Merge branch 'core-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
49 {
50 return jbd2_journal_begin_ordered_truncate(
51 EXT4_SB(inode->i_sb)->s_journal,
52 &EXT4_I(inode)->jinode,
53 new_size);
54 }
55
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
58 /*
59 * Test whether an inode is a fast symlink.
60 */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63 int ea_blocks = EXT4_I(inode)->i_file_acl ?
64 (inode->i_sb->s_blocksize >> 9) : 0;
65
66 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68
69 /*
70 * The ext4 forget function must perform a revoke if we are freeing data
71 * which has been journaled. Metadata (eg. indirect blocks) must be
72 * revoked in all cases.
73 *
74 * "bh" may be NULL: a metadata block may have been freed from memory
75 * but there may still be a record of it in the journal, and that record
76 * still needs to be revoked.
77 *
78 * If the handle isn't valid we're not journaling so there's nothing to do.
79 */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83 int err;
84
85 if (!ext4_handle_valid(handle))
86 return 0;
87
88 might_sleep();
89
90 BUFFER_TRACE(bh, "enter");
91
92 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93 "data mode %lx\n",
94 bh, is_metadata, inode->i_mode,
95 test_opt(inode->i_sb, DATA_FLAGS));
96
97 /* Never use the revoke function if we are doing full data
98 * journaling: there is no need to, and a V1 superblock won't
99 * support it. Otherwise, only skip the revoke on un-journaled
100 * data blocks. */
101
102 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 (!is_metadata && !ext4_should_journal_data(inode))) {
104 if (bh) {
105 BUFFER_TRACE(bh, "call jbd2_journal_forget");
106 return ext4_journal_forget(handle, bh);
107 }
108 return 0;
109 }
110
111 /*
112 * data!=journal && (is_metadata || should_journal_data(inode))
113 */
114 BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 err = ext4_journal_revoke(handle, blocknr, bh);
116 if (err)
117 ext4_abort(inode->i_sb, __func__,
118 "error %d when attempting revoke", err);
119 BUFFER_TRACE(bh, "exit");
120 return err;
121 }
122
123 /*
124 * Work out how many blocks we need to proceed with the next chunk of a
125 * truncate transaction.
126 */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129 ext4_lblk_t needed;
130
131 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133 /* Give ourselves just enough room to cope with inodes in which
134 * i_blocks is corrupt: we've seen disk corruptions in the past
135 * which resulted in random data in an inode which looked enough
136 * like a regular file for ext4 to try to delete it. Things
137 * will go a bit crazy if that happens, but at least we should
138 * try not to panic the whole kernel. */
139 if (needed < 2)
140 needed = 2;
141
142 /* But we need to bound the transaction so we don't overflow the
143 * journal. */
144 if (needed > EXT4_MAX_TRANS_DATA)
145 needed = EXT4_MAX_TRANS_DATA;
146
147 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149
150 /*
151 * Truncate transactions can be complex and absolutely huge. So we need to
152 * be able to restart the transaction at a conventient checkpoint to make
153 * sure we don't overflow the journal.
154 *
155 * start_transaction gets us a new handle for a truncate transaction,
156 * and extend_transaction tries to extend the existing one a bit. If
157 * extend fails, we need to propagate the failure up and restart the
158 * transaction in the top-level truncate loop. --sct
159 */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162 handle_t *result;
163
164 result = ext4_journal_start(inode, blocks_for_truncate(inode));
165 if (!IS_ERR(result))
166 return result;
167
168 ext4_std_error(inode->i_sb, PTR_ERR(result));
169 return result;
170 }
171
172 /*
173 * Try to extend this transaction for the purposes of truncation.
174 *
175 * Returns 0 if we managed to create more room. If we can't create more
176 * room, and the transaction must be restarted we return 1.
177 */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180 if (!ext4_handle_valid(handle))
181 return 0;
182 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183 return 0;
184 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185 return 0;
186 return 1;
187 }
188
189 /*
190 * Restart the transaction associated with *handle. This does a commit,
191 * so before we call here everything must be consistently dirtied against
192 * this transaction.
193 */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196 BUG_ON(EXT4_JOURNAL(inode) == NULL);
197 jbd_debug(2, "restarting handle %p\n", handle);
198 return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200
201 /*
202 * Called at the last iput() if i_nlink is zero.
203 */
204 void ext4_delete_inode(struct inode *inode)
205 {
206 handle_t *handle;
207 int err;
208
209 if (ext4_should_order_data(inode))
210 ext4_begin_ordered_truncate(inode, 0);
211 truncate_inode_pages(&inode->i_data, 0);
212
213 if (is_bad_inode(inode))
214 goto no_delete;
215
216 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217 if (IS_ERR(handle)) {
218 ext4_std_error(inode->i_sb, PTR_ERR(handle));
219 /*
220 * If we're going to skip the normal cleanup, we still need to
221 * make sure that the in-core orphan linked list is properly
222 * cleaned up.
223 */
224 ext4_orphan_del(NULL, inode);
225 goto no_delete;
226 }
227
228 if (IS_SYNC(inode))
229 ext4_handle_sync(handle);
230 inode->i_size = 0;
231 err = ext4_mark_inode_dirty(handle, inode);
232 if (err) {
233 ext4_warning(inode->i_sb, __func__,
234 "couldn't mark inode dirty (err %d)", err);
235 goto stop_handle;
236 }
237 if (inode->i_blocks)
238 ext4_truncate(inode);
239
240 /*
241 * ext4_ext_truncate() doesn't reserve any slop when it
242 * restarts journal transactions; therefore there may not be
243 * enough credits left in the handle to remove the inode from
244 * the orphan list and set the dtime field.
245 */
246 if (!ext4_handle_has_enough_credits(handle, 3)) {
247 err = ext4_journal_extend(handle, 3);
248 if (err > 0)
249 err = ext4_journal_restart(handle, 3);
250 if (err != 0) {
251 ext4_warning(inode->i_sb, __func__,
252 "couldn't extend journal (err %d)", err);
253 stop_handle:
254 ext4_journal_stop(handle);
255 goto no_delete;
256 }
257 }
258
259 /*
260 * Kill off the orphan record which ext4_truncate created.
261 * AKPM: I think this can be inside the above `if'.
262 * Note that ext4_orphan_del() has to be able to cope with the
263 * deletion of a non-existent orphan - this is because we don't
264 * know if ext4_truncate() actually created an orphan record.
265 * (Well, we could do this if we need to, but heck - it works)
266 */
267 ext4_orphan_del(handle, inode);
268 EXT4_I(inode)->i_dtime = get_seconds();
269
270 /*
271 * One subtle ordering requirement: if anything has gone wrong
272 * (transaction abort, IO errors, whatever), then we can still
273 * do these next steps (the fs will already have been marked as
274 * having errors), but we can't free the inode if the mark_dirty
275 * fails.
276 */
277 if (ext4_mark_inode_dirty(handle, inode))
278 /* If that failed, just do the required in-core inode clear. */
279 clear_inode(inode);
280 else
281 ext4_free_inode(handle, inode);
282 ext4_journal_stop(handle);
283 return;
284 no_delete:
285 clear_inode(inode); /* We must guarantee clearing of inode... */
286 }
287
288 typedef struct {
289 __le32 *p;
290 __le32 key;
291 struct buffer_head *bh;
292 } Indirect;
293
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296 p->key = *(p->p = v);
297 p->bh = bh;
298 }
299
300 /**
301 * ext4_block_to_path - parse the block number into array of offsets
302 * @inode: inode in question (we are only interested in its superblock)
303 * @i_block: block number to be parsed
304 * @offsets: array to store the offsets in
305 * @boundary: set this non-zero if the referred-to block is likely to be
306 * followed (on disk) by an indirect block.
307 *
308 * To store the locations of file's data ext4 uses a data structure common
309 * for UNIX filesystems - tree of pointers anchored in the inode, with
310 * data blocks at leaves and indirect blocks in intermediate nodes.
311 * This function translates the block number into path in that tree -
312 * return value is the path length and @offsets[n] is the offset of
313 * pointer to (n+1)th node in the nth one. If @block is out of range
314 * (negative or too large) warning is printed and zero returned.
315 *
316 * Note: function doesn't find node addresses, so no IO is needed. All
317 * we need to know is the capacity of indirect blocks (taken from the
318 * inode->i_sb).
319 */
320
321 /*
322 * Portability note: the last comparison (check that we fit into triple
323 * indirect block) is spelled differently, because otherwise on an
324 * architecture with 32-bit longs and 8Kb pages we might get into trouble
325 * if our filesystem had 8Kb blocks. We might use long long, but that would
326 * kill us on x86. Oh, well, at least the sign propagation does not matter -
327 * i_block would have to be negative in the very beginning, so we would not
328 * get there at all.
329 */
330
331 static int ext4_block_to_path(struct inode *inode,
332 ext4_lblk_t i_block,
333 ext4_lblk_t offsets[4], int *boundary)
334 {
335 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 const long direct_blocks = EXT4_NDIR_BLOCKS,
338 indirect_blocks = ptrs,
339 double_blocks = (1 << (ptrs_bits * 2));
340 int n = 0;
341 int final = 0;
342
343 if (i_block < 0) {
344 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345 } else if (i_block < direct_blocks) {
346 offsets[n++] = i_block;
347 final = direct_blocks;
348 } else if ((i_block -= direct_blocks) < indirect_blocks) {
349 offsets[n++] = EXT4_IND_BLOCK;
350 offsets[n++] = i_block;
351 final = ptrs;
352 } else if ((i_block -= indirect_blocks) < double_blocks) {
353 offsets[n++] = EXT4_DIND_BLOCK;
354 offsets[n++] = i_block >> ptrs_bits;
355 offsets[n++] = i_block & (ptrs - 1);
356 final = ptrs;
357 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358 offsets[n++] = EXT4_TIND_BLOCK;
359 offsets[n++] = i_block >> (ptrs_bits * 2);
360 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 offsets[n++] = i_block & (ptrs - 1);
362 final = ptrs;
363 } else {
364 ext4_warning(inode->i_sb, "ext4_block_to_path",
365 "block %lu > max in inode %lu",
366 i_block + direct_blocks +
367 indirect_blocks + double_blocks, inode->i_ino);
368 }
369 if (boundary)
370 *boundary = final - 1 - (i_block & (ptrs - 1));
371 return n;
372 }
373
374 static int __ext4_check_blockref(const char *function, struct inode *inode,
375 __le32 *p, unsigned int max) {
376
377 unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
378 __le32 *bref = p;
379 while (bref < p+max) {
380 if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
381 ext4_error(inode->i_sb, function,
382 "block reference %u >= max (%u) "
383 "in inode #%lu, offset=%d",
384 le32_to_cpu(*bref), maxblocks,
385 inode->i_ino, (int)(bref-p));
386 return -EIO;
387 }
388 bref++;
389 }
390 return 0;
391 }
392
393
394 #define ext4_check_indirect_blockref(inode, bh) \
395 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
396 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397
398 #define ext4_check_inode_blockref(inode) \
399 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
400 EXT4_NDIR_BLOCKS)
401
402 /**
403 * ext4_get_branch - read the chain of indirect blocks leading to data
404 * @inode: inode in question
405 * @depth: depth of the chain (1 - direct pointer, etc.)
406 * @offsets: offsets of pointers in inode/indirect blocks
407 * @chain: place to store the result
408 * @err: here we store the error value
409 *
410 * Function fills the array of triples <key, p, bh> and returns %NULL
411 * if everything went OK or the pointer to the last filled triple
412 * (incomplete one) otherwise. Upon the return chain[i].key contains
413 * the number of (i+1)-th block in the chain (as it is stored in memory,
414 * i.e. little-endian 32-bit), chain[i].p contains the address of that
415 * number (it points into struct inode for i==0 and into the bh->b_data
416 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417 * block for i>0 and NULL for i==0. In other words, it holds the block
418 * numbers of the chain, addresses they were taken from (and where we can
419 * verify that chain did not change) and buffer_heads hosting these
420 * numbers.
421 *
422 * Function stops when it stumbles upon zero pointer (absent block)
423 * (pointer to last triple returned, *@err == 0)
424 * or when it gets an IO error reading an indirect block
425 * (ditto, *@err == -EIO)
426 * or when it reads all @depth-1 indirect blocks successfully and finds
427 * the whole chain, all way to the data (returns %NULL, *err == 0).
428 *
429 * Need to be called with
430 * down_read(&EXT4_I(inode)->i_data_sem)
431 */
432 static Indirect *ext4_get_branch(struct inode *inode, int depth,
433 ext4_lblk_t *offsets,
434 Indirect chain[4], int *err)
435 {
436 struct super_block *sb = inode->i_sb;
437 Indirect *p = chain;
438 struct buffer_head *bh;
439
440 *err = 0;
441 /* i_data is not going away, no lock needed */
442 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443 if (!p->key)
444 goto no_block;
445 while (--depth) {
446 bh = sb_getblk(sb, le32_to_cpu(p->key));
447 if (unlikely(!bh))
448 goto failure;
449
450 if (!bh_uptodate_or_lock(bh)) {
451 if (bh_submit_read(bh) < 0) {
452 put_bh(bh);
453 goto failure;
454 }
455 /* validate block references */
456 if (ext4_check_indirect_blockref(inode, bh)) {
457 put_bh(bh);
458 goto failure;
459 }
460 }
461
462 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463 /* Reader: end */
464 if (!p->key)
465 goto no_block;
466 }
467 return NULL;
468
469 failure:
470 *err = -EIO;
471 no_block:
472 return p;
473 }
474
475 /**
476 * ext4_find_near - find a place for allocation with sufficient locality
477 * @inode: owner
478 * @ind: descriptor of indirect block.
479 *
480 * This function returns the preferred place for block allocation.
481 * It is used when heuristic for sequential allocation fails.
482 * Rules are:
483 * + if there is a block to the left of our position - allocate near it.
484 * + if pointer will live in indirect block - allocate near that block.
485 * + if pointer will live in inode - allocate in the same
486 * cylinder group.
487 *
488 * In the latter case we colour the starting block by the callers PID to
489 * prevent it from clashing with concurrent allocations for a different inode
490 * in the same block group. The PID is used here so that functionally related
491 * files will be close-by on-disk.
492 *
493 * Caller must make sure that @ind is valid and will stay that way.
494 */
495 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496 {
497 struct ext4_inode_info *ei = EXT4_I(inode);
498 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499 __le32 *p;
500 ext4_fsblk_t bg_start;
501 ext4_fsblk_t last_block;
502 ext4_grpblk_t colour;
503 ext4_group_t block_group;
504 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505
506 /* Try to find previous block */
507 for (p = ind->p - 1; p >= start; p--) {
508 if (*p)
509 return le32_to_cpu(*p);
510 }
511
512 /* No such thing, so let's try location of indirect block */
513 if (ind->bh)
514 return ind->bh->b_blocknr;
515
516 /*
517 * It is going to be referred to from the inode itself? OK, just put it
518 * into the same cylinder group then.
519 */
520 block_group = ei->i_block_group;
521 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522 block_group &= ~(flex_size-1);
523 if (S_ISREG(inode->i_mode))
524 block_group++;
525 }
526 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
529 /*
530 * If we are doing delayed allocation, we don't need take
531 * colour into account.
532 */
533 if (test_opt(inode->i_sb, DELALLOC))
534 return bg_start;
535
536 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537 colour = (current->pid % 16) *
538 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539 else
540 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541 return bg_start + colour;
542 }
543
544 /**
545 * ext4_find_goal - find a preferred place for allocation.
546 * @inode: owner
547 * @block: block we want
548 * @partial: pointer to the last triple within a chain
549 *
550 * Normally this function find the preferred place for block allocation,
551 * returns it.
552 */
553 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554 Indirect *partial)
555 {
556 /*
557 * XXX need to get goal block from mballoc's data structures
558 */
559
560 return ext4_find_near(inode, partial);
561 }
562
563 /**
564 * ext4_blks_to_allocate: Look up the block map and count the number
565 * of direct blocks need to be allocated for the given branch.
566 *
567 * @branch: chain of indirect blocks
568 * @k: number of blocks need for indirect blocks
569 * @blks: number of data blocks to be mapped.
570 * @blocks_to_boundary: the offset in the indirect block
571 *
572 * return the total number of blocks to be allocate, including the
573 * direct and indirect blocks.
574 */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576 int blocks_to_boundary)
577 {
578 unsigned int count = 0;
579
580 /*
581 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 * then it's clear blocks on that path have not allocated
583 */
584 if (k > 0) {
585 /* right now we don't handle cross boundary allocation */
586 if (blks < blocks_to_boundary + 1)
587 count += blks;
588 else
589 count += blocks_to_boundary + 1;
590 return count;
591 }
592
593 count++;
594 while (count < blks && count <= blocks_to_boundary &&
595 le32_to_cpu(*(branch[0].p + count)) == 0) {
596 count++;
597 }
598 return count;
599 }
600
601 /**
602 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
603 * @indirect_blks: the number of blocks need to allocate for indirect
604 * blocks
605 *
606 * @new_blocks: on return it will store the new block numbers for
607 * the indirect blocks(if needed) and the first direct block,
608 * @blks: on return it will store the total number of allocated
609 * direct blocks
610 */
611 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612 ext4_lblk_t iblock, ext4_fsblk_t goal,
613 int indirect_blks, int blks,
614 ext4_fsblk_t new_blocks[4], int *err)
615 {
616 struct ext4_allocation_request ar;
617 int target, i;
618 unsigned long count = 0, blk_allocated = 0;
619 int index = 0;
620 ext4_fsblk_t current_block = 0;
621 int ret = 0;
622
623 /*
624 * Here we try to allocate the requested multiple blocks at once,
625 * on a best-effort basis.
626 * To build a branch, we should allocate blocks for
627 * the indirect blocks(if not allocated yet), and at least
628 * the first direct block of this branch. That's the
629 * minimum number of blocks need to allocate(required)
630 */
631 /* first we try to allocate the indirect blocks */
632 target = indirect_blks;
633 while (target > 0) {
634 count = target;
635 /* allocating blocks for indirect blocks and direct blocks */
636 current_block = ext4_new_meta_blocks(handle, inode,
637 goal, &count, err);
638 if (*err)
639 goto failed_out;
640
641 target -= count;
642 /* allocate blocks for indirect blocks */
643 while (index < indirect_blks && count) {
644 new_blocks[index++] = current_block++;
645 count--;
646 }
647 if (count > 0) {
648 /*
649 * save the new block number
650 * for the first direct block
651 */
652 new_blocks[index] = current_block;
653 printk(KERN_INFO "%s returned more blocks than "
654 "requested\n", __func__);
655 WARN_ON(1);
656 break;
657 }
658 }
659
660 target = blks - count ;
661 blk_allocated = count;
662 if (!target)
663 goto allocated;
664 /* Now allocate data blocks */
665 memset(&ar, 0, sizeof(ar));
666 ar.inode = inode;
667 ar.goal = goal;
668 ar.len = target;
669 ar.logical = iblock;
670 if (S_ISREG(inode->i_mode))
671 /* enable in-core preallocation only for regular files */
672 ar.flags = EXT4_MB_HINT_DATA;
673
674 current_block = ext4_mb_new_blocks(handle, &ar, err);
675
676 if (*err && (target == blks)) {
677 /*
678 * if the allocation failed and we didn't allocate
679 * any blocks before
680 */
681 goto failed_out;
682 }
683 if (!*err) {
684 if (target == blks) {
685 /*
686 * save the new block number
687 * for the first direct block
688 */
689 new_blocks[index] = current_block;
690 }
691 blk_allocated += ar.len;
692 }
693 allocated:
694 /* total number of blocks allocated for direct blocks */
695 ret = blk_allocated;
696 *err = 0;
697 return ret;
698 failed_out:
699 for (i = 0; i < index; i++)
700 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701 return ret;
702 }
703
704 /**
705 * ext4_alloc_branch - allocate and set up a chain of blocks.
706 * @inode: owner
707 * @indirect_blks: number of allocated indirect blocks
708 * @blks: number of allocated direct blocks
709 * @offsets: offsets (in the blocks) to store the pointers to next.
710 * @branch: place to store the chain in.
711 *
712 * This function allocates blocks, zeroes out all but the last one,
713 * links them into chain and (if we are synchronous) writes them to disk.
714 * In other words, it prepares a branch that can be spliced onto the
715 * inode. It stores the information about that chain in the branch[], in
716 * the same format as ext4_get_branch() would do. We are calling it after
717 * we had read the existing part of chain and partial points to the last
718 * triple of that (one with zero ->key). Upon the exit we have the same
719 * picture as after the successful ext4_get_block(), except that in one
720 * place chain is disconnected - *branch->p is still zero (we did not
721 * set the last link), but branch->key contains the number that should
722 * be placed into *branch->p to fill that gap.
723 *
724 * If allocation fails we free all blocks we've allocated (and forget
725 * their buffer_heads) and return the error value the from failed
726 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727 * as described above and return 0.
728 */
729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730 ext4_lblk_t iblock, int indirect_blks,
731 int *blks, ext4_fsblk_t goal,
732 ext4_lblk_t *offsets, Indirect *branch)
733 {
734 int blocksize = inode->i_sb->s_blocksize;
735 int i, n = 0;
736 int err = 0;
737 struct buffer_head *bh;
738 int num;
739 ext4_fsblk_t new_blocks[4];
740 ext4_fsblk_t current_block;
741
742 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743 *blks, new_blocks, &err);
744 if (err)
745 return err;
746
747 branch[0].key = cpu_to_le32(new_blocks[0]);
748 /*
749 * metadata blocks and data blocks are allocated.
750 */
751 for (n = 1; n <= indirect_blks; n++) {
752 /*
753 * Get buffer_head for parent block, zero it out
754 * and set the pointer to new one, then send
755 * parent to disk.
756 */
757 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758 branch[n].bh = bh;
759 lock_buffer(bh);
760 BUFFER_TRACE(bh, "call get_create_access");
761 err = ext4_journal_get_create_access(handle, bh);
762 if (err) {
763 unlock_buffer(bh);
764 brelse(bh);
765 goto failed;
766 }
767
768 memset(bh->b_data, 0, blocksize);
769 branch[n].p = (__le32 *) bh->b_data + offsets[n];
770 branch[n].key = cpu_to_le32(new_blocks[n]);
771 *branch[n].p = branch[n].key;
772 if (n == indirect_blks) {
773 current_block = new_blocks[n];
774 /*
775 * End of chain, update the last new metablock of
776 * the chain to point to the new allocated
777 * data blocks numbers
778 */
779 for (i=1; i < num; i++)
780 *(branch[n].p + i) = cpu_to_le32(++current_block);
781 }
782 BUFFER_TRACE(bh, "marking uptodate");
783 set_buffer_uptodate(bh);
784 unlock_buffer(bh);
785
786 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
787 err = ext4_handle_dirty_metadata(handle, inode, bh);
788 if (err)
789 goto failed;
790 }
791 *blks = num;
792 return err;
793 failed:
794 /* Allocation failed, free what we already allocated */
795 for (i = 1; i <= n ; i++) {
796 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
797 ext4_journal_forget(handle, branch[i].bh);
798 }
799 for (i = 0; i < indirect_blks; i++)
800 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
801
802 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
803
804 return err;
805 }
806
807 /**
808 * ext4_splice_branch - splice the allocated branch onto inode.
809 * @inode: owner
810 * @block: (logical) number of block we are adding
811 * @chain: chain of indirect blocks (with a missing link - see
812 * ext4_alloc_branch)
813 * @where: location of missing link
814 * @num: number of indirect blocks we are adding
815 * @blks: number of direct blocks we are adding
816 *
817 * This function fills the missing link and does all housekeeping needed in
818 * inode (->i_blocks, etc.). In case of success we end up with the full
819 * chain to new block and return 0.
820 */
821 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
822 ext4_lblk_t block, Indirect *where, int num, int blks)
823 {
824 int i;
825 int err = 0;
826 ext4_fsblk_t current_block;
827
828 /*
829 * If we're splicing into a [td]indirect block (as opposed to the
830 * inode) then we need to get write access to the [td]indirect block
831 * before the splice.
832 */
833 if (where->bh) {
834 BUFFER_TRACE(where->bh, "get_write_access");
835 err = ext4_journal_get_write_access(handle, where->bh);
836 if (err)
837 goto err_out;
838 }
839 /* That's it */
840
841 *where->p = where->key;
842
843 /*
844 * Update the host buffer_head or inode to point to more just allocated
845 * direct blocks blocks
846 */
847 if (num == 0 && blks > 1) {
848 current_block = le32_to_cpu(where->key) + 1;
849 for (i = 1; i < blks; i++)
850 *(where->p + i) = cpu_to_le32(current_block++);
851 }
852
853 /* We are done with atomic stuff, now do the rest of housekeeping */
854
855 inode->i_ctime = ext4_current_time(inode);
856 ext4_mark_inode_dirty(handle, inode);
857
858 /* had we spliced it onto indirect block? */
859 if (where->bh) {
860 /*
861 * If we spliced it onto an indirect block, we haven't
862 * altered the inode. Note however that if it is being spliced
863 * onto an indirect block at the very end of the file (the
864 * file is growing) then we *will* alter the inode to reflect
865 * the new i_size. But that is not done here - it is done in
866 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867 */
868 jbd_debug(5, "splicing indirect only\n");
869 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
871 if (err)
872 goto err_out;
873 } else {
874 /*
875 * OK, we spliced it into the inode itself on a direct block.
876 * Inode was dirtied above.
877 */
878 jbd_debug(5, "splicing direct\n");
879 }
880 return err;
881
882 err_out:
883 for (i = 1; i <= num; i++) {
884 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
885 ext4_journal_forget(handle, where[i].bh);
886 ext4_free_blocks(handle, inode,
887 le32_to_cpu(where[i-1].key), 1, 0);
888 }
889 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
890
891 return err;
892 }
893
894 /*
895 * Allocation strategy is simple: if we have to allocate something, we will
896 * have to go the whole way to leaf. So let's do it before attaching anything
897 * to tree, set linkage between the newborn blocks, write them if sync is
898 * required, recheck the path, free and repeat if check fails, otherwise
899 * set the last missing link (that will protect us from any truncate-generated
900 * removals - all blocks on the path are immune now) and possibly force the
901 * write on the parent block.
902 * That has a nice additional property: no special recovery from the failed
903 * allocations is needed - we simply release blocks and do not touch anything
904 * reachable from inode.
905 *
906 * `handle' can be NULL if create == 0.
907 *
908 * return > 0, # of blocks mapped or allocated.
909 * return = 0, if plain lookup failed.
910 * return < 0, error case.
911 *
912 *
913 * Need to be called with
914 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
915 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
916 */
917 static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
918 ext4_lblk_t iblock, unsigned int maxblocks,
919 struct buffer_head *bh_result,
920 int create, int extend_disksize)
921 {
922 int err = -EIO;
923 ext4_lblk_t offsets[4];
924 Indirect chain[4];
925 Indirect *partial;
926 ext4_fsblk_t goal;
927 int indirect_blks;
928 int blocks_to_boundary = 0;
929 int depth;
930 struct ext4_inode_info *ei = EXT4_I(inode);
931 int count = 0;
932 ext4_fsblk_t first_block = 0;
933 loff_t disksize;
934
935
936 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
937 J_ASSERT(handle != NULL || create == 0);
938 depth = ext4_block_to_path(inode, iblock, offsets,
939 &blocks_to_boundary);
940
941 if (depth == 0)
942 goto out;
943
944 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
945
946 /* Simplest case - block found, no allocation needed */
947 if (!partial) {
948 first_block = le32_to_cpu(chain[depth - 1].key);
949 clear_buffer_new(bh_result);
950 count++;
951 /*map more blocks*/
952 while (count < maxblocks && count <= blocks_to_boundary) {
953 ext4_fsblk_t blk;
954
955 blk = le32_to_cpu(*(chain[depth-1].p + count));
956
957 if (blk == first_block + count)
958 count++;
959 else
960 break;
961 }
962 goto got_it;
963 }
964
965 /* Next simple case - plain lookup or failed read of indirect block */
966 if (!create || err == -EIO)
967 goto cleanup;
968
969 /*
970 * Okay, we need to do block allocation.
971 */
972 goal = ext4_find_goal(inode, iblock, partial);
973
974 /* the number of blocks need to allocate for [d,t]indirect blocks */
975 indirect_blks = (chain + depth) - partial - 1;
976
977 /*
978 * Next look up the indirect map to count the totoal number of
979 * direct blocks to allocate for this branch.
980 */
981 count = ext4_blks_to_allocate(partial, indirect_blks,
982 maxblocks, blocks_to_boundary);
983 /*
984 * Block out ext4_truncate while we alter the tree
985 */
986 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
987 &count, goal,
988 offsets + (partial - chain), partial);
989
990 /*
991 * The ext4_splice_branch call will free and forget any buffers
992 * on the new chain if there is a failure, but that risks using
993 * up transaction credits, especially for bitmaps where the
994 * credits cannot be returned. Can we handle this somehow? We
995 * may need to return -EAGAIN upwards in the worst case. --sct
996 */
997 if (!err)
998 err = ext4_splice_branch(handle, inode, iblock,
999 partial, indirect_blks, count);
1000 /*
1001 * i_disksize growing is protected by i_data_sem. Don't forget to
1002 * protect it if you're about to implement concurrent
1003 * ext4_get_block() -bzzz
1004 */
1005 if (!err && extend_disksize) {
1006 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1007 if (disksize > i_size_read(inode))
1008 disksize = i_size_read(inode);
1009 if (disksize > ei->i_disksize)
1010 ei->i_disksize = disksize;
1011 }
1012 if (err)
1013 goto cleanup;
1014
1015 set_buffer_new(bh_result);
1016 got_it:
1017 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1018 if (count > blocks_to_boundary)
1019 set_buffer_boundary(bh_result);
1020 err = count;
1021 /* Clean up and exit */
1022 partial = chain + depth - 1; /* the whole chain */
1023 cleanup:
1024 while (partial > chain) {
1025 BUFFER_TRACE(partial->bh, "call brelse");
1026 brelse(partial->bh);
1027 partial--;
1028 }
1029 BUFFER_TRACE(bh_result, "returned");
1030 out:
1031 return err;
1032 }
1033
1034 qsize_t ext4_get_reserved_space(struct inode *inode)
1035 {
1036 unsigned long long total;
1037
1038 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1039 total = EXT4_I(inode)->i_reserved_data_blocks +
1040 EXT4_I(inode)->i_reserved_meta_blocks;
1041 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1042
1043 return total;
1044 }
1045 /*
1046 * Calculate the number of metadata blocks need to reserve
1047 * to allocate @blocks for non extent file based file
1048 */
1049 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1050 {
1051 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1052 int ind_blks, dind_blks, tind_blks;
1053
1054 /* number of new indirect blocks needed */
1055 ind_blks = (blocks + icap - 1) / icap;
1056
1057 dind_blks = (ind_blks + icap - 1) / icap;
1058
1059 tind_blks = 1;
1060
1061 return ind_blks + dind_blks + tind_blks;
1062 }
1063
1064 /*
1065 * Calculate the number of metadata blocks need to reserve
1066 * to allocate given number of blocks
1067 */
1068 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1069 {
1070 if (!blocks)
1071 return 0;
1072
1073 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1074 return ext4_ext_calc_metadata_amount(inode, blocks);
1075
1076 return ext4_indirect_calc_metadata_amount(inode, blocks);
1077 }
1078
1079 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1080 {
1081 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1082 int total, mdb, mdb_free;
1083
1084 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1085 /* recalculate the number of metablocks still need to be reserved */
1086 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1087 mdb = ext4_calc_metadata_amount(inode, total);
1088
1089 /* figure out how many metablocks to release */
1090 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1091 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1092
1093 if (mdb_free) {
1094 /* Account for allocated meta_blocks */
1095 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1096
1097 /* update fs dirty blocks counter */
1098 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1099 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1100 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1101 }
1102
1103 /* update per-inode reservations */
1104 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1105 EXT4_I(inode)->i_reserved_data_blocks -= used;
1106 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1107
1108 /*
1109 * free those over-booking quota for metadata blocks
1110 */
1111 if (mdb_free)
1112 vfs_dq_release_reservation_block(inode, mdb_free);
1113
1114 /*
1115 * If we have done all the pending block allocations and if
1116 * there aren't any writers on the inode, we can discard the
1117 * inode's preallocations.
1118 */
1119 if (!total && (atomic_read(&inode->i_writecount) == 0))
1120 ext4_discard_preallocations(inode);
1121 }
1122
1123 /*
1124 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1125 * and returns if the blocks are already mapped.
1126 *
1127 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1128 * and store the allocated blocks in the result buffer head and mark it
1129 * mapped.
1130 *
1131 * If file type is extents based, it will call ext4_ext_get_blocks(),
1132 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1133 * based files
1134 *
1135 * On success, it returns the number of blocks being mapped or allocate.
1136 * if create==0 and the blocks are pre-allocated and uninitialized block,
1137 * the result buffer head is unmapped. If the create ==1, it will make sure
1138 * the buffer head is mapped.
1139 *
1140 * It returns 0 if plain look up failed (blocks have not been allocated), in
1141 * that casem, buffer head is unmapped
1142 *
1143 * It returns the error in case of allocation failure.
1144 */
1145 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1146 unsigned int max_blocks, struct buffer_head *bh,
1147 int create, int extend_disksize, int flag)
1148 {
1149 int retval;
1150
1151 clear_buffer_mapped(bh);
1152
1153 /*
1154 * Try to see if we can get the block without requesting
1155 * for new file system block.
1156 */
1157 down_read((&EXT4_I(inode)->i_data_sem));
1158 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1159 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1160 bh, 0, 0);
1161 } else {
1162 retval = ext4_get_blocks_handle(handle,
1163 inode, block, max_blocks, bh, 0, 0);
1164 }
1165 up_read((&EXT4_I(inode)->i_data_sem));
1166
1167 /* If it is only a block(s) look up */
1168 if (!create)
1169 return retval;
1170
1171 /*
1172 * Returns if the blocks have already allocated
1173 *
1174 * Note that if blocks have been preallocated
1175 * ext4_ext_get_block() returns th create = 0
1176 * with buffer head unmapped.
1177 */
1178 if (retval > 0 && buffer_mapped(bh))
1179 return retval;
1180
1181 /*
1182 * New blocks allocate and/or writing to uninitialized extent
1183 * will possibly result in updating i_data, so we take
1184 * the write lock of i_data_sem, and call get_blocks()
1185 * with create == 1 flag.
1186 */
1187 down_write((&EXT4_I(inode)->i_data_sem));
1188
1189 /*
1190 * if the caller is from delayed allocation writeout path
1191 * we have already reserved fs blocks for allocation
1192 * let the underlying get_block() function know to
1193 * avoid double accounting
1194 */
1195 if (flag)
1196 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1197 /*
1198 * We need to check for EXT4 here because migrate
1199 * could have changed the inode type in between
1200 */
1201 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1202 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1203 bh, create, extend_disksize);
1204 } else {
1205 retval = ext4_get_blocks_handle(handle, inode, block,
1206 max_blocks, bh, create, extend_disksize);
1207
1208 if (retval > 0 && buffer_new(bh)) {
1209 /*
1210 * We allocated new blocks which will result in
1211 * i_data's format changing. Force the migrate
1212 * to fail by clearing migrate flags
1213 */
1214 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1215 ~EXT4_EXT_MIGRATE;
1216 }
1217 }
1218
1219 if (flag) {
1220 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1221 /*
1222 * Update reserved blocks/metadata blocks
1223 * after successful block allocation
1224 * which were deferred till now
1225 */
1226 if ((retval > 0) && buffer_delay(bh))
1227 ext4_da_update_reserve_space(inode, retval);
1228 }
1229
1230 up_write((&EXT4_I(inode)->i_data_sem));
1231 return retval;
1232 }
1233
1234 /* Maximum number of blocks we map for direct IO at once. */
1235 #define DIO_MAX_BLOCKS 4096
1236
1237 int ext4_get_block(struct inode *inode, sector_t iblock,
1238 struct buffer_head *bh_result, int create)
1239 {
1240 handle_t *handle = ext4_journal_current_handle();
1241 int ret = 0, started = 0;
1242 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1243 int dio_credits;
1244
1245 if (create && !handle) {
1246 /* Direct IO write... */
1247 if (max_blocks > DIO_MAX_BLOCKS)
1248 max_blocks = DIO_MAX_BLOCKS;
1249 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1250 handle = ext4_journal_start(inode, dio_credits);
1251 if (IS_ERR(handle)) {
1252 ret = PTR_ERR(handle);
1253 goto out;
1254 }
1255 started = 1;
1256 }
1257
1258 ret = ext4_get_blocks_wrap(handle, inode, iblock,
1259 max_blocks, bh_result, create, 0, 0);
1260 if (ret > 0) {
1261 bh_result->b_size = (ret << inode->i_blkbits);
1262 ret = 0;
1263 }
1264 if (started)
1265 ext4_journal_stop(handle);
1266 out:
1267 return ret;
1268 }
1269
1270 /*
1271 * `handle' can be NULL if create is zero
1272 */
1273 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1274 ext4_lblk_t block, int create, int *errp)
1275 {
1276 struct buffer_head dummy;
1277 int fatal = 0, err;
1278
1279 J_ASSERT(handle != NULL || create == 0);
1280
1281 dummy.b_state = 0;
1282 dummy.b_blocknr = -1000;
1283 buffer_trace_init(&dummy.b_history);
1284 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1285 &dummy, create, 1, 0);
1286 /*
1287 * ext4_get_blocks_handle() returns number of blocks
1288 * mapped. 0 in case of a HOLE.
1289 */
1290 if (err > 0) {
1291 if (err > 1)
1292 WARN_ON(1);
1293 err = 0;
1294 }
1295 *errp = err;
1296 if (!err && buffer_mapped(&dummy)) {
1297 struct buffer_head *bh;
1298 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1299 if (!bh) {
1300 *errp = -EIO;
1301 goto err;
1302 }
1303 if (buffer_new(&dummy)) {
1304 J_ASSERT(create != 0);
1305 J_ASSERT(handle != NULL);
1306
1307 /*
1308 * Now that we do not always journal data, we should
1309 * keep in mind whether this should always journal the
1310 * new buffer as metadata. For now, regular file
1311 * writes use ext4_get_block instead, so it's not a
1312 * problem.
1313 */
1314 lock_buffer(bh);
1315 BUFFER_TRACE(bh, "call get_create_access");
1316 fatal = ext4_journal_get_create_access(handle, bh);
1317 if (!fatal && !buffer_uptodate(bh)) {
1318 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1319 set_buffer_uptodate(bh);
1320 }
1321 unlock_buffer(bh);
1322 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1323 err = ext4_handle_dirty_metadata(handle, inode, bh);
1324 if (!fatal)
1325 fatal = err;
1326 } else {
1327 BUFFER_TRACE(bh, "not a new buffer");
1328 }
1329 if (fatal) {
1330 *errp = fatal;
1331 brelse(bh);
1332 bh = NULL;
1333 }
1334 return bh;
1335 }
1336 err:
1337 return NULL;
1338 }
1339
1340 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1341 ext4_lblk_t block, int create, int *err)
1342 {
1343 struct buffer_head *bh;
1344
1345 bh = ext4_getblk(handle, inode, block, create, err);
1346 if (!bh)
1347 return bh;
1348 if (buffer_uptodate(bh))
1349 return bh;
1350 ll_rw_block(READ_META, 1, &bh);
1351 wait_on_buffer(bh);
1352 if (buffer_uptodate(bh))
1353 return bh;
1354 put_bh(bh);
1355 *err = -EIO;
1356 return NULL;
1357 }
1358
1359 static int walk_page_buffers(handle_t *handle,
1360 struct buffer_head *head,
1361 unsigned from,
1362 unsigned to,
1363 int *partial,
1364 int (*fn)(handle_t *handle,
1365 struct buffer_head *bh))
1366 {
1367 struct buffer_head *bh;
1368 unsigned block_start, block_end;
1369 unsigned blocksize = head->b_size;
1370 int err, ret = 0;
1371 struct buffer_head *next;
1372
1373 for (bh = head, block_start = 0;
1374 ret == 0 && (bh != head || !block_start);
1375 block_start = block_end, bh = next)
1376 {
1377 next = bh->b_this_page;
1378 block_end = block_start + blocksize;
1379 if (block_end <= from || block_start >= to) {
1380 if (partial && !buffer_uptodate(bh))
1381 *partial = 1;
1382 continue;
1383 }
1384 err = (*fn)(handle, bh);
1385 if (!ret)
1386 ret = err;
1387 }
1388 return ret;
1389 }
1390
1391 /*
1392 * To preserve ordering, it is essential that the hole instantiation and
1393 * the data write be encapsulated in a single transaction. We cannot
1394 * close off a transaction and start a new one between the ext4_get_block()
1395 * and the commit_write(). So doing the jbd2_journal_start at the start of
1396 * prepare_write() is the right place.
1397 *
1398 * Also, this function can nest inside ext4_writepage() ->
1399 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1400 * has generated enough buffer credits to do the whole page. So we won't
1401 * block on the journal in that case, which is good, because the caller may
1402 * be PF_MEMALLOC.
1403 *
1404 * By accident, ext4 can be reentered when a transaction is open via
1405 * quota file writes. If we were to commit the transaction while thus
1406 * reentered, there can be a deadlock - we would be holding a quota
1407 * lock, and the commit would never complete if another thread had a
1408 * transaction open and was blocking on the quota lock - a ranking
1409 * violation.
1410 *
1411 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1412 * will _not_ run commit under these circumstances because handle->h_ref
1413 * is elevated. We'll still have enough credits for the tiny quotafile
1414 * write.
1415 */
1416 static int do_journal_get_write_access(handle_t *handle,
1417 struct buffer_head *bh)
1418 {
1419 if (!buffer_mapped(bh) || buffer_freed(bh))
1420 return 0;
1421 return ext4_journal_get_write_access(handle, bh);
1422 }
1423
1424 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1425 loff_t pos, unsigned len, unsigned flags,
1426 struct page **pagep, void **fsdata)
1427 {
1428 struct inode *inode = mapping->host;
1429 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1430 handle_t *handle;
1431 int retries = 0;
1432 struct page *page;
1433 pgoff_t index;
1434 unsigned from, to;
1435
1436 trace_mark(ext4_write_begin,
1437 "dev %s ino %lu pos %llu len %u flags %u",
1438 inode->i_sb->s_id, inode->i_ino,
1439 (unsigned long long) pos, len, flags);
1440 index = pos >> PAGE_CACHE_SHIFT;
1441 from = pos & (PAGE_CACHE_SIZE - 1);
1442 to = from + len;
1443
1444 retry:
1445 handle = ext4_journal_start(inode, needed_blocks);
1446 if (IS_ERR(handle)) {
1447 ret = PTR_ERR(handle);
1448 goto out;
1449 }
1450
1451 /* We cannot recurse into the filesystem as the transaction is already
1452 * started */
1453 flags |= AOP_FLAG_NOFS;
1454
1455 page = grab_cache_page_write_begin(mapping, index, flags);
1456 if (!page) {
1457 ext4_journal_stop(handle);
1458 ret = -ENOMEM;
1459 goto out;
1460 }
1461 *pagep = page;
1462
1463 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1464 ext4_get_block);
1465
1466 if (!ret && ext4_should_journal_data(inode)) {
1467 ret = walk_page_buffers(handle, page_buffers(page),
1468 from, to, NULL, do_journal_get_write_access);
1469 }
1470
1471 if (ret) {
1472 unlock_page(page);
1473 ext4_journal_stop(handle);
1474 page_cache_release(page);
1475 /*
1476 * block_write_begin may have instantiated a few blocks
1477 * outside i_size. Trim these off again. Don't need
1478 * i_size_read because we hold i_mutex.
1479 */
1480 if (pos + len > inode->i_size)
1481 vmtruncate(inode, inode->i_size);
1482 }
1483
1484 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1485 goto retry;
1486 out:
1487 return ret;
1488 }
1489
1490 /* For write_end() in data=journal mode */
1491 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1492 {
1493 if (!buffer_mapped(bh) || buffer_freed(bh))
1494 return 0;
1495 set_buffer_uptodate(bh);
1496 return ext4_handle_dirty_metadata(handle, NULL, bh);
1497 }
1498
1499 /*
1500 * We need to pick up the new inode size which generic_commit_write gave us
1501 * `file' can be NULL - eg, when called from page_symlink().
1502 *
1503 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1504 * buffers are managed internally.
1505 */
1506 static int ext4_ordered_write_end(struct file *file,
1507 struct address_space *mapping,
1508 loff_t pos, unsigned len, unsigned copied,
1509 struct page *page, void *fsdata)
1510 {
1511 handle_t *handle = ext4_journal_current_handle();
1512 struct inode *inode = mapping->host;
1513 int ret = 0, ret2;
1514
1515 trace_mark(ext4_ordered_write_end,
1516 "dev %s ino %lu pos %llu len %u copied %u",
1517 inode->i_sb->s_id, inode->i_ino,
1518 (unsigned long long) pos, len, copied);
1519 ret = ext4_jbd2_file_inode(handle, inode);
1520
1521 if (ret == 0) {
1522 loff_t new_i_size;
1523
1524 new_i_size = pos + copied;
1525 if (new_i_size > EXT4_I(inode)->i_disksize) {
1526 ext4_update_i_disksize(inode, new_i_size);
1527 /* We need to mark inode dirty even if
1528 * new_i_size is less that inode->i_size
1529 * bu greater than i_disksize.(hint delalloc)
1530 */
1531 ext4_mark_inode_dirty(handle, inode);
1532 }
1533
1534 ret2 = generic_write_end(file, mapping, pos, len, copied,
1535 page, fsdata);
1536 copied = ret2;
1537 if (ret2 < 0)
1538 ret = ret2;
1539 }
1540 ret2 = ext4_journal_stop(handle);
1541 if (!ret)
1542 ret = ret2;
1543
1544 return ret ? ret : copied;
1545 }
1546
1547 static int ext4_writeback_write_end(struct file *file,
1548 struct address_space *mapping,
1549 loff_t pos, unsigned len, unsigned copied,
1550 struct page *page, void *fsdata)
1551 {
1552 handle_t *handle = ext4_journal_current_handle();
1553 struct inode *inode = mapping->host;
1554 int ret = 0, ret2;
1555 loff_t new_i_size;
1556
1557 trace_mark(ext4_writeback_write_end,
1558 "dev %s ino %lu pos %llu len %u copied %u",
1559 inode->i_sb->s_id, inode->i_ino,
1560 (unsigned long long) pos, len, copied);
1561 new_i_size = pos + copied;
1562 if (new_i_size > EXT4_I(inode)->i_disksize) {
1563 ext4_update_i_disksize(inode, new_i_size);
1564 /* We need to mark inode dirty even if
1565 * new_i_size is less that inode->i_size
1566 * bu greater than i_disksize.(hint delalloc)
1567 */
1568 ext4_mark_inode_dirty(handle, inode);
1569 }
1570
1571 ret2 = generic_write_end(file, mapping, pos, len, copied,
1572 page, fsdata);
1573 copied = ret2;
1574 if (ret2 < 0)
1575 ret = ret2;
1576
1577 ret2 = ext4_journal_stop(handle);
1578 if (!ret)
1579 ret = ret2;
1580
1581 return ret ? ret : copied;
1582 }
1583
1584 static int ext4_journalled_write_end(struct file *file,
1585 struct address_space *mapping,
1586 loff_t pos, unsigned len, unsigned copied,
1587 struct page *page, void *fsdata)
1588 {
1589 handle_t *handle = ext4_journal_current_handle();
1590 struct inode *inode = mapping->host;
1591 int ret = 0, ret2;
1592 int partial = 0;
1593 unsigned from, to;
1594 loff_t new_i_size;
1595
1596 trace_mark(ext4_journalled_write_end,
1597 "dev %s ino %lu pos %llu len %u copied %u",
1598 inode->i_sb->s_id, inode->i_ino,
1599 (unsigned long long) pos, len, copied);
1600 from = pos & (PAGE_CACHE_SIZE - 1);
1601 to = from + len;
1602
1603 if (copied < len) {
1604 if (!PageUptodate(page))
1605 copied = 0;
1606 page_zero_new_buffers(page, from+copied, to);
1607 }
1608
1609 ret = walk_page_buffers(handle, page_buffers(page), from,
1610 to, &partial, write_end_fn);
1611 if (!partial)
1612 SetPageUptodate(page);
1613 new_i_size = pos + copied;
1614 if (new_i_size > inode->i_size)
1615 i_size_write(inode, pos+copied);
1616 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1617 if (new_i_size > EXT4_I(inode)->i_disksize) {
1618 ext4_update_i_disksize(inode, new_i_size);
1619 ret2 = ext4_mark_inode_dirty(handle, inode);
1620 if (!ret)
1621 ret = ret2;
1622 }
1623
1624 unlock_page(page);
1625 ret2 = ext4_journal_stop(handle);
1626 if (!ret)
1627 ret = ret2;
1628 page_cache_release(page);
1629
1630 return ret ? ret : copied;
1631 }
1632
1633 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1634 {
1635 int retries = 0;
1636 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1637 unsigned long md_needed, mdblocks, total = 0;
1638
1639 /*
1640 * recalculate the amount of metadata blocks to reserve
1641 * in order to allocate nrblocks
1642 * worse case is one extent per block
1643 */
1644 repeat:
1645 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1646 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1647 mdblocks = ext4_calc_metadata_amount(inode, total);
1648 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1649
1650 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1651 total = md_needed + nrblocks;
1652
1653 /*
1654 * Make quota reservation here to prevent quota overflow
1655 * later. Real quota accounting is done at pages writeout
1656 * time.
1657 */
1658 if (vfs_dq_reserve_block(inode, total)) {
1659 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1660 return -EDQUOT;
1661 }
1662
1663 if (ext4_claim_free_blocks(sbi, total)) {
1664 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1665 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1666 yield();
1667 goto repeat;
1668 }
1669 vfs_dq_release_reservation_block(inode, total);
1670 return -ENOSPC;
1671 }
1672 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1673 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1674
1675 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1676 return 0; /* success */
1677 }
1678
1679 static void ext4_da_release_space(struct inode *inode, int to_free)
1680 {
1681 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1682 int total, mdb, mdb_free, release;
1683
1684 if (!to_free)
1685 return; /* Nothing to release, exit */
1686
1687 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1688
1689 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1690 /*
1691 * if there is no reserved blocks, but we try to free some
1692 * then the counter is messed up somewhere.
1693 * but since this function is called from invalidate
1694 * page, it's harmless to return without any action
1695 */
1696 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1697 "blocks for inode %lu, but there is no reserved "
1698 "data blocks\n", to_free, inode->i_ino);
1699 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1700 return;
1701 }
1702
1703 /* recalculate the number of metablocks still need to be reserved */
1704 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1705 mdb = ext4_calc_metadata_amount(inode, total);
1706
1707 /* figure out how many metablocks to release */
1708 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1709 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1710
1711 release = to_free + mdb_free;
1712
1713 /* update fs dirty blocks counter for truncate case */
1714 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1715
1716 /* update per-inode reservations */
1717 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1718 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1719
1720 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1721 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1722 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1723
1724 vfs_dq_release_reservation_block(inode, release);
1725 }
1726
1727 static void ext4_da_page_release_reservation(struct page *page,
1728 unsigned long offset)
1729 {
1730 int to_release = 0;
1731 struct buffer_head *head, *bh;
1732 unsigned int curr_off = 0;
1733
1734 head = page_buffers(page);
1735 bh = head;
1736 do {
1737 unsigned int next_off = curr_off + bh->b_size;
1738
1739 if ((offset <= curr_off) && (buffer_delay(bh))) {
1740 to_release++;
1741 clear_buffer_delay(bh);
1742 }
1743 curr_off = next_off;
1744 } while ((bh = bh->b_this_page) != head);
1745 ext4_da_release_space(page->mapping->host, to_release);
1746 }
1747
1748 /*
1749 * Delayed allocation stuff
1750 */
1751
1752 struct mpage_da_data {
1753 struct inode *inode;
1754 sector_t b_blocknr; /* start block number of extent */
1755 size_t b_size; /* size of extent */
1756 unsigned long b_state; /* state of the extent */
1757 unsigned long first_page, next_page; /* extent of pages */
1758 struct writeback_control *wbc;
1759 int io_done;
1760 int pages_written;
1761 int retval;
1762 };
1763
1764 /*
1765 * mpage_da_submit_io - walks through extent of pages and try to write
1766 * them with writepage() call back
1767 *
1768 * @mpd->inode: inode
1769 * @mpd->first_page: first page of the extent
1770 * @mpd->next_page: page after the last page of the extent
1771 *
1772 * By the time mpage_da_submit_io() is called we expect all blocks
1773 * to be allocated. this may be wrong if allocation failed.
1774 *
1775 * As pages are already locked by write_cache_pages(), we can't use it
1776 */
1777 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1778 {
1779 long pages_skipped;
1780 struct pagevec pvec;
1781 unsigned long index, end;
1782 int ret = 0, err, nr_pages, i;
1783 struct inode *inode = mpd->inode;
1784 struct address_space *mapping = inode->i_mapping;
1785
1786 BUG_ON(mpd->next_page <= mpd->first_page);
1787 /*
1788 * We need to start from the first_page to the next_page - 1
1789 * to make sure we also write the mapped dirty buffer_heads.
1790 * If we look at mpd->b_blocknr we would only be looking
1791 * at the currently mapped buffer_heads.
1792 */
1793 index = mpd->first_page;
1794 end = mpd->next_page - 1;
1795
1796 pagevec_init(&pvec, 0);
1797 while (index <= end) {
1798 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1799 if (nr_pages == 0)
1800 break;
1801 for (i = 0; i < nr_pages; i++) {
1802 struct page *page = pvec.pages[i];
1803
1804 index = page->index;
1805 if (index > end)
1806 break;
1807 index++;
1808
1809 BUG_ON(!PageLocked(page));
1810 BUG_ON(PageWriteback(page));
1811
1812 pages_skipped = mpd->wbc->pages_skipped;
1813 err = mapping->a_ops->writepage(page, mpd->wbc);
1814 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1815 /*
1816 * have successfully written the page
1817 * without skipping the same
1818 */
1819 mpd->pages_written++;
1820 /*
1821 * In error case, we have to continue because
1822 * remaining pages are still locked
1823 * XXX: unlock and re-dirty them?
1824 */
1825 if (ret == 0)
1826 ret = err;
1827 }
1828 pagevec_release(&pvec);
1829 }
1830 return ret;
1831 }
1832
1833 /*
1834 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1835 *
1836 * @mpd->inode - inode to walk through
1837 * @exbh->b_blocknr - first block on a disk
1838 * @exbh->b_size - amount of space in bytes
1839 * @logical - first logical block to start assignment with
1840 *
1841 * the function goes through all passed space and put actual disk
1842 * block numbers into buffer heads, dropping BH_Delay
1843 */
1844 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1845 struct buffer_head *exbh)
1846 {
1847 struct inode *inode = mpd->inode;
1848 struct address_space *mapping = inode->i_mapping;
1849 int blocks = exbh->b_size >> inode->i_blkbits;
1850 sector_t pblock = exbh->b_blocknr, cur_logical;
1851 struct buffer_head *head, *bh;
1852 pgoff_t index, end;
1853 struct pagevec pvec;
1854 int nr_pages, i;
1855
1856 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1857 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1858 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1859
1860 pagevec_init(&pvec, 0);
1861
1862 while (index <= end) {
1863 /* XXX: optimize tail */
1864 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1865 if (nr_pages == 0)
1866 break;
1867 for (i = 0; i < nr_pages; i++) {
1868 struct page *page = pvec.pages[i];
1869
1870 index = page->index;
1871 if (index > end)
1872 break;
1873 index++;
1874
1875 BUG_ON(!PageLocked(page));
1876 BUG_ON(PageWriteback(page));
1877 BUG_ON(!page_has_buffers(page));
1878
1879 bh = page_buffers(page);
1880 head = bh;
1881
1882 /* skip blocks out of the range */
1883 do {
1884 if (cur_logical >= logical)
1885 break;
1886 cur_logical++;
1887 } while ((bh = bh->b_this_page) != head);
1888
1889 do {
1890 if (cur_logical >= logical + blocks)
1891 break;
1892 if (buffer_delay(bh)) {
1893 bh->b_blocknr = pblock;
1894 clear_buffer_delay(bh);
1895 bh->b_bdev = inode->i_sb->s_bdev;
1896 } else if (buffer_unwritten(bh)) {
1897 bh->b_blocknr = pblock;
1898 clear_buffer_unwritten(bh);
1899 set_buffer_mapped(bh);
1900 set_buffer_new(bh);
1901 bh->b_bdev = inode->i_sb->s_bdev;
1902 } else if (buffer_mapped(bh))
1903 BUG_ON(bh->b_blocknr != pblock);
1904
1905 cur_logical++;
1906 pblock++;
1907 } while ((bh = bh->b_this_page) != head);
1908 }
1909 pagevec_release(&pvec);
1910 }
1911 }
1912
1913
1914 /*
1915 * __unmap_underlying_blocks - just a helper function to unmap
1916 * set of blocks described by @bh
1917 */
1918 static inline void __unmap_underlying_blocks(struct inode *inode,
1919 struct buffer_head *bh)
1920 {
1921 struct block_device *bdev = inode->i_sb->s_bdev;
1922 int blocks, i;
1923
1924 blocks = bh->b_size >> inode->i_blkbits;
1925 for (i = 0; i < blocks; i++)
1926 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1927 }
1928
1929 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1930 sector_t logical, long blk_cnt)
1931 {
1932 int nr_pages, i;
1933 pgoff_t index, end;
1934 struct pagevec pvec;
1935 struct inode *inode = mpd->inode;
1936 struct address_space *mapping = inode->i_mapping;
1937
1938 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1939 end = (logical + blk_cnt - 1) >>
1940 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1941 while (index <= end) {
1942 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1943 if (nr_pages == 0)
1944 break;
1945 for (i = 0; i < nr_pages; i++) {
1946 struct page *page = pvec.pages[i];
1947 index = page->index;
1948 if (index > end)
1949 break;
1950 index++;
1951
1952 BUG_ON(!PageLocked(page));
1953 BUG_ON(PageWriteback(page));
1954 block_invalidatepage(page, 0);
1955 ClearPageUptodate(page);
1956 unlock_page(page);
1957 }
1958 }
1959 return;
1960 }
1961
1962 static void ext4_print_free_blocks(struct inode *inode)
1963 {
1964 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1965 printk(KERN_EMERG "Total free blocks count %lld\n",
1966 ext4_count_free_blocks(inode->i_sb));
1967 printk(KERN_EMERG "Free/Dirty block details\n");
1968 printk(KERN_EMERG "free_blocks=%lld\n",
1969 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1970 printk(KERN_EMERG "dirty_blocks=%lld\n",
1971 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1972 printk(KERN_EMERG "Block reservation details\n");
1973 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1974 EXT4_I(inode)->i_reserved_data_blocks);
1975 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1976 EXT4_I(inode)->i_reserved_meta_blocks);
1977 return;
1978 }
1979
1980 #define EXT4_DELALLOC_RSVED 1
1981 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
1982 struct buffer_head *bh_result, int create)
1983 {
1984 int ret;
1985 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1986 loff_t disksize = EXT4_I(inode)->i_disksize;
1987 handle_t *handle = NULL;
1988
1989 handle = ext4_journal_current_handle();
1990 BUG_ON(!handle);
1991 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
1992 bh_result, create, 0, EXT4_DELALLOC_RSVED);
1993 if (ret <= 0)
1994 return ret;
1995
1996 bh_result->b_size = (ret << inode->i_blkbits);
1997
1998 if (ext4_should_order_data(inode)) {
1999 int retval;
2000 retval = ext4_jbd2_file_inode(handle, inode);
2001 if (retval)
2002 /*
2003 * Failed to add inode for ordered mode. Don't
2004 * update file size
2005 */
2006 return retval;
2007 }
2008
2009 /*
2010 * Update on-disk size along with block allocation we don't
2011 * use 'extend_disksize' as size may change within already
2012 * allocated block -bzzz
2013 */
2014 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2015 if (disksize > i_size_read(inode))
2016 disksize = i_size_read(inode);
2017 if (disksize > EXT4_I(inode)->i_disksize) {
2018 ext4_update_i_disksize(inode, disksize);
2019 ret = ext4_mark_inode_dirty(handle, inode);
2020 return ret;
2021 }
2022 return 0;
2023 }
2024
2025 /*
2026 * mpage_da_map_blocks - go through given space
2027 *
2028 * @mpd - bh describing space
2029 *
2030 * The function skips space we know is already mapped to disk blocks.
2031 *
2032 */
2033 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2034 {
2035 int err = 0;
2036 struct buffer_head new;
2037 sector_t next;
2038
2039 /*
2040 * We consider only non-mapped and non-allocated blocks
2041 */
2042 if ((mpd->b_state & (1 << BH_Mapped)) &&
2043 !(mpd->b_state & (1 << BH_Delay)))
2044 return 0;
2045 new.b_state = mpd->b_state;
2046 new.b_blocknr = 0;
2047 new.b_size = mpd->b_size;
2048 next = mpd->b_blocknr;
2049 /*
2050 * If we didn't accumulate anything
2051 * to write simply return
2052 */
2053 if (!new.b_size)
2054 return 0;
2055
2056 err = ext4_da_get_block_write(mpd->inode, next, &new, 1);
2057 if (err) {
2058 /*
2059 * If get block returns with error we simply
2060 * return. Later writepage will redirty the page and
2061 * writepages will find the dirty page again
2062 */
2063 if (err == -EAGAIN)
2064 return 0;
2065
2066 if (err == -ENOSPC &&
2067 ext4_count_free_blocks(mpd->inode->i_sb)) {
2068 mpd->retval = err;
2069 return 0;
2070 }
2071
2072 /*
2073 * get block failure will cause us to loop in
2074 * writepages, because a_ops->writepage won't be able
2075 * to make progress. The page will be redirtied by
2076 * writepage and writepages will again try to write
2077 * the same.
2078 */
2079 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2080 "at logical offset %llu with max blocks "
2081 "%zd with error %d\n",
2082 __func__, mpd->inode->i_ino,
2083 (unsigned long long)next,
2084 mpd->b_size >> mpd->inode->i_blkbits, err);
2085 printk(KERN_EMERG "This should not happen.!! "
2086 "Data will be lost\n");
2087 if (err == -ENOSPC) {
2088 ext4_print_free_blocks(mpd->inode);
2089 }
2090 /* invlaidate all the pages */
2091 ext4_da_block_invalidatepages(mpd, next,
2092 mpd->b_size >> mpd->inode->i_blkbits);
2093 return err;
2094 }
2095 BUG_ON(new.b_size == 0);
2096
2097 if (buffer_new(&new))
2098 __unmap_underlying_blocks(mpd->inode, &new);
2099
2100 /*
2101 * If blocks are delayed marked, we need to
2102 * put actual blocknr and drop delayed bit
2103 */
2104 if ((mpd->b_state & (1 << BH_Delay)) ||
2105 (mpd->b_state & (1 << BH_Unwritten)))
2106 mpage_put_bnr_to_bhs(mpd, next, &new);
2107
2108 return 0;
2109 }
2110
2111 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2112 (1 << BH_Delay) | (1 << BH_Unwritten))
2113
2114 /*
2115 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2116 *
2117 * @mpd->lbh - extent of blocks
2118 * @logical - logical number of the block in the file
2119 * @bh - bh of the block (used to access block's state)
2120 *
2121 * the function is used to collect contig. blocks in same state
2122 */
2123 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2124 sector_t logical, size_t b_size,
2125 unsigned long b_state)
2126 {
2127 sector_t next;
2128 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2129
2130 /* check if thereserved journal credits might overflow */
2131 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2132 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2133 /*
2134 * With non-extent format we are limited by the journal
2135 * credit available. Total credit needed to insert
2136 * nrblocks contiguous blocks is dependent on the
2137 * nrblocks. So limit nrblocks.
2138 */
2139 goto flush_it;
2140 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2141 EXT4_MAX_TRANS_DATA) {
2142 /*
2143 * Adding the new buffer_head would make it cross the
2144 * allowed limit for which we have journal credit
2145 * reserved. So limit the new bh->b_size
2146 */
2147 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2148 mpd->inode->i_blkbits;
2149 /* we will do mpage_da_submit_io in the next loop */
2150 }
2151 }
2152 /*
2153 * First block in the extent
2154 */
2155 if (mpd->b_size == 0) {
2156 mpd->b_blocknr = logical;
2157 mpd->b_size = b_size;
2158 mpd->b_state = b_state & BH_FLAGS;
2159 return;
2160 }
2161
2162 next = mpd->b_blocknr + nrblocks;
2163 /*
2164 * Can we merge the block to our big extent?
2165 */
2166 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2167 mpd->b_size += b_size;
2168 return;
2169 }
2170
2171 flush_it:
2172 /*
2173 * We couldn't merge the block to our extent, so we
2174 * need to flush current extent and start new one
2175 */
2176 if (mpage_da_map_blocks(mpd) == 0)
2177 mpage_da_submit_io(mpd);
2178 mpd->io_done = 1;
2179 return;
2180 }
2181
2182 /*
2183 * __mpage_da_writepage - finds extent of pages and blocks
2184 *
2185 * @page: page to consider
2186 * @wbc: not used, we just follow rules
2187 * @data: context
2188 *
2189 * The function finds extents of pages and scan them for all blocks.
2190 */
2191 static int __mpage_da_writepage(struct page *page,
2192 struct writeback_control *wbc, void *data)
2193 {
2194 struct mpage_da_data *mpd = data;
2195 struct inode *inode = mpd->inode;
2196 struct buffer_head *bh, *head;
2197 sector_t logical;
2198
2199 if (mpd->io_done) {
2200 /*
2201 * Rest of the page in the page_vec
2202 * redirty then and skip then. We will
2203 * try to to write them again after
2204 * starting a new transaction
2205 */
2206 redirty_page_for_writepage(wbc, page);
2207 unlock_page(page);
2208 return MPAGE_DA_EXTENT_TAIL;
2209 }
2210 /*
2211 * Can we merge this page to current extent?
2212 */
2213 if (mpd->next_page != page->index) {
2214 /*
2215 * Nope, we can't. So, we map non-allocated blocks
2216 * and start IO on them using writepage()
2217 */
2218 if (mpd->next_page != mpd->first_page) {
2219 if (mpage_da_map_blocks(mpd) == 0)
2220 mpage_da_submit_io(mpd);
2221 /*
2222 * skip rest of the page in the page_vec
2223 */
2224 mpd->io_done = 1;
2225 redirty_page_for_writepage(wbc, page);
2226 unlock_page(page);
2227 return MPAGE_DA_EXTENT_TAIL;
2228 }
2229
2230 /*
2231 * Start next extent of pages ...
2232 */
2233 mpd->first_page = page->index;
2234
2235 /*
2236 * ... and blocks
2237 */
2238 mpd->b_size = 0;
2239 mpd->b_state = 0;
2240 mpd->b_blocknr = 0;
2241 }
2242
2243 mpd->next_page = page->index + 1;
2244 logical = (sector_t) page->index <<
2245 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2246
2247 if (!page_has_buffers(page)) {
2248 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2249 (1 << BH_Dirty) | (1 << BH_Uptodate));
2250 if (mpd->io_done)
2251 return MPAGE_DA_EXTENT_TAIL;
2252 } else {
2253 /*
2254 * Page with regular buffer heads, just add all dirty ones
2255 */
2256 head = page_buffers(page);
2257 bh = head;
2258 do {
2259 BUG_ON(buffer_locked(bh));
2260 /*
2261 * We need to try to allocate
2262 * unmapped blocks in the same page.
2263 * Otherwise we won't make progress
2264 * with the page in ext4_da_writepage
2265 */
2266 if (buffer_dirty(bh) &&
2267 (!buffer_mapped(bh) || buffer_delay(bh))) {
2268 mpage_add_bh_to_extent(mpd, logical,
2269 bh->b_size,
2270 bh->b_state);
2271 if (mpd->io_done)
2272 return MPAGE_DA_EXTENT_TAIL;
2273 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2274 /*
2275 * mapped dirty buffer. We need to update
2276 * the b_state because we look at
2277 * b_state in mpage_da_map_blocks. We don't
2278 * update b_size because if we find an
2279 * unmapped buffer_head later we need to
2280 * use the b_state flag of that buffer_head.
2281 */
2282 if (mpd->b_size == 0)
2283 mpd->b_state = bh->b_state & BH_FLAGS;
2284 }
2285 logical++;
2286 } while ((bh = bh->b_this_page) != head);
2287 }
2288
2289 return 0;
2290 }
2291
2292 /*
2293 * this is a special callback for ->write_begin() only
2294 * it's intention is to return mapped block or reserve space
2295 */
2296 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2297 struct buffer_head *bh_result, int create)
2298 {
2299 int ret = 0;
2300
2301 BUG_ON(create == 0);
2302 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2303
2304 /*
2305 * first, we need to know whether the block is allocated already
2306 * preallocated blocks are unmapped but should treated
2307 * the same as allocated blocks.
2308 */
2309 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2310 if ((ret == 0) && !buffer_delay(bh_result)) {
2311 /* the block isn't (pre)allocated yet, let's reserve space */
2312 /*
2313 * XXX: __block_prepare_write() unmaps passed block,
2314 * is it OK?
2315 */
2316 ret = ext4_da_reserve_space(inode, 1);
2317 if (ret)
2318 /* not enough space to reserve */
2319 return ret;
2320
2321 map_bh(bh_result, inode->i_sb, 0);
2322 set_buffer_new(bh_result);
2323 set_buffer_delay(bh_result);
2324 } else if (ret > 0) {
2325 bh_result->b_size = (ret << inode->i_blkbits);
2326 ret = 0;
2327 }
2328
2329 return ret;
2330 }
2331
2332 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2333 {
2334 /*
2335 * unmapped buffer is possible for holes.
2336 * delay buffer is possible with delayed allocation
2337 */
2338 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2339 }
2340
2341 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2342 struct buffer_head *bh_result, int create)
2343 {
2344 int ret = 0;
2345 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2346
2347 /*
2348 * we don't want to do block allocation in writepage
2349 * so call get_block_wrap with create = 0
2350 */
2351 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2352 bh_result, 0, 0, 0);
2353 if (ret > 0) {
2354 bh_result->b_size = (ret << inode->i_blkbits);
2355 ret = 0;
2356 }
2357 return ret;
2358 }
2359
2360 /*
2361 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2362 * get called via journal_submit_inode_data_buffers (no journal handle)
2363 * get called via shrink_page_list via pdflush (no journal handle)
2364 * or grab_page_cache when doing write_begin (have journal handle)
2365 */
2366 static int ext4_da_writepage(struct page *page,
2367 struct writeback_control *wbc)
2368 {
2369 int ret = 0;
2370 loff_t size;
2371 unsigned int len;
2372 struct buffer_head *page_bufs;
2373 struct inode *inode = page->mapping->host;
2374
2375 trace_mark(ext4_da_writepage,
2376 "dev %s ino %lu page_index %lu",
2377 inode->i_sb->s_id, inode->i_ino, page->index);
2378 size = i_size_read(inode);
2379 if (page->index == size >> PAGE_CACHE_SHIFT)
2380 len = size & ~PAGE_CACHE_MASK;
2381 else
2382 len = PAGE_CACHE_SIZE;
2383
2384 if (page_has_buffers(page)) {
2385 page_bufs = page_buffers(page);
2386 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2387 ext4_bh_unmapped_or_delay)) {
2388 /*
2389 * We don't want to do block allocation
2390 * So redirty the page and return
2391 * We may reach here when we do a journal commit
2392 * via journal_submit_inode_data_buffers.
2393 * If we don't have mapping block we just ignore
2394 * them. We can also reach here via shrink_page_list
2395 */
2396 redirty_page_for_writepage(wbc, page);
2397 unlock_page(page);
2398 return 0;
2399 }
2400 } else {
2401 /*
2402 * The test for page_has_buffers() is subtle:
2403 * We know the page is dirty but it lost buffers. That means
2404 * that at some moment in time after write_begin()/write_end()
2405 * has been called all buffers have been clean and thus they
2406 * must have been written at least once. So they are all
2407 * mapped and we can happily proceed with mapping them
2408 * and writing the page.
2409 *
2410 * Try to initialize the buffer_heads and check whether
2411 * all are mapped and non delay. We don't want to
2412 * do block allocation here.
2413 */
2414 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2415 ext4_normal_get_block_write);
2416 if (!ret) {
2417 page_bufs = page_buffers(page);
2418 /* check whether all are mapped and non delay */
2419 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2420 ext4_bh_unmapped_or_delay)) {
2421 redirty_page_for_writepage(wbc, page);
2422 unlock_page(page);
2423 return 0;
2424 }
2425 } else {
2426 /*
2427 * We can't do block allocation here
2428 * so just redity the page and unlock
2429 * and return
2430 */
2431 redirty_page_for_writepage(wbc, page);
2432 unlock_page(page);
2433 return 0;
2434 }
2435 /* now mark the buffer_heads as dirty and uptodate */
2436 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2437 }
2438
2439 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2440 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2441 else
2442 ret = block_write_full_page(page,
2443 ext4_normal_get_block_write,
2444 wbc);
2445
2446 return ret;
2447 }
2448
2449 /*
2450 * This is called via ext4_da_writepages() to
2451 * calulate the total number of credits to reserve to fit
2452 * a single extent allocation into a single transaction,
2453 * ext4_da_writpeages() will loop calling this before
2454 * the block allocation.
2455 */
2456
2457 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2458 {
2459 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2460
2461 /*
2462 * With non-extent format the journal credit needed to
2463 * insert nrblocks contiguous block is dependent on
2464 * number of contiguous block. So we will limit
2465 * number of contiguous block to a sane value
2466 */
2467 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2468 (max_blocks > EXT4_MAX_TRANS_DATA))
2469 max_blocks = EXT4_MAX_TRANS_DATA;
2470
2471 return ext4_chunk_trans_blocks(inode, max_blocks);
2472 }
2473
2474 static int ext4_da_writepages(struct address_space *mapping,
2475 struct writeback_control *wbc)
2476 {
2477 pgoff_t index;
2478 int range_whole = 0;
2479 handle_t *handle = NULL;
2480 struct mpage_da_data mpd;
2481 struct inode *inode = mapping->host;
2482 int no_nrwrite_index_update;
2483 int pages_written = 0;
2484 long pages_skipped;
2485 int range_cyclic, cycled = 1, io_done = 0;
2486 int needed_blocks, ret = 0, nr_to_writebump = 0;
2487 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2488
2489 trace_mark(ext4_da_writepages,
2490 "dev %s ino %lu nr_t_write %ld "
2491 "pages_skipped %ld range_start %llu "
2492 "range_end %llu nonblocking %d "
2493 "for_kupdate %d for_reclaim %d "
2494 "for_writepages %d range_cyclic %d",
2495 inode->i_sb->s_id, inode->i_ino,
2496 wbc->nr_to_write, wbc->pages_skipped,
2497 (unsigned long long) wbc->range_start,
2498 (unsigned long long) wbc->range_end,
2499 wbc->nonblocking, wbc->for_kupdate,
2500 wbc->for_reclaim, wbc->for_writepages,
2501 wbc->range_cyclic);
2502
2503 /*
2504 * No pages to write? This is mainly a kludge to avoid starting
2505 * a transaction for special inodes like journal inode on last iput()
2506 * because that could violate lock ordering on umount
2507 */
2508 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2509 return 0;
2510
2511 /*
2512 * If the filesystem has aborted, it is read-only, so return
2513 * right away instead of dumping stack traces later on that
2514 * will obscure the real source of the problem. We test
2515 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2516 * the latter could be true if the filesystem is mounted
2517 * read-only, and in that case, ext4_da_writepages should
2518 * *never* be called, so if that ever happens, we would want
2519 * the stack trace.
2520 */
2521 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2522 return -EROFS;
2523
2524 /*
2525 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2526 * This make sure small files blocks are allocated in
2527 * single attempt. This ensure that small files
2528 * get less fragmented.
2529 */
2530 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2531 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2532 wbc->nr_to_write = sbi->s_mb_stream_request;
2533 }
2534 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2535 range_whole = 1;
2536
2537 range_cyclic = wbc->range_cyclic;
2538 if (wbc->range_cyclic) {
2539 index = mapping->writeback_index;
2540 if (index)
2541 cycled = 0;
2542 wbc->range_start = index << PAGE_CACHE_SHIFT;
2543 wbc->range_end = LLONG_MAX;
2544 wbc->range_cyclic = 0;
2545 } else
2546 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2547
2548 mpd.wbc = wbc;
2549 mpd.inode = mapping->host;
2550
2551 /*
2552 * we don't want write_cache_pages to update
2553 * nr_to_write and writeback_index
2554 */
2555 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2556 wbc->no_nrwrite_index_update = 1;
2557 pages_skipped = wbc->pages_skipped;
2558
2559 retry:
2560 while (!ret && wbc->nr_to_write > 0) {
2561
2562 /*
2563 * we insert one extent at a time. So we need
2564 * credit needed for single extent allocation.
2565 * journalled mode is currently not supported
2566 * by delalloc
2567 */
2568 BUG_ON(ext4_should_journal_data(inode));
2569 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2570
2571 /* start a new transaction*/
2572 handle = ext4_journal_start(inode, needed_blocks);
2573 if (IS_ERR(handle)) {
2574 ret = PTR_ERR(handle);
2575 printk(KERN_CRIT "%s: jbd2_start: "
2576 "%ld pages, ino %lu; err %d\n", __func__,
2577 wbc->nr_to_write, inode->i_ino, ret);
2578 dump_stack();
2579 goto out_writepages;
2580 }
2581
2582 /*
2583 * Now call __mpage_da_writepage to find the next
2584 * contiguous region of logical blocks that need
2585 * blocks to be allocated by ext4. We don't actually
2586 * submit the blocks for I/O here, even though
2587 * write_cache_pages thinks it will, and will set the
2588 * pages as clean for write before calling
2589 * __mpage_da_writepage().
2590 */
2591 mpd.b_size = 0;
2592 mpd.b_state = 0;
2593 mpd.b_blocknr = 0;
2594 mpd.first_page = 0;
2595 mpd.next_page = 0;
2596 mpd.io_done = 0;
2597 mpd.pages_written = 0;
2598 mpd.retval = 0;
2599 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2600 &mpd);
2601 /*
2602 * If we have a contigous extent of pages and we
2603 * haven't done the I/O yet, map the blocks and submit
2604 * them for I/O.
2605 */
2606 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2607 if (mpage_da_map_blocks(&mpd) == 0)
2608 mpage_da_submit_io(&mpd);
2609 mpd.io_done = 1;
2610 ret = MPAGE_DA_EXTENT_TAIL;
2611 }
2612 wbc->nr_to_write -= mpd.pages_written;
2613
2614 ext4_journal_stop(handle);
2615
2616 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2617 /* commit the transaction which would
2618 * free blocks released in the transaction
2619 * and try again
2620 */
2621 jbd2_journal_force_commit_nested(sbi->s_journal);
2622 wbc->pages_skipped = pages_skipped;
2623 ret = 0;
2624 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2625 /*
2626 * got one extent now try with
2627 * rest of the pages
2628 */
2629 pages_written += mpd.pages_written;
2630 wbc->pages_skipped = pages_skipped;
2631 ret = 0;
2632 io_done = 1;
2633 } else if (wbc->nr_to_write)
2634 /*
2635 * There is no more writeout needed
2636 * or we requested for a noblocking writeout
2637 * and we found the device congested
2638 */
2639 break;
2640 }
2641 if (!io_done && !cycled) {
2642 cycled = 1;
2643 index = 0;
2644 wbc->range_start = index << PAGE_CACHE_SHIFT;
2645 wbc->range_end = mapping->writeback_index - 1;
2646 goto retry;
2647 }
2648 if (pages_skipped != wbc->pages_skipped)
2649 printk(KERN_EMERG "This should not happen leaving %s "
2650 "with nr_to_write = %ld ret = %d\n",
2651 __func__, wbc->nr_to_write, ret);
2652
2653 /* Update index */
2654 index += pages_written;
2655 wbc->range_cyclic = range_cyclic;
2656 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2657 /*
2658 * set the writeback_index so that range_cyclic
2659 * mode will write it back later
2660 */
2661 mapping->writeback_index = index;
2662
2663 out_writepages:
2664 if (!no_nrwrite_index_update)
2665 wbc->no_nrwrite_index_update = 0;
2666 wbc->nr_to_write -= nr_to_writebump;
2667 trace_mark(ext4_da_writepage_result,
2668 "dev %s ino %lu ret %d pages_written %d "
2669 "pages_skipped %ld congestion %d "
2670 "more_io %d no_nrwrite_index_update %d",
2671 inode->i_sb->s_id, inode->i_ino, ret,
2672 pages_written, wbc->pages_skipped,
2673 wbc->encountered_congestion, wbc->more_io,
2674 wbc->no_nrwrite_index_update);
2675 return ret;
2676 }
2677
2678 #define FALL_BACK_TO_NONDELALLOC 1
2679 static int ext4_nonda_switch(struct super_block *sb)
2680 {
2681 s64 free_blocks, dirty_blocks;
2682 struct ext4_sb_info *sbi = EXT4_SB(sb);
2683
2684 /*
2685 * switch to non delalloc mode if we are running low
2686 * on free block. The free block accounting via percpu
2687 * counters can get slightly wrong with percpu_counter_batch getting
2688 * accumulated on each CPU without updating global counters
2689 * Delalloc need an accurate free block accounting. So switch
2690 * to non delalloc when we are near to error range.
2691 */
2692 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2693 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2694 if (2 * free_blocks < 3 * dirty_blocks ||
2695 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2696 /*
2697 * free block count is less that 150% of dirty blocks
2698 * or free blocks is less that watermark
2699 */
2700 return 1;
2701 }
2702 return 0;
2703 }
2704
2705 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2706 loff_t pos, unsigned len, unsigned flags,
2707 struct page **pagep, void **fsdata)
2708 {
2709 int ret, retries = 0;
2710 struct page *page;
2711 pgoff_t index;
2712 unsigned from, to;
2713 struct inode *inode = mapping->host;
2714 handle_t *handle;
2715
2716 index = pos >> PAGE_CACHE_SHIFT;
2717 from = pos & (PAGE_CACHE_SIZE - 1);
2718 to = from + len;
2719
2720 if (ext4_nonda_switch(inode->i_sb)) {
2721 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2722 return ext4_write_begin(file, mapping, pos,
2723 len, flags, pagep, fsdata);
2724 }
2725 *fsdata = (void *)0;
2726
2727 trace_mark(ext4_da_write_begin,
2728 "dev %s ino %lu pos %llu len %u flags %u",
2729 inode->i_sb->s_id, inode->i_ino,
2730 (unsigned long long) pos, len, flags);
2731 retry:
2732 /*
2733 * With delayed allocation, we don't log the i_disksize update
2734 * if there is delayed block allocation. But we still need
2735 * to journalling the i_disksize update if writes to the end
2736 * of file which has an already mapped buffer.
2737 */
2738 handle = ext4_journal_start(inode, 1);
2739 if (IS_ERR(handle)) {
2740 ret = PTR_ERR(handle);
2741 goto out;
2742 }
2743 /* We cannot recurse into the filesystem as the transaction is already
2744 * started */
2745 flags |= AOP_FLAG_NOFS;
2746
2747 page = grab_cache_page_write_begin(mapping, index, flags);
2748 if (!page) {
2749 ext4_journal_stop(handle);
2750 ret = -ENOMEM;
2751 goto out;
2752 }
2753 *pagep = page;
2754
2755 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2756 ext4_da_get_block_prep);
2757 if (ret < 0) {
2758 unlock_page(page);
2759 ext4_journal_stop(handle);
2760 page_cache_release(page);
2761 /*
2762 * block_write_begin may have instantiated a few blocks
2763 * outside i_size. Trim these off again. Don't need
2764 * i_size_read because we hold i_mutex.
2765 */
2766 if (pos + len > inode->i_size)
2767 vmtruncate(inode, inode->i_size);
2768 }
2769
2770 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2771 goto retry;
2772 out:
2773 return ret;
2774 }
2775
2776 /*
2777 * Check if we should update i_disksize
2778 * when write to the end of file but not require block allocation
2779 */
2780 static int ext4_da_should_update_i_disksize(struct page *page,
2781 unsigned long offset)
2782 {
2783 struct buffer_head *bh;
2784 struct inode *inode = page->mapping->host;
2785 unsigned int idx;
2786 int i;
2787
2788 bh = page_buffers(page);
2789 idx = offset >> inode->i_blkbits;
2790
2791 for (i = 0; i < idx; i++)
2792 bh = bh->b_this_page;
2793
2794 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2795 return 0;
2796 return 1;
2797 }
2798
2799 static int ext4_da_write_end(struct file *file,
2800 struct address_space *mapping,
2801 loff_t pos, unsigned len, unsigned copied,
2802 struct page *page, void *fsdata)
2803 {
2804 struct inode *inode = mapping->host;
2805 int ret = 0, ret2;
2806 handle_t *handle = ext4_journal_current_handle();
2807 loff_t new_i_size;
2808 unsigned long start, end;
2809 int write_mode = (int)(unsigned long)fsdata;
2810
2811 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2812 if (ext4_should_order_data(inode)) {
2813 return ext4_ordered_write_end(file, mapping, pos,
2814 len, copied, page, fsdata);
2815 } else if (ext4_should_writeback_data(inode)) {
2816 return ext4_writeback_write_end(file, mapping, pos,
2817 len, copied, page, fsdata);
2818 } else {
2819 BUG();
2820 }
2821 }
2822
2823 trace_mark(ext4_da_write_end,
2824 "dev %s ino %lu pos %llu len %u copied %u",
2825 inode->i_sb->s_id, inode->i_ino,
2826 (unsigned long long) pos, len, copied);
2827 start = pos & (PAGE_CACHE_SIZE - 1);
2828 end = start + copied - 1;
2829
2830 /*
2831 * generic_write_end() will run mark_inode_dirty() if i_size
2832 * changes. So let's piggyback the i_disksize mark_inode_dirty
2833 * into that.
2834 */
2835
2836 new_i_size = pos + copied;
2837 if (new_i_size > EXT4_I(inode)->i_disksize) {
2838 if (ext4_da_should_update_i_disksize(page, end)) {
2839 down_write(&EXT4_I(inode)->i_data_sem);
2840 if (new_i_size > EXT4_I(inode)->i_disksize) {
2841 /*
2842 * Updating i_disksize when extending file
2843 * without needing block allocation
2844 */
2845 if (ext4_should_order_data(inode))
2846 ret = ext4_jbd2_file_inode(handle,
2847 inode);
2848
2849 EXT4_I(inode)->i_disksize = new_i_size;
2850 }
2851 up_write(&EXT4_I(inode)->i_data_sem);
2852 /* We need to mark inode dirty even if
2853 * new_i_size is less that inode->i_size
2854 * bu greater than i_disksize.(hint delalloc)
2855 */
2856 ext4_mark_inode_dirty(handle, inode);
2857 }
2858 }
2859 ret2 = generic_write_end(file, mapping, pos, len, copied,
2860 page, fsdata);
2861 copied = ret2;
2862 if (ret2 < 0)
2863 ret = ret2;
2864 ret2 = ext4_journal_stop(handle);
2865 if (!ret)
2866 ret = ret2;
2867
2868 return ret ? ret : copied;
2869 }
2870
2871 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2872 {
2873 /*
2874 * Drop reserved blocks
2875 */
2876 BUG_ON(!PageLocked(page));
2877 if (!page_has_buffers(page))
2878 goto out;
2879
2880 ext4_da_page_release_reservation(page, offset);
2881
2882 out:
2883 ext4_invalidatepage(page, offset);
2884
2885 return;
2886 }
2887
2888 /*
2889 * Force all delayed allocation blocks to be allocated for a given inode.
2890 */
2891 int ext4_alloc_da_blocks(struct inode *inode)
2892 {
2893 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2894 !EXT4_I(inode)->i_reserved_meta_blocks)
2895 return 0;
2896
2897 /*
2898 * We do something simple for now. The filemap_flush() will
2899 * also start triggering a write of the data blocks, which is
2900 * not strictly speaking necessary (and for users of
2901 * laptop_mode, not even desirable). However, to do otherwise
2902 * would require replicating code paths in:
2903 *
2904 * ext4_da_writepages() ->
2905 * write_cache_pages() ---> (via passed in callback function)
2906 * __mpage_da_writepage() -->
2907 * mpage_add_bh_to_extent()
2908 * mpage_da_map_blocks()
2909 *
2910 * The problem is that write_cache_pages(), located in
2911 * mm/page-writeback.c, marks pages clean in preparation for
2912 * doing I/O, which is not desirable if we're not planning on
2913 * doing I/O at all.
2914 *
2915 * We could call write_cache_pages(), and then redirty all of
2916 * the pages by calling redirty_page_for_writeback() but that
2917 * would be ugly in the extreme. So instead we would need to
2918 * replicate parts of the code in the above functions,
2919 * simplifying them becuase we wouldn't actually intend to
2920 * write out the pages, but rather only collect contiguous
2921 * logical block extents, call the multi-block allocator, and
2922 * then update the buffer heads with the block allocations.
2923 *
2924 * For now, though, we'll cheat by calling filemap_flush(),
2925 * which will map the blocks, and start the I/O, but not
2926 * actually wait for the I/O to complete.
2927 */
2928 return filemap_flush(inode->i_mapping);
2929 }
2930
2931 /*
2932 * bmap() is special. It gets used by applications such as lilo and by
2933 * the swapper to find the on-disk block of a specific piece of data.
2934 *
2935 * Naturally, this is dangerous if the block concerned is still in the
2936 * journal. If somebody makes a swapfile on an ext4 data-journaling
2937 * filesystem and enables swap, then they may get a nasty shock when the
2938 * data getting swapped to that swapfile suddenly gets overwritten by
2939 * the original zero's written out previously to the journal and
2940 * awaiting writeback in the kernel's buffer cache.
2941 *
2942 * So, if we see any bmap calls here on a modified, data-journaled file,
2943 * take extra steps to flush any blocks which might be in the cache.
2944 */
2945 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2946 {
2947 struct inode *inode = mapping->host;
2948 journal_t *journal;
2949 int err;
2950
2951 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2952 test_opt(inode->i_sb, DELALLOC)) {
2953 /*
2954 * With delalloc we want to sync the file
2955 * so that we can make sure we allocate
2956 * blocks for file
2957 */
2958 filemap_write_and_wait(mapping);
2959 }
2960
2961 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2962 /*
2963 * This is a REALLY heavyweight approach, but the use of
2964 * bmap on dirty files is expected to be extremely rare:
2965 * only if we run lilo or swapon on a freshly made file
2966 * do we expect this to happen.
2967 *
2968 * (bmap requires CAP_SYS_RAWIO so this does not
2969 * represent an unprivileged user DOS attack --- we'd be
2970 * in trouble if mortal users could trigger this path at
2971 * will.)
2972 *
2973 * NB. EXT4_STATE_JDATA is not set on files other than
2974 * regular files. If somebody wants to bmap a directory
2975 * or symlink and gets confused because the buffer
2976 * hasn't yet been flushed to disk, they deserve
2977 * everything they get.
2978 */
2979
2980 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
2981 journal = EXT4_JOURNAL(inode);
2982 jbd2_journal_lock_updates(journal);
2983 err = jbd2_journal_flush(journal);
2984 jbd2_journal_unlock_updates(journal);
2985
2986 if (err)
2987 return 0;
2988 }
2989
2990 return generic_block_bmap(mapping, block, ext4_get_block);
2991 }
2992
2993 static int bget_one(handle_t *handle, struct buffer_head *bh)
2994 {
2995 get_bh(bh);
2996 return 0;
2997 }
2998
2999 static int bput_one(handle_t *handle, struct buffer_head *bh)
3000 {
3001 put_bh(bh);
3002 return 0;
3003 }
3004
3005 /*
3006 * Note that we don't need to start a transaction unless we're journaling data
3007 * because we should have holes filled from ext4_page_mkwrite(). We even don't
3008 * need to file the inode to the transaction's list in ordered mode because if
3009 * we are writing back data added by write(), the inode is already there and if
3010 * we are writing back data modified via mmap(), noone guarantees in which
3011 * transaction the data will hit the disk. In case we are journaling data, we
3012 * cannot start transaction directly because transaction start ranks above page
3013 * lock so we have to do some magic.
3014 *
3015 * In all journaling modes block_write_full_page() will start the I/O.
3016 *
3017 * Problem:
3018 *
3019 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3020 * ext4_writepage()
3021 *
3022 * Similar for:
3023 *
3024 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3025 *
3026 * Same applies to ext4_get_block(). We will deadlock on various things like
3027 * lock_journal and i_data_sem
3028 *
3029 * Setting PF_MEMALLOC here doesn't work - too many internal memory
3030 * allocations fail.
3031 *
3032 * 16May01: If we're reentered then journal_current_handle() will be
3033 * non-zero. We simply *return*.
3034 *
3035 * 1 July 2001: @@@ FIXME:
3036 * In journalled data mode, a data buffer may be metadata against the
3037 * current transaction. But the same file is part of a shared mapping
3038 * and someone does a writepage() on it.
3039 *
3040 * We will move the buffer onto the async_data list, but *after* it has
3041 * been dirtied. So there's a small window where we have dirty data on
3042 * BJ_Metadata.
3043 *
3044 * Note that this only applies to the last partial page in the file. The
3045 * bit which block_write_full_page() uses prepare/commit for. (That's
3046 * broken code anyway: it's wrong for msync()).
3047 *
3048 * It's a rare case: affects the final partial page, for journalled data
3049 * where the file is subject to bith write() and writepage() in the same
3050 * transction. To fix it we'll need a custom block_write_full_page().
3051 * We'll probably need that anyway for journalling writepage() output.
3052 *
3053 * We don't honour synchronous mounts for writepage(). That would be
3054 * disastrous. Any write() or metadata operation will sync the fs for
3055 * us.
3056 *
3057 */
3058 static int __ext4_normal_writepage(struct page *page,
3059 struct writeback_control *wbc)
3060 {
3061 struct inode *inode = page->mapping->host;
3062
3063 if (test_opt(inode->i_sb, NOBH))
3064 return nobh_writepage(page,
3065 ext4_normal_get_block_write, wbc);
3066 else
3067 return block_write_full_page(page,
3068 ext4_normal_get_block_write,
3069 wbc);
3070 }
3071
3072 static int ext4_normal_writepage(struct page *page,
3073 struct writeback_control *wbc)
3074 {
3075 struct inode *inode = page->mapping->host;
3076 loff_t size = i_size_read(inode);
3077 loff_t len;
3078
3079 trace_mark(ext4_normal_writepage,
3080 "dev %s ino %lu page_index %lu",
3081 inode->i_sb->s_id, inode->i_ino, page->index);
3082 J_ASSERT(PageLocked(page));
3083 if (page->index == size >> PAGE_CACHE_SHIFT)
3084 len = size & ~PAGE_CACHE_MASK;
3085 else
3086 len = PAGE_CACHE_SIZE;
3087
3088 if (page_has_buffers(page)) {
3089 /* if page has buffers it should all be mapped
3090 * and allocated. If there are not buffers attached
3091 * to the page we know the page is dirty but it lost
3092 * buffers. That means that at some moment in time
3093 * after write_begin() / write_end() has been called
3094 * all buffers have been clean and thus they must have been
3095 * written at least once. So they are all mapped and we can
3096 * happily proceed with mapping them and writing the page.
3097 */
3098 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3099 ext4_bh_unmapped_or_delay));
3100 }
3101
3102 if (!ext4_journal_current_handle())
3103 return __ext4_normal_writepage(page, wbc);
3104
3105 redirty_page_for_writepage(wbc, page);
3106 unlock_page(page);
3107 return 0;
3108 }
3109
3110 static int __ext4_journalled_writepage(struct page *page,
3111 struct writeback_control *wbc)
3112 {
3113 struct address_space *mapping = page->mapping;
3114 struct inode *inode = mapping->host;
3115 struct buffer_head *page_bufs;
3116 handle_t *handle = NULL;
3117 int ret = 0;
3118 int err;
3119
3120 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3121 ext4_normal_get_block_write);
3122 if (ret != 0)
3123 goto out_unlock;
3124
3125 page_bufs = page_buffers(page);
3126 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3127 bget_one);
3128 /* As soon as we unlock the page, it can go away, but we have
3129 * references to buffers so we are safe */
3130 unlock_page(page);
3131
3132 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3133 if (IS_ERR(handle)) {
3134 ret = PTR_ERR(handle);
3135 goto out;
3136 }
3137
3138 ret = walk_page_buffers(handle, page_bufs, 0,
3139 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3140
3141 err = walk_page_buffers(handle, page_bufs, 0,
3142 PAGE_CACHE_SIZE, NULL, write_end_fn);
3143 if (ret == 0)
3144 ret = err;
3145 err = ext4_journal_stop(handle);
3146 if (!ret)
3147 ret = err;
3148
3149 walk_page_buffers(handle, page_bufs, 0,
3150 PAGE_CACHE_SIZE, NULL, bput_one);
3151 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3152 goto out;
3153
3154 out_unlock:
3155 unlock_page(page);
3156 out:
3157 return ret;
3158 }
3159
3160 static int ext4_journalled_writepage(struct page *page,
3161 struct writeback_control *wbc)
3162 {
3163 struct inode *inode = page->mapping->host;
3164 loff_t size = i_size_read(inode);
3165 loff_t len;
3166
3167 trace_mark(ext4_journalled_writepage,
3168 "dev %s ino %lu page_index %lu",
3169 inode->i_sb->s_id, inode->i_ino, page->index);
3170 J_ASSERT(PageLocked(page));
3171 if (page->index == size >> PAGE_CACHE_SHIFT)
3172 len = size & ~PAGE_CACHE_MASK;
3173 else
3174 len = PAGE_CACHE_SIZE;
3175
3176 if (page_has_buffers(page)) {
3177 /* if page has buffers it should all be mapped
3178 * and allocated. If there are not buffers attached
3179 * to the page we know the page is dirty but it lost
3180 * buffers. That means that at some moment in time
3181 * after write_begin() / write_end() has been called
3182 * all buffers have been clean and thus they must have been
3183 * written at least once. So they are all mapped and we can
3184 * happily proceed with mapping them and writing the page.
3185 */
3186 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3187 ext4_bh_unmapped_or_delay));
3188 }
3189
3190 if (ext4_journal_current_handle())
3191 goto no_write;
3192
3193 if (PageChecked(page)) {
3194 /*
3195 * It's mmapped pagecache. Add buffers and journal it. There
3196 * doesn't seem much point in redirtying the page here.
3197 */
3198 ClearPageChecked(page);
3199 return __ext4_journalled_writepage(page, wbc);
3200 } else {
3201 /*
3202 * It may be a page full of checkpoint-mode buffers. We don't
3203 * really know unless we go poke around in the buffer_heads.
3204 * But block_write_full_page will do the right thing.
3205 */
3206 return block_write_full_page(page,
3207 ext4_normal_get_block_write,
3208 wbc);
3209 }
3210 no_write:
3211 redirty_page_for_writepage(wbc, page);
3212 unlock_page(page);
3213 return 0;
3214 }
3215
3216 static int ext4_readpage(struct file *file, struct page *page)
3217 {
3218 return mpage_readpage(page, ext4_get_block);
3219 }
3220
3221 static int
3222 ext4_readpages(struct file *file, struct address_space *mapping,
3223 struct list_head *pages, unsigned nr_pages)
3224 {
3225 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3226 }
3227
3228 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3229 {
3230 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3231
3232 /*
3233 * If it's a full truncate we just forget about the pending dirtying
3234 */
3235 if (offset == 0)
3236 ClearPageChecked(page);
3237
3238 if (journal)
3239 jbd2_journal_invalidatepage(journal, page, offset);
3240 else
3241 block_invalidatepage(page, offset);
3242 }
3243
3244 static int ext4_releasepage(struct page *page, gfp_t wait)
3245 {
3246 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3247
3248 WARN_ON(PageChecked(page));
3249 if (!page_has_buffers(page))
3250 return 0;
3251 if (journal)
3252 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3253 else
3254 return try_to_free_buffers(page);
3255 }
3256
3257 /*
3258 * If the O_DIRECT write will extend the file then add this inode to the
3259 * orphan list. So recovery will truncate it back to the original size
3260 * if the machine crashes during the write.
3261 *
3262 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3263 * crashes then stale disk data _may_ be exposed inside the file. But current
3264 * VFS code falls back into buffered path in that case so we are safe.
3265 */
3266 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3267 const struct iovec *iov, loff_t offset,
3268 unsigned long nr_segs)
3269 {
3270 struct file *file = iocb->ki_filp;
3271 struct inode *inode = file->f_mapping->host;
3272 struct ext4_inode_info *ei = EXT4_I(inode);
3273 handle_t *handle;
3274 ssize_t ret;
3275 int orphan = 0;
3276 size_t count = iov_length(iov, nr_segs);
3277
3278 if (rw == WRITE) {
3279 loff_t final_size = offset + count;
3280
3281 if (final_size > inode->i_size) {
3282 /* Credits for sb + inode write */
3283 handle = ext4_journal_start(inode, 2);
3284 if (IS_ERR(handle)) {
3285 ret = PTR_ERR(handle);
3286 goto out;
3287 }
3288 ret = ext4_orphan_add(handle, inode);
3289 if (ret) {
3290 ext4_journal_stop(handle);
3291 goto out;
3292 }
3293 orphan = 1;
3294 ei->i_disksize = inode->i_size;
3295 ext4_journal_stop(handle);
3296 }
3297 }
3298
3299 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3300 offset, nr_segs,
3301 ext4_get_block, NULL);
3302
3303 if (orphan) {
3304 int err;
3305
3306 /* Credits for sb + inode write */
3307 handle = ext4_journal_start(inode, 2);
3308 if (IS_ERR(handle)) {
3309 /* This is really bad luck. We've written the data
3310 * but cannot extend i_size. Bail out and pretend
3311 * the write failed... */
3312 ret = PTR_ERR(handle);
3313 goto out;
3314 }
3315 if (inode->i_nlink)
3316 ext4_orphan_del(handle, inode);
3317 if (ret > 0) {
3318 loff_t end = offset + ret;
3319 if (end > inode->i_size) {
3320 ei->i_disksize = end;
3321 i_size_write(inode, end);
3322 /*
3323 * We're going to return a positive `ret'
3324 * here due to non-zero-length I/O, so there's
3325 * no way of reporting error returns from
3326 * ext4_mark_inode_dirty() to userspace. So
3327 * ignore it.
3328 */
3329 ext4_mark_inode_dirty(handle, inode);
3330 }
3331 }
3332 err = ext4_journal_stop(handle);
3333 if (ret == 0)
3334 ret = err;
3335 }
3336 out:
3337 return ret;
3338 }
3339
3340 /*
3341 * Pages can be marked dirty completely asynchronously from ext4's journalling
3342 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3343 * much here because ->set_page_dirty is called under VFS locks. The page is
3344 * not necessarily locked.
3345 *
3346 * We cannot just dirty the page and leave attached buffers clean, because the
3347 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3348 * or jbddirty because all the journalling code will explode.
3349 *
3350 * So what we do is to mark the page "pending dirty" and next time writepage
3351 * is called, propagate that into the buffers appropriately.
3352 */
3353 static int ext4_journalled_set_page_dirty(struct page *page)
3354 {
3355 SetPageChecked(page);
3356 return __set_page_dirty_nobuffers(page);
3357 }
3358
3359 static const struct address_space_operations ext4_ordered_aops = {
3360 .readpage = ext4_readpage,
3361 .readpages = ext4_readpages,
3362 .writepage = ext4_normal_writepage,
3363 .sync_page = block_sync_page,
3364 .write_begin = ext4_write_begin,
3365 .write_end = ext4_ordered_write_end,
3366 .bmap = ext4_bmap,
3367 .invalidatepage = ext4_invalidatepage,
3368 .releasepage = ext4_releasepage,
3369 .direct_IO = ext4_direct_IO,
3370 .migratepage = buffer_migrate_page,
3371 .is_partially_uptodate = block_is_partially_uptodate,
3372 };
3373
3374 static const struct address_space_operations ext4_writeback_aops = {
3375 .readpage = ext4_readpage,
3376 .readpages = ext4_readpages,
3377 .writepage = ext4_normal_writepage,
3378 .sync_page = block_sync_page,
3379 .write_begin = ext4_write_begin,
3380 .write_end = ext4_writeback_write_end,
3381 .bmap = ext4_bmap,
3382 .invalidatepage = ext4_invalidatepage,
3383 .releasepage = ext4_releasepage,
3384 .direct_IO = ext4_direct_IO,
3385 .migratepage = buffer_migrate_page,
3386 .is_partially_uptodate = block_is_partially_uptodate,
3387 };
3388
3389 static const struct address_space_operations ext4_journalled_aops = {
3390 .readpage = ext4_readpage,
3391 .readpages = ext4_readpages,
3392 .writepage = ext4_journalled_writepage,
3393 .sync_page = block_sync_page,
3394 .write_begin = ext4_write_begin,
3395 .write_end = ext4_journalled_write_end,
3396 .set_page_dirty = ext4_journalled_set_page_dirty,
3397 .bmap = ext4_bmap,
3398 .invalidatepage = ext4_invalidatepage,
3399 .releasepage = ext4_releasepage,
3400 .is_partially_uptodate = block_is_partially_uptodate,
3401 };
3402
3403 static const struct address_space_operations ext4_da_aops = {
3404 .readpage = ext4_readpage,
3405 .readpages = ext4_readpages,
3406 .writepage = ext4_da_writepage,
3407 .writepages = ext4_da_writepages,
3408 .sync_page = block_sync_page,
3409 .write_begin = ext4_da_write_begin,
3410 .write_end = ext4_da_write_end,
3411 .bmap = ext4_bmap,
3412 .invalidatepage = ext4_da_invalidatepage,
3413 .releasepage = ext4_releasepage,
3414 .direct_IO = ext4_direct_IO,
3415 .migratepage = buffer_migrate_page,
3416 .is_partially_uptodate = block_is_partially_uptodate,
3417 };
3418
3419 void ext4_set_aops(struct inode *inode)
3420 {
3421 if (ext4_should_order_data(inode) &&
3422 test_opt(inode->i_sb, DELALLOC))
3423 inode->i_mapping->a_ops = &ext4_da_aops;
3424 else if (ext4_should_order_data(inode))
3425 inode->i_mapping->a_ops = &ext4_ordered_aops;
3426 else if (ext4_should_writeback_data(inode) &&
3427 test_opt(inode->i_sb, DELALLOC))
3428 inode->i_mapping->a_ops = &ext4_da_aops;
3429 else if (ext4_should_writeback_data(inode))
3430 inode->i_mapping->a_ops = &ext4_writeback_aops;
3431 else
3432 inode->i_mapping->a_ops = &ext4_journalled_aops;
3433 }
3434
3435 /*
3436 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3437 * up to the end of the block which corresponds to `from'.
3438 * This required during truncate. We need to physically zero the tail end
3439 * of that block so it doesn't yield old data if the file is later grown.
3440 */
3441 int ext4_block_truncate_page(handle_t *handle,
3442 struct address_space *mapping, loff_t from)
3443 {
3444 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3445 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3446 unsigned blocksize, length, pos;
3447 ext4_lblk_t iblock;
3448 struct inode *inode = mapping->host;
3449 struct buffer_head *bh;
3450 struct page *page;
3451 int err = 0;
3452
3453 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3454 if (!page)
3455 return -EINVAL;
3456
3457 blocksize = inode->i_sb->s_blocksize;
3458 length = blocksize - (offset & (blocksize - 1));
3459 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3460
3461 /*
3462 * For "nobh" option, we can only work if we don't need to
3463 * read-in the page - otherwise we create buffers to do the IO.
3464 */
3465 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3466 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3467 zero_user(page, offset, length);
3468 set_page_dirty(page);
3469 goto unlock;
3470 }
3471
3472 if (!page_has_buffers(page))
3473 create_empty_buffers(page, blocksize, 0);
3474
3475 /* Find the buffer that contains "offset" */
3476 bh = page_buffers(page);
3477 pos = blocksize;
3478 while (offset >= pos) {
3479 bh = bh->b_this_page;
3480 iblock++;
3481 pos += blocksize;
3482 }
3483
3484 err = 0;
3485 if (buffer_freed(bh)) {
3486 BUFFER_TRACE(bh, "freed: skip");
3487 goto unlock;
3488 }
3489
3490 if (!buffer_mapped(bh)) {
3491 BUFFER_TRACE(bh, "unmapped");
3492 ext4_get_block(inode, iblock, bh, 0);
3493 /* unmapped? It's a hole - nothing to do */
3494 if (!buffer_mapped(bh)) {
3495 BUFFER_TRACE(bh, "still unmapped");
3496 goto unlock;
3497 }
3498 }
3499
3500 /* Ok, it's mapped. Make sure it's up-to-date */
3501 if (PageUptodate(page))
3502 set_buffer_uptodate(bh);
3503
3504 if (!buffer_uptodate(bh)) {
3505 err = -EIO;
3506 ll_rw_block(READ, 1, &bh);
3507 wait_on_buffer(bh);
3508 /* Uhhuh. Read error. Complain and punt. */
3509 if (!buffer_uptodate(bh))
3510 goto unlock;
3511 }
3512
3513 if (ext4_should_journal_data(inode)) {
3514 BUFFER_TRACE(bh, "get write access");
3515 err = ext4_journal_get_write_access(handle, bh);
3516 if (err)
3517 goto unlock;
3518 }
3519
3520 zero_user(page, offset, length);
3521
3522 BUFFER_TRACE(bh, "zeroed end of block");
3523
3524 err = 0;
3525 if (ext4_should_journal_data(inode)) {
3526 err = ext4_handle_dirty_metadata(handle, inode, bh);
3527 } else {
3528 if (ext4_should_order_data(inode))
3529 err = ext4_jbd2_file_inode(handle, inode);
3530 mark_buffer_dirty(bh);
3531 }
3532
3533 unlock:
3534 unlock_page(page);
3535 page_cache_release(page);
3536 return err;
3537 }
3538
3539 /*
3540 * Probably it should be a library function... search for first non-zero word
3541 * or memcmp with zero_page, whatever is better for particular architecture.
3542 * Linus?
3543 */
3544 static inline int all_zeroes(__le32 *p, __le32 *q)
3545 {
3546 while (p < q)
3547 if (*p++)
3548 return 0;
3549 return 1;
3550 }
3551
3552 /**
3553 * ext4_find_shared - find the indirect blocks for partial truncation.
3554 * @inode: inode in question
3555 * @depth: depth of the affected branch
3556 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3557 * @chain: place to store the pointers to partial indirect blocks
3558 * @top: place to the (detached) top of branch
3559 *
3560 * This is a helper function used by ext4_truncate().
3561 *
3562 * When we do truncate() we may have to clean the ends of several
3563 * indirect blocks but leave the blocks themselves alive. Block is
3564 * partially truncated if some data below the new i_size is refered
3565 * from it (and it is on the path to the first completely truncated
3566 * data block, indeed). We have to free the top of that path along
3567 * with everything to the right of the path. Since no allocation
3568 * past the truncation point is possible until ext4_truncate()
3569 * finishes, we may safely do the latter, but top of branch may
3570 * require special attention - pageout below the truncation point
3571 * might try to populate it.
3572 *
3573 * We atomically detach the top of branch from the tree, store the
3574 * block number of its root in *@top, pointers to buffer_heads of
3575 * partially truncated blocks - in @chain[].bh and pointers to
3576 * their last elements that should not be removed - in
3577 * @chain[].p. Return value is the pointer to last filled element
3578 * of @chain.
3579 *
3580 * The work left to caller to do the actual freeing of subtrees:
3581 * a) free the subtree starting from *@top
3582 * b) free the subtrees whose roots are stored in
3583 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3584 * c) free the subtrees growing from the inode past the @chain[0].
3585 * (no partially truncated stuff there). */
3586
3587 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3588 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3589 {
3590 Indirect *partial, *p;
3591 int k, err;
3592
3593 *top = 0;
3594 /* Make k index the deepest non-null offest + 1 */
3595 for (k = depth; k > 1 && !offsets[k-1]; k--)
3596 ;
3597 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3598 /* Writer: pointers */
3599 if (!partial)
3600 partial = chain + k-1;
3601 /*
3602 * If the branch acquired continuation since we've looked at it -
3603 * fine, it should all survive and (new) top doesn't belong to us.
3604 */
3605 if (!partial->key && *partial->p)
3606 /* Writer: end */
3607 goto no_top;
3608 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3609 ;
3610 /*
3611 * OK, we've found the last block that must survive. The rest of our
3612 * branch should be detached before unlocking. However, if that rest
3613 * of branch is all ours and does not grow immediately from the inode
3614 * it's easier to cheat and just decrement partial->p.
3615 */
3616 if (p == chain + k - 1 && p > chain) {
3617 p->p--;
3618 } else {
3619 *top = *p->p;
3620 /* Nope, don't do this in ext4. Must leave the tree intact */
3621 #if 0
3622 *p->p = 0;
3623 #endif
3624 }
3625 /* Writer: end */
3626
3627 while (partial > p) {
3628 brelse(partial->bh);
3629 partial--;
3630 }
3631 no_top:
3632 return partial;
3633 }
3634
3635 /*
3636 * Zero a number of block pointers in either an inode or an indirect block.
3637 * If we restart the transaction we must again get write access to the
3638 * indirect block for further modification.
3639 *
3640 * We release `count' blocks on disk, but (last - first) may be greater
3641 * than `count' because there can be holes in there.
3642 */
3643 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3644 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3645 unsigned long count, __le32 *first, __le32 *last)
3646 {
3647 __le32 *p;
3648 if (try_to_extend_transaction(handle, inode)) {
3649 if (bh) {
3650 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3651 ext4_handle_dirty_metadata(handle, inode, bh);
3652 }
3653 ext4_mark_inode_dirty(handle, inode);
3654 ext4_journal_test_restart(handle, inode);
3655 if (bh) {
3656 BUFFER_TRACE(bh, "retaking write access");
3657 ext4_journal_get_write_access(handle, bh);
3658 }
3659 }
3660
3661 /*
3662 * Any buffers which are on the journal will be in memory. We find
3663 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3664 * on them. We've already detached each block from the file, so
3665 * bforget() in jbd2_journal_forget() should be safe.
3666 *
3667 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3668 */
3669 for (p = first; p < last; p++) {
3670 u32 nr = le32_to_cpu(*p);
3671 if (nr) {
3672 struct buffer_head *tbh;
3673
3674 *p = 0;
3675 tbh = sb_find_get_block(inode->i_sb, nr);
3676 ext4_forget(handle, 0, inode, tbh, nr);
3677 }
3678 }
3679
3680 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3681 }
3682
3683 /**
3684 * ext4_free_data - free a list of data blocks
3685 * @handle: handle for this transaction
3686 * @inode: inode we are dealing with
3687 * @this_bh: indirect buffer_head which contains *@first and *@last
3688 * @first: array of block numbers
3689 * @last: points immediately past the end of array
3690 *
3691 * We are freeing all blocks refered from that array (numbers are stored as
3692 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3693 *
3694 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3695 * blocks are contiguous then releasing them at one time will only affect one
3696 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3697 * actually use a lot of journal space.
3698 *
3699 * @this_bh will be %NULL if @first and @last point into the inode's direct
3700 * block pointers.
3701 */
3702 static void ext4_free_data(handle_t *handle, struct inode *inode,
3703 struct buffer_head *this_bh,
3704 __le32 *first, __le32 *last)
3705 {
3706 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3707 unsigned long count = 0; /* Number of blocks in the run */
3708 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3709 corresponding to
3710 block_to_free */
3711 ext4_fsblk_t nr; /* Current block # */
3712 __le32 *p; /* Pointer into inode/ind
3713 for current block */
3714 int err;
3715
3716 if (this_bh) { /* For indirect block */
3717 BUFFER_TRACE(this_bh, "get_write_access");
3718 err = ext4_journal_get_write_access(handle, this_bh);
3719 /* Important: if we can't update the indirect pointers
3720 * to the blocks, we can't free them. */
3721 if (err)
3722 return;
3723 }
3724
3725 for (p = first; p < last; p++) {
3726 nr = le32_to_cpu(*p);
3727 if (nr) {
3728 /* accumulate blocks to free if they're contiguous */
3729 if (count == 0) {
3730 block_to_free = nr;
3731 block_to_free_p = p;
3732 count = 1;
3733 } else if (nr == block_to_free + count) {
3734 count++;
3735 } else {
3736 ext4_clear_blocks(handle, inode, this_bh,
3737 block_to_free,
3738 count, block_to_free_p, p);
3739 block_to_free = nr;
3740 block_to_free_p = p;
3741 count = 1;
3742 }
3743 }
3744 }
3745
3746 if (count > 0)
3747 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3748 count, block_to_free_p, p);
3749
3750 if (this_bh) {
3751 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3752
3753 /*
3754 * The buffer head should have an attached journal head at this
3755 * point. However, if the data is corrupted and an indirect
3756 * block pointed to itself, it would have been detached when
3757 * the block was cleared. Check for this instead of OOPSing.
3758 */
3759 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3760 ext4_handle_dirty_metadata(handle, inode, this_bh);
3761 else
3762 ext4_error(inode->i_sb, __func__,
3763 "circular indirect block detected, "
3764 "inode=%lu, block=%llu",
3765 inode->i_ino,
3766 (unsigned long long) this_bh->b_blocknr);
3767 }
3768 }
3769
3770 /**
3771 * ext4_free_branches - free an array of branches
3772 * @handle: JBD handle for this transaction
3773 * @inode: inode we are dealing with
3774 * @parent_bh: the buffer_head which contains *@first and *@last
3775 * @first: array of block numbers
3776 * @last: pointer immediately past the end of array
3777 * @depth: depth of the branches to free
3778 *
3779 * We are freeing all blocks refered from these branches (numbers are
3780 * stored as little-endian 32-bit) and updating @inode->i_blocks
3781 * appropriately.
3782 */
3783 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3784 struct buffer_head *parent_bh,
3785 __le32 *first, __le32 *last, int depth)
3786 {
3787 ext4_fsblk_t nr;
3788 __le32 *p;
3789
3790 if (ext4_handle_is_aborted(handle))
3791 return;
3792
3793 if (depth--) {
3794 struct buffer_head *bh;
3795 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3796 p = last;
3797 while (--p >= first) {
3798 nr = le32_to_cpu(*p);
3799 if (!nr)
3800 continue; /* A hole */
3801
3802 /* Go read the buffer for the next level down */
3803 bh = sb_bread(inode->i_sb, nr);
3804
3805 /*
3806 * A read failure? Report error and clear slot
3807 * (should be rare).
3808 */
3809 if (!bh) {
3810 ext4_error(inode->i_sb, "ext4_free_branches",
3811 "Read failure, inode=%lu, block=%llu",
3812 inode->i_ino, nr);
3813 continue;
3814 }
3815
3816 /* This zaps the entire block. Bottom up. */
3817 BUFFER_TRACE(bh, "free child branches");
3818 ext4_free_branches(handle, inode, bh,
3819 (__le32 *) bh->b_data,
3820 (__le32 *) bh->b_data + addr_per_block,
3821 depth);
3822
3823 /*
3824 * We've probably journalled the indirect block several
3825 * times during the truncate. But it's no longer
3826 * needed and we now drop it from the transaction via
3827 * jbd2_journal_revoke().
3828 *
3829 * That's easy if it's exclusively part of this
3830 * transaction. But if it's part of the committing
3831 * transaction then jbd2_journal_forget() will simply
3832 * brelse() it. That means that if the underlying
3833 * block is reallocated in ext4_get_block(),
3834 * unmap_underlying_metadata() will find this block
3835 * and will try to get rid of it. damn, damn.
3836 *
3837 * If this block has already been committed to the
3838 * journal, a revoke record will be written. And
3839 * revoke records must be emitted *before* clearing
3840 * this block's bit in the bitmaps.
3841 */
3842 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3843
3844 /*
3845 * Everything below this this pointer has been
3846 * released. Now let this top-of-subtree go.
3847 *
3848 * We want the freeing of this indirect block to be
3849 * atomic in the journal with the updating of the
3850 * bitmap block which owns it. So make some room in
3851 * the journal.
3852 *
3853 * We zero the parent pointer *after* freeing its
3854 * pointee in the bitmaps, so if extend_transaction()
3855 * for some reason fails to put the bitmap changes and
3856 * the release into the same transaction, recovery
3857 * will merely complain about releasing a free block,
3858 * rather than leaking blocks.
3859 */
3860 if (ext4_handle_is_aborted(handle))
3861 return;
3862 if (try_to_extend_transaction(handle, inode)) {
3863 ext4_mark_inode_dirty(handle, inode);
3864 ext4_journal_test_restart(handle, inode);
3865 }
3866
3867 ext4_free_blocks(handle, inode, nr, 1, 1);
3868
3869 if (parent_bh) {
3870 /*
3871 * The block which we have just freed is
3872 * pointed to by an indirect block: journal it
3873 */
3874 BUFFER_TRACE(parent_bh, "get_write_access");
3875 if (!ext4_journal_get_write_access(handle,
3876 parent_bh)){
3877 *p = 0;
3878 BUFFER_TRACE(parent_bh,
3879 "call ext4_handle_dirty_metadata");
3880 ext4_handle_dirty_metadata(handle,
3881 inode,
3882 parent_bh);
3883 }
3884 }
3885 }
3886 } else {
3887 /* We have reached the bottom of the tree. */
3888 BUFFER_TRACE(parent_bh, "free data blocks");
3889 ext4_free_data(handle, inode, parent_bh, first, last);
3890 }
3891 }
3892
3893 int ext4_can_truncate(struct inode *inode)
3894 {
3895 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3896 return 0;
3897 if (S_ISREG(inode->i_mode))
3898 return 1;
3899 if (S_ISDIR(inode->i_mode))
3900 return 1;
3901 if (S_ISLNK(inode->i_mode))
3902 return !ext4_inode_is_fast_symlink(inode);
3903 return 0;
3904 }
3905
3906 /*
3907 * ext4_truncate()
3908 *
3909 * We block out ext4_get_block() block instantiations across the entire
3910 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3911 * simultaneously on behalf of the same inode.
3912 *
3913 * As we work through the truncate and commmit bits of it to the journal there
3914 * is one core, guiding principle: the file's tree must always be consistent on
3915 * disk. We must be able to restart the truncate after a crash.
3916 *
3917 * The file's tree may be transiently inconsistent in memory (although it
3918 * probably isn't), but whenever we close off and commit a journal transaction,
3919 * the contents of (the filesystem + the journal) must be consistent and
3920 * restartable. It's pretty simple, really: bottom up, right to left (although
3921 * left-to-right works OK too).
3922 *
3923 * Note that at recovery time, journal replay occurs *before* the restart of
3924 * truncate against the orphan inode list.
3925 *
3926 * The committed inode has the new, desired i_size (which is the same as
3927 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3928 * that this inode's truncate did not complete and it will again call
3929 * ext4_truncate() to have another go. So there will be instantiated blocks
3930 * to the right of the truncation point in a crashed ext4 filesystem. But
3931 * that's fine - as long as they are linked from the inode, the post-crash
3932 * ext4_truncate() run will find them and release them.
3933 */
3934 void ext4_truncate(struct inode *inode)
3935 {
3936 handle_t *handle;
3937 struct ext4_inode_info *ei = EXT4_I(inode);
3938 __le32 *i_data = ei->i_data;
3939 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3940 struct address_space *mapping = inode->i_mapping;
3941 ext4_lblk_t offsets[4];
3942 Indirect chain[4];
3943 Indirect *partial;
3944 __le32 nr = 0;
3945 int n;
3946 ext4_lblk_t last_block;
3947 unsigned blocksize = inode->i_sb->s_blocksize;
3948
3949 if (!ext4_can_truncate(inode))
3950 return;
3951
3952 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3953 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3954
3955 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3956 ext4_ext_truncate(inode);
3957 return;
3958 }
3959
3960 handle = start_transaction(inode);
3961 if (IS_ERR(handle))
3962 return; /* AKPM: return what? */
3963
3964 last_block = (inode->i_size + blocksize-1)
3965 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3966
3967 if (inode->i_size & (blocksize - 1))
3968 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3969 goto out_stop;
3970
3971 n = ext4_block_to_path(inode, last_block, offsets, NULL);
3972 if (n == 0)
3973 goto out_stop; /* error */
3974
3975 /*
3976 * OK. This truncate is going to happen. We add the inode to the
3977 * orphan list, so that if this truncate spans multiple transactions,
3978 * and we crash, we will resume the truncate when the filesystem
3979 * recovers. It also marks the inode dirty, to catch the new size.
3980 *
3981 * Implication: the file must always be in a sane, consistent
3982 * truncatable state while each transaction commits.
3983 */
3984 if (ext4_orphan_add(handle, inode))
3985 goto out_stop;
3986
3987 /*
3988 * From here we block out all ext4_get_block() callers who want to
3989 * modify the block allocation tree.
3990 */
3991 down_write(&ei->i_data_sem);
3992
3993 ext4_discard_preallocations(inode);
3994
3995 /*
3996 * The orphan list entry will now protect us from any crash which
3997 * occurs before the truncate completes, so it is now safe to propagate
3998 * the new, shorter inode size (held for now in i_size) into the
3999 * on-disk inode. We do this via i_disksize, which is the value which
4000 * ext4 *really* writes onto the disk inode.
4001 */
4002 ei->i_disksize = inode->i_size;
4003
4004 if (n == 1) { /* direct blocks */
4005 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4006 i_data + EXT4_NDIR_BLOCKS);
4007 goto do_indirects;
4008 }
4009
4010 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4011 /* Kill the top of shared branch (not detached) */
4012 if (nr) {
4013 if (partial == chain) {
4014 /* Shared branch grows from the inode */
4015 ext4_free_branches(handle, inode, NULL,
4016 &nr, &nr+1, (chain+n-1) - partial);
4017 *partial->p = 0;
4018 /*
4019 * We mark the inode dirty prior to restart,
4020 * and prior to stop. No need for it here.
4021 */
4022 } else {
4023 /* Shared branch grows from an indirect block */
4024 BUFFER_TRACE(partial->bh, "get_write_access");
4025 ext4_free_branches(handle, inode, partial->bh,
4026 partial->p,
4027 partial->p+1, (chain+n-1) - partial);
4028 }
4029 }
4030 /* Clear the ends of indirect blocks on the shared branch */
4031 while (partial > chain) {
4032 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4033 (__le32*)partial->bh->b_data+addr_per_block,
4034 (chain+n-1) - partial);
4035 BUFFER_TRACE(partial->bh, "call brelse");
4036 brelse (partial->bh);
4037 partial--;
4038 }
4039 do_indirects:
4040 /* Kill the remaining (whole) subtrees */
4041 switch (offsets[0]) {
4042 default:
4043 nr = i_data[EXT4_IND_BLOCK];
4044 if (nr) {
4045 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4046 i_data[EXT4_IND_BLOCK] = 0;
4047 }
4048 case EXT4_IND_BLOCK:
4049 nr = i_data[EXT4_DIND_BLOCK];
4050 if (nr) {
4051 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4052 i_data[EXT4_DIND_BLOCK] = 0;
4053 }
4054 case EXT4_DIND_BLOCK:
4055 nr = i_data[EXT4_TIND_BLOCK];
4056 if (nr) {
4057 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4058 i_data[EXT4_TIND_BLOCK] = 0;
4059 }
4060 case EXT4_TIND_BLOCK:
4061 ;
4062 }
4063
4064 up_write(&ei->i_data_sem);
4065 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4066 ext4_mark_inode_dirty(handle, inode);
4067
4068 /*
4069 * In a multi-transaction truncate, we only make the final transaction
4070 * synchronous
4071 */
4072 if (IS_SYNC(inode))
4073 ext4_handle_sync(handle);
4074 out_stop:
4075 /*
4076 * If this was a simple ftruncate(), and the file will remain alive
4077 * then we need to clear up the orphan record which we created above.
4078 * However, if this was a real unlink then we were called by
4079 * ext4_delete_inode(), and we allow that function to clean up the
4080 * orphan info for us.
4081 */
4082 if (inode->i_nlink)
4083 ext4_orphan_del(handle, inode);
4084
4085 ext4_journal_stop(handle);
4086 }
4087
4088 /*
4089 * ext4_get_inode_loc returns with an extra refcount against the inode's
4090 * underlying buffer_head on success. If 'in_mem' is true, we have all
4091 * data in memory that is needed to recreate the on-disk version of this
4092 * inode.
4093 */
4094 static int __ext4_get_inode_loc(struct inode *inode,
4095 struct ext4_iloc *iloc, int in_mem)
4096 {
4097 struct ext4_group_desc *gdp;
4098 struct buffer_head *bh;
4099 struct super_block *sb = inode->i_sb;
4100 ext4_fsblk_t block;
4101 int inodes_per_block, inode_offset;
4102
4103 iloc->bh = NULL;
4104 if (!ext4_valid_inum(sb, inode->i_ino))
4105 return -EIO;
4106
4107 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4108 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4109 if (!gdp)
4110 return -EIO;
4111
4112 /*
4113 * Figure out the offset within the block group inode table
4114 */
4115 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4116 inode_offset = ((inode->i_ino - 1) %
4117 EXT4_INODES_PER_GROUP(sb));
4118 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4119 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4120
4121 bh = sb_getblk(sb, block);
4122 if (!bh) {
4123 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4124 "inode block - inode=%lu, block=%llu",
4125 inode->i_ino, block);
4126 return -EIO;
4127 }
4128 if (!buffer_uptodate(bh)) {
4129 lock_buffer(bh);
4130
4131 /*
4132 * If the buffer has the write error flag, we have failed
4133 * to write out another inode in the same block. In this
4134 * case, we don't have to read the block because we may
4135 * read the old inode data successfully.
4136 */
4137 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4138 set_buffer_uptodate(bh);
4139
4140 if (buffer_uptodate(bh)) {
4141 /* someone brought it uptodate while we waited */
4142 unlock_buffer(bh);
4143 goto has_buffer;
4144 }
4145
4146 /*
4147 * If we have all information of the inode in memory and this
4148 * is the only valid inode in the block, we need not read the
4149 * block.
4150 */
4151 if (in_mem) {
4152 struct buffer_head *bitmap_bh;
4153 int i, start;
4154
4155 start = inode_offset & ~(inodes_per_block - 1);
4156
4157 /* Is the inode bitmap in cache? */
4158 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4159 if (!bitmap_bh)
4160 goto make_io;
4161
4162 /*
4163 * If the inode bitmap isn't in cache then the
4164 * optimisation may end up performing two reads instead
4165 * of one, so skip it.
4166 */
4167 if (!buffer_uptodate(bitmap_bh)) {
4168 brelse(bitmap_bh);
4169 goto make_io;
4170 }
4171 for (i = start; i < start + inodes_per_block; i++) {
4172 if (i == inode_offset)
4173 continue;
4174 if (ext4_test_bit(i, bitmap_bh->b_data))
4175 break;
4176 }
4177 brelse(bitmap_bh);
4178 if (i == start + inodes_per_block) {
4179 /* all other inodes are free, so skip I/O */
4180 memset(bh->b_data, 0, bh->b_size);
4181 set_buffer_uptodate(bh);
4182 unlock_buffer(bh);
4183 goto has_buffer;
4184 }
4185 }
4186
4187 make_io:
4188 /*
4189 * If we need to do any I/O, try to pre-readahead extra
4190 * blocks from the inode table.
4191 */
4192 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4193 ext4_fsblk_t b, end, table;
4194 unsigned num;
4195
4196 table = ext4_inode_table(sb, gdp);
4197 /* s_inode_readahead_blks is always a power of 2 */
4198 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4199 if (table > b)
4200 b = table;
4201 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4202 num = EXT4_INODES_PER_GROUP(sb);
4203 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4204 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4205 num -= ext4_itable_unused_count(sb, gdp);
4206 table += num / inodes_per_block;
4207 if (end > table)
4208 end = table;
4209 while (b <= end)
4210 sb_breadahead(sb, b++);
4211 }
4212
4213 /*
4214 * There are other valid inodes in the buffer, this inode
4215 * has in-inode xattrs, or we don't have this inode in memory.
4216 * Read the block from disk.
4217 */
4218 get_bh(bh);
4219 bh->b_end_io = end_buffer_read_sync;
4220 submit_bh(READ_META, bh);
4221 wait_on_buffer(bh);
4222 if (!buffer_uptodate(bh)) {
4223 ext4_error(sb, __func__,
4224 "unable to read inode block - inode=%lu, "
4225 "block=%llu", inode->i_ino, block);
4226 brelse(bh);
4227 return -EIO;
4228 }
4229 }
4230 has_buffer:
4231 iloc->bh = bh;
4232 return 0;
4233 }
4234
4235 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4236 {
4237 /* We have all inode data except xattrs in memory here. */
4238 return __ext4_get_inode_loc(inode, iloc,
4239 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4240 }
4241
4242 void ext4_set_inode_flags(struct inode *inode)
4243 {
4244 unsigned int flags = EXT4_I(inode)->i_flags;
4245
4246 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4247 if (flags & EXT4_SYNC_FL)
4248 inode->i_flags |= S_SYNC;
4249 if (flags & EXT4_APPEND_FL)
4250 inode->i_flags |= S_APPEND;
4251 if (flags & EXT4_IMMUTABLE_FL)
4252 inode->i_flags |= S_IMMUTABLE;
4253 if (flags & EXT4_NOATIME_FL)
4254 inode->i_flags |= S_NOATIME;
4255 if (flags & EXT4_DIRSYNC_FL)
4256 inode->i_flags |= S_DIRSYNC;
4257 }
4258
4259 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4260 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4261 {
4262 unsigned int flags = ei->vfs_inode.i_flags;
4263
4264 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4265 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4266 if (flags & S_SYNC)
4267 ei->i_flags |= EXT4_SYNC_FL;
4268 if (flags & S_APPEND)
4269 ei->i_flags |= EXT4_APPEND_FL;
4270 if (flags & S_IMMUTABLE)
4271 ei->i_flags |= EXT4_IMMUTABLE_FL;
4272 if (flags & S_NOATIME)
4273 ei->i_flags |= EXT4_NOATIME_FL;
4274 if (flags & S_DIRSYNC)
4275 ei->i_flags |= EXT4_DIRSYNC_FL;
4276 }
4277 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4278 struct ext4_inode_info *ei)
4279 {
4280 blkcnt_t i_blocks ;
4281 struct inode *inode = &(ei->vfs_inode);
4282 struct super_block *sb = inode->i_sb;
4283
4284 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4285 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4286 /* we are using combined 48 bit field */
4287 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4288 le32_to_cpu(raw_inode->i_blocks_lo);
4289 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4290 /* i_blocks represent file system block size */
4291 return i_blocks << (inode->i_blkbits - 9);
4292 } else {
4293 return i_blocks;
4294 }
4295 } else {
4296 return le32_to_cpu(raw_inode->i_blocks_lo);
4297 }
4298 }
4299
4300 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4301 {
4302 struct ext4_iloc iloc;
4303 struct ext4_inode *raw_inode;
4304 struct ext4_inode_info *ei;
4305 struct buffer_head *bh;
4306 struct inode *inode;
4307 long ret;
4308 int block;
4309
4310 inode = iget_locked(sb, ino);
4311 if (!inode)
4312 return ERR_PTR(-ENOMEM);
4313 if (!(inode->i_state & I_NEW))
4314 return inode;
4315
4316 ei = EXT4_I(inode);
4317 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4318 ei->i_acl = EXT4_ACL_NOT_CACHED;
4319 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4320 #endif
4321
4322 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4323 if (ret < 0)
4324 goto bad_inode;
4325 bh = iloc.bh;
4326 raw_inode = ext4_raw_inode(&iloc);
4327 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4328 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4329 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4330 if (!(test_opt(inode->i_sb, NO_UID32))) {
4331 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4332 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4333 }
4334 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4335
4336 ei->i_state = 0;
4337 ei->i_dir_start_lookup = 0;
4338 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4339 /* We now have enough fields to check if the inode was active or not.
4340 * This is needed because nfsd might try to access dead inodes
4341 * the test is that same one that e2fsck uses
4342 * NeilBrown 1999oct15
4343 */
4344 if (inode->i_nlink == 0) {
4345 if (inode->i_mode == 0 ||
4346 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4347 /* this inode is deleted */
4348 brelse(bh);
4349 ret = -ESTALE;
4350 goto bad_inode;
4351 }
4352 /* The only unlinked inodes we let through here have
4353 * valid i_mode and are being read by the orphan
4354 * recovery code: that's fine, we're about to complete
4355 * the process of deleting those. */
4356 }
4357 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4358 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4359 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4360 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4361 ei->i_file_acl |=
4362 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4363 inode->i_size = ext4_isize(raw_inode);
4364 ei->i_disksize = inode->i_size;
4365 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4366 ei->i_block_group = iloc.block_group;
4367 ei->i_last_alloc_group = ~0;
4368 /*
4369 * NOTE! The in-memory inode i_data array is in little-endian order
4370 * even on big-endian machines: we do NOT byteswap the block numbers!
4371 */
4372 for (block = 0; block < EXT4_N_BLOCKS; block++)
4373 ei->i_data[block] = raw_inode->i_block[block];
4374 INIT_LIST_HEAD(&ei->i_orphan);
4375
4376 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4377 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4378 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4379 EXT4_INODE_SIZE(inode->i_sb)) {
4380 brelse(bh);
4381 ret = -EIO;
4382 goto bad_inode;
4383 }
4384 if (ei->i_extra_isize == 0) {
4385 /* The extra space is currently unused. Use it. */
4386 ei->i_extra_isize = sizeof(struct ext4_inode) -
4387 EXT4_GOOD_OLD_INODE_SIZE;
4388 } else {
4389 __le32 *magic = (void *)raw_inode +
4390 EXT4_GOOD_OLD_INODE_SIZE +
4391 ei->i_extra_isize;
4392 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4393 ei->i_state |= EXT4_STATE_XATTR;
4394 }
4395 } else
4396 ei->i_extra_isize = 0;
4397
4398 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4399 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4400 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4401 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4402
4403 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4404 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4405 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4406 inode->i_version |=
4407 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4408 }
4409
4410 ret = 0;
4411 if (ei->i_file_acl &&
4412 ((ei->i_file_acl <
4413 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4414 EXT4_SB(sb)->s_gdb_count)) ||
4415 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4416 ext4_error(sb, __func__,
4417 "bad extended attribute block %llu in inode #%lu",
4418 ei->i_file_acl, inode->i_ino);
4419 ret = -EIO;
4420 goto bad_inode;
4421 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4422 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4423 (S_ISLNK(inode->i_mode) &&
4424 !ext4_inode_is_fast_symlink(inode)))
4425 /* Validate extent which is part of inode */
4426 ret = ext4_ext_check_inode(inode);
4427 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4428 (S_ISLNK(inode->i_mode) &&
4429 !ext4_inode_is_fast_symlink(inode))) {
4430 /* Validate block references which are part of inode */
4431 ret = ext4_check_inode_blockref(inode);
4432 }
4433 if (ret) {
4434 brelse(bh);
4435 goto bad_inode;
4436 }
4437
4438 if (S_ISREG(inode->i_mode)) {
4439 inode->i_op = &ext4_file_inode_operations;
4440 inode->i_fop = &ext4_file_operations;
4441 ext4_set_aops(inode);
4442 } else if (S_ISDIR(inode->i_mode)) {
4443 inode->i_op = &ext4_dir_inode_operations;
4444 inode->i_fop = &ext4_dir_operations;
4445 } else if (S_ISLNK(inode->i_mode)) {
4446 if (ext4_inode_is_fast_symlink(inode)) {
4447 inode->i_op = &ext4_fast_symlink_inode_operations;
4448 nd_terminate_link(ei->i_data, inode->i_size,
4449 sizeof(ei->i_data) - 1);
4450 } else {
4451 inode->i_op = &ext4_symlink_inode_operations;
4452 ext4_set_aops(inode);
4453 }
4454 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4455 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4456 inode->i_op = &ext4_special_inode_operations;
4457 if (raw_inode->i_block[0])
4458 init_special_inode(inode, inode->i_mode,
4459 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4460 else
4461 init_special_inode(inode, inode->i_mode,
4462 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4463 } else {
4464 brelse(bh);
4465 ret = -EIO;
4466 ext4_error(inode->i_sb, __func__,
4467 "bogus i_mode (%o) for inode=%lu",
4468 inode->i_mode, inode->i_ino);
4469 goto bad_inode;
4470 }
4471 brelse(iloc.bh);
4472 ext4_set_inode_flags(inode);
4473 unlock_new_inode(inode);
4474 return inode;
4475
4476 bad_inode:
4477 iget_failed(inode);
4478 return ERR_PTR(ret);
4479 }
4480
4481 static int ext4_inode_blocks_set(handle_t *handle,
4482 struct ext4_inode *raw_inode,
4483 struct ext4_inode_info *ei)
4484 {
4485 struct inode *inode = &(ei->vfs_inode);
4486 u64 i_blocks = inode->i_blocks;
4487 struct super_block *sb = inode->i_sb;
4488
4489 if (i_blocks <= ~0U) {
4490 /*
4491 * i_blocks can be represnted in a 32 bit variable
4492 * as multiple of 512 bytes
4493 */
4494 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4495 raw_inode->i_blocks_high = 0;
4496 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4497 return 0;
4498 }
4499 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4500 return -EFBIG;
4501
4502 if (i_blocks <= 0xffffffffffffULL) {
4503 /*
4504 * i_blocks can be represented in a 48 bit variable
4505 * as multiple of 512 bytes
4506 */
4507 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4508 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4509 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4510 } else {
4511 ei->i_flags |= EXT4_HUGE_FILE_FL;
4512 /* i_block is stored in file system block size */
4513 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4514 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4515 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4516 }
4517 return 0;
4518 }
4519
4520 /*
4521 * Post the struct inode info into an on-disk inode location in the
4522 * buffer-cache. This gobbles the caller's reference to the
4523 * buffer_head in the inode location struct.
4524 *
4525 * The caller must have write access to iloc->bh.
4526 */
4527 static int ext4_do_update_inode(handle_t *handle,
4528 struct inode *inode,
4529 struct ext4_iloc *iloc)
4530 {
4531 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4532 struct ext4_inode_info *ei = EXT4_I(inode);
4533 struct buffer_head *bh = iloc->bh;
4534 int err = 0, rc, block;
4535
4536 /* For fields not not tracking in the in-memory inode,
4537 * initialise them to zero for new inodes. */
4538 if (ei->i_state & EXT4_STATE_NEW)
4539 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4540
4541 ext4_get_inode_flags(ei);
4542 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4543 if (!(test_opt(inode->i_sb, NO_UID32))) {
4544 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4545 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4546 /*
4547 * Fix up interoperability with old kernels. Otherwise, old inodes get
4548 * re-used with the upper 16 bits of the uid/gid intact
4549 */
4550 if (!ei->i_dtime) {
4551 raw_inode->i_uid_high =
4552 cpu_to_le16(high_16_bits(inode->i_uid));
4553 raw_inode->i_gid_high =
4554 cpu_to_le16(high_16_bits(inode->i_gid));
4555 } else {
4556 raw_inode->i_uid_high = 0;
4557 raw_inode->i_gid_high = 0;
4558 }
4559 } else {
4560 raw_inode->i_uid_low =
4561 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4562 raw_inode->i_gid_low =
4563 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4564 raw_inode->i_uid_high = 0;
4565 raw_inode->i_gid_high = 0;
4566 }
4567 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4568
4569 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4570 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4571 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4572 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4573
4574 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4575 goto out_brelse;
4576 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4577 /* clear the migrate flag in the raw_inode */
4578 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4579 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4580 cpu_to_le32(EXT4_OS_HURD))
4581 raw_inode->i_file_acl_high =
4582 cpu_to_le16(ei->i_file_acl >> 32);
4583 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4584 ext4_isize_set(raw_inode, ei->i_disksize);
4585 if (ei->i_disksize > 0x7fffffffULL) {
4586 struct super_block *sb = inode->i_sb;
4587 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4588 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4589 EXT4_SB(sb)->s_es->s_rev_level ==
4590 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4591 /* If this is the first large file
4592 * created, add a flag to the superblock.
4593 */
4594 err = ext4_journal_get_write_access(handle,
4595 EXT4_SB(sb)->s_sbh);
4596 if (err)
4597 goto out_brelse;
4598 ext4_update_dynamic_rev(sb);
4599 EXT4_SET_RO_COMPAT_FEATURE(sb,
4600 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4601 sb->s_dirt = 1;
4602 ext4_handle_sync(handle);
4603 err = ext4_handle_dirty_metadata(handle, inode,
4604 EXT4_SB(sb)->s_sbh);
4605 }
4606 }
4607 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4608 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4609 if (old_valid_dev(inode->i_rdev)) {
4610 raw_inode->i_block[0] =
4611 cpu_to_le32(old_encode_dev(inode->i_rdev));
4612 raw_inode->i_block[1] = 0;
4613 } else {
4614 raw_inode->i_block[0] = 0;
4615 raw_inode->i_block[1] =
4616 cpu_to_le32(new_encode_dev(inode->i_rdev));
4617 raw_inode->i_block[2] = 0;
4618 }
4619 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4620 raw_inode->i_block[block] = ei->i_data[block];
4621
4622 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4623 if (ei->i_extra_isize) {
4624 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4625 raw_inode->i_version_hi =
4626 cpu_to_le32(inode->i_version >> 32);
4627 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4628 }
4629
4630 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4631 rc = ext4_handle_dirty_metadata(handle, inode, bh);
4632 if (!err)
4633 err = rc;
4634 ei->i_state &= ~EXT4_STATE_NEW;
4635
4636 out_brelse:
4637 brelse(bh);
4638 ext4_std_error(inode->i_sb, err);
4639 return err;
4640 }
4641
4642 /*
4643 * ext4_write_inode()
4644 *
4645 * We are called from a few places:
4646 *
4647 * - Within generic_file_write() for O_SYNC files.
4648 * Here, there will be no transaction running. We wait for any running
4649 * trasnaction to commit.
4650 *
4651 * - Within sys_sync(), kupdate and such.
4652 * We wait on commit, if tol to.
4653 *
4654 * - Within prune_icache() (PF_MEMALLOC == true)
4655 * Here we simply return. We can't afford to block kswapd on the
4656 * journal commit.
4657 *
4658 * In all cases it is actually safe for us to return without doing anything,
4659 * because the inode has been copied into a raw inode buffer in
4660 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4661 * knfsd.
4662 *
4663 * Note that we are absolutely dependent upon all inode dirtiers doing the
4664 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4665 * which we are interested.
4666 *
4667 * It would be a bug for them to not do this. The code:
4668 *
4669 * mark_inode_dirty(inode)
4670 * stuff();
4671 * inode->i_size = expr;
4672 *
4673 * is in error because a kswapd-driven write_inode() could occur while
4674 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4675 * will no longer be on the superblock's dirty inode list.
4676 */
4677 int ext4_write_inode(struct inode *inode, int wait)
4678 {
4679 if (current->flags & PF_MEMALLOC)
4680 return 0;
4681
4682 if (ext4_journal_current_handle()) {
4683 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4684 dump_stack();
4685 return -EIO;
4686 }
4687
4688 if (!wait)
4689 return 0;
4690
4691 return ext4_force_commit(inode->i_sb);
4692 }
4693
4694 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4695 {
4696 int err = 0;
4697
4698 mark_buffer_dirty(bh);
4699 if (inode && inode_needs_sync(inode)) {
4700 sync_dirty_buffer(bh);
4701 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4702 ext4_error(inode->i_sb, __func__,
4703 "IO error syncing inode, "
4704 "inode=%lu, block=%llu",
4705 inode->i_ino,
4706 (unsigned long long)bh->b_blocknr);
4707 err = -EIO;
4708 }
4709 }
4710 return err;
4711 }
4712
4713 /*
4714 * ext4_setattr()
4715 *
4716 * Called from notify_change.
4717 *
4718 * We want to trap VFS attempts to truncate the file as soon as
4719 * possible. In particular, we want to make sure that when the VFS
4720 * shrinks i_size, we put the inode on the orphan list and modify
4721 * i_disksize immediately, so that during the subsequent flushing of
4722 * dirty pages and freeing of disk blocks, we can guarantee that any
4723 * commit will leave the blocks being flushed in an unused state on
4724 * disk. (On recovery, the inode will get truncated and the blocks will
4725 * be freed, so we have a strong guarantee that no future commit will
4726 * leave these blocks visible to the user.)
4727 *
4728 * Another thing we have to assure is that if we are in ordered mode
4729 * and inode is still attached to the committing transaction, we must
4730 * we start writeout of all the dirty pages which are being truncated.
4731 * This way we are sure that all the data written in the previous
4732 * transaction are already on disk (truncate waits for pages under
4733 * writeback).
4734 *
4735 * Called with inode->i_mutex down.
4736 */
4737 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4738 {
4739 struct inode *inode = dentry->d_inode;
4740 int error, rc = 0;
4741 const unsigned int ia_valid = attr->ia_valid;
4742
4743 error = inode_change_ok(inode, attr);
4744 if (error)
4745 return error;
4746
4747 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4748 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4749 handle_t *handle;
4750
4751 /* (user+group)*(old+new) structure, inode write (sb,
4752 * inode block, ? - but truncate inode update has it) */
4753 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4754 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4755 if (IS_ERR(handle)) {
4756 error = PTR_ERR(handle);
4757 goto err_out;
4758 }
4759 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4760 if (error) {
4761 ext4_journal_stop(handle);
4762 return error;
4763 }
4764 /* Update corresponding info in inode so that everything is in
4765 * one transaction */
4766 if (attr->ia_valid & ATTR_UID)
4767 inode->i_uid = attr->ia_uid;
4768 if (attr->ia_valid & ATTR_GID)
4769 inode->i_gid = attr->ia_gid;
4770 error = ext4_mark_inode_dirty(handle, inode);
4771 ext4_journal_stop(handle);
4772 }
4773
4774 if (attr->ia_valid & ATTR_SIZE) {
4775 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4776 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4777
4778 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4779 error = -EFBIG;
4780 goto err_out;
4781 }
4782 }
4783 }
4784
4785 if (S_ISREG(inode->i_mode) &&
4786 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4787 handle_t *handle;
4788
4789 handle = ext4_journal_start(inode, 3);
4790 if (IS_ERR(handle)) {
4791 error = PTR_ERR(handle);
4792 goto err_out;
4793 }
4794
4795 error = ext4_orphan_add(handle, inode);
4796 EXT4_I(inode)->i_disksize = attr->ia_size;
4797 rc = ext4_mark_inode_dirty(handle, inode);
4798 if (!error)
4799 error = rc;
4800 ext4_journal_stop(handle);
4801
4802 if (ext4_should_order_data(inode)) {
4803 error = ext4_begin_ordered_truncate(inode,
4804 attr->ia_size);
4805 if (error) {
4806 /* Do as much error cleanup as possible */
4807 handle = ext4_journal_start(inode, 3);
4808 if (IS_ERR(handle)) {
4809 ext4_orphan_del(NULL, inode);
4810 goto err_out;
4811 }
4812 ext4_orphan_del(handle, inode);
4813 ext4_journal_stop(handle);
4814 goto err_out;
4815 }
4816 }
4817 }
4818
4819 rc = inode_setattr(inode, attr);
4820
4821 /* If inode_setattr's call to ext4_truncate failed to get a
4822 * transaction handle at all, we need to clean up the in-core
4823 * orphan list manually. */
4824 if (inode->i_nlink)
4825 ext4_orphan_del(NULL, inode);
4826
4827 if (!rc && (ia_valid & ATTR_MODE))
4828 rc = ext4_acl_chmod(inode);
4829
4830 err_out:
4831 ext4_std_error(inode->i_sb, error);
4832 if (!error)
4833 error = rc;
4834 return error;
4835 }
4836
4837 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4838 struct kstat *stat)
4839 {
4840 struct inode *inode;
4841 unsigned long delalloc_blocks;
4842
4843 inode = dentry->d_inode;
4844 generic_fillattr(inode, stat);
4845
4846 /*
4847 * We can't update i_blocks if the block allocation is delayed
4848 * otherwise in the case of system crash before the real block
4849 * allocation is done, we will have i_blocks inconsistent with
4850 * on-disk file blocks.
4851 * We always keep i_blocks updated together with real
4852 * allocation. But to not confuse with user, stat
4853 * will return the blocks that include the delayed allocation
4854 * blocks for this file.
4855 */
4856 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4857 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4858 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4859
4860 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4861 return 0;
4862 }
4863
4864 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4865 int chunk)
4866 {
4867 int indirects;
4868
4869 /* if nrblocks are contiguous */
4870 if (chunk) {
4871 /*
4872 * With N contiguous data blocks, it need at most
4873 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4874 * 2 dindirect blocks
4875 * 1 tindirect block
4876 */
4877 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4878 return indirects + 3;
4879 }
4880 /*
4881 * if nrblocks are not contiguous, worse case, each block touch
4882 * a indirect block, and each indirect block touch a double indirect
4883 * block, plus a triple indirect block
4884 */
4885 indirects = nrblocks * 2 + 1;
4886 return indirects;
4887 }
4888
4889 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4890 {
4891 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4892 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4893 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4894 }
4895
4896 /*
4897 * Account for index blocks, block groups bitmaps and block group
4898 * descriptor blocks if modify datablocks and index blocks
4899 * worse case, the indexs blocks spread over different block groups
4900 *
4901 * If datablocks are discontiguous, they are possible to spread over
4902 * different block groups too. If they are contiugous, with flexbg,
4903 * they could still across block group boundary.
4904 *
4905 * Also account for superblock, inode, quota and xattr blocks
4906 */
4907 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4908 {
4909 int groups, gdpblocks;
4910 int idxblocks;
4911 int ret = 0;
4912
4913 /*
4914 * How many index blocks need to touch to modify nrblocks?
4915 * The "Chunk" flag indicating whether the nrblocks is
4916 * physically contiguous on disk
4917 *
4918 * For Direct IO and fallocate, they calls get_block to allocate
4919 * one single extent at a time, so they could set the "Chunk" flag
4920 */
4921 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4922
4923 ret = idxblocks;
4924
4925 /*
4926 * Now let's see how many group bitmaps and group descriptors need
4927 * to account
4928 */
4929 groups = idxblocks;
4930 if (chunk)
4931 groups += 1;
4932 else
4933 groups += nrblocks;
4934
4935 gdpblocks = groups;
4936 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4937 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4938 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4939 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4940
4941 /* bitmaps and block group descriptor blocks */
4942 ret += groups + gdpblocks;
4943
4944 /* Blocks for super block, inode, quota and xattr blocks */
4945 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4946
4947 return ret;
4948 }
4949
4950 /*
4951 * Calulate the total number of credits to reserve to fit
4952 * the modification of a single pages into a single transaction,
4953 * which may include multiple chunks of block allocations.
4954 *
4955 * This could be called via ext4_write_begin()
4956 *
4957 * We need to consider the worse case, when
4958 * one new block per extent.
4959 */
4960 int ext4_writepage_trans_blocks(struct inode *inode)
4961 {
4962 int bpp = ext4_journal_blocks_per_page(inode);
4963 int ret;
4964
4965 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4966
4967 /* Account for data blocks for journalled mode */
4968 if (ext4_should_journal_data(inode))
4969 ret += bpp;
4970 return ret;
4971 }
4972
4973 /*
4974 * Calculate the journal credits for a chunk of data modification.
4975 *
4976 * This is called from DIO, fallocate or whoever calling
4977 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
4978 *
4979 * journal buffers for data blocks are not included here, as DIO
4980 * and fallocate do no need to journal data buffers.
4981 */
4982 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4983 {
4984 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4985 }
4986
4987 /*
4988 * The caller must have previously called ext4_reserve_inode_write().
4989 * Give this, we know that the caller already has write access to iloc->bh.
4990 */
4991 int ext4_mark_iloc_dirty(handle_t *handle,
4992 struct inode *inode, struct ext4_iloc *iloc)
4993 {
4994 int err = 0;
4995
4996 if (test_opt(inode->i_sb, I_VERSION))
4997 inode_inc_iversion(inode);
4998
4999 /* the do_update_inode consumes one bh->b_count */
5000 get_bh(iloc->bh);
5001
5002 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5003 err = ext4_do_update_inode(handle, inode, iloc);
5004 put_bh(iloc->bh);
5005 return err;
5006 }
5007
5008 /*
5009 * On success, We end up with an outstanding reference count against
5010 * iloc->bh. This _must_ be cleaned up later.
5011 */
5012
5013 int
5014 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5015 struct ext4_iloc *iloc)
5016 {
5017 int err;
5018
5019 err = ext4_get_inode_loc(inode, iloc);
5020 if (!err) {
5021 BUFFER_TRACE(iloc->bh, "get_write_access");
5022 err = ext4_journal_get_write_access(handle, iloc->bh);
5023 if (err) {
5024 brelse(iloc->bh);
5025 iloc->bh = NULL;
5026 }
5027 }
5028 ext4_std_error(inode->i_sb, err);
5029 return err;
5030 }
5031
5032 /*
5033 * Expand an inode by new_extra_isize bytes.
5034 * Returns 0 on success or negative error number on failure.
5035 */
5036 static int ext4_expand_extra_isize(struct inode *inode,
5037 unsigned int new_extra_isize,
5038 struct ext4_iloc iloc,
5039 handle_t *handle)
5040 {
5041 struct ext4_inode *raw_inode;
5042 struct ext4_xattr_ibody_header *header;
5043 struct ext4_xattr_entry *entry;
5044
5045 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5046 return 0;
5047
5048 raw_inode = ext4_raw_inode(&iloc);
5049
5050 header = IHDR(inode, raw_inode);
5051 entry = IFIRST(header);
5052
5053 /* No extended attributes present */
5054 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5055 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5056 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5057 new_extra_isize);
5058 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5059 return 0;
5060 }
5061
5062 /* try to expand with EAs present */
5063 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5064 raw_inode, handle);
5065 }
5066
5067 /*
5068 * What we do here is to mark the in-core inode as clean with respect to inode
5069 * dirtiness (it may still be data-dirty).
5070 * This means that the in-core inode may be reaped by prune_icache
5071 * without having to perform any I/O. This is a very good thing,
5072 * because *any* task may call prune_icache - even ones which
5073 * have a transaction open against a different journal.
5074 *
5075 * Is this cheating? Not really. Sure, we haven't written the
5076 * inode out, but prune_icache isn't a user-visible syncing function.
5077 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5078 * we start and wait on commits.
5079 *
5080 * Is this efficient/effective? Well, we're being nice to the system
5081 * by cleaning up our inodes proactively so they can be reaped
5082 * without I/O. But we are potentially leaving up to five seconds'
5083 * worth of inodes floating about which prune_icache wants us to
5084 * write out. One way to fix that would be to get prune_icache()
5085 * to do a write_super() to free up some memory. It has the desired
5086 * effect.
5087 */
5088 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5089 {
5090 struct ext4_iloc iloc;
5091 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5092 static unsigned int mnt_count;
5093 int err, ret;
5094
5095 might_sleep();
5096 err = ext4_reserve_inode_write(handle, inode, &iloc);
5097 if (ext4_handle_valid(handle) &&
5098 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5099 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5100 /*
5101 * We need extra buffer credits since we may write into EA block
5102 * with this same handle. If journal_extend fails, then it will
5103 * only result in a minor loss of functionality for that inode.
5104 * If this is felt to be critical, then e2fsck should be run to
5105 * force a large enough s_min_extra_isize.
5106 */
5107 if ((jbd2_journal_extend(handle,
5108 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5109 ret = ext4_expand_extra_isize(inode,
5110 sbi->s_want_extra_isize,
5111 iloc, handle);
5112 if (ret) {
5113 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5114 if (mnt_count !=
5115 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5116 ext4_warning(inode->i_sb, __func__,
5117 "Unable to expand inode %lu. Delete"
5118 " some EAs or run e2fsck.",
5119 inode->i_ino);
5120 mnt_count =
5121 le16_to_cpu(sbi->s_es->s_mnt_count);
5122 }
5123 }
5124 }
5125 }
5126 if (!err)
5127 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5128 return err;
5129 }
5130
5131 /*
5132 * ext4_dirty_inode() is called from __mark_inode_dirty()
5133 *
5134 * We're really interested in the case where a file is being extended.
5135 * i_size has been changed by generic_commit_write() and we thus need
5136 * to include the updated inode in the current transaction.
5137 *
5138 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5139 * are allocated to the file.
5140 *
5141 * If the inode is marked synchronous, we don't honour that here - doing
5142 * so would cause a commit on atime updates, which we don't bother doing.
5143 * We handle synchronous inodes at the highest possible level.
5144 */
5145 void ext4_dirty_inode(struct inode *inode)
5146 {
5147 handle_t *current_handle = ext4_journal_current_handle();
5148 handle_t *handle;
5149
5150 if (!ext4_handle_valid(current_handle)) {
5151 ext4_mark_inode_dirty(current_handle, inode);
5152 return;
5153 }
5154
5155 handle = ext4_journal_start(inode, 2);
5156 if (IS_ERR(handle))
5157 goto out;
5158 if (current_handle &&
5159 current_handle->h_transaction != handle->h_transaction) {
5160 /* This task has a transaction open against a different fs */
5161 printk(KERN_EMERG "%s: transactions do not match!\n",
5162 __func__);
5163 } else {
5164 jbd_debug(5, "marking dirty. outer handle=%p\n",
5165 current_handle);
5166 ext4_mark_inode_dirty(handle, inode);
5167 }
5168 ext4_journal_stop(handle);
5169 out:
5170 return;
5171 }
5172
5173 #if 0
5174 /*
5175 * Bind an inode's backing buffer_head into this transaction, to prevent
5176 * it from being flushed to disk early. Unlike
5177 * ext4_reserve_inode_write, this leaves behind no bh reference and
5178 * returns no iloc structure, so the caller needs to repeat the iloc
5179 * lookup to mark the inode dirty later.
5180 */
5181 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5182 {
5183 struct ext4_iloc iloc;
5184
5185 int err = 0;
5186 if (handle) {
5187 err = ext4_get_inode_loc(inode, &iloc);
5188 if (!err) {
5189 BUFFER_TRACE(iloc.bh, "get_write_access");
5190 err = jbd2_journal_get_write_access(handle, iloc.bh);
5191 if (!err)
5192 err = ext4_handle_dirty_metadata(handle,
5193 inode,
5194 iloc.bh);
5195 brelse(iloc.bh);
5196 }
5197 }
5198 ext4_std_error(inode->i_sb, err);
5199 return err;
5200 }
5201 #endif
5202
5203 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5204 {
5205 journal_t *journal;
5206 handle_t *handle;
5207 int err;
5208
5209 /*
5210 * We have to be very careful here: changing a data block's
5211 * journaling status dynamically is dangerous. If we write a
5212 * data block to the journal, change the status and then delete
5213 * that block, we risk forgetting to revoke the old log record
5214 * from the journal and so a subsequent replay can corrupt data.
5215 * So, first we make sure that the journal is empty and that
5216 * nobody is changing anything.
5217 */
5218
5219 journal = EXT4_JOURNAL(inode);
5220 if (!journal)
5221 return 0;
5222 if (is_journal_aborted(journal))
5223 return -EROFS;
5224
5225 jbd2_journal_lock_updates(journal);
5226 jbd2_journal_flush(journal);
5227
5228 /*
5229 * OK, there are no updates running now, and all cached data is
5230 * synced to disk. We are now in a completely consistent state
5231 * which doesn't have anything in the journal, and we know that
5232 * no filesystem updates are running, so it is safe to modify
5233 * the inode's in-core data-journaling state flag now.
5234 */
5235
5236 if (val)
5237 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5238 else
5239 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5240 ext4_set_aops(inode);
5241
5242 jbd2_journal_unlock_updates(journal);
5243
5244 /* Finally we can mark the inode as dirty. */
5245
5246 handle = ext4_journal_start(inode, 1);
5247 if (IS_ERR(handle))
5248 return PTR_ERR(handle);
5249
5250 err = ext4_mark_inode_dirty(handle, inode);
5251 ext4_handle_sync(handle);
5252 ext4_journal_stop(handle);
5253 ext4_std_error(inode->i_sb, err);
5254
5255 return err;
5256 }
5257
5258 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5259 {
5260 return !buffer_mapped(bh);
5261 }
5262
5263 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5264 {
5265 struct page *page = vmf->page;
5266 loff_t size;
5267 unsigned long len;
5268 int ret = -EINVAL;
5269 void *fsdata;
5270 struct file *file = vma->vm_file;
5271 struct inode *inode = file->f_path.dentry->d_inode;
5272 struct address_space *mapping = inode->i_mapping;
5273
5274 /*
5275 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5276 * get i_mutex because we are already holding mmap_sem.
5277 */
5278 down_read(&inode->i_alloc_sem);
5279 size = i_size_read(inode);
5280 if (page->mapping != mapping || size <= page_offset(page)
5281 || !PageUptodate(page)) {
5282 /* page got truncated from under us? */
5283 goto out_unlock;
5284 }
5285 ret = 0;
5286 if (PageMappedToDisk(page))
5287 goto out_unlock;
5288
5289 if (page->index == size >> PAGE_CACHE_SHIFT)
5290 len = size & ~PAGE_CACHE_MASK;
5291 else
5292 len = PAGE_CACHE_SIZE;
5293
5294 if (page_has_buffers(page)) {
5295 /* return if we have all the buffers mapped */
5296 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5297 ext4_bh_unmapped))
5298 goto out_unlock;
5299 }
5300 /*
5301 * OK, we need to fill the hole... Do write_begin write_end
5302 * to do block allocation/reservation.We are not holding
5303 * inode.i__mutex here. That allow * parallel write_begin,
5304 * write_end call. lock_page prevent this from happening
5305 * on the same page though
5306 */
5307 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5308 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5309 if (ret < 0)
5310 goto out_unlock;
5311 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5312 len, len, page, fsdata);
5313 if (ret < 0)
5314 goto out_unlock;
5315 ret = 0;
5316 out_unlock:
5317 if (ret)
5318 ret = VM_FAULT_SIGBUS;
5319 up_read(&inode->i_alloc_sem);
5320 return ret;
5321 }