphan list; we need to
954 * make sure the inode is removed from the
955 * orphan list in that case.
956 */
957 if (inode->i_nlink)
958 ext4_orphan_del(NULL, inode);
959 }
960 }
961
962 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
963 goto retry;
964 out:
965 return ret;
966 }
967
968 /* For write_end() in data=journal mode */
969 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
970 {
971 if (!buffer_mapped(bh) || buffer_freed(bh))
972 return 0;
973 set_buffer_uptodate(bh);
974 return ext4_handle_dirty_metadata(handle, NULL, bh);
975 }
976
977 static int ext4_generic_write_end(struct file *file,
978 struct address_space *mapping,
979 loff_t pos, unsigned len, unsigned copied,
980 struct page *page, void *fsdata)
981 {
982 int i_size_changed = 0;
983 struct inode *inode = mapping->host;
984 handle_t *handle = ext4_journal_current_handle();
985
986 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
987
988 /*
989 * No need to use i_size_read() here, the i_size
990 * cannot change under us because we hold i_mutex.
991 *
992 * But it's important to update i_size while still holding page lock:
993 * page writeout could otherwise come in and zero beyond i_size.
994 */
995 if (pos + copied > inode->i_size) {
996 i_size_write(inode, pos + copied);
997 i_size_changed = 1;
998 }
999
1000 if (pos + copied > EXT4_I(inode)->i_disksize) {
1001 /* We need to mark inode dirty even if
1002 * new_i_size is less that inode->i_size
1003 * bu greater than i_disksize.(hint delalloc)
1004 */
1005 ext4_update_i_disksize(inode, (pos + copied));
1006 i_size_changed = 1;
1007 }
1008 unlock_page(page);
1009 page_cache_release(page);
1010
1011 /*
1012 * Don't mark the inode dirty under page lock. First, it unnecessarily
1013 * makes the holding time of page lock longer. Second, it forces lock
1014 * ordering of page lock and transaction start for journaling
1015 * filesystems.
1016 */
1017 if (i_size_changed)
1018 ext4_mark_inode_dirty(handle, inode);
1019
1020 return copied;
1021 }
1022
1023 /*
1024 * We need to pick up the new inode size which generic_commit_write gave us
1025 * `file' can be NULL - eg, when called from page_symlink().
1026 *
1027 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1028 * buffers are managed internally.
1029 */
1030 static int ext4_ordered_write_end(struct file *file,
1031 struct address_space *mapping,
1032 loff_t pos, unsigned len, unsigned copied,
1033 struct page *page, void *fsdata)
1034 {
1035 handle_t *handle = ext4_journal_current_handle();
1036 struct inode *inode = mapping->host;
1037 int ret = 0, ret2;
1038
1039 trace_ext4_ordered_write_end(inode, pos, len, copied);
1040 ret = ext4_jbd2_file_inode(handle, inode);
1041
1042 if (ret == 0) {
1043 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1044 page, fsdata);
1045 copied = ret2;
1046 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1047 /* if we have allocated more blocks and copied
1048 * less. We will have blocks allocated outside
1049 * inode->i_size. So truncate them
1050 */
1051 ext4_orphan_add(handle, inode);
1052 if (ret2 < 0)
1053 ret = ret2;
1054 } else {
1055 unlock_page(page);
1056 page_cache_release(page);
1057 }
1058
1059 ret2 = ext4_journal_stop(handle);
1060 if (!ret)
1061 ret = ret2;
1062
1063 if (pos + len > inode->i_size) {
1064 ext4_truncate_failed_write(inode);
1065 /*
1066 * If truncate failed early the inode might still be
1067 * on the orphan list; we need to make sure the inode
1068 * is removed from the orphan list in that case.
1069 */
1070 if (inode->i_nlink)
1071 ext4_orphan_del(NULL, inode);
1072 }
1073
1074
1075 return ret ? ret : copied;
1076 }
1077
1078 static int ext4_writeback_write_end(struct file *file,
1079 struct address_space *mapping,
1080 loff_t pos, unsigned len, unsigned copied,
1081 struct page *page, void *fsdata)
1082 {
1083 handle_t *handle = ext4_journal_current_handle();
1084 struct inode *inode = mapping->host;
1085 int ret = 0, ret2;
1086
1087 trace_ext4_writeback_write_end(inode, pos, len, copied);
1088 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1089 page, fsdata);
1090 copied = ret2;
1091 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1092 /* if we have allocated more blocks and copied
1093 * less. We will have blocks allocated outside
1094 * inode->i_size. So truncate them
1095 */
1096 ext4_orphan_add(handle, inode);
1097
1098 if (ret2 < 0)
1099 ret = ret2;
1100
1101 ret2 = ext4_journal_stop(handle);
1102 if (!ret)
1103 ret = ret2;
1104
1105 if (pos + len > inode->i_size) {
1106 ext4_truncate_failed_write(inode);
1107 /*
1108 * If truncate failed early the inode might still be
1109 * on the orphan list; we need to make sure the inode
1110 * is removed from the orphan list in that case.
1111 */
1112 if (inode->i_nlink)
1113 ext4_orphan_del(NULL, inode);
1114 }
1115
1116 return ret ? ret : copied;
1117 }
1118
1119 static int ext4_journalled_write_end(struct file *file,
1120 struct address_space *mapping,
1121 loff_t pos, unsigned len, unsigned copied,
1122 struct page *page, void *fsdata)
1123 {
1124 handle_t *handle = ext4_journal_current_handle();
1125 struct inode *inode = mapping->host;
1126 int ret = 0, ret2;
1127 int partial = 0;
1128 unsigned from, to;
1129 loff_t new_i_size;
1130
1131 trace_ext4_journalled_write_end(inode, pos, len, copied);
1132 from = pos & (PAGE_CACHE_SIZE - 1);
1133 to = from + len;
1134
1135 BUG_ON(!ext4_handle_valid(handle));
1136
1137 if (copied < len) {
1138 if (!PageUptodate(page))
1139 copied = 0;
1140 page_zero_new_buffers(page, from+copied, to);
1141 }
1142
1143 ret = walk_page_buffers(handle, page_buffers(page), from,
1144 to, &partial, write_end_fn);
1145 if (!partial)
1146 SetPageUptodate(page);
1147 new_i_size = pos + copied;
1148 if (new_i_size > inode->i_size)
1149 i_size_write(inode, pos+copied);
1150 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1151 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1152 if (new_i_size > EXT4_I(inode)->i_disksize) {
1153 ext4_update_i_disksize(inode, new_i_size);
1154 ret2 = ext4_mark_inode_dirty(handle, inode);
1155 if (!ret)
1156 ret = ret2;
1157 }
1158
1159 unlock_page(page);
1160 page_cache_release(page);
1161 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1162 /* if we have allocated more blocks and copied
1163 * less. We will have blocks allocated outside
1164 * inode->i_size. So truncate them
1165 */
1166 ext4_orphan_add(handle, inode);
1167
1168 ret2 = ext4_journal_stop(handle);
1169 if (!ret)
1170 ret = ret2;
1171 if (pos + len > inode->i_size) {
1172 ext4_truncate_failed_write(inode);
1173 /*
1174 * If truncate failed early the inode might still be
1175 * on the orphan list; we need to make sure the inode
1176 * is removed from the orphan list in that case.
1177 */
1178 if (inode->i_nlink)
1179 ext4_orphan_del(NULL, inode);
1180 }
1181
1182 return ret ? ret : copied;
1183 }
1184
1185 /*
1186 * Reserve a single cluster located at lblock
1187 */
1188 static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1189 {
1190 int retries = 0;
1191 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1192 struct ext4_inode_info *ei = EXT4_I(inode);
1193 unsigned int md_needed;
1194 int ret;
1195 ext4_lblk_t save_last_lblock;
1196 int save_len;
1197
1198 /*
1199 * We will charge metadata quota at writeout time; this saves
1200 * us from metadata over-estimation, though we may go over by
1201 * a small amount in the end. Here we just reserve for data.
1202 */
1203 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1204 if (ret)
1205 return ret;
1206
1207 /*
1208 * recalculate the amount of metadata blocks to reserve
1209 * in order to allocate nrblocks
1210 * worse case is one extent per block
1211 */
1212 repeat:
1213 spin_lock(&ei->i_block_reservation_lock);
1214 /*
1215 * ext4_calc_metadata_amount() has side effects, which we have
1216 * to be prepared undo if we fail to claim space.
1217 */
1218 save_len = ei->i_da_metadata_calc_len;
1219 save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1220 md_needed = EXT4_NUM_B2C(sbi,
1221 ext4_calc_metadata_amount(inode, lblock));
1222 trace_ext4_da_reserve_space(inode, md_needed);
1223
1224 /*
1225 * We do still charge estimated metadata to the sb though;
1226 * we cannot afford to run out of free blocks.
1227 */
1228 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1229 ei->i_da_metadata_calc_len = save_len;
1230 ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1231 spin_unlock(&ei->i_block_reservation_lock);
1232 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1233 yield();
1234 goto repeat;
1235 }
1236 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1237 return -ENOSPC;
1238 }
1239 ei->i_reserved_data_blocks++;
1240 ei->i_reserved_meta_blocks += md_needed;
1241 spin_unlock(&ei->i_block_reservation_lock);
1242
1243 return 0; /* success */
1244 }
1245
1246 static void ext4_da_release_space(struct inode *inode, int to_free)
1247 {
1248 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1249 struct ext4_inode_info *ei = EXT4_I(inode);
1250
1251 if (!to_free)
1252 return; /* Nothing to release, exit */
1253
1254 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1255
1256 trace_ext4_da_release_space(inode, to_free);
1257 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1258 /*
1259 * if there aren't enough reserved blocks, then the
1260 * counter is messed up somewhere. Since this
1261 * function is called from invalidate page, it's
1262 * harmless to return without any action.
1263 */
1264 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1265 "ino %lu, to_free %d with only %d reserved "
1266 "data blocks", inode->i_ino, to_free,
1267 ei->i_reserved_data_blocks);
1268 WARN_ON(1);
1269 to_free = ei->i_reserved_data_blocks;
1270 }
1271 ei->i_reserved_data_blocks -= to_free;
1272
1273 if (ei->i_reserved_data_blocks == 0) {
1274 /*
1275 * We can release all of the reserved metadata blocks
1276 * only when we have written all of the delayed
1277 * allocation blocks.
1278 * Note that in case of bigalloc, i_reserved_meta_blocks,
1279 * i_reserved_data_blocks, etc. refer to number of clusters.
1280 */
1281 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1282 ei->i_reserved_meta_blocks);
1283 ei->i_reserved_meta_blocks = 0;
1284 ei->i_da_metadata_calc_len = 0;
1285 }
1286
1287 /* update fs dirty data blocks counter */
1288 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1289
1290 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1291
1292 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1293 }
1294
1295 static void ext4_da_page_release_reservation(struct page *page,
1296 unsigned long offset)
1297 {
1298 int to_release = 0;
1299 struct buffer_head *head, *bh;
1300 unsigned int curr_off = 0;
1301 struct inode *inode = page->mapping->host;
1302 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1303 int num_clusters;
1304
1305 head = page_buffers(page);
1306 bh = head;
1307 do {
1308 unsigned int next_off = curr_off + bh->b_size;
1309
1310 if ((offset <= curr_off) && (buffer_delay(bh))) {
1311 to_release++;
1312 clear_buffer_delay(bh);
1313 clear_buffer_da_mapped(bh);
1314 }
1315 curr_off = next_off;
1316 } while ((bh = bh->b_this_page) != head);
1317
1318 /* If we have released all the blocks belonging to a cluster, then we
1319 * need to release the reserved space for that cluster. */
1320 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1321 while (num_clusters > 0) {
1322 ext4_fsblk_t lblk;
1323 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1324 ((num_clusters - 1) << sbi->s_cluster_bits);
1325 if (sbi->s_cluster_ratio == 1 ||
1326 !ext4_find_delalloc_cluster(inode, lblk, 1))
1327 ext4_da_release_space(inode, 1);
1328
1329 num_clusters--;
1330 }
1331 }
1332
1333 /*
1334 * Delayed allocation stuff
1335 */
1336
1337 /*
1338 * mpage_da_submit_io - walks through extent of pages and try to write
1339 * them with writepage() call back
1340 *
1341 * @mpd->inode: inode
1342 * @mpd->first_page: first page of the extent
1343 * @mpd->next_page: page after the last page of the extent
1344 *
1345 * By the time mpage_da_submit_io() is called we expect all blocks
1346 * to be allocated. this may be wrong if allocation failed.
1347 *
1348 * As pages are already locked by write_cache_pages(), we can't use it
1349 */
1350 static int mpage_da_submit_io(struct mpage_da_data *mpd,
1351 struct ext4_map_blocks *map)
1352 {
1353 struct pagevec pvec;
1354 unsigned long index, end;
1355 int ret = 0, err, nr_pages, i;
1356 struct inode *inode = mpd->inode;
1357 struct address_space *mapping = inode->i_mapping;
1358 loff_t size = i_size_read(inode);
1359 unsigned int len, block_start;
1360 struct buffer_head *bh, *page_bufs = NULL;
1361 int journal_data = ext4_should_journal_data(inode);
1362 sector_t pblock = 0, cur_logical = 0;
1363 struct ext4_io_submit io_submit;
1364
1365 BUG_ON(mpd->next_page <= mpd->first_page);
1366 memset(&io_submit, 0, sizeof(io_submit));
1367 /*
1368 * We need to start from the first_page to the next_page - 1
1369 * to make sure we also write the mapped dirty buffer_heads.
1370 * If we look at mpd->b_blocknr we would only be looking
1371 * at the currently mapped buffer_heads.
1372 */
1373 index = mpd->first_page;
1374 end = mpd->next_page - 1;
1375
1376 pagevec_init(&pvec, 0);
1377 while (index <= end) {
1378 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1379 if (nr_pages == 0)
1380 break;
1381 for (i = 0; i < nr_pages; i++) {
1382 int commit_write = 0, skip_page = 0;
1383 struct page *page = pvec.pages[i];
1384
1385 index = page->index;
1386 if (index > end)
1387 break;
1388
1389 if (index == size >> PAGE_CACHE_SHIFT)
1390 len = size & ~PAGE_CACHE_MASK;
1391 else
1392 len = PAGE_CACHE_SIZE;
1393 if (map) {
1394 cur_logical = index << (PAGE_CACHE_SHIFT -
1395 inode->i_blkbits);
1396 pblock = map->m_pblk + (cur_logical -
1397 map->m_lblk);
1398 }
1399 index++;
1400
1401 BUG_ON(!PageLocked(page));
1402 BUG_ON(PageWriteback(page));
1403
1404 /*
1405 * If the page does not have buffers (for
1406 * whatever reason), try to create them using
1407 * __block_write_begin. If this fails,
1408 * skip the page and move on.
1409 */
1410 if (!page_has_buffers(page)) {
1411 if (__block_write_begin(page, 0, len,
1412 noalloc_get_block_write)) {
1413 skip_page:
1414 unlock_page(page);
1415 continue;
1416 }
1417 commit_write = 1;
1418 }
1419
1420 bh = page_bufs = page_buffers(page);
1421 block_start = 0;
1422 do {
1423 if (!bh)
1424 goto skip_page;
1425 if (map && (cur_logical >= map->m_lblk) &&
1426 (cur_logical <= (map->m_lblk +
1427 (map->m_len - 1)))) {
1428 if (buffer_delay(bh)) {
1429 clear_buffer_delay(bh);
1430 bh->b_blocknr = pblock;
1431 }
1432 if (buffer_da_mapped(bh))
1433 clear_buffer_da_mapped(bh);
1434 if (buffer_unwritten(bh) ||
1435 buffer_mapped(bh))
1436 BUG_ON(bh->b_blocknr != pblock);
1437 if (map->m_flags & EXT4_MAP_UNINIT)
1438 set_buffer_uninit(bh);
1439 clear_buffer_unwritten(bh);
1440 }
1441
1442 /*
1443 * skip page if block allocation undone and
1444 * block is dirty
1445 */
1446 if (ext4_bh_delay_or_unwritten(NULL, bh))
1447 skip_page = 1;
1448 bh = bh->b_this_page;
1449 block_start += bh->b_size;
1450 cur_logical++;
1451 pblock++;
1452 } while (bh != page_bufs);
1453
1454 if (skip_page)
1455 goto skip_page;
1456
1457 if (commit_write)
1458 /* mark the buffer_heads as dirty & uptodate */
1459 block_commit_write(page, 0, len);
1460
1461 clear_page_dirty_for_io(page);
1462 /*
1463 * Delalloc doesn't support data journalling,
1464 * but eventually maybe we'll lift this
1465 * restriction.
1466 */
1467 if (unlikely(journal_data && PageChecked(page)))
1468 err = __ext4_journalled_writepage(page, len);
1469 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
1470 err = ext4_bio_write_page(&io_submit, page,
1471 len, mpd->wbc);
1472 else if (buffer_uninit(page_bufs)) {
1473 ext4_set_bh_endio(page_bufs, inode);
1474 err = block_write_full_page_endio(page,
1475 noalloc_get_block_write,
1476 mpd->wbc, ext4_end_io_buffer_write);
1477 } else
1478 err = block_write_full_page(page,
1479 noalloc_get_block_write, mpd->wbc);
1480
1481 if (!err)
1482 mpd->pages_written++;
1483 /*
1484 * In error case, we have to continue because
1485 * remaining pages are still locked
1486 */
1487 if (ret == 0)
1488 ret = err;
1489 }
1490 pagevec_release(&pvec);
1491 }
1492 ext4_io_submit(&io_submit);
1493 return ret;
1494 }
1495
1496 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
1497 {
1498 int nr_pages, i;
1499 pgoff_t index, end;
1500 struct pagevec pvec;
1501 struct inode *inode = mpd->inode;
1502 struct address_space *mapping = inode->i_mapping;
1503
1504 index = mpd->first_page;
1505 end = mpd->next_page - 1;
1506 while (index <= end) {
1507 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1508 if (nr_pages == 0)
1509 break;
1510 for (i = 0; i < nr_pages; i++) {
1511 struct page *page = pvec.pages[i];
1512 if (page->index > end)
1513 break;
1514 BUG_ON(!PageLocked(page));
1515 BUG_ON(PageWriteback(page));
1516 block_invalidatepage(page, 0);
1517 ClearPageUptodate(page);
1518 unlock_page(page);
1519 }
1520 index = pvec.pages[nr_pages - 1]->index + 1;
1521 pagevec_release(&pvec);
1522 }
1523 return;
1524 }
1525
1526 static void ext4_print_free_blocks(struct inode *inode)
1527 {
1528 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1529 struct super_block *sb = inode->i_sb;
1530
1531 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1532 EXT4_C2B(EXT4_SB(inode->i_sb),
1533 ext4_count_free_clusters(inode->i_sb)));
1534 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1535 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1536 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1537 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1538 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1539 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1540 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1541 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1542 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1543 EXT4_I(inode)->i_reserved_data_blocks);
1544 ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1545 EXT4_I(inode)->i_reserved_meta_blocks);
1546 return;
1547 }
1548
1549 /*
1550 * mpage_da_map_and_submit - go through given space, map them
1551 * if necessary, and then submit them for I/O
1552 *
1553 * @mpd - bh describing space
1554 *
1555 * The function skips space we know is already mapped to disk blocks.
1556 *
1557 */
1558 static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
1559 {
1560 int err, blks, get_blocks_flags;
1561 struct ext4_map_blocks map, *mapp = NULL;
1562 sector_t next = mpd->b_blocknr;
1563 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1564 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1565 handle_t *handle = NULL;
1566
1567 /*
1568 * If the blocks are mapped already, or we couldn't accumulate
1569 * any blocks, then proceed immediately to the submission stage.
1570 */
1571 if ((mpd->b_size == 0) ||
1572 ((mpd->b_state & (1 << BH_Mapped)) &&
1573 !(mpd->b_state & (1 << BH_Delay)) &&
1574 !(mpd->b_state & (1 << BH_Unwritten))))
1575 goto submit_io;
1576
1577 handle = ext4_journal_current_handle();
1578 BUG_ON(!handle);
1579
1580 /*
1581 * Call ext4_map_blocks() to allocate any delayed allocation
1582 * blocks, or to convert an uninitialized extent to be
1583 * initialized (in the case where we have written into
1584 * one or more preallocated blocks).
1585 *
1586 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1587 * indicate that we are on the delayed allocation path. This
1588 * affects functions in many different parts of the allocation
1589 * call path. This flag exists primarily because we don't
1590 * want to change *many* call functions, so ext4_map_blocks()
1591 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
1592 * inode's allocation semaphore is taken.
1593 *
1594 * If the blocks in questions were delalloc blocks, set
1595 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1596 * variables are updated after the blocks have been allocated.
1597 */
1598 map.m_lblk = next;
1599 map.m_len = max_blocks;
1600 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
1601 if (ext4_should_dioread_nolock(mpd->inode))
1602 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
1603 if (mpd->b_state & (1 << BH_Delay))
1604 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1605
1606 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
1607 if (blks < 0) {
1608 struct super_block *sb = mpd->inode->i_sb;
1609
1610 err = blks;
1611 /*
1612 * If get block returns EAGAIN or ENOSPC and there
1613 * appears to be free blocks we will just let
1614 * mpage_da_submit_io() unlock all of the pages.
1615 */
1616 if (err == -EAGAIN)
1617 goto submit_io;
1618
1619 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
1620 mpd->retval = err;
1621 goto submit_io;
1622 }
1623
1624 /*
1625 * get block failure will cause us to loop in
1626 * writepages, because a_ops->writepage won't be able
1627 * to make progress. The page will be redirtied by
1628 * writepage and writepages will again try to write
1629 * the same.
1630 */
1631 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1632 ext4_msg(sb, KERN_CRIT,
1633 "delayed block allocation failed for inode %lu "
1634 "at logical offset %llu with max blocks %zd "
1635 "with error %d", mpd->inode->i_ino,
1636 (unsigned long long) next,
1637 mpd->b_size >> mpd->inode->i_blkbits, err);
1638 ext4_msg(sb, KERN_CRIT,
1639 "This should not happen!! Data will be lost\n");
1640 if (err == -ENOSPC)
1641 ext4_print_free_blocks(mpd->inode);
1642 }
1643 /* invalidate all the pages */
1644 ext4_da_block_invalidatepages(mpd);
1645
1646 /* Mark this page range as having been completed */
1647 mpd->io_done = 1;
1648 return;
1649 }
1650 BUG_ON(blks == 0);
1651
1652 mapp = &map;
1653 if (map.m_flags & EXT4_MAP_NEW) {
1654 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1655 int i;
1656
1657 for (i = 0; i < map.m_len; i++)
1658 unmap_underlying_metadata(bdev, map.m_pblk + i);
1659
1660 if (ext4_should_order_data(mpd->inode)) {
1661 err = ext4_jbd2_file_inode(handle, mpd->inode);
1662 if (err) {
1663 /* Only if the journal is aborted */
1664 mpd->retval = err;
1665 goto submit_io;
1666 }
1667 }
1668 }
1669
1670 /*
1671 * Update on-disk size along with block allocation.
1672 */
1673 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1674 if (disksize > i_size_read(mpd->inode))
1675 disksize = i_size_read(mpd->inode);
1676 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1677 ext4_update_i_disksize(mpd->inode, disksize);
1678 err = ext4_mark_inode_dirty(handle, mpd->inode);
1679 if (err)
1680 ext4_error(mpd->inode->i_sb,
1681 "Failed to mark inode %lu dirty",
1682 mpd->inode->i_ino);
1683 }
1684
1685 submit_io:
1686 mpage_da_submit_io(mpd, mapp);
1687 mpd->io_done = 1;
1688 }
1689
1690 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1691 (1 << BH_Delay) | (1 << BH_Unwritten))
1692
1693 /*
1694 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1695 *
1696 * @mpd->lbh - extent of blocks
1697 * @logical - logical number of the block in the file
1698 * @bh - bh of the block (used to access block's state)
1699 *
1700 * the function is used to collect contig. blocks in same state
1701 */
1702 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
1703 sector_t logical, size_t b_size,
1704 unsigned long b_state)
1705 {
1706 sector_t next;
1707 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
1708
1709 /*
1710 * XXX Don't go larger than mballoc is willing to allocate
1711 * This is a stopgap solution. We eventually need to fold
1712 * mpage_da_submit_io() into this function and then call
1713 * ext4_map_blocks() multiple times in a loop
1714 */
1715 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1716 goto flush_it;
1717
1718 /* check if thereserved journal credits might overflow */
1719 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
1720 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1721 /*
1722 * With non-extent format we are limited by the journal
1723 * credit available. Total credit needed to insert
1724 * nrblocks contiguous blocks is dependent on the
1725 * nrblocks. So limit nrblocks.
1726 */
1727 goto flush_it;
1728 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1729 EXT4_MAX_TRANS_DATA) {
1730 /*
1731 * Adding the new buffer_head would make it cross the
1732 * allowed limit for which we have journal credit
1733 * reserved. So limit the new bh->b_size
1734 */
1735 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1736 mpd->inode->i_blkbits;
1737 /* we will do mpage_da_submit_io in the next loop */
1738 }
1739 }
1740 /*
1741 * First block in the extent
1742 */
1743 if (mpd->b_size == 0) {
1744 mpd->b_blocknr = logical;
1745 mpd->b_size = b_size;
1746 mpd->b_state = b_state & BH_FLAGS;
1747 return;
1748 }
1749
1750 next = mpd->b_blocknr + nrblocks;
1751 /*
1752 * Can we merge the block to our big extent?
1753 */
1754 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1755 mpd->b_size += b_size;
1756 return;
1757 }
1758
1759 flush_it:
1760 /*
1761 * We couldn't merge the block to our extent, so we
1762 * need to flush current extent and start new one
1763 */
1764 mpage_da_map_and_submit(mpd);
1765 return;
1766 }
1767
1768 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1769 {
1770 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1771 }
1772
1773 /*
1774 * This function is grabs code from the very beginning of
1775 * ext4_map_blocks, but assumes that the caller is from delayed write
1776 * time. This function looks up the requested blocks and sets the
1777 * buffer delay bit under the protection of i_data_sem.
1778 */
1779 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1780 struct ext4_map_blocks *map,
1781 struct buffer_head *bh)
1782 {
1783 int retval;
1784 sector_t invalid_block = ~((sector_t) 0xffff);
1785
1786 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1787 invalid_block = ~0;
1788
1789 map->m_flags = 0;
1790 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1791 "logical block %lu\n", inode->i_ino, map->m_len,
1792 (unsigned long) map->m_lblk);
1793 /*
1794 * Try to see if we can get the block without requesting a new
1795 * file system block.
1796 */
1797 down_read((&EXT4_I(inode)->i_data_sem));
1798 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1799 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1800 else
1801 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1802
1803 if (retval == 0) {
1804 /*
1805 * XXX: __block_prepare_write() unmaps passed block,
1806 * is it OK?
1807 */
1808 /* If the block was allocated from previously allocated cluster,
1809 * then we dont need to reserve it again. */
1810 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1811 retval = ext4_da_reserve_space(inode, iblock);
1812 if (retval)
1813 /* not enough space to reserve */
1814 goto out_unlock;
1815 }
1816
1817 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1818 * and it should not appear on the bh->b_state.
1819 */
1820 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1821
1822 map_bh(bh, inode->i_sb, invalid_block);
1823 set_buffer_new(bh);
1824 set_buffer_delay(bh);
1825 }
1826
1827 out_unlock:
1828 up_read((&EXT4_I(inode)->i_data_sem));
1829
1830 return retval;
1831 }
1832
1833 /*
1834 * This is a special get_blocks_t callback which is used by
1835 * ext4_da_write_begin(). It will either return mapped block or
1836 * reserve space for a single block.
1837 *
1838 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1839 * We also have b_blocknr = -1 and b_bdev initialized properly
1840 *
1841 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1842 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1843 * initialized properly.
1844 */
1845 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1846 struct buffer_head *bh, int create)
1847 {
1848 struct ext4_map_blocks map;
1849 int ret = 0;
1850
1851 BUG_ON(create == 0);
1852 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1853
1854 map.m_lblk = iblock;
1855 map.m_len = 1;
1856
1857 /*
1858 * first, we need to know whether the block is allocated already
1859 * preallocated blocks are unmapped but should treated
1860 * the same as allocated blocks.
1861 */
1862 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1863 if (ret <= 0)
1864 return ret;
1865
1866 map_bh(bh, inode->i_sb, map.m_pblk);
1867 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1868
1869 if (buffer_unwritten(bh)) {
1870 /* A delayed write to unwritten bh should be marked
1871 * new and mapped. Mapped ensures that we don't do
1872 * get_block multiple times when we write to the same
1873 * offset and new ensures that we do proper zero out
1874 * for partial write.
1875 */
1876 set_buffer_new(bh);
1877 set_buffer_mapped(bh);
1878 }
1879 return 0;
1880 }
1881
1882 /*
1883 * This function is used as a standard get_block_t calback function
1884 * when there is no desire to allocate any blocks. It is used as a
1885 * callback function for block_write_begin() and block_write_full_page().
1886 * These functions should only try to map a single block at a time.
1887 *
1888 * Since this function doesn't do block allocations even if the caller
1889 * requests it by passing in create=1, it is critically important that
1890 * any caller checks to make sure that any buffer heads are returned
1891 * by this function are either all already mapped or marked for
1892 * delayed allocation before calling block_write_full_page(). Otherwise,
1893 * b_blocknr could be left unitialized, and the page write functions will
1894 * be taken by surprise.
1895 */
1896 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
1897 struct buffer_head *bh_result, int create)
1898 {
1899 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
1900 return _ext4_get_block(inode, iblock, bh_result, 0);
1901 }
1902
1903 static int bget_one(handle_t *handle, struct buffer_head *bh)
1904 {
1905 get_bh(bh);
1906 return 0;
1907 }
1908
1909 static int bput_one(handle_t *handle, struct buffer_head *bh)
1910 {
1911 put_bh(bh);
1912 return 0;
1913 }
1914
1915 static int __ext4_journalled_writepage(struct page *page,
1916 unsigned int len)
1917 {
1918 struct address_space *mapping = page->mapping;
1919 struct inode *inode = mapping->host;
1920 struct buffer_head *page_bufs;
1921 handle_t *handle = NULL;
1922 int ret = 0;
1923 int err;
1924
1925 ClearPageChecked(page);
1926 page_bufs = page_buffers(page);
1927 BUG_ON(!page_bufs);
1928 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1929 /* As soon as we unlock the page, it can go away, but we have
1930 * references to buffers so we are safe */
1931 unlock_page(page);
1932
1933 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1934 if (IS_ERR(handle)) {
1935 ret = PTR_ERR(handle);
1936 goto out;
1937 }
1938
1939 BUG_ON(!ext4_handle_valid(handle));
1940
1941 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1942 do_journal_get_write_access);
1943
1944 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1945 write_end_fn);
1946 if (ret == 0)
1947 ret = err;
1948 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1949 err = ext4_journal_stop(handle);
1950 if (!ret)
1951 ret = err;
1952
1953 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
1954 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1955 out:
1956 return ret;
1957 }
1958
1959 /*
1960 * Note that we don't need to start a transaction unless we're journaling data
1961 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1962 * need to file the inode to the transaction's list in ordered mode because if
1963 * we are writing back data added by write(), the inode is already there and if
1964 * we are writing back data modified via mmap(), no one guarantees in which
1965 * transaction the data will hit the disk. In case we are journaling data, we
1966 * cannot start transaction directly because transaction start ranks above page
1967 * lock so we have to do some magic.
1968 *
1969 * This function can get called via...
1970 * - ext4_da_writepages after taking page lock (have journal handle)
1971 * - journal_submit_inode_data_buffers (no journal handle)
1972 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1973 * - grab_page_cache when doing write_begin (have journal handle)
1974 *
1975 * We don't do any block allocation in this function. If we have page with
1976 * multiple blocks we need to write those buffer_heads that are mapped. This
1977 * is important for mmaped based write. So if we do with blocksize 1K
1978 * truncate(f, 1024);
1979 * a = mmap(f, 0, 4096);
1980 * a[0] = 'a';
1981 * truncate(f, 4096);
1982 * we have in the page first buffer_head mapped via page_mkwrite call back
1983 * but other buffer_heads would be unmapped but dirty (dirty done via the
1984 * do_wp_page). So writepage should write the first block. If we modify
1985 * the mmap area beyond 1024 we will again get a page_fault and the
1986 * page_mkwrite callback will do the block allocation and mark the
1987 * buffer_heads mapped.
1988 *
1989 * We redirty the page if we have any buffer_heads that is either delay or
1990 * unwritten in the page.
1991 *
1992 * We can get recursively called as show below.
1993 *
1994 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1995 * ext4_writepage()
1996 *
1997 * But since we don't do any block allocation we should not deadlock.
1998 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1999 */
2000 static int ext4_writepage(struct page *page,
2001 struct writeback_control *wbc)
2002 {
2003 int ret = 0, commit_write = 0;
2004 loff_t size;
2005 unsigned int len;
2006 struct buffer_head *page_bufs = NULL;
2007 struct inode *inode = page->mapping->host;
2008
2009 trace_ext4_writepage(page);
2010 size = i_size_read(inode);
2011 if (page->index == size >> PAGE_CACHE_SHIFT)
2012 len = size & ~PAGE_CACHE_MASK;
2013 else
2014 len = PAGE_CACHE_SIZE;
2015
2016 /*
2017 * If the page does not have buffers (for whatever reason),
2018 * try to create them using __block_write_begin. If this
2019 * fails, redirty the page and move on.
2020 */
2021 if (!page_has_buffers(page)) {
2022 if (__block_write_begin(page, 0, len,
2023 noalloc_get_block_write)) {
2024 redirty_page:
2025 redirty_page_for_writepage(wbc, page);
2026 unlock_page(page);
2027 return 0;
2028 }
2029 commit_write = 1;
2030 }
2031 page_bufs = page_buffers(page);
2032 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2033 ext4_bh_delay_or_unwritten)) {
2034 /*
2035 * We don't want to do block allocation, so redirty
2036 * the page and return. We may reach here when we do
2037 * a journal commit via journal_submit_inode_data_buffers.
2038 * We can also reach here via shrink_page_list but it
2039 * should never be for direct reclaim so warn if that
2040 * happens
2041 */
2042 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
2043 PF_MEMALLOC);
2044 goto redirty_page;
2045 }
2046 if (commit_write)
2047 /* now mark the buffer_heads as dirty and uptodate */
2048 block_commit_write(page, 0, len);
2049
2050 if (PageChecked(page) && ext4_should_journal_data(inode))
2051 /*
2052 * It's mmapped pagecache. Add buffers and journal it. There
2053 * doesn't seem much point in redirtying the page here.
2054 */
2055 return __ext4_journalled_writepage(page, len);
2056
2057 if (buffer_uninit(page_bufs)) {
2058 ext4_set_bh_endio(page_bufs, inode);
2059 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2060 wbc, ext4_end_io_buffer_write);
2061 } else
2062 ret = block_write_full_page(page, noalloc_get_block_write,
2063 wbc);
2064
2065 return ret;
2066 }
2067
2068 /*
2069 * This is called via ext4_da_writepages() to
2070 * calculate the total number of credits to reserve to fit
2071 * a single extent allocation into a single transaction,
2072 * ext4_da_writpeages() will loop calling this before
2073 * the block allocation.
2074 */
2075
2076 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2077 {
2078 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2079
2080 /*
2081 * With non-extent format the journal credit needed to
2082 * insert nrblocks contiguous block is dependent on
2083 * number of contiguous block. So we will limit
2084 * number of contiguous block to a sane value
2085 */
2086 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2087 (max_blocks > EXT4_MAX_TRANS_DATA))
2088 max_blocks = EXT4_MAX_TRANS_DATA;
2089
2090 return ext4_chunk_trans_blocks(inode, max_blocks);
2091 }
2092
2093 /*
2094 * write_cache_pages_da - walk the list of dirty pages of the given
2095 * address space and accumulate pages that need writing, and call
2096 * mpage_da_map_and_submit to map a single contiguous memory region
2097 * and then write them.
2098 */
2099 static int write_cache_pages_da(struct address_space *mapping,
2100 struct writeback_control *wbc,
2101 struct mpage_da_data *mpd,
2102 pgoff_t *done_index)
2103 {
2104 struct buffer_head *bh, *head;
2105 struct inode *inode = mapping->host;
2106 struct pagevec pvec;
2107 unsigned int nr_pages;
2108 sector_t logical;
2109 pgoff_t index, end;
2110 long nr_to_write = wbc->nr_to_write;
2111 int i, tag, ret = 0;
2112
2113 memset(mpd, 0, sizeof(struct mpage_da_data));
2114 mpd->wbc = wbc;
2115 mpd->inode = inode;
2116 pagevec_init(&pvec, 0);
2117 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2118 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2119
2120 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2121 tag = PAGECACHE_TAG_TOWRITE;
2122 else
2123 tag = PAGECACHE_TAG_DIRTY;
2124
2125 *done_index = index;
2126 while (index <= end) {
2127 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2128 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2129 if (nr_pages == 0)
2130 return 0;
2131
2132 for (i = 0; i < nr_pages; i++) {
2133 struct page *page = pvec.pages[i];
2134
2135 /*
2136 * At this point, the page may be truncated or
2137 * invalidated (changing page->mapping to NULL), or
2138 * even swizzled back from swapper_space to tmpfs file
2139 * mapping. However, page->index will not change
2140 * because we have a reference on the page.
2141 */
2142 if (page->index > end)
2143 goto out;
2144
2145 *done_index = page->index + 1;
2146
2147 /*
2148 * If we can't merge this page, and we have
2149 * accumulated an contiguous region, write it
2150 */
2151 if ((mpd->next_page != page->index) &&
2152 (mpd->next_page != mpd->first_page)) {
2153 mpage_da_map_and_submit(mpd);
2154 goto ret_extent_tail;
2155 }
2156
2157 lock_page(page);
2158
2159 /*
2160 * If the page is no longer dirty, or its
2161 * mapping no longer corresponds to inode we
2162 * are writing (which means it has been
2163 * truncated or invalidated), or the page is
2164 * already under writeback and we are not
2165 * doing a data integrity writeback, skip the page
2166 */
2167 if (!PageDirty(page) ||
2168 (PageWriteback(page) &&
2169 (wbc->sync_mode == WB_SYNC_NONE)) ||
2170 unlikely(page->mapping != mapping)) {
2171 unlock_page(page);
2172 continue;
2173 }
2174
2175 wait_on_page_writeback(page);
2176 BUG_ON(PageWriteback(page));
2177
2178 if (mpd->next_page != page->index)
2179 mpd->first_page = page->index;
2180 mpd->next_page = page->index + 1;
2181 logical = (sector_t) page->index <<
2182 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2183
2184 if (!page_has_buffers(page)) {
2185 mpage_add_bh_to_extent(mpd, logical,
2186 PAGE_CACHE_SIZE,
2187 (1 << BH_Dirty) | (1 << BH_Uptodate));
2188 if (mpd->io_done)
2189 goto ret_extent_tail;
2190 } else {
2191 /*
2192 * Page with regular buffer heads,
2193 * just add all dirty ones
2194 */
2195 head = page_buffers(page);
2196 bh = head;
2197 do {
2198 BUG_ON(buffer_locked(bh));
2199 /*
2200 * We need to try to allocate
2201 * unmapped blocks in the same page.
2202 * Otherwise we won't make progress
2203 * with the page in ext4_writepage
2204 */
2205 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2206 mpage_add_bh_to_extent(mpd, logical,
2207 bh->b_size,
2208 bh->b_state);
2209 if (mpd->io_done)
2210 goto ret_extent_tail;
2211 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2212 /*
2213 * mapped dirty buffer. We need
2214 * to update the b_state
2215 * because we look at b_state
2216 * in mpage_da_map_blocks. We
2217 * don't update b_size because
2218 * if we find an unmapped
2219 * buffer_head later we need to
2220 * use the b_state flag of that
2221 * buffer_head.
2222 */
2223 if (mpd->b_size == 0)
2224 mpd->b_state = bh->b_state & BH_FLAGS;
2225 }
2226 logical++;
2227 } while ((bh = bh->b_this_page) != head);
2228 }
2229
2230 if (nr_to_write > 0) {
2231 nr_to_write--;
2232 if (nr_to_write == 0 &&
2233 wbc->sync_mode == WB_SYNC_NONE)
2234 /*
2235 * We stop writing back only if we are
2236 * not doing integrity sync. In case of
2237 * integrity sync we have to keep going
2238 * because someone may be concurrently
2239 * dirtying pages, and we might have
2240 * synced a lot of newly appeared dirty
2241 * pages, but have not synced all of the
2242 * old dirty pages.
2243 */
2244 goto out;
2245 }
2246 }
2247 pagevec_release(&pvec);
2248 cond_resched();
2249 }
2250 return 0;
2251 ret_extent_tail:
2252 ret = MPAGE_DA_EXTENT_TAIL;
2253 out:
2254 pagevec_release(&pvec);
2255 cond_resched();
2256 return ret;
2257 }
2258
2259
2260 static int ext4_da_writepages(struct address_space *mapping,
2261 struct writeback_control *wbc)
2262 {
2263 pgoff_t index;
2264 int range_whole = 0;
2265 handle_t *handle = NULL;
2266 struct mpage_da_data mpd;
2267 struct inode *inode = mapping->host;
2268 int pages_written = 0;
2269 unsigned int max_pages;
2270 int range_cyclic, cycled = 1, io_done = 0;
2271 int needed_blocks, ret = 0;
2272 long desired_nr_to_write, nr_to_writebump = 0;
2273 loff_t range_start = wbc->range_start;
2274 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2275 pgoff_t done_index = 0;
2276 pgoff_t end;
2277 struct blk_plug plug;
2278
2279 trace_ext4_da_writepages(inode, wbc);
2280
2281 /*
2282 * No pages to write? This is mainly a kludge to avoid starting
2283 * a transaction for special inodes like journal inode on last iput()
2284 * because that could violate lock ordering on umount
2285 */
2286 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2287 return 0;
2288
2289 /*
2290 * If the filesystem has aborted, it is read-only, so return
2291 * right away instead of dumping stack traces later on that
2292 * will obscure the real source of the problem. We test
2293 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2294 * the latter could be true if the filesystem is mounted
2295 * read-only, and in that case, ext4_da_writepages should
2296 * *never* be called, so if that ever happens, we would want
2297 * the stack trace.
2298 */
2299 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2300 return -EROFS;
2301
2302 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2303 range_whole = 1;
2304
2305 range_cyclic = wbc->range_cyclic;
2306 if (wbc->range_cyclic) {
2307 index = mapping->writeback_index;
2308 if (index)
2309 cycled = 0;
2310 wbc->range_start = index << PAGE_CACHE_SHIFT;
2311 wbc->range_end = LLONG_MAX;
2312 wbc->range_cyclic = 0;
2313 end = -1;
2314 } else {
2315 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2316 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2317 }
2318
2319 /*
2320 * This works around two forms of stupidity. The first is in
2321 * the writeback code, which caps the maximum number of pages
2322 * written to be 1024 pages. This is wrong on multiple
2323 * levels; different architectues have a different page size,
2324 * which changes the maximum amount of data which gets
2325 * written. Secondly, 4 megabytes is way too small. XFS
2326 * forces this value to be 16 megabytes by multiplying
2327 * nr_to_write parameter by four, and then relies on its
2328 * allocator to allocate larger extents to make them
2329 * contiguous. Unfortunately this brings us to the second
2330 * stupidity, which is that ext4's mballoc code only allocates
2331 * at most 2048 blocks. So we force contiguous writes up to
2332 * the number of dirty blocks in the inode, or
2333 * sbi->max_writeback_mb_bump whichever is smaller.
2334 */
2335 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2336 if (!range_cyclic && range_whole) {
2337 if (wbc->nr_to_write == LONG_MAX)
2338 desired_nr_to_write = wbc->nr_to_write;
2339 else
2340 desired_nr_to_write = wbc->nr_to_write * 8;
2341 } else
2342 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2343 max_pages);
2344 if (desired_nr_to_write > max_pages)
2345 desired_nr_to_write = max_pages;
2346
2347 if (wbc->nr_to_write < desired_nr_to_write) {
2348 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2349 wbc->nr_to_write = desired_nr_to_write;
2350 }
2351
2352 retry:
2353 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2354 tag_pages_for_writeback(mapping, index, end);
2355
2356 blk_start_plug(&plug);
2357 while (!ret && wbc->nr_to_write > 0) {
2358
2359 /*
2360 * we insert one extent at a time. So we need
2361 * credit needed for single extent allocation.
2362 * journalled mode is currently not supported
2363 * by delalloc
2364 */
2365 BUG_ON(ext4_should_journal_data(inode));
2366 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2367
2368 /* start a new transaction*/
2369 handle = ext4_journal_start(inode, needed_blocks);
2370 if (IS_ERR(handle)) {
2371 ret = PTR_ERR(handle);
2372 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2373 "%ld pages, ino %lu; err %d", __func__,
2374 wbc->nr_to_write, inode->i_ino, ret);
2375 blk_finish_plug(&plug);
2376 goto out_writepages;
2377 }
2378
2379 /*
2380 * Now call write_cache_pages_da() to find the next
2381 * contiguous region of logical blocks that need
2382 * blocks to be allocated by ext4 and submit them.
2383 */
2384 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
2385 /*
2386 * If we have a contiguous extent of pages and we
2387 * haven't done the I/O yet, map the blocks and submit
2388 * them for I/O.
2389 */
2390 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2391 mpage_da_map_and_submit(&mpd);
2392 ret = MPAGE_DA_EXTENT_TAIL;
2393 }
2394 trace_ext4_da_write_pages(inode, &mpd);
2395 wbc->nr_to_write -= mpd.pages_written;
2396
2397 ext4_journal_stop(handle);
2398
2399 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2400 /* commit the transaction which would
2401 * free blocks released in the transaction
2402 * and try again
2403 */
2404 jbd2_journal_force_commit_nested(sbi->s_journal);
2405 ret = 0;
2406 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2407 /*
2408 * Got one extent now try with rest of the pages.
2409 * If mpd.retval is set -EIO, journal is aborted.
2410 * So we don't need to write any more.
2411 */
2412 pages_written += mpd.pages_written;
2413 ret = mpd.retval;
2414 io_done = 1;
2415 } else if (wbc->nr_to_write)
2416 /*
2417 * There is no more writeout needed
2418 * or we requested for a noblocking writeout
2419 * and we found the device congested
2420 */
2421 break;
2422 }
2423 blk_finish_plug(&plug);
2424 if (!io_done && !cycled) {
2425 cycled = 1;
2426 index = 0;
2427 wbc->range_start = index << PAGE_CACHE_SHIFT;
2428 wbc->range_end = mapping->writeback_index - 1;
2429 goto retry;
2430 }
2431
2432 /* Update index */
2433 wbc->range_cyclic = range_cyclic;
2434 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2435 /*
2436 * set the writeback_index so that range_cyclic
2437 * mode will write it back later
2438 */
2439 mapping->writeback_index = done_index;
2440
2441 out_writepages:
2442 wbc->nr_to_write -= nr_to_writebump;
2443 wbc->range_start = range_start;
2444 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
2445 return ret;
2446 }
2447
2448 #define FALL_BACK_TO_NONDELALLOC 1
2449 static int ext4_nonda_switch(struct super_block *sb)
2450 {
2451 s64 free_blocks, dirty_blocks;
2452 struct ext4_sb_info *sbi = EXT4_SB(sb);
2453
2454 /*
2455 * switch to non delalloc mode if we are running low
2456 * on free block. The free block accounting via percpu
2457 * counters can get slightly wrong with percpu_counter_batch getting
2458 * accumulated on each CPU without updating global counters
2459 * Delalloc need an accurate free block accounting. So switch
2460 * to non delalloc when we are near to error range.
2461 */
2462 free_blocks = EXT4_C2B(sbi,
2463 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2464 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2465 /*
2466 * Start pushing delalloc when 1/2 of free blocks are dirty.
2467 */
2468 if (dirty_blocks && (free_blocks < 2 * dirty_blocks) &&
2469 !writeback_in_progress(sb->s_bdi) &&
2470 down_read_trylock(&sb->s_umount)) {
2471 writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2472 up_read(&sb->s_umount);
2473 }
2474
2475 if (2 * free_blocks < 3 * dirty_blocks ||
2476 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
2477 /*
2478 * free block count is less than 150% of dirty blocks
2479 * or free blocks is less than watermark
2480 */
2481 return 1;
2482 }
2483 return 0;
2484 }
2485
2486 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2487 loff_t pos, unsigned len, unsigned flags,
2488 struct page **pagep, void **fsdata)
2489 {
2490 int ret, retries = 0;
2491 struct page *page;
2492 pgoff_t index;
2493 struct inode *inode = mapping->host;
2494 handle_t *handle;
2495
2496 index = pos >> PAGE_CACHE_SHIFT;
2497
2498 if (ext4_nonda_switch(inode->i_sb)) {
2499 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2500 return ext4_write_begin(file, mapping, pos,
2501 len, flags, pagep, fsdata);
2502 }
2503 *fsdata = (void *)0;
2504 trace_ext4_da_write_begin(inode, pos, len, flags);
2505 retry:
2506 /*
2507 * With delayed allocation, we don't log the i_disksize update
2508 * if there is delayed block allocation. But we still need
2509 * to journalling the i_disksize update if writes to the end
2510 * of file which has an already mapped buffer.
2511 */
2512 handle = ext4_journal_start(inode, 1);
2513 if (IS_ERR(handle)) {
2514 ret = PTR_ERR(handle);
2515 goto out;
2516 }
2517 /* We cannot recurse into the filesystem as the transaction is already
2518 * started */
2519 flags |= AOP_FLAG_NOFS;
2520
2521 page = grab_cache_page_write_begin(mapping, index, flags);
2522 if (!page) {
2523 ext4_journal_stop(handle);
2524 ret = -ENOMEM;
2525 goto out;
2526 }
2527 *pagep = page;
2528
2529 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2530 if (ret < 0) {
2531 unlock_page(page);
2532 ext4_journal_stop(handle);
2533 page_cache_release(page);
2534 /*
2535 * block_write_begin may have instantiated a few blocks
2536 * outside i_size. Trim these off again. Don't need
2537 * i_size_read because we hold i_mutex.
2538 */
2539 if (pos + len > inode->i_size)
2540 ext4_truncate_failed_write(inode);
2541 }
2542
2543 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2544 goto retry;
2545 out:
2546 return ret;
2547 }
2548
2549 /*
2550 * Check if we should update i_disksize
2551 * when write to the end of file but not require block allocation
2552 */
2553 static int ext4_da_should_update_i_disksize(struct page *page,
2554 unsigned long offset)
2555 {
2556 struct buffer_head *bh;
2557 struct inode *inode = page->mapping->host;
2558 unsigned int idx;
2559 int i;
2560
2561 bh = page_buffers(page);
2562 idx = offset >> inode->i_blkbits;
2563
2564 for (i = 0; i < idx; i++)
2565 bh = bh->b_this_page;
2566
2567 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2568 return 0;
2569 return 1;
2570 }
2571
2572 static int ext4_da_write_end(struct file *file,
2573 struct address_space *mapping,
2574 loff_t pos, unsigned len, unsigned copied,
2575 struct page *page, void *fsdata)
2576 {
2577 struct inode *inode = mapping->host;
2578 int ret = 0, ret2;
2579 handle_t *handle = ext4_journal_current_handle();
2580 loff_t new_i_size;
2581 unsigned long start, end;
2582 int write_mode = (int)(unsigned long)fsdata;
2583
2584 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2585 switch (ext4_inode_journal_mode(inode)) {
2586 case EXT4_INODE_ORDERED_DATA_MODE:
2587 return ext4_ordered_write_end(file, mapping, pos,
2588 len, copied, page, fsdata);
2589 case EXT4_INODE_WRITEBACK_DATA_MODE:
2590 return ext4_writeback_write_end(file, mapping, pos,
2591 len, copied, page, fsdata);
2592 default:
2593 BUG();
2594 }
2595 }
2596
2597 trace_ext4_da_write_end(inode, pos, len, copied);
2598 start = pos & (PAGE_CACHE_SIZE - 1);
2599 end = start + copied - 1;
2600
2601 /*
2602 * generic_write_end() will run mark_inode_dirty() if i_size
2603 * changes. So let's piggyback the i_disksize mark_inode_dirty
2604 * into that.
2605 */
2606
2607 new_i_size = pos + copied;
2608 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2609 if (ext4_da_should_update_i_disksize(page, end)) {
2610 down_write(&EXT4_I(inode)->i_data_sem);
2611 if (new_i_size > EXT4_I(inode)->i_disksize) {
2612 /*
2613 * Updating i_disksize when extending file
2614 * without needing block allocation
2615 */
2616 if (ext4_should_order_data(inode))
2617 ret = ext4_jbd2_file_inode(handle,
2618 inode);
2619
2620 EXT4_I(inode)->i_disksize = new_i_size;
2621 }
2622 up_write(&EXT4_I(inode)->i_data_sem);
2623 /* We need to mark inode dirty even if
2624 * new_i_size is less that inode->i_size
2625 * bu greater than i_disksize.(hint delalloc)
2626 */
2627 ext4_mark_inode_dirty(handle, inode);
2628 }
2629 }
2630 ret2 = generic_write_end(file, mapping, pos, len, copied,
2631 page, fsdata);
2632 copied = ret2;
2633 if (ret2 < 0)
2634 ret = ret2;
2635 ret2 = ext4_journal_stop(handle);
2636 if (!ret)
2637 ret = ret2;
2638
2639 return ret ? ret : copied;
2640 }
2641
2642 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2643 {
2644 /*
2645 * Drop reserved blocks
2646 */
2647 BUG_ON(!PageLocked(page));
2648 if (!page_has_buffers(page))
2649 goto out;
2650
2651 ext4_da_page_release_reservation(page, offset);
2652
2653 out:
2654 ext4_invalidatepage(page, offset);
2655
2656 return;
2657 }
2658
2659 /*
2660 * Force all delayed allocation blocks to be allocated for a given inode.
2661 */
2662 int ext4_alloc_da_blocks(struct inode *inode)
2663 {
2664 trace_ext4_alloc_da_blocks(inode);
2665
2666 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2667 !EXT4_I(inode)->i_reserved_meta_blocks)
2668 return 0;
2669
2670 /*
2671 * We do something simple for now. The filemap_flush() will
2672 * also start triggering a write of the data blocks, which is
2673 * not strictly speaking necessary (and for users of
2674 * laptop_mode, not even desirable). However, to do otherwise
2675 * would require replicating code paths in:
2676 *
2677 * ext4_da_writepages() ->
2678 * write_cache_pages() ---> (via passed in callback function)
2679 * __mpage_da_writepage() -->
2680 * mpage_add_bh_to_extent()
2681 * mpage_da_map_blocks()
2682 *
2683 * The problem is that write_cache_pages(), located in
2684 * mm/page-writeback.c, marks pages clean in preparation for
2685 * doing I/O, which is not desirable if we're not planning on
2686 * doing I/O at all.
2687 *
2688 * We could call write_cache_pages(), and then redirty all of
2689 * the pages by calling redirty_page_for_writepage() but that
2690 * would be ugly in the extreme. So instead we would need to
2691 * replicate parts of the code in the above functions,
2692 * simplifying them because we wouldn't actually intend to
2693 * write out the pages, but rather only collect contiguous
2694 * logical block extents, call the multi-block allocator, and
2695 * then update the buffer heads with the block allocations.
2696 *
2697 * For now, though, we'll cheat by calling filemap_flush(),
2698 * which will map the blocks, and start the I/O, but not
2699 * actually wait for the I/O to complete.
2700 */
2701 return filemap_flush(inode->i_mapping);
2702 }
2703
2704 /*
2705 * bmap() is special. It gets used by applications such as lilo and by
2706 * the swapper to find the on-disk block of a specific piece of data.
2707 *
2708 * Naturally, this is dangerous if the block concerned is still in the
2709 * journal. If somebody makes a swapfile on an ext4 data-journaling
2710 * filesystem and enables swap, then they may get a nasty shock when the
2711 * data getting swapped to that swapfile suddenly gets overwritten by
2712 * the original zero's written out previously to the journal and
2713 * awaiting writeback in the kernel's buffer cache.
2714 *
2715 * So, if we see any bmap calls here on a modified, data-journaled file,
2716 * take extra steps to flush any blocks which might be in the cache.
2717 */
2718 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2719 {
2720 struct inode *inode = mapping->host;
2721 journal_t *journal;
2722 int err;
2723
2724 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2725 test_opt(inode->i_sb, DELALLOC)) {
2726 /*
2727 * With delalloc we want to sync the file
2728 * so that we can make sure we allocate
2729 * blocks for file
2730 */
2731 filemap_write_and_wait(mapping);
2732 }
2733
2734 if (EXT4_JOURNAL(inode) &&
2735 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2736 /*
2737 * This is a REALLY heavyweight approach, but the use of
2738 * bmap on dirty files is expected to be extremely rare:
2739 * only if we run lilo or swapon on a freshly made file
2740 * do we expect this to happen.
2741 *
2742 * (bmap requires CAP_SYS_RAWIO so this does not
2743 * represent an unprivileged user DOS attack --- we'd be
2744 * in trouble if mortal users could trigger this path at
2745 * will.)
2746 *
2747 * NB. EXT4_STATE_JDATA is not set on files other than
2748 * regular files. If somebody wants to bmap a directory
2749 * or symlink and gets confused because the buffer
2750 * hasn't yet been flushed to disk, they deserve
2751 * everything they get.
2752 */
2753
2754 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2755 journal = EXT4_JOURNAL(inode);
2756 jbd2_journal_lock_updates(journal);
2757 err = jbd2_journal_flush(journal);
2758 jbd2_journal_unlock_updates(journal);
2759
2760 if (err)
2761 return 0;
2762 }
2763
2764 return generic_block_bmap(mapping, block, ext4_get_block);
2765 }
2766
2767 static int ext4_readpage(struct file *file, struct page *page)
2768 {
2769 trace_ext4_readpage(page);
2770 return mpage_readpage(page, ext4_get_block);
2771 }
2772
2773 static int
2774 ext4_readpages(struct file *file, struct address_space *mapping,
2775 struct list_head *pages, unsigned nr_pages)
2776 {
2777 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2778 }
2779
2780 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2781 {
2782 struct buffer_head *head, *bh;
2783 unsigned int curr_off = 0;
2784
2785 if (!page_has_buffers(page))
2786 return;
2787 head = bh = page_buffers(page);
2788 do {
2789 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2790 && bh->b_private) {
2791 ext4_free_io_end(bh->b_private);
2792 bh->b_private = NULL;
2793 bh->b_end_io = NULL;
2794 }
2795 curr_off = curr_off + bh->b_size;
2796 bh = bh->b_this_page;
2797 } while (bh != head);
2798 }
2799
2800 static void ext4_invalidatepage(struct page *page, unsigned long offset)
2801 {
2802 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2803
2804 trace_ext4_invalidatepage(page, offset);
2805
2806 /*
2807 * free any io_end structure allocated for buffers to be discarded
2808 */
2809 if (ext4_should_dioread_nolock(page->mapping->host))
2810 ext4_invalidatepage_free_endio(page, offset);
2811 /*
2812 * If it's a full truncate we just forget about the pending dirtying
2813 */
2814 if (offset == 0)
2815 ClearPageChecked(page);
2816
2817 if (journal)
2818 jbd2_journal_invalidatepage(journal, page, offset);
2819 else
2820 block_invalidatepage(page, offset);
2821 }
2822
2823 static int ext4_releasepage(struct page *page, gfp_t wait)
2824 {
2825 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2826
2827 trace_ext4_releasepage(page);
2828
2829 WARN_ON(PageChecked(page));
2830 if (!page_has_buffers(page))
2831 return 0;
2832 if (journal)
2833 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2834 else
2835 return try_to_free_buffers(page);
2836 }
2837
2838 /*
2839 * ext4_get_block used when preparing for a DIO write or buffer write.
2840 * We allocate an uinitialized extent if blocks haven't been allocated.
2841 * The extent will be converted to initialized after the IO is complete.
2842 */
2843 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
2844 struct buffer_head *bh_result, int create)
2845 {
2846 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
2847 inode->i_ino, create);
2848 return _ext4_get_block(inode, iblock, bh_result,
2849 EXT4_GET_BLOCKS_IO_CREATE_EXT);
2850 }
2851
2852 static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
2853 struct buffer_head *bh_result, int flags)
2854 {
2855 handle_t *handle = ext4_journal_current_handle();
2856 struct ext4_map_blocks map;
2857 int ret = 0;
2858
2859 ext4_debug("ext4_get_block_write_nolock: inode %lu, flag %d\n",
2860 inode->i_ino, flags);
2861
2862 flags = EXT4_GET_BLOCKS_NO_LOCK;
2863
2864 map.m_lblk = iblock;
2865 map.m_len = bh_result->b_size >> inode->i_blkbits;
2866
2867 ret = ext4_map_blocks(handle, inode, &map, flags);
2868 if (ret > 0) {
2869 map_bh(bh_result, inode->i_sb, map.m_pblk);
2870 bh_result->b_state = (bh_result->b_state & ~EXT4_MAP_FLAGS) |
2871 map.m_flags;
2872 bh_result->b_size = inode->i_sb->s_blocksize * map.m_len;
2873 ret = 0;
2874 }
2875 return ret;
2876 }
2877
2878 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
2879 ssize_t size, void *private, int ret,
2880 bool is_async)
2881 {
2882 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
2883 ext4_io_end_t *io_end = iocb->private;
2884
2885 /* if not async direct IO or dio with 0 bytes write, just return */
2886 if (!io_end || !size)
2887 goto out;
2888
2889 ext_debug("ext4_end_io_dio(): io_end 0x%p "
2890 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
2891 iocb->private, io_end->inode->i_ino, iocb, offset,
2892 size);
2893
2894 iocb->private = NULL;
2895
2896 /* if not aio dio with unwritten extents, just free io and return */
2897 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
2898 ext4_free_io_end(io_end);
2899 out:
2900 if (is_async)
2901 aio_complete(iocb, ret, 0);
2902 inode_dio_done(inode);
2903 return;
2904 }
2905
2906 io_end->offset = offset;
2907 io_end->size = size;
2908 if (is_async) {
2909 io_end->iocb = iocb;
2910 io_end->result = ret;
2911 }
2912
2913 ext4_add_complete_io(io_end);
2914 }
2915
2916 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2917 {
2918 ext4_io_end_t *io_end = bh->b_private;
2919 struct inode *inode;
2920
2921 if (!test_clear_buffer_uninit(bh) || !io_end)
2922 goto out;
2923
2924 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2925 ext4_msg(io_end->inode->i_sb, KERN_INFO,
2926 "sb umounted, discard end_io request for inode %lu",
2927 io_end->inode->i_ino);
2928 ext4_free_io_end(io_end);
2929 goto out;
2930 }
2931
2932 /*
2933 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2934 * but being more careful is always safe for the future change.
2935 */
2936 inode = io_end->inode;
2937 ext4_set_io_unwritten_flag(inode, io_end);
2938 ext4_add_complete_io(io_end);
2939 out:
2940 bh->b_private = NULL;
2941 bh->b_end_io = NULL;
2942 clear_buffer_uninit(bh);
2943 end_buffer_async_write(bh, uptodate);
2944 }
2945
2946 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2947 {
2948 ext4_io_end_t *io_end;
2949 struct page *page = bh->b_page;
2950 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2951 size_t size = bh->b_size;
2952
2953 retry:
2954 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2955 if (!io_end) {
2956 pr_warn_ratelimited("%s: allocation fail\n", __func__);
2957 schedule();
2958 goto retry;
2959 }
2960 io_end->offset = offset;
2961 io_end->size = size;
2962 /*
2963 * We need to hold a reference to the page to make sure it
2964 * doesn't get evicted before ext4_end_io_work() has a chance
2965 * to convert the extent from written to unwritten.
2966 */
2967 io_end->page = page;
2968 get_page(io_end->page);
2969
2970 bh->b_private = io_end;
2971 bh->b_end_io = ext4_end_io_buffer_write;
2972 return 0;
2973 }
2974
2975 /*
2976 * For ext4 extent files, ext4 will do direct-io write to holes,
2977 * preallocated extents, and those write extend the file, no need to
2978 * fall back to buffered IO.
2979 *
2980 * For holes, we fallocate those blocks, mark them as uninitialized
2981 * If those blocks were preallocated, we mark sure they are splited, but
2982 * still keep the range to write as uninitialized.
2983 *
2984 * The unwrritten extents will be converted to written when DIO is completed.
2985 * For async direct IO, since the IO may still pending when return, we
2986 * set up an end_io call back function, which will do the conversion
2987 * when async direct IO completed.
2988 *
2989 * If the O_DIRECT write will extend the file then add this inode to the
2990 * orphan list. So recovery will truncate it back to the original size
2991 * if the machine crashes during the write.
2992 *
2993 */
2994 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2995 const struct iovec *iov, loff_t offset,
2996 unsigned long nr_segs)
2997 {
2998 struct file *file = iocb->ki_filp;
2999 struct inode *inode = file->f_mapping->host;
3000 ssize_t ret;
3001 size_t count = iov_length(iov, nr_segs);
3002
3003 loff_t final_size = offset + count;
3004 if (rw == WRITE && final_size <= inode->i_size) {
3005 int overwrite = 0;
3006
3007 BUG_ON(iocb->private == NULL);
3008
3009 /* If we do a overwrite dio, i_mutex locking can be released */
3010 overwrite = *((int *)iocb->private);
3011
3012 if (overwrite) {
3013 atomic_inc(&inode->i_dio_count);
3014 down_read(&EXT4_I(inode)->i_data_sem);
3015 mutex_unlock(&inode->i_mutex);
3016 }
3017
3018 /*
3019 * We could direct write to holes and fallocate.
3020 *
3021 * Allocated blocks to fill the hole are marked as uninitialized
3022 * to prevent parallel buffered read to expose the stale data
3023 * before DIO complete the data IO.
3024 *
3025 * As to previously fallocated extents, ext4 get_block
3026 * will just simply mark the buffer mapped but still
3027 * keep the extents uninitialized.
3028 *
3029 * for non AIO case, we will convert those unwritten extents
3030 * to written after return back from blockdev_direct_IO.
3031 *
3032 * for async DIO, the conversion needs to be defered when
3033 * the IO is completed. The ext4 end_io callback function
3034 * will be called to take care of the conversion work.
3035 * Here for async case, we allocate an io_end structure to
3036 * hook to the iocb.
3037 */
3038 iocb->private = NULL;
3039 ext4_inode_aio_set(inode, NULL);
3040 if (!is_sync_kiocb(iocb)) {
3041 ext4_io_end_t *io_end =
3042 ext4_init_io_end(inode, GFP_NOFS);
3043 if (!io_end) {
3044 ret = -ENOMEM;
3045 goto retake_lock;
3046 }
3047 io_end->flag |= EXT4_IO_END_DIRECT;
3048 iocb->private = io_end;
3049 /*
3050 * we save the io structure for current async
3051 * direct IO, so that later ext4_map_blocks()
3052 * could flag the io structure whether there
3053 * is a unwritten extents needs to be converted
3054 * when IO is completed.
3055 */
3056 ext4_inode_aio_set(inode, io_end);
3057 }
3058
3059 if (overwrite)
3060 ret = __blockdev_direct_IO(rw, iocb, inode,
3061 inode->i_sb->s_bdev, iov,
3062 offset, nr_segs,
3063 ext4_get_block_write_nolock,
3064 ext4_end_io_dio,
3065 NULL,
3066 0);
3067 else
3068 ret = __blockdev_direct_IO(rw, iocb, inode,
3069 inode->i_sb->s_bdev, iov,
3070 offset, nr_segs,
3071 ext4_get_block_write,
3072 ext4_end_io_dio,
3073 NULL,
3074 DIO_LOCKING);
3075 if (iocb->private)
3076 ext4_inode_aio_set(inode, NULL);
3077 /*
3078 * The io_end structure takes a reference to the inode,
3079 * that structure needs to be destroyed and the
3080 * reference to the inode need to be dropped, when IO is
3081 * complete, even with 0 byte write, or failed.
3082 *
3083 * In the successful AIO DIO case, the io_end structure will be
3084 * desctroyed and the reference to the inode will be dropped
3085 * after the end_io call back function is called.
3086 *
3087 * In the case there is 0 byte write, or error case, since
3088 * VFS direct IO won't invoke the end_io call back function,
3089 * we need to free the end_io structure here.
3090 */
3091 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3092 ext4_free_io_end(iocb->private);
3093 iocb->private = NULL;
3094 } else if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3095 EXT4_STATE_DIO_UNWRITTEN)) {
3096 int err;
3097 /*
3098 * for non AIO case, since the IO is already
3099 * completed, we could do the conversion right here
3100 */
3101 err = ext4_convert_unwritten_extents(inode,
3102 offset, ret);
3103 if (err < 0)
3104 ret = err;
3105 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3106 }
3107
3108 retake_lock:
3109 /* take i_mutex locking again if we do a ovewrite dio */
3110 if (overwrite) {
3111 inode_dio_done(inode);
3112 up_read(&EXT4_I(inode)->i_data_sem);
3113 mutex_lock(&inode->i_mutex);
3114 }
3115
3116 return ret;
3117 }
3118
3119 /* for write the the end of file case, we fall back to old way */
3120 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3121 }
3122
3123 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3124 const struct iovec *iov, loff_t offset,
3125 unsigned long nr_segs)
3126 {
3127 struct file *file = iocb->ki_filp;
3128 struct inode *inode = file->f_mapping->host;
3129 ssize_t ret;
3130
3131 /*
3132 * If we are doing data journalling we don't support O_DIRECT
3133 */
3134 if (ext4_should_journal_data(inode))
3135 return 0;
3136
3137 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3138 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3139 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3140 else
3141 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3142 trace_ext4_direct_IO_exit(inode, offset,
3143 iov_length(iov, nr_segs), rw, ret);
3144 return ret;
3145 }
3146
3147 /*
3148 * Pages can be marked dirty completely asynchronously from ext4's journalling
3149 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3150 * much here because ->set_page_dirty is called under VFS locks. The page is
3151 * not necessarily locked.
3152 *
3153 * We cannot just dirty the page and leave attached buffers clean, because the
3154 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3155 * or jbddirty because all the journalling code will explode.
3156 *
3157 * So what we do is to mark the page "pending dirty" and next time writepage
3158 * is called, propagate that into the buffers appropriately.
3159 */
3160 static int ext4_journalled_set_page_dirty(struct page *page)
3161 {
3162 SetPageChecked(page);
3163 return __set_page_dirty_nobuffers(page);
3164 }
3165
3166 static const struct address_space_operations ext4_ordered_aops = {
3167 .readpage = ext4_readpage,
3168 .readpages = ext4_readpages,
3169 .writepage = ext4_writepage,
3170 .write_begin = ext4_write_begin,
3171 .write_end = ext4_ordered_write_end,
3172 .bmap = ext4_bmap,
3173 .invalidatepage = ext4_invalidatepage,
3174 .releasepage = ext4_releasepage,
3175 .direct_IO = ext4_direct_IO,
3176 .migratepage = buffer_migrate_page,
3177 .is_partially_uptodate = block_is_partially_uptodate,
3178 .error_remove_page = generic_error_remove_page,
3179 };
3180
3181 static const struct address_space_operations ext4_writeback_aops = {
3182 .readpage = ext4_readpage,
3183 .readpages = ext4_readpages,
3184 .writepage = ext4_writepage,
3185 .write_begin = ext4_write_begin,
3186 .write_end = ext4_writeback_write_end,
3187 .bmap = ext4_bmap,
3188 .invalidatepage = ext4_invalidatepage,
3189 .releasepage = ext4_releasepage,
3190 .direct_IO = ext4_direct_IO,
3191 .migratepage = buffer_migrate_page,
3192 .is_partially_uptodate = block_is_partially_uptodate,
3193 .error_remove_page = generic_error_remove_page,
3194 };
3195
3196 static const struct address_space_operations ext4_journalled_aops = {
3197 .readpage = ext4_readpage,
3198 .readpages = ext4_readpages,
3199 .writepage = ext4_writepage,
3200 .write_begin = ext4_write_begin,
3201 .write_end = ext4_journalled_write_end,
3202 .set_page_dirty = ext4_journalled_set_page_dirty,
3203 .bmap = ext4_bmap,
3204 .invalidatepage = ext4_invalidatepage,
3205 .releasepage = ext4_releasepage,
3206 .direct_IO = ext4_direct_IO,
3207 .is_partially_uptodate = block_is_partially_uptodate,
3208 .error_remove_page = generic_error_remove_page,
3209 };
3210
3211 static const struct address_space_operations ext4_da_aops = {
3212 .readpage = ext4_readpage,
3213 .readpages = ext4_readpages,
3214 .writepage = ext4_writepage,
3215 .writepages = ext4_da_writepages,
3216 .write_begin = ext4_da_write_begin,
3217 .write_end = ext4_da_write_end,
3218 .bmap = ext4_bmap,
3219 .invalidatepage = ext4_da_invalidatepage,
3220 .releasepage = ext4_releasepage,
3221 .direct_IO = ext4_direct_IO,
3222 .migratepage = buffer_migrate_page,
3223 .is_partially_uptodate = block_is_partially_uptodate,
3224 .error_remove_page = generic_error_remove_page,
3225 };
3226
3227 void ext4_set_aops(struct inode *inode)
3228 {
3229 switch (ext4_inode_journal_mode(inode)) {
3230 case EXT4_INODE_ORDERED_DATA_MODE:
3231 if (test_opt(inode->i_sb, DELALLOC))
3232 inode->i_mapping->a_ops = &ext4_da_aops;
3233 else
3234 inode->i_mapping->a_ops = &ext4_ordered_aops;
3235 break;
3236 case EXT4_INODE_WRITEBACK_DATA_MODE:
3237 if (test_opt(inode->i_sb, DELALLOC))
3238 inode->i_mapping->a_ops = &ext4_da_aops;
3239 else
3240 inode->i_mapping->a_ops = &ext4_writeback_aops;
3241 break;
3242 case EXT4_INODE_JOURNAL_DATA_MODE:
3243 inode->i_mapping->a_ops = &ext4_journalled_aops;
3244 break;
3245 default:
3246 BUG();
3247 }
3248 }
3249
3250
3251 /*
3252 * ext4_discard_partial_page_buffers()
3253 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3254 * This function finds and locks the page containing the offset
3255 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3256 * Calling functions that already have the page locked should call
3257 * ext4_discard_partial_page_buffers_no_lock directly.
3258 */
3259 int ext4_discard_partial_page_buffers(handle_t *handle,
3260 struct address_space *mapping, loff_t from,
3261 loff_t length, int flags)
3262 {
3263 struct inode *inode = mapping->host;
3264 struct page *page;
3265 int err = 0;
3266
3267 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3268 mapping_gfp_mask(mapping) & ~__GFP_FS);
3269 if (!page)
3270 return -ENOMEM;
3271
3272 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3273 from, length, flags);
3274
3275 unlock_page(page);
3276 page_cache_release(page);
3277 return err;
3278 }
3279
3280 /*
3281 * ext4_discard_partial_page_buffers_no_lock()
3282 * Zeros a page range of length 'length' starting from offset 'from'.
3283 * Buffer heads that correspond to the block aligned regions of the
3284 * zeroed range will be unmapped. Unblock aligned regions
3285 * will have the corresponding buffer head mapped if needed so that
3286 * that region of the page can be updated with the partial zero out.
3287 *
3288 * This function assumes that the page has already been locked. The
3289 * The range to be discarded must be contained with in the given page.
3290 * If the specified range exceeds the end of the page it will be shortened
3291 * to the end of the page that corresponds to 'from'. This function is
3292 * appropriate for updating a page and it buffer heads to be unmapped and
3293 * zeroed for blocks that have been either released, or are going to be
3294 * released.
3295 *
3296 * handle: The journal handle
3297 * inode: The files inode
3298 * page: A locked page that contains the offset "from"
3299 * from: The starting byte offset (from the beginning of the file)
3300 * to begin discarding
3301 * len: The length of bytes to discard
3302 * flags: Optional flags that may be used:
3303 *
3304 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3305 * Only zero the regions of the page whose buffer heads
3306 * have already been unmapped. This flag is appropriate
3307 * for updating the contents of a page whose blocks may
3308 * have already been released, and we only want to zero
3309 * out the regions that correspond to those released blocks.
3310 *
3311 * Returns zero on success or negative on failure.
3312 */
3313 static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
3314 struct inode *inode, struct page *page, loff_t from,
3315 loff_t length, int flags)
3316 {
3317 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3318 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3319 unsigned int blocksize, max, pos;
3320 ext4_lblk_t iblock;
3321 struct buffer_head *bh;
3322 int err = 0;
3323
3324 blocksize = inode->i_sb->s_blocksize;
3325 max = PAGE_CACHE_SIZE - offset;
3326
3327 if (index != page->index)
3328 return -EINVAL;
3329
3330 /*
3331 * correct length if it does not fall between
3332 * 'from' and the end of the page
3333 */
3334 if (length > max || length < 0)
3335 length = max;
3336
3337 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3338
3339 if (!page_has_buffers(page))
3340 create_empty_buffers(page, blocksize, 0);
3341
3342 /* Find the buffer that contains "offset" */
3343 bh = page_buffers(page);
3344 pos = blocksize;
3345 while (offset >= pos) {
3346 bh = bh->b_this_page;
3347 iblock++;
3348 pos += blocksize;
3349 }
3350
3351 pos = offset;
3352 while (pos < offset + length) {
3353 unsigned int end_of_block, range_to_discard;
3354
3355 err = 0;
3356
3357 /* The length of space left to zero and unmap */
3358 range_to_discard = offset + length - pos;
3359
3360 /* The length of space until the end of the block */
3361 end_of_block = blocksize - (pos & (blocksize-1));
3362
3363 /*
3364 * Do not unmap or zero past end of block
3365 * for this buffer head
3366 */
3367 if (range_to_discard > end_of_block)
3368 range_to_discard = end_of_block;
3369
3370
3371 /*
3372 * Skip this buffer head if we are only zeroing unampped
3373 * regions of the page
3374 */
3375 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3376 buffer_mapped(bh))
3377 goto next;
3378
3379 /* If the range is block aligned, unmap */
3380 if (range_to_discard == blocksize) {
3381 clear_buffer_dirty(bh);
3382 bh->b_bdev = NULL;
3383 clear_buffer_mapped(bh);
3384 clear_buffer_req(bh);
3385 clear_buffer_new(bh);
3386 clear_buffer_delay(bh);
3387 clear_buffer_unwritten(bh);
3388 clear_buffer_uptodate(bh);
3389 zero_user(page, pos, range_to_discard);
3390 BUFFER_TRACE(bh, "Buffer discarded");
3391 goto next;
3392 }
3393
3394 /*
3395 * If this block is not completely contained in the range
3396 * to be discarded, then it is not going to be released. Because
3397 * we need to keep this block, we need to make sure this part
3398 * of the page is uptodate before we modify it by writeing
3399 * partial zeros on it.
3400 */
3401 if (!buffer_mapped(bh)) {
3402 /*
3403 * Buffer head must be mapped before we can read
3404 * from the block
3405 */
3406 BUFFER_TRACE(bh, "unmapped");
3407 ext4_get_block(inode, iblock, bh, 0);
3408 /* unmapped? It's a hole - nothing to do */
3409 if (!buffer_mapped(bh)) {
3410 BUFFER_TRACE(bh, "still unmapped");
3411 goto next;
3412 }
3413 }
3414
3415 /* Ok, it's mapped. Make sure it's up-to-date */
3416 if (PageUptodate(page))
3417 set_buffer_uptodate(bh);
3418
3419 if (!buffer_uptodate(bh)) {
3420 err = -EIO;
3421 ll_rw_block(READ, 1, &bh);
3422 wait_on_buffer(bh);
3423 /* Uhhuh. Read error. Complain and punt.*/
3424 if (!buffer_uptodate(bh))
3425 goto next;
3426 }
3427
3428 if (ext4_should_journal_data(inode)) {
3429 BUFFER_TRACE(bh, "get write access");
3430 err = ext4_journal_get_write_access(handle, bh);
3431 if (err)
3432 goto next;
3433 }
3434
3435 zero_user(page, pos, range_to_discard);
3436
3437 err = 0;
3438 if (ext4_should_journal_data(inode)) {
3439 err = ext4_handle_dirty_metadata(handle, inode, bh);
3440 } else
3441 mark_buffer_dirty(bh);
3442
3443 BUFFER_TRACE(bh, "Partial buffer zeroed");
3444 next:
3445 bh = bh->b_this_page;
3446 iblock++;
3447 pos += range_to_discard;
3448 }
3449
3450 return err;
3451 }
3452
3453 int ext4_can_truncate(struct inode *inode)
3454 {
3455 if (S_ISREG(inode->i_mode))
3456 return 1;
3457 if (S_ISDIR(inode->i_mode))
3458 return 1;
3459 if (S_ISLNK(inode->i_mode))
3460 return !ext4_inode_is_fast_symlink(inode);
3461 return 0;
3462 }
3463
3464 /*
3465 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3466 * associated with the given offset and length
3467 *
3468 * @inode: File inode
3469 * @offset: The offset where the hole will begin
3470 * @len: The length of the hole
3471 *
3472 * Returns: 0 on success or negative on failure
3473 */
3474
3475 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3476 {
3477 struct inode *inode = file->f_path.dentry->d_inode;
3478 if (!S_ISREG(inode->i_mode))
3479 return -EOPNOTSUPP;
3480
3481 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3482 /* TODO: Add support for non extent hole punching */
3483 return -EOPNOTSUPP;
3484 }
3485
3486 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3487 /* TODO: Add support for bigalloc file systems */
3488 return -EOPNOTSUPP;
3489 }
3490
3491 return ext4_ext_punch_hole(file, offset, length);
3492 }
3493
3494 /*
3495 * ext4_truncate()
3496 *
3497 * We block out ext4_get_block() block instantiations across the entire
3498 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3499 * simultaneously on behalf of the same inode.
3500 *
3501 * As we work through the truncate and commit bits of it to the journal there
3502 * is one core, guiding principle: the file's tree must always be consistent on
3503 * disk. We must be able to restart the truncate after a crash.
3504 *
3505 * The file's tree may be transiently inconsistent in memory (although it
3506 * probably isn't), but whenever we close off and commit a journal transaction,
3507 * the contents of (the filesystem + the journal) must be consistent and
3508 * restartable. It's pretty simple, really: bottom up, right to left (although
3509 * left-to-right works OK too).
3510 *
3511 * Note that at recovery time, journal replay occurs *before* the restart of
3512 * truncate against the orphan inode list.
3513 *
3514 * The committed inode has the new, desired i_size (which is the same as
3515 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3516 * that this inode's truncate did not complete and it will again call
3517 * ext4_truncate() to have another go. So there will be instantiated blocks
3518 * to the right of the truncation point in a crashed ext4 filesystem. But
3519 * that's fine - as long as they are linked from the inode, the post-crash
3520 * ext4_truncate() run will find them and release them.
3521 */
3522 void ext4_truncate(struct inode *inode)
3523 {
3524 trace_ext4_truncate_enter(inode);
3525
3526 if (!ext4_can_truncate(inode))
3527 return;
3528
3529 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3530
3531 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3532 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3533
3534 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3535 ext4_ext_truncate(inode);
3536 else
3537 ext4_ind_truncate(inode);
3538
3539 trace_ext4_truncate_exit(inode);
3540 }
3541
3542 /*
3543 * ext4_get_inode_loc returns with an extra refcount against the inode's
3544 * underlying buffer_head on success. If 'in_mem' is true, we have all
3545 * data in memory that is needed to recreate the on-disk version of this
3546 * inode.
3547 */
3548 static int __ext4_get_inode_loc(struct inode *inode,
3549 struct ext4_iloc *iloc, int in_mem)
3550 {
3551 struct ext4_group_desc *gdp;
3552 struct buffer_head *bh;
3553 struct super_block *sb = inode->i_sb;
3554 ext4_fsblk_t block;
3555 int inodes_per_block, inode_offset;
3556
3557 iloc->bh = NULL;
3558 if (!ext4_valid_inum(sb, inode->i_ino))
3559 return -EIO;
3560
3561 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3562 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3563 if (!gdp)
3564 return -EIO;
3565
3566 /*
3567 * Figure out the offset within the block group inode table
3568 */
3569 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3570 inode_offset = ((inode->i_ino - 1) %
3571 EXT4_INODES_PER_GROUP(sb));
3572 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3573 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3574
3575 bh = sb_getblk(sb, block);
3576 if (!bh) {
3577 EXT4_ERROR_INODE_BLOCK(inode, block,
3578 "unable to read itable block");
3579 return -EIO;
3580 }
3581 if (!buffer_uptodate(bh)) {
3582 lock_buffer(bh);
3583
3584 /*
3585 * If the buffer has the write error flag, we have failed
3586 * to write out another inode in the same block. In this
3587 * case, we don't have to read the block because we may
3588 * read the old inode data successfully.
3589 */
3590 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3591 set_buffer_uptodate(bh);
3592
3593 if (buffer_uptodate(bh)) {
3594 /* someone brought it uptodate while we waited */
3595 unlock_buffer(bh);
3596 goto has_buffer;
3597 }
3598
3599 /*
3600 * If we have all information of the inode in memory and this
3601 * is the only valid inode in the block, we need not read the
3602 * block.
3603 */
3604 if (in_mem) {
3605 struct buffer_head *bitmap_bh;
3606 int i, start;
3607
3608 start = inode_offset & ~(inodes_per_block - 1);
3609
3610 /* Is the inode bitmap in cache? */
3611 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3612 if (!bitmap_bh)
3613 goto make_io;
3614
3615 /*
3616 * If the inode bitmap isn't in cache then the
3617 * optimisation may end up performing two reads instead
3618 * of one, so skip it.
3619 */
3620 if (!buffer_uptodate(bitmap_bh)) {
3621 brelse(bitmap_bh);
3622 goto make_io;
3623 }
3624 for (i = start; i < start + inodes_per_block; i++) {
3625 if (i == inode_offset)
3626 continue;
3627 if (ext4_test_bit(i, bitmap_bh->b_data))
3628 break;
3629 }
3630 brelse(bitmap_bh);
3631 if (i == start + inodes_per_block) {
3632 /* all other inodes are free, so skip I/O */
3633 memset(bh->b_data, 0, bh->b_size);
3634 set_buffer_uptodate(bh);
3635 unlock_buffer(bh);
3636 goto has_buffer;
3637 }
3638 }
3639
3640 make_io:
3641 /*
3642 * If we need to do any I/O, try to pre-readahead extra
3643 * blocks from the inode table.
3644 */
3645 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3646 ext4_fsblk_t b, end, table;
3647 unsigned num;
3648
3649 table = ext4_inode_table(sb, gdp);
3650 /* s_inode_readahead_blks is always a power of 2 */
3651 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3652 if (table > b)
3653 b = table;
3654 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3655 num = EXT4_INODES_PER_GROUP(sb);
3656 if (ext4_has_group_desc_csum(sb))
3657 num -= ext4_itable_unused_count(sb, gdp);
3658 table += num / inodes_per_block;
3659 if (end > table)
3660 end = table;
3661 while (b <= end)
3662 sb_breadahead(sb, b++);
3663 }
3664
3665 /*
3666 * There are other valid inodes in the buffer, this inode
3667 * has in-inode xattrs, or we don't have this inode in memory.
3668 * Read the block from disk.
3669 */
3670 trace_ext4_load_inode(inode);
3671 get_bh(bh);
3672 bh->b_end_io = end_buffer_read_sync;
3673 submit_bh(READ | REQ_META | REQ_PRIO, bh);
3674 wait_on_buffer(bh);
3675 if (!buffer_uptodate(bh)) {
3676 EXT4_ERROR_INODE_BLOCK(inode, block,
3677 "unable to read itable block");
3678 brelse(bh);
3679 return -EIO;
3680 }
3681 }
3682 has_buffer:
3683 iloc->bh = bh;
3684 return 0;
3685 }
3686
3687 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3688 {
3689 /* We have all inode data except xattrs in memory here. */
3690 return __ext4_get_inode_loc(inode, iloc,
3691 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
3692 }
3693
3694 void ext4_set_inode_flags(struct inode *inode)
3695 {
3696 unsigned int flags = EXT4_I(inode)->i_flags;
3697
3698 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3699 if (flags & EXT4_SYNC_FL)
3700 inode->i_flags |= S_SYNC;
3701 if (flags & EXT4_APPEND_FL)
3702 inode->i_flags |= S_APPEND;
3703 if (flags & EXT4_IMMUTABLE_FL)
3704 inode->i_flags |= S_IMMUTABLE;
3705 if (flags & EXT4_NOATIME_FL)
3706 inode->i_flags |= S_NOATIME;
3707 if (flags & EXT4_DIRSYNC_FL)
3708 inode->i_flags |= S_DIRSYNC;
3709 }
3710
3711 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3712 void ext4_get_inode_flags(struct ext4_inode_info *ei)
3713 {
3714 unsigned int vfs_fl;
3715 unsigned long old_fl, new_fl;
3716
3717 do {
3718 vfs_fl = ei->vfs_inode.i_flags;
3719 old_fl = ei->i_flags;
3720 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3721 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3722 EXT4_DIRSYNC_FL);
3723 if (vfs_fl & S_SYNC)
3724 new_fl |= EXT4_SYNC_FL;
3725 if (vfs_fl & S_APPEND)
3726 new_fl |= EXT4_APPEND_FL;
3727 if (vfs_fl & S_IMMUTABLE)
3728 new_fl |= EXT4_IMMUTABLE_FL;
3729 if (vfs_fl & S_NOATIME)
3730 new_fl |= EXT4_NOATIME_FL;
3731 if (vfs_fl & S_DIRSYNC)
3732 new_fl |= EXT4_DIRSYNC_FL;
3733 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3734 }
3735
3736 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3737 struct ext4_inode_info *ei)
3738 {
3739 blkcnt_t i_blocks ;
3740 struct inode *inode = &(ei->vfs_inode);
3741 struct super_block *sb = inode->i_sb;
3742
3743 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3744 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3745 /* we are using combined 48 bit field */
3746 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3747 le32_to_cpu(raw_inode->i_blocks_lo);
3748 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
3749 /* i_blocks represent file system block size */
3750 return i_blocks << (inode->i_blkbits - 9);
3751 } else {
3752 return i_blocks;
3753 }
3754 } else {
3755 return le32_to_cpu(raw_inode->i_blocks_lo);
3756 }
3757 }
3758
3759 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
3760 {
3761 struct ext4_iloc iloc;
3762 struct ext4_inode *raw_inode;
3763 struct ext4_inode_info *ei;
3764 struct inode *inode;
3765 journal_t *journal = EXT4_SB(sb)->s_journal;
3766 long ret;
3767 int block;
3768 uid_t i_uid;
3769 gid_t i_gid;
3770
3771 inode = iget_locked(sb, ino);
3772 if (!inode)
3773 return ERR_PTR(-ENOMEM);
3774 if (!(inode->i_state & I_NEW))
3775 return inode;
3776
3777 ei = EXT4_I(inode);
3778 iloc.bh = NULL;
3779
3780 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3781 if (ret < 0)
3782 goto bad_inode;
3783 raw_inode = ext4_raw_inode(&iloc);
3784
3785 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3786 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
3787 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
3788 EXT4_INODE_SIZE(inode->i_sb)) {
3789 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
3790 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
3791 EXT4_INODE_SIZE(inode->i_sb));
3792 ret = -EIO;
3793 goto bad_inode;
3794 }
3795 } else
3796 ei->i_extra_isize = 0;
3797
3798 /* Precompute checksum seed for inode metadata */
3799 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3800 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
3801 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3802 __u32 csum;
3803 __le32 inum = cpu_to_le32(inode->i_ino);
3804 __le32 gen = raw_inode->i_generation;
3805 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
3806 sizeof(inum));
3807 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
3808 sizeof(gen));
3809 }
3810
3811 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
3812 EXT4_ERROR_INODE(inode, "checksum invalid");
3813 ret = -EIO;
3814 goto bad_inode;
3815 }
3816
3817 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3818 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3819 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
3820 if (!(test_opt(inode->i_sb, NO_UID32))) {
3821 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3822 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3823 }
3824 i_uid_write(inode, i_uid);
3825 i_gid_write(inode, i_gid);
3826 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
3827
3828 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
3829 ei->i_dir_start_lookup = 0;
3830 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3831 /* We now have enough fields to check if the inode was active or not.
3832 * This is needed because nfsd might try to access dead inodes
3833 * the test is that same one that e2fsck uses
3834 * NeilBrown 1999oct15
3835 */
3836 if (inode->i_nlink == 0) {
3837 if (inode->i_mode == 0 ||
3838 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
3839 /* this inode is deleted */
3840 ret = -ESTALE;
3841 goto bad_inode;
3842 }
3843 /* The only unlinked inodes we let through here have
3844 * valid i_mode and are being read by the orphan
3845 * recovery code: that's fine, we're about to complete
3846 * the process of deleting those. */
3847 }
3848 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
3849 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
3850 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
3851 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
3852 ei->i_file_acl |=
3853 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
3854 inode->i_size = ext4_isize(raw_inode);
3855 ei->i_disksize = inode->i_size;
3856 #ifdef CONFIG_QUOTA
3857 ei->i_reserved_quota = 0;
3858 #endif
3859 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3860 ei->i_block_group = iloc.block_group;
3861 ei->i_last_alloc_group = ~0;
3862 /*
3863 * NOTE! The in-memory inode i_data array is in little-endian order
3864 * even on big-endian machines: we do NOT byteswap the block numbers!
3865 */
3866 for (block = 0; block < EXT4_N_BLOCKS; block++)
3867 ei->i_data[block] = raw_inode->i_block[block];
3868 INIT_LIST_HEAD(&ei->i_orphan);
3869
3870 /*
3871 * Set transaction id's of transactions that have to be committed
3872 * to finish f[data]sync. We set them to currently running transaction
3873 * as we cannot be sure that the inode or some of its metadata isn't
3874 * part of the transaction - the inode could have been reclaimed and
3875 * now it is reread from disk.
3876 */
3877 if (journal) {
3878 transaction_t *transaction;
3879 tid_t tid;
3880
3881 read_lock(&journal->j_state_lock);
3882 if (journal->j_running_transaction)
3883 transaction = journal->j_running_transaction;
3884 else
3885 transaction = journal->j_committing_transaction;
3886 if (transaction)
3887 tid = transaction->t_tid;
3888 else
3889 tid = journal->j_commit_sequence;
3890 read_unlock(&journal->j_state_lock);
3891 ei->i_sync_tid = tid;
3892 ei->i_datasync_tid = tid;
3893 }
3894
3895 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3896 if (ei->i_extra_isize == 0) {
3897 /* The extra space is currently unused. Use it. */
3898 ei->i_extra_isize = sizeof(struct ext4_inode) -
3899 EXT4_GOOD_OLD_INODE_SIZE;
3900 } else {
3901 __le32 *magic = (void *)raw_inode +
3902 EXT4_GOOD_OLD_INODE_SIZE +
3903 ei->i_extra_isize;
3904 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
3905 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
3906 }
3907 }
3908
3909 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3910 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3911 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3912 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3913
3914 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3915 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3916 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3917 inode->i_version |=
3918 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3919 }
3920
3921 ret = 0;
3922 if (ei->i_file_acl &&
3923 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
3924 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3925 ei->i_file_acl);
3926 ret = -EIO;
3927 goto bad_inode;
3928 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3929 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3930 (S_ISLNK(inode->i_mode) &&
3931 !ext4_inode_is_fast_symlink(inode)))
3932 /* Validate extent which is part of inode */
3933 ret = ext4_ext_check_inode(inode);
3934 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3935 (S_ISLNK(inode->i_mode) &&
3936 !ext4_inode_is_fast_symlink(inode))) {
3937 /* Validate block references which are part of inode */
3938 ret = ext4_ind_check_inode(inode);
3939 }
3940 if (ret)
3941 goto bad_inode;
3942
3943 if (S_ISREG(inode->i_mode)) {
3944 inode->i_op = &ext4_file_inode_operations;
3945 inode->i_fop = &ext4_file_operations;
3946 ext4_set_aops(inode);
3947 } else if (S_ISDIR(inode->i_mode)) {
3948 inode->i_op = &ext4_dir_inode_operations;
3949 inode->i_fop = &ext4_dir_operations;
3950 } else if (S_ISLNK(inode->i_mode)) {
3951 if (ext4_inode_is_fast_symlink(inode)) {
3952 inode->i_op = &ext4_fast_symlink_inode_operations;
3953 nd_terminate_link(ei->i_data, inode->i_size,
3954 sizeof(ei->i_data) - 1);
3955 } else {
3956 inode->i_op = &ext4_symlink_inode_operations;
3957 ext4_set_aops(inode);
3958 }
3959 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3960 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
3961 inode->i_op = &ext4_special_inode_operations;
3962 if (raw_inode->i_block[0])
3963 init_special_inode(inode, inode->i_mode,
3964 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3965 else
3966 init_special_inode(inode, inode->i_mode,
3967 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3968 } else {
3969 ret = -EIO;
3970 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
3971 goto bad_inode;
3972 }
3973 brelse(iloc.bh);
3974 ext4_set_inode_flags(inode);
3975 unlock_new_inode(inode);
3976 return inode;
3977
3978 bad_inode:
3979 brelse(iloc.bh);
3980 iget_failed(inode);
3981 return ERR_PTR(ret);
3982 }
3983
3984 static int ext4_inode_blocks_set(handle_t *handle,
3985 struct ext4_inode *raw_inode,
3986 struct ext4_inode_info *ei)
3987 {
3988 struct inode *inode = &(ei->vfs_inode);
3989 u64 i_blocks = inode->i_blocks;
3990 struct super_block *sb = inode->i_sb;
3991
3992 if (i_blocks <= ~0U) {
3993 /*
3994 * i_blocks can be represented in a 32 bit variable
3995 * as multiple of 512 bytes
3996 */
3997 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3998 raw_inode->i_blocks_high = 0;
3999 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4000 return 0;
4001 }
4002 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4003 return -EFBIG;
4004
4005 if (i_blocks <= 0xffffffffffffULL) {
4006 /*
4007 * i_blocks can be represented in a 48 bit variable
4008 * as multiple of 512 bytes
4009 */
4010 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4011 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4012 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4013 } else {
4014 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4015 /* i_block is stored in file system block size */
4016 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4017 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4018 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4019 }
4020 return 0;
4021 }
4022
4023 /*
4024 * Post the struct inode info into an on-disk inode location in the
4025 * buffer-cache. This gobbles the caller's reference to the
4026 * buffer_head in the inode location struct.
4027 *
4028 * The caller must have write access to iloc->bh.
4029 */
4030 static int ext4_do_update_inode(handle_t *handle,
4031 struct inode *inode,
4032 struct ext4_iloc *iloc)
4033 {
4034 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4035 struct ext4_inode_info *ei = EXT4_I(inode);
4036 struct buffer_head *bh = iloc->bh;
4037 int err = 0, rc, block;
4038 int need_datasync = 0;
4039 uid_t i_uid;
4040 gid_t i_gid;
4041
4042 /* For fields not not tracking in the in-memory inode,
4043 * initialise them to zero for new inodes. */
4044 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4045 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4046
4047 ext4_get_inode_flags(ei);
4048 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4049 i_uid = i_uid_read(inode);
4050 i_gid = i_gid_read(inode);
4051 if (!(test_opt(inode->i_sb, NO_UID32))) {
4052 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4053 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4054 /*
4055 * Fix up interoperability with old kernels. Otherwise, old inodes get
4056 * re-used with the upper 16 bits of the uid/gid intact
4057 */
4058 if (!ei->i_dtime) {
4059 raw_inode->i_uid_high =
4060 cpu_to_le16(high_16_bits(i_uid));
4061 raw_inode->i_gid_high =
4062 cpu_to_le16(high_16_bits(i_gid));
4063 } else {
4064 raw_inode->i_uid_high = 0;
4065 raw_inode->i_gid_high = 0;
4066 }
4067 } else {
4068 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4069 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4070 raw_inode->i_uid_high = 0;
4071 raw_inode->i_gid_high = 0;
4072 }
4073 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4074
4075 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4076 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4077 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4078 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4079
4080 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4081 goto out_brelse;
4082 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4083 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4084 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4085 cpu_to_le32(EXT4_OS_HURD))
4086 raw_inode->i_file_acl_high =
4087 cpu_to_le16(ei->i_file_acl >> 32);
4088 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4089 if (ei->i_disksize != ext4_isize(raw_inode)) {
4090 ext4_isize_set(raw_inode, ei->i_disksize);
4091 need_datasync = 1;
4092 }
4093 if (ei->i_disksize > 0x7fffffffULL) {
4094 struct super_block *sb = inode->i_sb;
4095 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4096 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4097 EXT4_SB(sb)->s_es->s_rev_level ==
4098 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4099 /* If this is the first large file
4100 * created, add a flag to the superblock.
4101 */
4102 err = ext4_journal_get_write_access(handle,
4103 EXT4_SB(sb)->s_sbh);
4104 if (err)
4105 goto out_brelse;
4106 ext4_update_dynamic_rev(sb);
4107 EXT4_SET_RO_COMPAT_FEATURE(sb,
4108 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4109 ext4_handle_sync(handle);
4110 err = ext4_handle_dirty_super(handle, sb);
4111 }
4112 }
4113 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4114 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4115 if (old_valid_dev(inode->i_rdev)) {
4116 raw_inode->i_block[0] =
4117 cpu_to_le32(old_encode_dev(inode->i_rdev));
4118 raw_inode->i_block[1] = 0;
4119 } else {
4120 raw_inode->i_block[0] = 0;
4121 raw_inode->i_block[1] =
4122 cpu_to_le32(new_encode_dev(inode->i_rdev));
4123 raw_inode->i_block[2] = 0;
4124 }
4125 } else
4126 for (block = 0; block < EXT4_N_BLOCKS; block++)
4127 raw_inode->i_block[block] = ei->i_data[block];
4128
4129 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4130 if (ei->i_extra_isize) {
4131 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4132 raw_inode->i_version_hi =
4133 cpu_to_le32(inode->i_version >> 32);
4134 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4135 }
4136
4137 ext4_inode_csum_set(inode, raw_inode, ei);
4138
4139 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4140 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4141 if (!err)
4142 err = rc;
4143 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4144
4145 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4146 out_brelse:
4147 brelse(bh);
4148 ext4_std_error(inode->i_sb, err);
4149 return err;
4150 }
4151
4152 /*
4153 * ext4_write_inode()
4154 *
4155 * We are called from a few places:
4156 *
4157 * - Within generic_file_write() for O_SYNC files.
4158 * Here, there will be no transaction running. We wait for any running
4159 * transaction to commit.
4160 *
4161 * - Within sys_sync(), kupdate and such.
4162 * We wait on commit, if tol to.
4163 *
4164 * - Within prune_icache() (PF_MEMALLOC == true)
4165 * Here we simply return. We can't afford to block kswapd on the
4166 * journal commit.
4167 *
4168 * In all cases it is actually safe for us to return without doing anything,
4169 * because the inode has been copied into a raw inode buffer in
4170 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4171 * knfsd.
4172 *
4173 * Note that we are absolutely dependent upon all inode dirtiers doing the
4174 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4175 * which we are interested.
4176 *
4177 * It would be a bug for them to not do this. The code:
4178 *
4179 * mark_inode_dirty(inode)
4180 * stuff();
4181 * inode->i_size = expr;
4182 *
4183 * is in error because a kswapd-driven write_inode() could occur while
4184 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4185 * will no longer be on the superblock's dirty inode list.
4186 */
4187 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4188 {
4189 int err;
4190
4191 if (current->flags & PF_MEMALLOC)
4192 return 0;
4193
4194 if (EXT4_SB(inode->i_sb)->s_journal) {
4195 if (ext4_journal_current_handle()) {
4196 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4197 dump_stack();
4198 return -EIO;
4199 }
4200
4201 if (wbc->sync_mode != WB_SYNC_ALL)
4202 return 0;
4203
4204 err = ext4_force_commit(inode->i_sb);
4205 } else {
4206 struct ext4_iloc iloc;
4207
4208 err = __ext4_get_inode_loc(inode, &iloc, 0);
4209 if (err)
4210 return err;
4211 if (wbc->sync_mode == WB_SYNC_ALL)
4212 sync_dirty_buffer(iloc.bh);
4213 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4214 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4215 "IO error syncing inode");
4216 err = -EIO;
4217 }
4218 brelse(iloc.bh);
4219 }
4220 return err;
4221 }
4222
4223 /*
4224 * ext4_setattr()
4225 *
4226 * Called from notify_change.
4227 *
4228 * We want to trap VFS attempts to truncate the file as soon as
4229 * possible. In particular, we want to make sure that when the VFS
4230 * shrinks i_size, we put the inode on the orphan list and modify
4231 * i_disksize immediately, so that during the subsequent flushing of
4232 * dirty pages and freeing of disk blocks, we can guarantee that any
4233 * commit will leave the blocks being flushed in an unused state on
4234 * disk. (On recovery, the inode will get truncated and the blocks will
4235 * be freed, so we have a strong guarantee that no future commit will
4236 * leave these blocks visible to the user.)
4237 *
4238 * Another thing we have to assure is that if we are in ordered mode
4239 * and inode is still attached to the committing transaction, we must
4240 * we start writeout of all the dirty pages which are being truncated.
4241 * This way we are sure that all the data written in the previous
4242 * transaction are already on disk (truncate waits for pages under
4243 * writeback).
4244 *
4245 * Called with inode->i_mutex down.
4246 */
4247 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4248 {
4249 struct inode *inode = dentry->d_inode;
4250 int error, rc = 0;
4251 int orphan = 0;
4252 const unsigned int ia_valid = attr->ia_valid;
4253
4254 error = inode_change_ok(inode, attr);
4255 if (error)
4256 return error;
4257
4258 if (is_quota_modification(inode, attr))
4259 dquot_initialize(inode);
4260 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4261 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4262 handle_t *handle;
4263
4264 /* (user+group)*(old+new) structure, inode write (sb,
4265 * inode block, ? - but truncate inode update has it) */
4266 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
4267 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
4268 if (IS_ERR(handle)) {
4269 error = PTR_ERR(handle);
4270 goto err_out;
4271 }
4272 error = dquot_transfer(inode, attr);
4273 if (error) {
4274 ext4_journal_stop(handle);
4275 return error;
4276 }
4277 /* Update corresponding info in inode so that everything is in
4278 * one transaction */
4279 if (attr->ia_valid & ATTR_UID)
4280 inode->i_uid = attr->ia_uid;
4281 if (attr->ia_valid & ATTR_GID)
4282 inode->i_gid = attr->ia_gid;
4283 error = ext4_mark_inode_dirty(handle, inode);
4284 ext4_journal_stop(handle);
4285 }
4286
4287 if (attr->ia_valid & ATTR_SIZE) {
4288
4289 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4290 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4291
4292 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4293 return -EFBIG;
4294 }
4295 }
4296
4297 if (S_ISREG(inode->i_mode) &&
4298 attr->ia_valid & ATTR_SIZE &&
4299 (attr->ia_size < inode->i_size)) {
4300 handle_t *handle;
4301
4302 handle = ext4_journal_start(inode, 3);
4303 if (IS_ERR(handle)) {
4304 error = PTR_ERR(handle);
4305 goto err_out;
4306 }
4307 if (ext4_handle_valid(handle)) {
4308 error = ext4_orphan_add(handle, inode);
4309 orphan = 1;
4310 }
4311 EXT4_I(inode)->i_disksize = attr->ia_size;
4312 rc = ext4_mark_inode_dirty(handle, inode);
4313 if (!error)
4314 error = rc;
4315 ext4_journal_stop(handle);
4316
4317 if (ext4_should_order_data(inode)) {
4318 error = ext4_begin_ordered_truncate(inode,
4319 attr->ia_size);
4320 if (error) {
4321 /* Do as much error cleanup as possible */
4322 handle = ext4_journal_start(inode, 3);
4323 if (IS_ERR(handle)) {
4324 ext4_orphan_del(NULL, inode);
4325 goto err_out;
4326 }
4327 ext4_orphan_del(handle, inode);
4328 orphan = 0;
4329 ext4_journal_stop(handle);
4330 goto err_out;
4331 }
4332 }
4333 }
4334
4335 if (attr->ia_valid & ATTR_SIZE) {
4336 if (attr->ia_size != i_size_read(inode)) {
4337 truncate_setsize(inode, attr->ia_size);
4338 /* Inode size will be reduced, wait for dio in flight.
4339 * Temporarily disable dioread_nolock to prevent
4340 * livelock. */
4341 if (orphan) {
4342 ext4_inode_block_unlocked_dio(inode);
4343 inode_dio_wait(inode);
4344 ext4_inode_resume_unlocked_dio(inode);
4345 }
4346 }
4347 ext4_truncate(inode);
4348 }
4349
4350 if (!rc) {
4351 setattr_copy(inode, attr);
4352 mark_inode_dirty(inode);
4353 }
4354
4355 /*
4356 * If the call to ext4_truncate failed to get a transaction handle at
4357 * all, we need to clean up the in-core orphan list manually.
4358 */
4359 if (orphan && inode->i_nlink)
4360 ext4_orphan_del(NULL, inode);
4361
4362 if (!rc && (ia_valid & ATTR_MODE))
4363 rc = ext4_acl_chmod(inode);
4364
4365 err_out:
4366 ext4_std_error(inode->i_sb, error);
4367 if (!error)
4368 error = rc;
4369 return error;
4370 }
4371
4372 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4373 struct kstat *stat)
4374 {
4375 struct inode *inode;
4376 unsigned long delalloc_blocks;
4377
4378 inode = dentry->d_inode;
4379 generic_fillattr(inode, stat);
4380
4381 /*
4382 * We can't update i_blocks if the block allocation is delayed
4383 * otherwise in the case of system crash before the real block
4384 * allocation is done, we will have i_blocks inconsistent with
4385 * on-disk file blocks.
4386 * We always keep i_blocks updated together with real
4387 * allocation. But to not confuse with user, stat
4388 * will return the blocks that include the delayed allocation
4389 * blocks for this file.
4390 */
4391 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4392 EXT4_I(inode)->i_reserved_data_blocks);
4393
4394 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4395 return 0;
4396 }
4397
4398 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4399 {
4400 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4401 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
4402 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4403 }
4404
4405 /*
4406 * Account for index blocks, block groups bitmaps and block group
4407 * descriptor blocks if modify datablocks and index blocks
4408 * worse case, the indexs blocks spread over different block groups
4409 *
4410 * If datablocks are discontiguous, they are possible to spread over
4411 * different block groups too. If they are contiguous, with flexbg,
4412 * they could still across block group boundary.
4413 *
4414 * Also account for superblock, inode, quota and xattr blocks
4415 */
4416 static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4417 {
4418 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4419 int gdpblocks;
4420 int idxblocks;
4421 int ret = 0;
4422
4423 /*
4424 * How many index blocks need to touch to modify nrblocks?
4425 * The "Chunk" flag indicating whether the nrblocks is
4426 * physically contiguous on disk
4427 *
4428 * For Direct IO and fallocate, they calls get_block to allocate
4429 * one single extent at a time, so they could set the "Chunk" flag
4430 */
4431 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4432
4433 ret = idxblocks;
4434
4435 /*
4436 * Now let's see how many group bitmaps and group descriptors need
4437 * to account
4438 */
4439 groups = idxblocks;
4440 if (chunk)
4441 groups += 1;
4442 else
4443 groups += nrblocks;
4444
4445 gdpblocks = groups;
4446 if (groups > ngroups)
4447 groups = ngroups;
4448 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4449 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4450
4451 /* bitmaps and block group descriptor blocks */
4452 ret += groups + gdpblocks;
4453
4454 /* Blocks for super block, inode, quota and xattr blocks */
4455 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4456
4457 return ret;
4458 }
4459
4460 /*
4461 * Calculate the total number of credits to reserve to fit
4462 * the modification of a single pages into a single transaction,
4463 * which may include multiple chunks of block allocations.
4464 *
4465 * This could be called via ext4_write_begin()
4466 *
4467 * We need to consider the worse case, when
4468 * one new block per extent.
4469 */
4470 int ext4_writepage_trans_blocks(struct inode *inode)
4471 {
4472 int bpp = ext4_journal_blocks_per_page(inode);
4473 int ret;
4474
4475 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4476
4477 /* Account for data blocks for journalled mode */
4478 if (ext4_should_journal_data(inode))
4479 ret += bpp;
4480 return ret;
4481 }
4482
4483 /*
4484 * Calculate the journal credits for a chunk of data modification.
4485 *
4486 * This is called from DIO, fallocate or whoever calling
4487 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4488 *
4489 * journal buffers for data blocks are not included here, as DIO
4490 * and fallocate do no need to journal data buffers.
4491 */
4492 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4493 {
4494 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4495 }
4496
4497 /*
4498 * The caller must have previously called ext4_reserve_inode_write().
4499 * Give this, we know that the caller already has write access to iloc->bh.
4500 */
4501 int ext4_mark_iloc_dirty(handle_t *handle,
4502 struct inode *inode, struct ext4_iloc *iloc)
4503 {
4504 int err = 0;
4505
4506 if (IS_I_VERSION(inode))
4507 inode_inc_iversion(inode);
4508
4509 /* the do_update_inode consumes one bh->b_count */
4510 get_bh(iloc->bh);
4511
4512 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4513 err = ext4_do_update_inode(handle, inode, iloc);
4514 put_bh(iloc->bh);
4515 return err;
4516 }
4517
4518 /*
4519 * On success, We end up with an outstanding reference count against
4520 * iloc->bh. This _must_ be cleaned up later.
4521 */
4522
4523 int
4524 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4525 struct ext4_iloc *iloc)
4526 {
4527 int err;
4528
4529 err = ext4_get_inode_loc(inode, iloc);
4530 if (!err) {
4531 BUFFER_TRACE(iloc->bh, "get_write_access");
4532 err = ext4_journal_get_write_access(handle, iloc->bh);
4533 if (err) {
4534 brelse(iloc->bh);
4535 iloc->bh = NULL;
4536 }
4537 }
4538 ext4_std_error(inode->i_sb, err);
4539 return err;
4540 }
4541
4542 /*
4543 * Expand an inode by new_extra_isize bytes.
4544 * Returns 0 on success or negative error number on failure.
4545 */
4546 static int ext4_expand_extra_isize(struct inode *inode,
4547 unsigned int new_extra_isize,
4548 struct ext4_iloc iloc,
4549 handle_t *handle)
4550 {
4551 struct ext4_inode *raw_inode;
4552 struct ext4_xattr_ibody_header *header;
4553
4554 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4555 return 0;
4556
4557 raw_inode = ext4_raw_inode(&iloc);
4558
4559 header = IHDR(inode, raw_inode);
4560
4561 /* No extended attributes present */
4562 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4563 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4564 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4565 new_extra_isize);
4566 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4567 return 0;
4568 }
4569
4570 /* try to expand with EAs present */
4571 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4572 raw_inode, handle);
4573 }
4574
4575 /*
4576 * What we do here is to mark the in-core inode as clean with respect to inode
4577 * dirtiness (it may still be data-dirty).
4578 * This means that the in-core inode may be reaped by prune_icache
4579 * without having to perform any I/O. This is a very good thing,
4580 * because *any* task may call prune_icache - even ones which
4581 * have a transaction open against a different journal.
4582 *
4583 * Is this cheating? Not really. Sure, we haven't written the
4584 * inode out, but prune_icache isn't a user-visible syncing function.
4585 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4586 * we start and wait on commits.
4587 */
4588 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
4589 {
4590 struct ext4_iloc iloc;
4591 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4592 static unsigned int mnt_count;
4593 int err, ret;
4594
4595 might_sleep();
4596 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4597 err = ext4_reserve_inode_write(handle, inode, &iloc);
4598 if (ext4_handle_valid(handle) &&
4599 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4600 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4601 /*
4602 * We need extra buffer credits since we may write into EA block
4603 * with this same handle. If journal_extend fails, then it will
4604 * only result in a minor loss of functionality for that inode.
4605 * If this is felt to be critical, then e2fsck should be run to
4606 * force a large enough s_min_extra_isize.
4607 */
4608 if ((jbd2_journal_extend(handle,
4609 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4610 ret = ext4_expand_extra_isize(inode,
4611 sbi->s_want_extra_isize,
4612 iloc, handle);
4613 if (ret) {
4614 ext4_set_inode_state(inode,
4615 EXT4_STATE_NO_EXPAND);
4616 if (mnt_count !=
4617 le16_to_cpu(sbi->s_es->s_mnt_count)) {
4618 ext4_warning(inode->i_sb,
4619 "Unable to expand inode %lu. Delete"
4620 " some EAs or run e2fsck.",
4621 inode->i_ino);
4622 mnt_count =
4623 le16_to_cpu(sbi->s_es->s_mnt_count);
4624 }
4625 }
4626 }
4627 }
4628 if (!err)
4629 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4630 return err;
4631 }
4632
4633 /*
4634 * ext4_dirty_inode() is called from __mark_inode_dirty()
4635 *
4636 * We're really interested in the case where a file is being extended.
4637 * i_size has been changed by generic_commit_write() and we thus need
4638 * to include the updated inode in the current transaction.
4639 *
4640 * Also, dquot_alloc_block() will always dirty the inode when blocks
4641 * are allocated to the file.
4642 *
4643 * If the inode is marked synchronous, we don't honour that here - doing
4644 * so would cause a commit on atime updates, which we don't bother doing.
4645 * We handle synchronous inodes at the highest possible level.
4646 */
4647 void ext4_dirty_inode(struct inode *inode, int flags)
4648 {
4649 handle_t *handle;
4650
4651 handle = ext4_journal_start(inode, 2);
4652 if (IS_ERR(handle))
4653 goto out;
4654
4655 ext4_mark_inode_dirty(handle, inode);
4656
4657 ext4_journal_stop(handle);
4658 out:
4659 return;
4660 }
4661
4662 #if 0
4663 /*
4664 * Bind an inode's backing buffer_head into this transaction, to prevent
4665 * it from being flushed to disk early. Unlike
4666 * ext4_reserve_inode_write, this leaves behind no bh reference and
4667 * returns no iloc structure, so the caller needs to repeat the iloc
4668 * lookup to mark the inode dirty later.
4669 */
4670 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
4671 {
4672 struct ext4_iloc iloc;
4673
4674 int err = 0;
4675 if (handle) {
4676 err = ext4_get_inode_loc(inode, &iloc);
4677 if (!err) {
4678 BUFFER_TRACE(iloc.bh, "get_write_access");
4679 err = jbd2_journal_get_write_access(handle, iloc.bh);
4680 if (!err)
4681 err = ext4_handle_dirty_metadata(handle,
4682 NULL,
4683 iloc.bh);
4684 brelse(iloc.bh);
4685 }
4686 }
4687 ext4_std_error(inode->i_sb, err);
4688 return err;
4689 }
4690 #endif
4691
4692 int ext4_change_inode_journal_flag(struct inode *inode, int val)
4693 {
4694 journal_t *journal;
4695 handle_t *handle;
4696 int err;
4697
4698 /*
4699 * We have to be very careful here: changing a data block's
4700 * journaling status dynamically is dangerous. If we write a
4701 * data block to the journal, change the status and then delete
4702 * that block, we risk forgetting to revoke the old log record
4703 * from the journal and so a subsequent replay can corrupt data.
4704 * So, first we make sure that the journal is empty and that
4705 * nobody is changing anything.
4706 */
4707
4708 journal = EXT4_JOURNAL(inode);
4709 if (!journal)
4710 return 0;
4711 if (is_journal_aborted(journal))
4712 return -EROFS;
4713 /* We have to allocate physical blocks for delalloc blocks
4714 * before flushing journal. otherwise delalloc blocks can not
4715 * be allocated any more. even more truncate on delalloc blocks
4716 * could trigger BUG by flushing delalloc blocks in journal.
4717 * There is no delalloc block in non-journal data mode.
4718 */
4719 if (val && test_opt(inode->i_sb, DELALLOC)) {
4720 err = ext4_alloc_da_blocks(inode);
4721 if (err < 0)
4722 return err;
4723 }
4724
4725 /* Wait for all existing dio workers */
4726 ext4_inode_block_unlocked_dio(inode);
4727 inode_dio_wait(inode);
4728
4729 jbd2_journal_lock_updates(journal);
4730
4731 /*
4732 * OK, there are no updates running now, and all cached data is
4733 * synced to disk. We are now in a completely consistent state
4734 * which doesn't have anything in the journal, and we know that
4735 * no filesystem updates are running, so it is safe to modify
4736 * the inode's in-core data-journaling state flag now.
4737 */
4738
4739 if (val)
4740 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4741 else {
4742 jbd2_journal_flush(journal);
4743 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
4744 }
4745 ext4_set_aops(inode);
4746
4747 jbd2_journal_unlock_updates(journal);
4748 ext4_inode_resume_unlocked_dio(inode);
4749
4750 /* Finally we can mark the inode as dirty. */
4751
4752 handle = ext4_journal_start(inode, 1);
4753 if (IS_ERR(handle))
4754 return PTR_ERR(handle);
4755
4756 err = ext4_mark_inode_dirty(handle, inode);
4757 ext4_handle_sync(handle);
4758 ext4_journal_stop(handle);
4759 ext4_std_error(inode->i_sb, err);
4760
4761 return err;
4762 }
4763
4764 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4765 {
4766 return !buffer_mapped(bh);
4767 }
4768
4769 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
4770 {
4771 struct page *page = vmf->page;
4772 loff_t size;
4773 unsigned long len;
4774 int ret;
4775 struct file *file = vma->vm_file;
4776 struct inode *inode = file->f_path.dentry->d_inode;
4777 struct address_space *mapping = inode->i_mapping;
4778 handle_t *handle;
4779 get_block_t *get_block;
4780 int retries = 0;
4781
4782 sb_start_pagefault(inode->i_sb);
4783 file_update_time(vma->vm_file);
4784 /* Delalloc case is easy... */
4785 if (test_opt(inode->i_sb, DELALLOC) &&
4786 !ext4_should_journal_data(inode) &&
4787 !ext4_nonda_switch(inode->i_sb)) {
4788 do {
4789 ret = __block_page_mkwrite(vma, vmf,
4790 ext4_da_get_block_prep);
4791 } while (ret == -ENOSPC &&
4792 ext4_should_retry_alloc(inode->i_sb, &retries));
4793 goto out_ret;
4794 }
4795
4796 lock_page(page);
4797 size = i_size_read(inode);
4798 /* Page got truncated from under us? */
4799 if (page->mapping != mapping || page_offset(page) > size) {
4800 unlock_page(page);
4801 ret = VM_FAULT_NOPAGE;
4802 goto out;
4803 }
4804
4805 if (page->index == size >> PAGE_CACHE_SHIFT)
4806 len = size & ~PAGE_CACHE_MASK;
4807 else
4808 len = PAGE_CACHE_SIZE;
4809 /*
4810 * Return if we have all the buffers mapped. This avoids the need to do
4811 * journal_start/journal_stop which can block and take a long time
4812 */
4813 if (page_has_buffers(page)) {
4814 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
4815 ext4_bh_unmapped)) {
4816 /* Wait so that we don't change page under IO */
4817 wait_on_page_writeback(page);
4818 ret = VM_FAULT_LOCKED;
4819 goto out;
4820 }
4821 }
4822 unlock_page(page);
4823 /* OK, we need to fill the hole... */
4824 if (ext4_should_dioread_nolock(inode))
4825 get_block = ext4_get_block_write;
4826 else
4827 get_block = ext4_get_block;
4828 retry_alloc:
4829 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4830 if (IS_ERR(handle)) {
4831 ret = VM_FAULT_SIGBUS;
4832 goto out;
4833 }
4834 ret = __block_page_mkwrite(vma, vmf, get_block);
4835 if (!ret && ext4_should_journal_data(inode)) {
4836 if (walk_page_buffers(handle, page_buffers(page), 0,
4837 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4838 unlock_page(page);
4839 ret = VM_FAULT_SIGBUS;
4840 ext4_journal_stop(handle);
4841 goto out;
4842 }
4843 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4844 }
4845 ext4_journal_stop(handle);
4846 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4847 goto retry_alloc;
4848 out_ret:
4849 ret = block_page_mkwrite_return(ret);
4850 out:
4851 sb_end_pagefault(inode->i_sb);
4852 return ret;
4853 }