Merge git://git.kernel.org/pub/scm/linux/kernel/git/holtmann/bluetooth-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
49 {
50 return jbd2_journal_begin_ordered_truncate(
51 EXT4_SB(inode->i_sb)->s_journal,
52 &EXT4_I(inode)->jinode,
53 new_size);
54 }
55
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
58 /*
59 * Test whether an inode is a fast symlink.
60 */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63 int ea_blocks = EXT4_I(inode)->i_file_acl ?
64 (inode->i_sb->s_blocksize >> 9) : 0;
65
66 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68
69 /*
70 * The ext4 forget function must perform a revoke if we are freeing data
71 * which has been journaled. Metadata (eg. indirect blocks) must be
72 * revoked in all cases.
73 *
74 * "bh" may be NULL: a metadata block may have been freed from memory
75 * but there may still be a record of it in the journal, and that record
76 * still needs to be revoked.
77 *
78 * If the handle isn't valid we're not journaling so there's nothing to do.
79 */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83 int err;
84
85 if (!ext4_handle_valid(handle))
86 return 0;
87
88 might_sleep();
89
90 BUFFER_TRACE(bh, "enter");
91
92 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93 "data mode %lx\n",
94 bh, is_metadata, inode->i_mode,
95 test_opt(inode->i_sb, DATA_FLAGS));
96
97 /* Never use the revoke function if we are doing full data
98 * journaling: there is no need to, and a V1 superblock won't
99 * support it. Otherwise, only skip the revoke on un-journaled
100 * data blocks. */
101
102 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 (!is_metadata && !ext4_should_journal_data(inode))) {
104 if (bh) {
105 BUFFER_TRACE(bh, "call jbd2_journal_forget");
106 return ext4_journal_forget(handle, bh);
107 }
108 return 0;
109 }
110
111 /*
112 * data!=journal && (is_metadata || should_journal_data(inode))
113 */
114 BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 err = ext4_journal_revoke(handle, blocknr, bh);
116 if (err)
117 ext4_abort(inode->i_sb, __func__,
118 "error %d when attempting revoke", err);
119 BUFFER_TRACE(bh, "exit");
120 return err;
121 }
122
123 /*
124 * Work out how many blocks we need to proceed with the next chunk of a
125 * truncate transaction.
126 */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129 ext4_lblk_t needed;
130
131 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133 /* Give ourselves just enough room to cope with inodes in which
134 * i_blocks is corrupt: we've seen disk corruptions in the past
135 * which resulted in random data in an inode which looked enough
136 * like a regular file for ext4 to try to delete it. Things
137 * will go a bit crazy if that happens, but at least we should
138 * try not to panic the whole kernel. */
139 if (needed < 2)
140 needed = 2;
141
142 /* But we need to bound the transaction so we don't overflow the
143 * journal. */
144 if (needed > EXT4_MAX_TRANS_DATA)
145 needed = EXT4_MAX_TRANS_DATA;
146
147 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149
150 /*
151 * Truncate transactions can be complex and absolutely huge. So we need to
152 * be able to restart the transaction at a conventient checkpoint to make
153 * sure we don't overflow the journal.
154 *
155 * start_transaction gets us a new handle for a truncate transaction,
156 * and extend_transaction tries to extend the existing one a bit. If
157 * extend fails, we need to propagate the failure up and restart the
158 * transaction in the top-level truncate loop. --sct
159 */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162 handle_t *result;
163
164 result = ext4_journal_start(inode, blocks_for_truncate(inode));
165 if (!IS_ERR(result))
166 return result;
167
168 ext4_std_error(inode->i_sb, PTR_ERR(result));
169 return result;
170 }
171
172 /*
173 * Try to extend this transaction for the purposes of truncation.
174 *
175 * Returns 0 if we managed to create more room. If we can't create more
176 * room, and the transaction must be restarted we return 1.
177 */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180 if (!ext4_handle_valid(handle))
181 return 0;
182 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183 return 0;
184 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185 return 0;
186 return 1;
187 }
188
189 /*
190 * Restart the transaction associated with *handle. This does a commit,
191 * so before we call here everything must be consistently dirtied against
192 * this transaction.
193 */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196 BUG_ON(EXT4_JOURNAL(inode) == NULL);
197 jbd_debug(2, "restarting handle %p\n", handle);
198 return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200
201 /*
202 * Called at the last iput() if i_nlink is zero.
203 */
204 void ext4_delete_inode(struct inode *inode)
205 {
206 handle_t *handle;
207 int err;
208
209 if (ext4_should_order_data(inode))
210 ext4_begin_ordered_truncate(inode, 0);
211 truncate_inode_pages(&inode->i_data, 0);
212
213 if (is_bad_inode(inode))
214 goto no_delete;
215
216 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217 if (IS_ERR(handle)) {
218 ext4_std_error(inode->i_sb, PTR_ERR(handle));
219 /*
220 * If we're going to skip the normal cleanup, we still need to
221 * make sure that the in-core orphan linked list is properly
222 * cleaned up.
223 */
224 ext4_orphan_del(NULL, inode);
225 goto no_delete;
226 }
227
228 if (IS_SYNC(inode))
229 ext4_handle_sync(handle);
230 inode->i_size = 0;
231 err = ext4_mark_inode_dirty(handle, inode);
232 if (err) {
233 ext4_warning(inode->i_sb, __func__,
234 "couldn't mark inode dirty (err %d)", err);
235 goto stop_handle;
236 }
237 if (inode->i_blocks)
238 ext4_truncate(inode);
239
240 /*
241 * ext4_ext_truncate() doesn't reserve any slop when it
242 * restarts journal transactions; therefore there may not be
243 * enough credits left in the handle to remove the inode from
244 * the orphan list and set the dtime field.
245 */
246 if (!ext4_handle_has_enough_credits(handle, 3)) {
247 err = ext4_journal_extend(handle, 3);
248 if (err > 0)
249 err = ext4_journal_restart(handle, 3);
250 if (err != 0) {
251 ext4_warning(inode->i_sb, __func__,
252 "couldn't extend journal (err %d)", err);
253 stop_handle:
254 ext4_journal_stop(handle);
255 goto no_delete;
256 }
257 }
258
259 /*
260 * Kill off the orphan record which ext4_truncate created.
261 * AKPM: I think this can be inside the above `if'.
262 * Note that ext4_orphan_del() has to be able to cope with the
263 * deletion of a non-existent orphan - this is because we don't
264 * know if ext4_truncate() actually created an orphan record.
265 * (Well, we could do this if we need to, but heck - it works)
266 */
267 ext4_orphan_del(handle, inode);
268 EXT4_I(inode)->i_dtime = get_seconds();
269
270 /*
271 * One subtle ordering requirement: if anything has gone wrong
272 * (transaction abort, IO errors, whatever), then we can still
273 * do these next steps (the fs will already have been marked as
274 * having errors), but we can't free the inode if the mark_dirty
275 * fails.
276 */
277 if (ext4_mark_inode_dirty(handle, inode))
278 /* If that failed, just do the required in-core inode clear. */
279 clear_inode(inode);
280 else
281 ext4_free_inode(handle, inode);
282 ext4_journal_stop(handle);
283 return;
284 no_delete:
285 clear_inode(inode); /* We must guarantee clearing of inode... */
286 }
287
288 typedef struct {
289 __le32 *p;
290 __le32 key;
291 struct buffer_head *bh;
292 } Indirect;
293
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296 p->key = *(p->p = v);
297 p->bh = bh;
298 }
299
300 /**
301 * ext4_block_to_path - parse the block number into array of offsets
302 * @inode: inode in question (we are only interested in its superblock)
303 * @i_block: block number to be parsed
304 * @offsets: array to store the offsets in
305 * @boundary: set this non-zero if the referred-to block is likely to be
306 * followed (on disk) by an indirect block.
307 *
308 * To store the locations of file's data ext4 uses a data structure common
309 * for UNIX filesystems - tree of pointers anchored in the inode, with
310 * data blocks at leaves and indirect blocks in intermediate nodes.
311 * This function translates the block number into path in that tree -
312 * return value is the path length and @offsets[n] is the offset of
313 * pointer to (n+1)th node in the nth one. If @block is out of range
314 * (negative or too large) warning is printed and zero returned.
315 *
316 * Note: function doesn't find node addresses, so no IO is needed. All
317 * we need to know is the capacity of indirect blocks (taken from the
318 * inode->i_sb).
319 */
320
321 /*
322 * Portability note: the last comparison (check that we fit into triple
323 * indirect block) is spelled differently, because otherwise on an
324 * architecture with 32-bit longs and 8Kb pages we might get into trouble
325 * if our filesystem had 8Kb blocks. We might use long long, but that would
326 * kill us on x86. Oh, well, at least the sign propagation does not matter -
327 * i_block would have to be negative in the very beginning, so we would not
328 * get there at all.
329 */
330
331 static int ext4_block_to_path(struct inode *inode,
332 ext4_lblk_t i_block,
333 ext4_lblk_t offsets[4], int *boundary)
334 {
335 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 const long direct_blocks = EXT4_NDIR_BLOCKS,
338 indirect_blocks = ptrs,
339 double_blocks = (1 << (ptrs_bits * 2));
340 int n = 0;
341 int final = 0;
342
343 if (i_block < 0) {
344 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345 } else if (i_block < direct_blocks) {
346 offsets[n++] = i_block;
347 final = direct_blocks;
348 } else if ((i_block -= direct_blocks) < indirect_blocks) {
349 offsets[n++] = EXT4_IND_BLOCK;
350 offsets[n++] = i_block;
351 final = ptrs;
352 } else if ((i_block -= indirect_blocks) < double_blocks) {
353 offsets[n++] = EXT4_DIND_BLOCK;
354 offsets[n++] = i_block >> ptrs_bits;
355 offsets[n++] = i_block & (ptrs - 1);
356 final = ptrs;
357 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358 offsets[n++] = EXT4_TIND_BLOCK;
359 offsets[n++] = i_block >> (ptrs_bits * 2);
360 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 offsets[n++] = i_block & (ptrs - 1);
362 final = ptrs;
363 } else {
364 ext4_warning(inode->i_sb, "ext4_block_to_path",
365 "block %lu > max in inode %lu",
366 i_block + direct_blocks +
367 indirect_blocks + double_blocks, inode->i_ino);
368 }
369 if (boundary)
370 *boundary = final - 1 - (i_block & (ptrs - 1));
371 return n;
372 }
373
374 static int __ext4_check_blockref(const char *function, struct inode *inode,
375 __le32 *p, unsigned int max) {
376
377 unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
378 __le32 *bref = p;
379 while (bref < p+max) {
380 if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
381 ext4_error(inode->i_sb, function,
382 "block reference %u >= max (%u) "
383 "in inode #%lu, offset=%d",
384 le32_to_cpu(*bref), maxblocks,
385 inode->i_ino, (int)(bref-p));
386 return -EIO;
387 }
388 bref++;
389 }
390 return 0;
391 }
392
393
394 #define ext4_check_indirect_blockref(inode, bh) \
395 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
396 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397
398 #define ext4_check_inode_blockref(inode) \
399 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
400 EXT4_NDIR_BLOCKS)
401
402 /**
403 * ext4_get_branch - read the chain of indirect blocks leading to data
404 * @inode: inode in question
405 * @depth: depth of the chain (1 - direct pointer, etc.)
406 * @offsets: offsets of pointers in inode/indirect blocks
407 * @chain: place to store the result
408 * @err: here we store the error value
409 *
410 * Function fills the array of triples <key, p, bh> and returns %NULL
411 * if everything went OK or the pointer to the last filled triple
412 * (incomplete one) otherwise. Upon the return chain[i].key contains
413 * the number of (i+1)-th block in the chain (as it is stored in memory,
414 * i.e. little-endian 32-bit), chain[i].p contains the address of that
415 * number (it points into struct inode for i==0 and into the bh->b_data
416 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417 * block for i>0 and NULL for i==0. In other words, it holds the block
418 * numbers of the chain, addresses they were taken from (and where we can
419 * verify that chain did not change) and buffer_heads hosting these
420 * numbers.
421 *
422 * Function stops when it stumbles upon zero pointer (absent block)
423 * (pointer to last triple returned, *@err == 0)
424 * or when it gets an IO error reading an indirect block
425 * (ditto, *@err == -EIO)
426 * or when it reads all @depth-1 indirect blocks successfully and finds
427 * the whole chain, all way to the data (returns %NULL, *err == 0).
428 *
429 * Need to be called with
430 * down_read(&EXT4_I(inode)->i_data_sem)
431 */
432 static Indirect *ext4_get_branch(struct inode *inode, int depth,
433 ext4_lblk_t *offsets,
434 Indirect chain[4], int *err)
435 {
436 struct super_block *sb = inode->i_sb;
437 Indirect *p = chain;
438 struct buffer_head *bh;
439
440 *err = 0;
441 /* i_data is not going away, no lock needed */
442 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443 if (!p->key)
444 goto no_block;
445 while (--depth) {
446 bh = sb_getblk(sb, le32_to_cpu(p->key));
447 if (unlikely(!bh))
448 goto failure;
449
450 if (!bh_uptodate_or_lock(bh)) {
451 if (bh_submit_read(bh) < 0) {
452 put_bh(bh);
453 goto failure;
454 }
455 /* validate block references */
456 if (ext4_check_indirect_blockref(inode, bh)) {
457 put_bh(bh);
458 goto failure;
459 }
460 }
461
462 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463 /* Reader: end */
464 if (!p->key)
465 goto no_block;
466 }
467 return NULL;
468
469 failure:
470 *err = -EIO;
471 no_block:
472 return p;
473 }
474
475 /**
476 * ext4_find_near - find a place for allocation with sufficient locality
477 * @inode: owner
478 * @ind: descriptor of indirect block.
479 *
480 * This function returns the preferred place for block allocation.
481 * It is used when heuristic for sequential allocation fails.
482 * Rules are:
483 * + if there is a block to the left of our position - allocate near it.
484 * + if pointer will live in indirect block - allocate near that block.
485 * + if pointer will live in inode - allocate in the same
486 * cylinder group.
487 *
488 * In the latter case we colour the starting block by the callers PID to
489 * prevent it from clashing with concurrent allocations for a different inode
490 * in the same block group. The PID is used here so that functionally related
491 * files will be close-by on-disk.
492 *
493 * Caller must make sure that @ind is valid and will stay that way.
494 */
495 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496 {
497 struct ext4_inode_info *ei = EXT4_I(inode);
498 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499 __le32 *p;
500 ext4_fsblk_t bg_start;
501 ext4_fsblk_t last_block;
502 ext4_grpblk_t colour;
503 ext4_group_t block_group;
504 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505
506 /* Try to find previous block */
507 for (p = ind->p - 1; p >= start; p--) {
508 if (*p)
509 return le32_to_cpu(*p);
510 }
511
512 /* No such thing, so let's try location of indirect block */
513 if (ind->bh)
514 return ind->bh->b_blocknr;
515
516 /*
517 * It is going to be referred to from the inode itself? OK, just put it
518 * into the same cylinder group then.
519 */
520 block_group = ei->i_block_group;
521 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522 block_group &= ~(flex_size-1);
523 if (S_ISREG(inode->i_mode))
524 block_group++;
525 }
526 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
529 /*
530 * If we are doing delayed allocation, we don't need take
531 * colour into account.
532 */
533 if (test_opt(inode->i_sb, DELALLOC))
534 return bg_start;
535
536 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537 colour = (current->pid % 16) *
538 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539 else
540 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541 return bg_start + colour;
542 }
543
544 /**
545 * ext4_find_goal - find a preferred place for allocation.
546 * @inode: owner
547 * @block: block we want
548 * @partial: pointer to the last triple within a chain
549 *
550 * Normally this function find the preferred place for block allocation,
551 * returns it.
552 */
553 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554 Indirect *partial)
555 {
556 /*
557 * XXX need to get goal block from mballoc's data structures
558 */
559
560 return ext4_find_near(inode, partial);
561 }
562
563 /**
564 * ext4_blks_to_allocate: Look up the block map and count the number
565 * of direct blocks need to be allocated for the given branch.
566 *
567 * @branch: chain of indirect blocks
568 * @k: number of blocks need for indirect blocks
569 * @blks: number of data blocks to be mapped.
570 * @blocks_to_boundary: the offset in the indirect block
571 *
572 * return the total number of blocks to be allocate, including the
573 * direct and indirect blocks.
574 */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576 int blocks_to_boundary)
577 {
578 unsigned int count = 0;
579
580 /*
581 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 * then it's clear blocks on that path have not allocated
583 */
584 if (k > 0) {
585 /* right now we don't handle cross boundary allocation */
586 if (blks < blocks_to_boundary + 1)
587 count += blks;
588 else
589 count += blocks_to_boundary + 1;
590 return count;
591 }
592
593 count++;
594 while (count < blks && count <= blocks_to_boundary &&
595 le32_to_cpu(*(branch[0].p + count)) == 0) {
596 count++;
597 }
598 return count;
599 }
600
601 /**
602 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
603 * @indirect_blks: the number of blocks need to allocate for indirect
604 * blocks
605 *
606 * @new_blocks: on return it will store the new block numbers for
607 * the indirect blocks(if needed) and the first direct block,
608 * @blks: on return it will store the total number of allocated
609 * direct blocks
610 */
611 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612 ext4_lblk_t iblock, ext4_fsblk_t goal,
613 int indirect_blks, int blks,
614 ext4_fsblk_t new_blocks[4], int *err)
615 {
616 struct ext4_allocation_request ar;
617 int target, i;
618 unsigned long count = 0, blk_allocated = 0;
619 int index = 0;
620 ext4_fsblk_t current_block = 0;
621 int ret = 0;
622
623 /*
624 * Here we try to allocate the requested multiple blocks at once,
625 * on a best-effort basis.
626 * To build a branch, we should allocate blocks for
627 * the indirect blocks(if not allocated yet), and at least
628 * the first direct block of this branch. That's the
629 * minimum number of blocks need to allocate(required)
630 */
631 /* first we try to allocate the indirect blocks */
632 target = indirect_blks;
633 while (target > 0) {
634 count = target;
635 /* allocating blocks for indirect blocks and direct blocks */
636 current_block = ext4_new_meta_blocks(handle, inode,
637 goal, &count, err);
638 if (*err)
639 goto failed_out;
640
641 target -= count;
642 /* allocate blocks for indirect blocks */
643 while (index < indirect_blks && count) {
644 new_blocks[index++] = current_block++;
645 count--;
646 }
647 if (count > 0) {
648 /*
649 * save the new block number
650 * for the first direct block
651 */
652 new_blocks[index] = current_block;
653 printk(KERN_INFO "%s returned more blocks than "
654 "requested\n", __func__);
655 WARN_ON(1);
656 break;
657 }
658 }
659
660 target = blks - count ;
661 blk_allocated = count;
662 if (!target)
663 goto allocated;
664 /* Now allocate data blocks */
665 memset(&ar, 0, sizeof(ar));
666 ar.inode = inode;
667 ar.goal = goal;
668 ar.len = target;
669 ar.logical = iblock;
670 if (S_ISREG(inode->i_mode))
671 /* enable in-core preallocation only for regular files */
672 ar.flags = EXT4_MB_HINT_DATA;
673
674 current_block = ext4_mb_new_blocks(handle, &ar, err);
675
676 if (*err && (target == blks)) {
677 /*
678 * if the allocation failed and we didn't allocate
679 * any blocks before
680 */
681 goto failed_out;
682 }
683 if (!*err) {
684 if (target == blks) {
685 /*
686 * save the new block number
687 * for the first direct block
688 */
689 new_blocks[index] = current_block;
690 }
691 blk_allocated += ar.len;
692 }
693 allocated:
694 /* total number of blocks allocated for direct blocks */
695 ret = blk_allocated;
696 *err = 0;
697 return ret;
698 failed_out:
699 for (i = 0; i < index; i++)
700 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701 return ret;
702 }
703
704 /**
705 * ext4_alloc_branch - allocate and set up a chain of blocks.
706 * @inode: owner
707 * @indirect_blks: number of allocated indirect blocks
708 * @blks: number of allocated direct blocks
709 * @offsets: offsets (in the blocks) to store the pointers to next.
710 * @branch: place to store the chain in.
711 *
712 * This function allocates blocks, zeroes out all but the last one,
713 * links them into chain and (if we are synchronous) writes them to disk.
714 * In other words, it prepares a branch that can be spliced onto the
715 * inode. It stores the information about that chain in the branch[], in
716 * the same format as ext4_get_branch() would do. We are calling it after
717 * we had read the existing part of chain and partial points to the last
718 * triple of that (one with zero ->key). Upon the exit we have the same
719 * picture as after the successful ext4_get_block(), except that in one
720 * place chain is disconnected - *branch->p is still zero (we did not
721 * set the last link), but branch->key contains the number that should
722 * be placed into *branch->p to fill that gap.
723 *
724 * If allocation fails we free all blocks we've allocated (and forget
725 * their buffer_heads) and return the error value the from failed
726 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727 * as described above and return 0.
728 */
729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730 ext4_lblk_t iblock, int indirect_blks,
731 int *blks, ext4_fsblk_t goal,
732 ext4_lblk_t *offsets, Indirect *branch)
733 {
734 int blocksize = inode->i_sb->s_blocksize;
735 int i, n = 0;
736 int err = 0;
737 struct buffer_head *bh;
738 int num;
739 ext4_fsblk_t new_blocks[4];
740 ext4_fsblk_t current_block;
741
742 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743 *blks, new_blocks, &err);
744 if (err)
745 return err;
746
747 branch[0].key = cpu_to_le32(new_blocks[0]);
748 /*
749 * metadata blocks and data blocks are allocated.
750 */
751 for (n = 1; n <= indirect_blks; n++) {
752 /*
753 * Get buffer_head for parent block, zero it out
754 * and set the pointer to new one, then send
755 * parent to disk.
756 */
757 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758 branch[n].bh = bh;
759 lock_buffer(bh);
760 BUFFER_TRACE(bh, "call get_create_access");
761 err = ext4_journal_get_create_access(handle, bh);
762 if (err) {
763 unlock_buffer(bh);
764 brelse(bh);
765 goto failed;
766 }
767
768 memset(bh->b_data, 0, blocksize);
769 branch[n].p = (__le32 *) bh->b_data + offsets[n];
770 branch[n].key = cpu_to_le32(new_blocks[n]);
771 *branch[n].p = branch[n].key;
772 if (n == indirect_blks) {
773 current_block = new_blocks[n];
774 /*
775 * End of chain, update the last new metablock of
776 * the chain to point to the new allocated
777 * data blocks numbers
778 */
779 for (i=1; i < num; i++)
780 *(branch[n].p + i) = cpu_to_le32(++current_block);
781 }
782 BUFFER_TRACE(bh, "marking uptodate");
783 set_buffer_uptodate(bh);
784 unlock_buffer(bh);
785
786 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
787 err = ext4_handle_dirty_metadata(handle, inode, bh);
788 if (err)
789 goto failed;
790 }
791 *blks = num;
792 return err;
793 failed:
794 /* Allocation failed, free what we already allocated */
795 for (i = 1; i <= n ; i++) {
796 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
797 ext4_journal_forget(handle, branch[i].bh);
798 }
799 for (i = 0; i < indirect_blks; i++)
800 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
801
802 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
803
804 return err;
805 }
806
807 /**
808 * ext4_splice_branch - splice the allocated branch onto inode.
809 * @inode: owner
810 * @block: (logical) number of block we are adding
811 * @chain: chain of indirect blocks (with a missing link - see
812 * ext4_alloc_branch)
813 * @where: location of missing link
814 * @num: number of indirect blocks we are adding
815 * @blks: number of direct blocks we are adding
816 *
817 * This function fills the missing link and does all housekeeping needed in
818 * inode (->i_blocks, etc.). In case of success we end up with the full
819 * chain to new block and return 0.
820 */
821 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
822 ext4_lblk_t block, Indirect *where, int num, int blks)
823 {
824 int i;
825 int err = 0;
826 ext4_fsblk_t current_block;
827
828 /*
829 * If we're splicing into a [td]indirect block (as opposed to the
830 * inode) then we need to get write access to the [td]indirect block
831 * before the splice.
832 */
833 if (where->bh) {
834 BUFFER_TRACE(where->bh, "get_write_access");
835 err = ext4_journal_get_write_access(handle, where->bh);
836 if (err)
837 goto err_out;
838 }
839 /* That's it */
840
841 *where->p = where->key;
842
843 /*
844 * Update the host buffer_head or inode to point to more just allocated
845 * direct blocks blocks
846 */
847 if (num == 0 && blks > 1) {
848 current_block = le32_to_cpu(where->key) + 1;
849 for (i = 1; i < blks; i++)
850 *(where->p + i) = cpu_to_le32(current_block++);
851 }
852
853 /* We are done with atomic stuff, now do the rest of housekeeping */
854
855 inode->i_ctime = ext4_current_time(inode);
856 ext4_mark_inode_dirty(handle, inode);
857
858 /* had we spliced it onto indirect block? */
859 if (where->bh) {
860 /*
861 * If we spliced it onto an indirect block, we haven't
862 * altered the inode. Note however that if it is being spliced
863 * onto an indirect block at the very end of the file (the
864 * file is growing) then we *will* alter the inode to reflect
865 * the new i_size. But that is not done here - it is done in
866 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867 */
868 jbd_debug(5, "splicing indirect only\n");
869 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
871 if (err)
872 goto err_out;
873 } else {
874 /*
875 * OK, we spliced it into the inode itself on a direct block.
876 * Inode was dirtied above.
877 */
878 jbd_debug(5, "splicing direct\n");
879 }
880 return err;
881
882 err_out:
883 for (i = 1; i <= num; i++) {
884 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
885 ext4_journal_forget(handle, where[i].bh);
886 ext4_free_blocks(handle, inode,
887 le32_to_cpu(where[i-1].key), 1, 0);
888 }
889 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
890
891 return err;
892 }
893
894 /*
895 * Allocation strategy is simple: if we have to allocate something, we will
896 * have to go the whole way to leaf. So let's do it before attaching anything
897 * to tree, set linkage between the newborn blocks, write them if sync is
898 * required, recheck the path, free and repeat if check fails, otherwise
899 * set the last missing link (that will protect us from any truncate-generated
900 * removals - all blocks on the path are immune now) and possibly force the
901 * write on the parent block.
902 * That has a nice additional property: no special recovery from the failed
903 * allocations is needed - we simply release blocks and do not touch anything
904 * reachable from inode.
905 *
906 * `handle' can be NULL if create == 0.
907 *
908 * return > 0, # of blocks mapped or allocated.
909 * return = 0, if plain lookup failed.
910 * return < 0, error case.
911 *
912 *
913 * Need to be called with
914 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
915 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
916 */
917 static int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
918 ext4_lblk_t iblock, unsigned int maxblocks,
919 struct buffer_head *bh_result,
920 int create, int extend_disksize)
921 {
922 int err = -EIO;
923 ext4_lblk_t offsets[4];
924 Indirect chain[4];
925 Indirect *partial;
926 ext4_fsblk_t goal;
927 int indirect_blks;
928 int blocks_to_boundary = 0;
929 int depth;
930 struct ext4_inode_info *ei = EXT4_I(inode);
931 int count = 0;
932 ext4_fsblk_t first_block = 0;
933 loff_t disksize;
934
935
936 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
937 J_ASSERT(handle != NULL || create == 0);
938 depth = ext4_block_to_path(inode, iblock, offsets,
939 &blocks_to_boundary);
940
941 if (depth == 0)
942 goto out;
943
944 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
945
946 /* Simplest case - block found, no allocation needed */
947 if (!partial) {
948 first_block = le32_to_cpu(chain[depth - 1].key);
949 clear_buffer_new(bh_result);
950 count++;
951 /*map more blocks*/
952 while (count < maxblocks && count <= blocks_to_boundary) {
953 ext4_fsblk_t blk;
954
955 blk = le32_to_cpu(*(chain[depth-1].p + count));
956
957 if (blk == first_block + count)
958 count++;
959 else
960 break;
961 }
962 goto got_it;
963 }
964
965 /* Next simple case - plain lookup or failed read of indirect block */
966 if (!create || err == -EIO)
967 goto cleanup;
968
969 /*
970 * Okay, we need to do block allocation.
971 */
972 goal = ext4_find_goal(inode, iblock, partial);
973
974 /* the number of blocks need to allocate for [d,t]indirect blocks */
975 indirect_blks = (chain + depth) - partial - 1;
976
977 /*
978 * Next look up the indirect map to count the totoal number of
979 * direct blocks to allocate for this branch.
980 */
981 count = ext4_blks_to_allocate(partial, indirect_blks,
982 maxblocks, blocks_to_boundary);
983 /*
984 * Block out ext4_truncate while we alter the tree
985 */
986 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
987 &count, goal,
988 offsets + (partial - chain), partial);
989
990 /*
991 * The ext4_splice_branch call will free and forget any buffers
992 * on the new chain if there is a failure, but that risks using
993 * up transaction credits, especially for bitmaps where the
994 * credits cannot be returned. Can we handle this somehow? We
995 * may need to return -EAGAIN upwards in the worst case. --sct
996 */
997 if (!err)
998 err = ext4_splice_branch(handle, inode, iblock,
999 partial, indirect_blks, count);
1000 /*
1001 * i_disksize growing is protected by i_data_sem. Don't forget to
1002 * protect it if you're about to implement concurrent
1003 * ext4_get_block() -bzzz
1004 */
1005 if (!err && extend_disksize) {
1006 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1007 if (disksize > i_size_read(inode))
1008 disksize = i_size_read(inode);
1009 if (disksize > ei->i_disksize)
1010 ei->i_disksize = disksize;
1011 }
1012 if (err)
1013 goto cleanup;
1014
1015 set_buffer_new(bh_result);
1016 got_it:
1017 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1018 if (count > blocks_to_boundary)
1019 set_buffer_boundary(bh_result);
1020 err = count;
1021 /* Clean up and exit */
1022 partial = chain + depth - 1; /* the whole chain */
1023 cleanup:
1024 while (partial > chain) {
1025 BUFFER_TRACE(partial->bh, "call brelse");
1026 brelse(partial->bh);
1027 partial--;
1028 }
1029 BUFFER_TRACE(bh_result, "returned");
1030 out:
1031 return err;
1032 }
1033
1034 qsize_t ext4_get_reserved_space(struct inode *inode)
1035 {
1036 unsigned long long total;
1037
1038 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1039 total = EXT4_I(inode)->i_reserved_data_blocks +
1040 EXT4_I(inode)->i_reserved_meta_blocks;
1041 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1042
1043 return total;
1044 }
1045 /*
1046 * Calculate the number of metadata blocks need to reserve
1047 * to allocate @blocks for non extent file based file
1048 */
1049 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1050 {
1051 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1052 int ind_blks, dind_blks, tind_blks;
1053
1054 /* number of new indirect blocks needed */
1055 ind_blks = (blocks + icap - 1) / icap;
1056
1057 dind_blks = (ind_blks + icap - 1) / icap;
1058
1059 tind_blks = 1;
1060
1061 return ind_blks + dind_blks + tind_blks;
1062 }
1063
1064 /*
1065 * Calculate the number of metadata blocks need to reserve
1066 * to allocate given number of blocks
1067 */
1068 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1069 {
1070 if (!blocks)
1071 return 0;
1072
1073 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1074 return ext4_ext_calc_metadata_amount(inode, blocks);
1075
1076 return ext4_indirect_calc_metadata_amount(inode, blocks);
1077 }
1078
1079 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1080 {
1081 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1082 int total, mdb, mdb_free;
1083
1084 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1085 /* recalculate the number of metablocks still need to be reserved */
1086 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1087 mdb = ext4_calc_metadata_amount(inode, total);
1088
1089 /* figure out how many metablocks to release */
1090 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1091 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1092
1093 if (mdb_free) {
1094 /* Account for allocated meta_blocks */
1095 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1096
1097 /* update fs dirty blocks counter */
1098 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1099 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1100 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1101 }
1102
1103 /* update per-inode reservations */
1104 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1105 EXT4_I(inode)->i_reserved_data_blocks -= used;
1106 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1107
1108 /*
1109 * free those over-booking quota for metadata blocks
1110 */
1111 if (mdb_free)
1112 vfs_dq_release_reservation_block(inode, mdb_free);
1113
1114 /*
1115 * If we have done all the pending block allocations and if
1116 * there aren't any writers on the inode, we can discard the
1117 * inode's preallocations.
1118 */
1119 if (!total && (atomic_read(&inode->i_writecount) == 0))
1120 ext4_discard_preallocations(inode);
1121 }
1122
1123 /*
1124 * The ext4_get_blocks_wrap() function try to look up the requested blocks,
1125 * and returns if the blocks are already mapped.
1126 *
1127 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1128 * and store the allocated blocks in the result buffer head and mark it
1129 * mapped.
1130 *
1131 * If file type is extents based, it will call ext4_ext_get_blocks(),
1132 * Otherwise, call with ext4_get_blocks_handle() to handle indirect mapping
1133 * based files
1134 *
1135 * On success, it returns the number of blocks being mapped or allocate.
1136 * if create==0 and the blocks are pre-allocated and uninitialized block,
1137 * the result buffer head is unmapped. If the create ==1, it will make sure
1138 * the buffer head is mapped.
1139 *
1140 * It returns 0 if plain look up failed (blocks have not been allocated), in
1141 * that casem, buffer head is unmapped
1142 *
1143 * It returns the error in case of allocation failure.
1144 */
1145 int ext4_get_blocks_wrap(handle_t *handle, struct inode *inode, sector_t block,
1146 unsigned int max_blocks, struct buffer_head *bh,
1147 int create, int extend_disksize, int flag)
1148 {
1149 int retval;
1150
1151 clear_buffer_mapped(bh);
1152 clear_buffer_unwritten(bh);
1153
1154 /*
1155 * Try to see if we can get the block without requesting
1156 * for new file system block.
1157 */
1158 down_read((&EXT4_I(inode)->i_data_sem));
1159 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1160 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1161 bh, 0, 0);
1162 } else {
1163 retval = ext4_get_blocks_handle(handle,
1164 inode, block, max_blocks, bh, 0, 0);
1165 }
1166 up_read((&EXT4_I(inode)->i_data_sem));
1167
1168 /* If it is only a block(s) look up */
1169 if (!create)
1170 return retval;
1171
1172 /*
1173 * Returns if the blocks have already allocated
1174 *
1175 * Note that if blocks have been preallocated
1176 * ext4_ext_get_block() returns th create = 0
1177 * with buffer head unmapped.
1178 */
1179 if (retval > 0 && buffer_mapped(bh))
1180 return retval;
1181
1182 /*
1183 * When we call get_blocks without the create flag, the
1184 * BH_Unwritten flag could have gotten set if the blocks
1185 * requested were part of a uninitialized extent. We need to
1186 * clear this flag now that we are committed to convert all or
1187 * part of the uninitialized extent to be an initialized
1188 * extent. This is because we need to avoid the combination
1189 * of BH_Unwritten and BH_Mapped flags being simultaneously
1190 * set on the buffer_head.
1191 */
1192 clear_buffer_unwritten(bh);
1193
1194 /*
1195 * New blocks allocate and/or writing to uninitialized extent
1196 * will possibly result in updating i_data, so we take
1197 * the write lock of i_data_sem, and call get_blocks()
1198 * with create == 1 flag.
1199 */
1200 down_write((&EXT4_I(inode)->i_data_sem));
1201
1202 /*
1203 * if the caller is from delayed allocation writeout path
1204 * we have already reserved fs blocks for allocation
1205 * let the underlying get_block() function know to
1206 * avoid double accounting
1207 */
1208 if (flag)
1209 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1210 /*
1211 * We need to check for EXT4 here because migrate
1212 * could have changed the inode type in between
1213 */
1214 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1215 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1216 bh, create, extend_disksize);
1217 } else {
1218 retval = ext4_get_blocks_handle(handle, inode, block,
1219 max_blocks, bh, create, extend_disksize);
1220
1221 if (retval > 0 && buffer_new(bh)) {
1222 /*
1223 * We allocated new blocks which will result in
1224 * i_data's format changing. Force the migrate
1225 * to fail by clearing migrate flags
1226 */
1227 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1228 ~EXT4_EXT_MIGRATE;
1229 }
1230 }
1231
1232 if (flag) {
1233 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1234 /*
1235 * Update reserved blocks/metadata blocks
1236 * after successful block allocation
1237 * which were deferred till now
1238 */
1239 if ((retval > 0) && buffer_delay(bh))
1240 ext4_da_update_reserve_space(inode, retval);
1241 }
1242
1243 up_write((&EXT4_I(inode)->i_data_sem));
1244 return retval;
1245 }
1246
1247 /* Maximum number of blocks we map for direct IO at once. */
1248 #define DIO_MAX_BLOCKS 4096
1249
1250 int ext4_get_block(struct inode *inode, sector_t iblock,
1251 struct buffer_head *bh_result, int create)
1252 {
1253 handle_t *handle = ext4_journal_current_handle();
1254 int ret = 0, started = 0;
1255 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1256 int dio_credits;
1257
1258 if (create && !handle) {
1259 /* Direct IO write... */
1260 if (max_blocks > DIO_MAX_BLOCKS)
1261 max_blocks = DIO_MAX_BLOCKS;
1262 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1263 handle = ext4_journal_start(inode, dio_credits);
1264 if (IS_ERR(handle)) {
1265 ret = PTR_ERR(handle);
1266 goto out;
1267 }
1268 started = 1;
1269 }
1270
1271 ret = ext4_get_blocks_wrap(handle, inode, iblock,
1272 max_blocks, bh_result, create, 0, 0);
1273 if (ret > 0) {
1274 bh_result->b_size = (ret << inode->i_blkbits);
1275 ret = 0;
1276 }
1277 if (started)
1278 ext4_journal_stop(handle);
1279 out:
1280 return ret;
1281 }
1282
1283 /*
1284 * `handle' can be NULL if create is zero
1285 */
1286 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1287 ext4_lblk_t block, int create, int *errp)
1288 {
1289 struct buffer_head dummy;
1290 int fatal = 0, err;
1291
1292 J_ASSERT(handle != NULL || create == 0);
1293
1294 dummy.b_state = 0;
1295 dummy.b_blocknr = -1000;
1296 buffer_trace_init(&dummy.b_history);
1297 err = ext4_get_blocks_wrap(handle, inode, block, 1,
1298 &dummy, create, 1, 0);
1299 /*
1300 * ext4_get_blocks_handle() returns number of blocks
1301 * mapped. 0 in case of a HOLE.
1302 */
1303 if (err > 0) {
1304 if (err > 1)
1305 WARN_ON(1);
1306 err = 0;
1307 }
1308 *errp = err;
1309 if (!err && buffer_mapped(&dummy)) {
1310 struct buffer_head *bh;
1311 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1312 if (!bh) {
1313 *errp = -EIO;
1314 goto err;
1315 }
1316 if (buffer_new(&dummy)) {
1317 J_ASSERT(create != 0);
1318 J_ASSERT(handle != NULL);
1319
1320 /*
1321 * Now that we do not always journal data, we should
1322 * keep in mind whether this should always journal the
1323 * new buffer as metadata. For now, regular file
1324 * writes use ext4_get_block instead, so it's not a
1325 * problem.
1326 */
1327 lock_buffer(bh);
1328 BUFFER_TRACE(bh, "call get_create_access");
1329 fatal = ext4_journal_get_create_access(handle, bh);
1330 if (!fatal && !buffer_uptodate(bh)) {
1331 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1332 set_buffer_uptodate(bh);
1333 }
1334 unlock_buffer(bh);
1335 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1336 err = ext4_handle_dirty_metadata(handle, inode, bh);
1337 if (!fatal)
1338 fatal = err;
1339 } else {
1340 BUFFER_TRACE(bh, "not a new buffer");
1341 }
1342 if (fatal) {
1343 *errp = fatal;
1344 brelse(bh);
1345 bh = NULL;
1346 }
1347 return bh;
1348 }
1349 err:
1350 return NULL;
1351 }
1352
1353 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1354 ext4_lblk_t block, int create, int *err)
1355 {
1356 struct buffer_head *bh;
1357
1358 bh = ext4_getblk(handle, inode, block, create, err);
1359 if (!bh)
1360 return bh;
1361 if (buffer_uptodate(bh))
1362 return bh;
1363 ll_rw_block(READ_META, 1, &bh);
1364 wait_on_buffer(bh);
1365 if (buffer_uptodate(bh))
1366 return bh;
1367 put_bh(bh);
1368 *err = -EIO;
1369 return NULL;
1370 }
1371
1372 static int walk_page_buffers(handle_t *handle,
1373 struct buffer_head *head,
1374 unsigned from,
1375 unsigned to,
1376 int *partial,
1377 int (*fn)(handle_t *handle,
1378 struct buffer_head *bh))
1379 {
1380 struct buffer_head *bh;
1381 unsigned block_start, block_end;
1382 unsigned blocksize = head->b_size;
1383 int err, ret = 0;
1384 struct buffer_head *next;
1385
1386 for (bh = head, block_start = 0;
1387 ret == 0 && (bh != head || !block_start);
1388 block_start = block_end, bh = next)
1389 {
1390 next = bh->b_this_page;
1391 block_end = block_start + blocksize;
1392 if (block_end <= from || block_start >= to) {
1393 if (partial && !buffer_uptodate(bh))
1394 *partial = 1;
1395 continue;
1396 }
1397 err = (*fn)(handle, bh);
1398 if (!ret)
1399 ret = err;
1400 }
1401 return ret;
1402 }
1403
1404 /*
1405 * To preserve ordering, it is essential that the hole instantiation and
1406 * the data write be encapsulated in a single transaction. We cannot
1407 * close off a transaction and start a new one between the ext4_get_block()
1408 * and the commit_write(). So doing the jbd2_journal_start at the start of
1409 * prepare_write() is the right place.
1410 *
1411 * Also, this function can nest inside ext4_writepage() ->
1412 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1413 * has generated enough buffer credits to do the whole page. So we won't
1414 * block on the journal in that case, which is good, because the caller may
1415 * be PF_MEMALLOC.
1416 *
1417 * By accident, ext4 can be reentered when a transaction is open via
1418 * quota file writes. If we were to commit the transaction while thus
1419 * reentered, there can be a deadlock - we would be holding a quota
1420 * lock, and the commit would never complete if another thread had a
1421 * transaction open and was blocking on the quota lock - a ranking
1422 * violation.
1423 *
1424 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1425 * will _not_ run commit under these circumstances because handle->h_ref
1426 * is elevated. We'll still have enough credits for the tiny quotafile
1427 * write.
1428 */
1429 static int do_journal_get_write_access(handle_t *handle,
1430 struct buffer_head *bh)
1431 {
1432 if (!buffer_mapped(bh) || buffer_freed(bh))
1433 return 0;
1434 return ext4_journal_get_write_access(handle, bh);
1435 }
1436
1437 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1438 loff_t pos, unsigned len, unsigned flags,
1439 struct page **pagep, void **fsdata)
1440 {
1441 struct inode *inode = mapping->host;
1442 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1443 handle_t *handle;
1444 int retries = 0;
1445 struct page *page;
1446 pgoff_t index;
1447 unsigned from, to;
1448
1449 trace_mark(ext4_write_begin,
1450 "dev %s ino %lu pos %llu len %u flags %u",
1451 inode->i_sb->s_id, inode->i_ino,
1452 (unsigned long long) pos, len, flags);
1453 index = pos >> PAGE_CACHE_SHIFT;
1454 from = pos & (PAGE_CACHE_SIZE - 1);
1455 to = from + len;
1456
1457 retry:
1458 handle = ext4_journal_start(inode, needed_blocks);
1459 if (IS_ERR(handle)) {
1460 ret = PTR_ERR(handle);
1461 goto out;
1462 }
1463
1464 /* We cannot recurse into the filesystem as the transaction is already
1465 * started */
1466 flags |= AOP_FLAG_NOFS;
1467
1468 page = grab_cache_page_write_begin(mapping, index, flags);
1469 if (!page) {
1470 ext4_journal_stop(handle);
1471 ret = -ENOMEM;
1472 goto out;
1473 }
1474 *pagep = page;
1475
1476 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1477 ext4_get_block);
1478
1479 if (!ret && ext4_should_journal_data(inode)) {
1480 ret = walk_page_buffers(handle, page_buffers(page),
1481 from, to, NULL, do_journal_get_write_access);
1482 }
1483
1484 if (ret) {
1485 unlock_page(page);
1486 ext4_journal_stop(handle);
1487 page_cache_release(page);
1488 /*
1489 * block_write_begin may have instantiated a few blocks
1490 * outside i_size. Trim these off again. Don't need
1491 * i_size_read because we hold i_mutex.
1492 */
1493 if (pos + len > inode->i_size)
1494 vmtruncate(inode, inode->i_size);
1495 }
1496
1497 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1498 goto retry;
1499 out:
1500 return ret;
1501 }
1502
1503 /* For write_end() in data=journal mode */
1504 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1505 {
1506 if (!buffer_mapped(bh) || buffer_freed(bh))
1507 return 0;
1508 set_buffer_uptodate(bh);
1509 return ext4_handle_dirty_metadata(handle, NULL, bh);
1510 }
1511
1512 /*
1513 * We need to pick up the new inode size which generic_commit_write gave us
1514 * `file' can be NULL - eg, when called from page_symlink().
1515 *
1516 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1517 * buffers are managed internally.
1518 */
1519 static int ext4_ordered_write_end(struct file *file,
1520 struct address_space *mapping,
1521 loff_t pos, unsigned len, unsigned copied,
1522 struct page *page, void *fsdata)
1523 {
1524 handle_t *handle = ext4_journal_current_handle();
1525 struct inode *inode = mapping->host;
1526 int ret = 0, ret2;
1527
1528 trace_mark(ext4_ordered_write_end,
1529 "dev %s ino %lu pos %llu len %u copied %u",
1530 inode->i_sb->s_id, inode->i_ino,
1531 (unsigned long long) pos, len, copied);
1532 ret = ext4_jbd2_file_inode(handle, inode);
1533
1534 if (ret == 0) {
1535 loff_t new_i_size;
1536
1537 new_i_size = pos + copied;
1538 if (new_i_size > EXT4_I(inode)->i_disksize) {
1539 ext4_update_i_disksize(inode, new_i_size);
1540 /* We need to mark inode dirty even if
1541 * new_i_size is less that inode->i_size
1542 * bu greater than i_disksize.(hint delalloc)
1543 */
1544 ext4_mark_inode_dirty(handle, inode);
1545 }
1546
1547 ret2 = generic_write_end(file, mapping, pos, len, copied,
1548 page, fsdata);
1549 copied = ret2;
1550 if (ret2 < 0)
1551 ret = ret2;
1552 }
1553 ret2 = ext4_journal_stop(handle);
1554 if (!ret)
1555 ret = ret2;
1556
1557 return ret ? ret : copied;
1558 }
1559
1560 static int ext4_writeback_write_end(struct file *file,
1561 struct address_space *mapping,
1562 loff_t pos, unsigned len, unsigned copied,
1563 struct page *page, void *fsdata)
1564 {
1565 handle_t *handle = ext4_journal_current_handle();
1566 struct inode *inode = mapping->host;
1567 int ret = 0, ret2;
1568 loff_t new_i_size;
1569
1570 trace_mark(ext4_writeback_write_end,
1571 "dev %s ino %lu pos %llu len %u copied %u",
1572 inode->i_sb->s_id, inode->i_ino,
1573 (unsigned long long) pos, len, copied);
1574 new_i_size = pos + copied;
1575 if (new_i_size > EXT4_I(inode)->i_disksize) {
1576 ext4_update_i_disksize(inode, new_i_size);
1577 /* We need to mark inode dirty even if
1578 * new_i_size is less that inode->i_size
1579 * bu greater than i_disksize.(hint delalloc)
1580 */
1581 ext4_mark_inode_dirty(handle, inode);
1582 }
1583
1584 ret2 = generic_write_end(file, mapping, pos, len, copied,
1585 page, fsdata);
1586 copied = ret2;
1587 if (ret2 < 0)
1588 ret = ret2;
1589
1590 ret2 = ext4_journal_stop(handle);
1591 if (!ret)
1592 ret = ret2;
1593
1594 return ret ? ret : copied;
1595 }
1596
1597 static int ext4_journalled_write_end(struct file *file,
1598 struct address_space *mapping,
1599 loff_t pos, unsigned len, unsigned copied,
1600 struct page *page, void *fsdata)
1601 {
1602 handle_t *handle = ext4_journal_current_handle();
1603 struct inode *inode = mapping->host;
1604 int ret = 0, ret2;
1605 int partial = 0;
1606 unsigned from, to;
1607 loff_t new_i_size;
1608
1609 trace_mark(ext4_journalled_write_end,
1610 "dev %s ino %lu pos %llu len %u copied %u",
1611 inode->i_sb->s_id, inode->i_ino,
1612 (unsigned long long) pos, len, copied);
1613 from = pos & (PAGE_CACHE_SIZE - 1);
1614 to = from + len;
1615
1616 if (copied < len) {
1617 if (!PageUptodate(page))
1618 copied = 0;
1619 page_zero_new_buffers(page, from+copied, to);
1620 }
1621
1622 ret = walk_page_buffers(handle, page_buffers(page), from,
1623 to, &partial, write_end_fn);
1624 if (!partial)
1625 SetPageUptodate(page);
1626 new_i_size = pos + copied;
1627 if (new_i_size > inode->i_size)
1628 i_size_write(inode, pos+copied);
1629 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1630 if (new_i_size > EXT4_I(inode)->i_disksize) {
1631 ext4_update_i_disksize(inode, new_i_size);
1632 ret2 = ext4_mark_inode_dirty(handle, inode);
1633 if (!ret)
1634 ret = ret2;
1635 }
1636
1637 unlock_page(page);
1638 ret2 = ext4_journal_stop(handle);
1639 if (!ret)
1640 ret = ret2;
1641 page_cache_release(page);
1642
1643 return ret ? ret : copied;
1644 }
1645
1646 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1647 {
1648 int retries = 0;
1649 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1650 unsigned long md_needed, mdblocks, total = 0;
1651
1652 /*
1653 * recalculate the amount of metadata blocks to reserve
1654 * in order to allocate nrblocks
1655 * worse case is one extent per block
1656 */
1657 repeat:
1658 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1659 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1660 mdblocks = ext4_calc_metadata_amount(inode, total);
1661 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1662
1663 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1664 total = md_needed + nrblocks;
1665
1666 /*
1667 * Make quota reservation here to prevent quota overflow
1668 * later. Real quota accounting is done at pages writeout
1669 * time.
1670 */
1671 if (vfs_dq_reserve_block(inode, total)) {
1672 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1673 return -EDQUOT;
1674 }
1675
1676 if (ext4_claim_free_blocks(sbi, total)) {
1677 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1678 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1679 yield();
1680 goto repeat;
1681 }
1682 vfs_dq_release_reservation_block(inode, total);
1683 return -ENOSPC;
1684 }
1685 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1686 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1687
1688 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1689 return 0; /* success */
1690 }
1691
1692 static void ext4_da_release_space(struct inode *inode, int to_free)
1693 {
1694 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1695 int total, mdb, mdb_free, release;
1696
1697 if (!to_free)
1698 return; /* Nothing to release, exit */
1699
1700 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1701
1702 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1703 /*
1704 * if there is no reserved blocks, but we try to free some
1705 * then the counter is messed up somewhere.
1706 * but since this function is called from invalidate
1707 * page, it's harmless to return without any action
1708 */
1709 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1710 "blocks for inode %lu, but there is no reserved "
1711 "data blocks\n", to_free, inode->i_ino);
1712 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1713 return;
1714 }
1715
1716 /* recalculate the number of metablocks still need to be reserved */
1717 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1718 mdb = ext4_calc_metadata_amount(inode, total);
1719
1720 /* figure out how many metablocks to release */
1721 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1722 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1723
1724 release = to_free + mdb_free;
1725
1726 /* update fs dirty blocks counter for truncate case */
1727 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1728
1729 /* update per-inode reservations */
1730 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1731 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1732
1733 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1734 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1735 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1736
1737 vfs_dq_release_reservation_block(inode, release);
1738 }
1739
1740 static void ext4_da_page_release_reservation(struct page *page,
1741 unsigned long offset)
1742 {
1743 int to_release = 0;
1744 struct buffer_head *head, *bh;
1745 unsigned int curr_off = 0;
1746
1747 head = page_buffers(page);
1748 bh = head;
1749 do {
1750 unsigned int next_off = curr_off + bh->b_size;
1751
1752 if ((offset <= curr_off) && (buffer_delay(bh))) {
1753 to_release++;
1754 clear_buffer_delay(bh);
1755 }
1756 curr_off = next_off;
1757 } while ((bh = bh->b_this_page) != head);
1758 ext4_da_release_space(page->mapping->host, to_release);
1759 }
1760
1761 /*
1762 * Delayed allocation stuff
1763 */
1764
1765 struct mpage_da_data {
1766 struct inode *inode;
1767 sector_t b_blocknr; /* start block number of extent */
1768 size_t b_size; /* size of extent */
1769 unsigned long b_state; /* state of the extent */
1770 unsigned long first_page, next_page; /* extent of pages */
1771 struct writeback_control *wbc;
1772 int io_done;
1773 int pages_written;
1774 int retval;
1775 };
1776
1777 /*
1778 * mpage_da_submit_io - walks through extent of pages and try to write
1779 * them with writepage() call back
1780 *
1781 * @mpd->inode: inode
1782 * @mpd->first_page: first page of the extent
1783 * @mpd->next_page: page after the last page of the extent
1784 *
1785 * By the time mpage_da_submit_io() is called we expect all blocks
1786 * to be allocated. this may be wrong if allocation failed.
1787 *
1788 * As pages are already locked by write_cache_pages(), we can't use it
1789 */
1790 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1791 {
1792 long pages_skipped;
1793 struct pagevec pvec;
1794 unsigned long index, end;
1795 int ret = 0, err, nr_pages, i;
1796 struct inode *inode = mpd->inode;
1797 struct address_space *mapping = inode->i_mapping;
1798
1799 BUG_ON(mpd->next_page <= mpd->first_page);
1800 /*
1801 * We need to start from the first_page to the next_page - 1
1802 * to make sure we also write the mapped dirty buffer_heads.
1803 * If we look at mpd->b_blocknr we would only be looking
1804 * at the currently mapped buffer_heads.
1805 */
1806 index = mpd->first_page;
1807 end = mpd->next_page - 1;
1808
1809 pagevec_init(&pvec, 0);
1810 while (index <= end) {
1811 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1812 if (nr_pages == 0)
1813 break;
1814 for (i = 0; i < nr_pages; i++) {
1815 struct page *page = pvec.pages[i];
1816
1817 index = page->index;
1818 if (index > end)
1819 break;
1820 index++;
1821
1822 BUG_ON(!PageLocked(page));
1823 BUG_ON(PageWriteback(page));
1824
1825 pages_skipped = mpd->wbc->pages_skipped;
1826 err = mapping->a_ops->writepage(page, mpd->wbc);
1827 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1828 /*
1829 * have successfully written the page
1830 * without skipping the same
1831 */
1832 mpd->pages_written++;
1833 /*
1834 * In error case, we have to continue because
1835 * remaining pages are still locked
1836 * XXX: unlock and re-dirty them?
1837 */
1838 if (ret == 0)
1839 ret = err;
1840 }
1841 pagevec_release(&pvec);
1842 }
1843 return ret;
1844 }
1845
1846 /*
1847 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1848 *
1849 * @mpd->inode - inode to walk through
1850 * @exbh->b_blocknr - first block on a disk
1851 * @exbh->b_size - amount of space in bytes
1852 * @logical - first logical block to start assignment with
1853 *
1854 * the function goes through all passed space and put actual disk
1855 * block numbers into buffer heads, dropping BH_Delay
1856 */
1857 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1858 struct buffer_head *exbh)
1859 {
1860 struct inode *inode = mpd->inode;
1861 struct address_space *mapping = inode->i_mapping;
1862 int blocks = exbh->b_size >> inode->i_blkbits;
1863 sector_t pblock = exbh->b_blocknr, cur_logical;
1864 struct buffer_head *head, *bh;
1865 pgoff_t index, end;
1866 struct pagevec pvec;
1867 int nr_pages, i;
1868
1869 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1870 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1871 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1872
1873 pagevec_init(&pvec, 0);
1874
1875 while (index <= end) {
1876 /* XXX: optimize tail */
1877 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1878 if (nr_pages == 0)
1879 break;
1880 for (i = 0; i < nr_pages; i++) {
1881 struct page *page = pvec.pages[i];
1882
1883 index = page->index;
1884 if (index > end)
1885 break;
1886 index++;
1887
1888 BUG_ON(!PageLocked(page));
1889 BUG_ON(PageWriteback(page));
1890 BUG_ON(!page_has_buffers(page));
1891
1892 bh = page_buffers(page);
1893 head = bh;
1894
1895 /* skip blocks out of the range */
1896 do {
1897 if (cur_logical >= logical)
1898 break;
1899 cur_logical++;
1900 } while ((bh = bh->b_this_page) != head);
1901
1902 do {
1903 if (cur_logical >= logical + blocks)
1904 break;
1905 if (buffer_delay(bh)) {
1906 bh->b_blocknr = pblock;
1907 clear_buffer_delay(bh);
1908 bh->b_bdev = inode->i_sb->s_bdev;
1909 } else if (buffer_unwritten(bh)) {
1910 bh->b_blocknr = pblock;
1911 clear_buffer_unwritten(bh);
1912 set_buffer_mapped(bh);
1913 set_buffer_new(bh);
1914 bh->b_bdev = inode->i_sb->s_bdev;
1915 } else if (buffer_mapped(bh))
1916 BUG_ON(bh->b_blocknr != pblock);
1917
1918 cur_logical++;
1919 pblock++;
1920 } while ((bh = bh->b_this_page) != head);
1921 }
1922 pagevec_release(&pvec);
1923 }
1924 }
1925
1926
1927 /*
1928 * __unmap_underlying_blocks - just a helper function to unmap
1929 * set of blocks described by @bh
1930 */
1931 static inline void __unmap_underlying_blocks(struct inode *inode,
1932 struct buffer_head *bh)
1933 {
1934 struct block_device *bdev = inode->i_sb->s_bdev;
1935 int blocks, i;
1936
1937 blocks = bh->b_size >> inode->i_blkbits;
1938 for (i = 0; i < blocks; i++)
1939 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1940 }
1941
1942 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1943 sector_t logical, long blk_cnt)
1944 {
1945 int nr_pages, i;
1946 pgoff_t index, end;
1947 struct pagevec pvec;
1948 struct inode *inode = mpd->inode;
1949 struct address_space *mapping = inode->i_mapping;
1950
1951 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1952 end = (logical + blk_cnt - 1) >>
1953 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1954 while (index <= end) {
1955 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1956 if (nr_pages == 0)
1957 break;
1958 for (i = 0; i < nr_pages; i++) {
1959 struct page *page = pvec.pages[i];
1960 index = page->index;
1961 if (index > end)
1962 break;
1963 index++;
1964
1965 BUG_ON(!PageLocked(page));
1966 BUG_ON(PageWriteback(page));
1967 block_invalidatepage(page, 0);
1968 ClearPageUptodate(page);
1969 unlock_page(page);
1970 }
1971 }
1972 return;
1973 }
1974
1975 static void ext4_print_free_blocks(struct inode *inode)
1976 {
1977 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1978 printk(KERN_EMERG "Total free blocks count %lld\n",
1979 ext4_count_free_blocks(inode->i_sb));
1980 printk(KERN_EMERG "Free/Dirty block details\n");
1981 printk(KERN_EMERG "free_blocks=%lld\n",
1982 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1983 printk(KERN_EMERG "dirty_blocks=%lld\n",
1984 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
1985 printk(KERN_EMERG "Block reservation details\n");
1986 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
1987 EXT4_I(inode)->i_reserved_data_blocks);
1988 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
1989 EXT4_I(inode)->i_reserved_meta_blocks);
1990 return;
1991 }
1992
1993 #define EXT4_DELALLOC_RSVED 1
1994 static int ext4_da_get_block_write(struct inode *inode, sector_t iblock,
1995 struct buffer_head *bh_result, int create)
1996 {
1997 int ret;
1998 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1999 loff_t disksize = EXT4_I(inode)->i_disksize;
2000 handle_t *handle = NULL;
2001
2002 handle = ext4_journal_current_handle();
2003 BUG_ON(!handle);
2004 ret = ext4_get_blocks_wrap(handle, inode, iblock, max_blocks,
2005 bh_result, create, 0, EXT4_DELALLOC_RSVED);
2006 if (ret <= 0)
2007 return ret;
2008
2009 bh_result->b_size = (ret << inode->i_blkbits);
2010
2011 if (ext4_should_order_data(inode)) {
2012 int retval;
2013 retval = ext4_jbd2_file_inode(handle, inode);
2014 if (retval)
2015 /*
2016 * Failed to add inode for ordered mode. Don't
2017 * update file size
2018 */
2019 return retval;
2020 }
2021
2022 /*
2023 * Update on-disk size along with block allocation we don't
2024 * use 'extend_disksize' as size may change within already
2025 * allocated block -bzzz
2026 */
2027 disksize = ((loff_t) iblock + ret) << inode->i_blkbits;
2028 if (disksize > i_size_read(inode))
2029 disksize = i_size_read(inode);
2030 if (disksize > EXT4_I(inode)->i_disksize) {
2031 ext4_update_i_disksize(inode, disksize);
2032 ret = ext4_mark_inode_dirty(handle, inode);
2033 return ret;
2034 }
2035 return 0;
2036 }
2037
2038 /*
2039 * mpage_da_map_blocks - go through given space
2040 *
2041 * @mpd - bh describing space
2042 *
2043 * The function skips space we know is already mapped to disk blocks.
2044 *
2045 */
2046 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2047 {
2048 int err = 0;
2049 struct buffer_head new;
2050 sector_t next;
2051
2052 /*
2053 * We consider only non-mapped and non-allocated blocks
2054 */
2055 if ((mpd->b_state & (1 << BH_Mapped)) &&
2056 !(mpd->b_state & (1 << BH_Delay)))
2057 return 0;
2058 new.b_state = mpd->b_state;
2059 new.b_blocknr = 0;
2060 new.b_size = mpd->b_size;
2061 next = mpd->b_blocknr;
2062 /*
2063 * If we didn't accumulate anything
2064 * to write simply return
2065 */
2066 if (!new.b_size)
2067 return 0;
2068
2069 err = ext4_da_get_block_write(mpd->inode, next, &new, 1);
2070 if (err) {
2071 /*
2072 * If get block returns with error we simply
2073 * return. Later writepage will redirty the page and
2074 * writepages will find the dirty page again
2075 */
2076 if (err == -EAGAIN)
2077 return 0;
2078
2079 if (err == -ENOSPC &&
2080 ext4_count_free_blocks(mpd->inode->i_sb)) {
2081 mpd->retval = err;
2082 return 0;
2083 }
2084
2085 /*
2086 * get block failure will cause us to loop in
2087 * writepages, because a_ops->writepage won't be able
2088 * to make progress. The page will be redirtied by
2089 * writepage and writepages will again try to write
2090 * the same.
2091 */
2092 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2093 "at logical offset %llu with max blocks "
2094 "%zd with error %d\n",
2095 __func__, mpd->inode->i_ino,
2096 (unsigned long long)next,
2097 mpd->b_size >> mpd->inode->i_blkbits, err);
2098 printk(KERN_EMERG "This should not happen.!! "
2099 "Data will be lost\n");
2100 if (err == -ENOSPC) {
2101 ext4_print_free_blocks(mpd->inode);
2102 }
2103 /* invlaidate all the pages */
2104 ext4_da_block_invalidatepages(mpd, next,
2105 mpd->b_size >> mpd->inode->i_blkbits);
2106 return err;
2107 }
2108 BUG_ON(new.b_size == 0);
2109
2110 if (buffer_new(&new))
2111 __unmap_underlying_blocks(mpd->inode, &new);
2112
2113 /*
2114 * If blocks are delayed marked, we need to
2115 * put actual blocknr and drop delayed bit
2116 */
2117 if ((mpd->b_state & (1 << BH_Delay)) ||
2118 (mpd->b_state & (1 << BH_Unwritten)))
2119 mpage_put_bnr_to_bhs(mpd, next, &new);
2120
2121 return 0;
2122 }
2123
2124 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2125 (1 << BH_Delay) | (1 << BH_Unwritten))
2126
2127 /*
2128 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2129 *
2130 * @mpd->lbh - extent of blocks
2131 * @logical - logical number of the block in the file
2132 * @bh - bh of the block (used to access block's state)
2133 *
2134 * the function is used to collect contig. blocks in same state
2135 */
2136 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2137 sector_t logical, size_t b_size,
2138 unsigned long b_state)
2139 {
2140 sector_t next;
2141 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2142
2143 /* check if thereserved journal credits might overflow */
2144 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2145 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2146 /*
2147 * With non-extent format we are limited by the journal
2148 * credit available. Total credit needed to insert
2149 * nrblocks contiguous blocks is dependent on the
2150 * nrblocks. So limit nrblocks.
2151 */
2152 goto flush_it;
2153 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2154 EXT4_MAX_TRANS_DATA) {
2155 /*
2156 * Adding the new buffer_head would make it cross the
2157 * allowed limit for which we have journal credit
2158 * reserved. So limit the new bh->b_size
2159 */
2160 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2161 mpd->inode->i_blkbits;
2162 /* we will do mpage_da_submit_io in the next loop */
2163 }
2164 }
2165 /*
2166 * First block in the extent
2167 */
2168 if (mpd->b_size == 0) {
2169 mpd->b_blocknr = logical;
2170 mpd->b_size = b_size;
2171 mpd->b_state = b_state & BH_FLAGS;
2172 return;
2173 }
2174
2175 next = mpd->b_blocknr + nrblocks;
2176 /*
2177 * Can we merge the block to our big extent?
2178 */
2179 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2180 mpd->b_size += b_size;
2181 return;
2182 }
2183
2184 flush_it:
2185 /*
2186 * We couldn't merge the block to our extent, so we
2187 * need to flush current extent and start new one
2188 */
2189 if (mpage_da_map_blocks(mpd) == 0)
2190 mpage_da_submit_io(mpd);
2191 mpd->io_done = 1;
2192 return;
2193 }
2194
2195 /*
2196 * __mpage_da_writepage - finds extent of pages and blocks
2197 *
2198 * @page: page to consider
2199 * @wbc: not used, we just follow rules
2200 * @data: context
2201 *
2202 * The function finds extents of pages and scan them for all blocks.
2203 */
2204 static int __mpage_da_writepage(struct page *page,
2205 struct writeback_control *wbc, void *data)
2206 {
2207 struct mpage_da_data *mpd = data;
2208 struct inode *inode = mpd->inode;
2209 struct buffer_head *bh, *head;
2210 sector_t logical;
2211
2212 if (mpd->io_done) {
2213 /*
2214 * Rest of the page in the page_vec
2215 * redirty then and skip then. We will
2216 * try to to write them again after
2217 * starting a new transaction
2218 */
2219 redirty_page_for_writepage(wbc, page);
2220 unlock_page(page);
2221 return MPAGE_DA_EXTENT_TAIL;
2222 }
2223 /*
2224 * Can we merge this page to current extent?
2225 */
2226 if (mpd->next_page != page->index) {
2227 /*
2228 * Nope, we can't. So, we map non-allocated blocks
2229 * and start IO on them using writepage()
2230 */
2231 if (mpd->next_page != mpd->first_page) {
2232 if (mpage_da_map_blocks(mpd) == 0)
2233 mpage_da_submit_io(mpd);
2234 /*
2235 * skip rest of the page in the page_vec
2236 */
2237 mpd->io_done = 1;
2238 redirty_page_for_writepage(wbc, page);
2239 unlock_page(page);
2240 return MPAGE_DA_EXTENT_TAIL;
2241 }
2242
2243 /*
2244 * Start next extent of pages ...
2245 */
2246 mpd->first_page = page->index;
2247
2248 /*
2249 * ... and blocks
2250 */
2251 mpd->b_size = 0;
2252 mpd->b_state = 0;
2253 mpd->b_blocknr = 0;
2254 }
2255
2256 mpd->next_page = page->index + 1;
2257 logical = (sector_t) page->index <<
2258 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2259
2260 if (!page_has_buffers(page)) {
2261 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2262 (1 << BH_Dirty) | (1 << BH_Uptodate));
2263 if (mpd->io_done)
2264 return MPAGE_DA_EXTENT_TAIL;
2265 } else {
2266 /*
2267 * Page with regular buffer heads, just add all dirty ones
2268 */
2269 head = page_buffers(page);
2270 bh = head;
2271 do {
2272 BUG_ON(buffer_locked(bh));
2273 /*
2274 * We need to try to allocate
2275 * unmapped blocks in the same page.
2276 * Otherwise we won't make progress
2277 * with the page in ext4_da_writepage
2278 */
2279 if (buffer_dirty(bh) &&
2280 (!buffer_mapped(bh) || buffer_delay(bh))) {
2281 mpage_add_bh_to_extent(mpd, logical,
2282 bh->b_size,
2283 bh->b_state);
2284 if (mpd->io_done)
2285 return MPAGE_DA_EXTENT_TAIL;
2286 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2287 /*
2288 * mapped dirty buffer. We need to update
2289 * the b_state because we look at
2290 * b_state in mpage_da_map_blocks. We don't
2291 * update b_size because if we find an
2292 * unmapped buffer_head later we need to
2293 * use the b_state flag of that buffer_head.
2294 */
2295 if (mpd->b_size == 0)
2296 mpd->b_state = bh->b_state & BH_FLAGS;
2297 }
2298 logical++;
2299 } while ((bh = bh->b_this_page) != head);
2300 }
2301
2302 return 0;
2303 }
2304
2305 /*
2306 * this is a special callback for ->write_begin() only
2307 * it's intention is to return mapped block or reserve space
2308 */
2309 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2310 struct buffer_head *bh_result, int create)
2311 {
2312 int ret = 0;
2313 sector_t invalid_block = ~((sector_t) 0xffff);
2314
2315 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2316 invalid_block = ~0;
2317
2318 BUG_ON(create == 0);
2319 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2320
2321 /*
2322 * first, we need to know whether the block is allocated already
2323 * preallocated blocks are unmapped but should treated
2324 * the same as allocated blocks.
2325 */
2326 ret = ext4_get_blocks_wrap(NULL, inode, iblock, 1, bh_result, 0, 0, 0);
2327 if ((ret == 0) && !buffer_delay(bh_result)) {
2328 /* the block isn't (pre)allocated yet, let's reserve space */
2329 /*
2330 * XXX: __block_prepare_write() unmaps passed block,
2331 * is it OK?
2332 */
2333 ret = ext4_da_reserve_space(inode, 1);
2334 if (ret)
2335 /* not enough space to reserve */
2336 return ret;
2337
2338 map_bh(bh_result, inode->i_sb, invalid_block);
2339 set_buffer_new(bh_result);
2340 set_buffer_delay(bh_result);
2341 } else if (ret > 0) {
2342 bh_result->b_size = (ret << inode->i_blkbits);
2343 /*
2344 * With sub-block writes into unwritten extents
2345 * we also need to mark the buffer as new so that
2346 * the unwritten parts of the buffer gets correctly zeroed.
2347 */
2348 if (buffer_unwritten(bh_result))
2349 set_buffer_new(bh_result);
2350 ret = 0;
2351 }
2352
2353 return ret;
2354 }
2355
2356 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2357 {
2358 /*
2359 * unmapped buffer is possible for holes.
2360 * delay buffer is possible with delayed allocation
2361 */
2362 return ((!buffer_mapped(bh) || buffer_delay(bh)) && buffer_dirty(bh));
2363 }
2364
2365 static int ext4_normal_get_block_write(struct inode *inode, sector_t iblock,
2366 struct buffer_head *bh_result, int create)
2367 {
2368 int ret = 0;
2369 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2370
2371 /*
2372 * we don't want to do block allocation in writepage
2373 * so call get_block_wrap with create = 0
2374 */
2375 ret = ext4_get_blocks_wrap(NULL, inode, iblock, max_blocks,
2376 bh_result, 0, 0, 0);
2377 if (ret > 0) {
2378 bh_result->b_size = (ret << inode->i_blkbits);
2379 ret = 0;
2380 }
2381 return ret;
2382 }
2383
2384 /*
2385 * get called vi ext4_da_writepages after taking page lock (have journal handle)
2386 * get called via journal_submit_inode_data_buffers (no journal handle)
2387 * get called via shrink_page_list via pdflush (no journal handle)
2388 * or grab_page_cache when doing write_begin (have journal handle)
2389 */
2390 static int ext4_da_writepage(struct page *page,
2391 struct writeback_control *wbc)
2392 {
2393 int ret = 0;
2394 loff_t size;
2395 unsigned int len;
2396 struct buffer_head *page_bufs;
2397 struct inode *inode = page->mapping->host;
2398
2399 trace_mark(ext4_da_writepage,
2400 "dev %s ino %lu page_index %lu",
2401 inode->i_sb->s_id, inode->i_ino, page->index);
2402 size = i_size_read(inode);
2403 if (page->index == size >> PAGE_CACHE_SHIFT)
2404 len = size & ~PAGE_CACHE_MASK;
2405 else
2406 len = PAGE_CACHE_SIZE;
2407
2408 if (page_has_buffers(page)) {
2409 page_bufs = page_buffers(page);
2410 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2411 ext4_bh_unmapped_or_delay)) {
2412 /*
2413 * We don't want to do block allocation
2414 * So redirty the page and return
2415 * We may reach here when we do a journal commit
2416 * via journal_submit_inode_data_buffers.
2417 * If we don't have mapping block we just ignore
2418 * them. We can also reach here via shrink_page_list
2419 */
2420 redirty_page_for_writepage(wbc, page);
2421 unlock_page(page);
2422 return 0;
2423 }
2424 } else {
2425 /*
2426 * The test for page_has_buffers() is subtle:
2427 * We know the page is dirty but it lost buffers. That means
2428 * that at some moment in time after write_begin()/write_end()
2429 * has been called all buffers have been clean and thus they
2430 * must have been written at least once. So they are all
2431 * mapped and we can happily proceed with mapping them
2432 * and writing the page.
2433 *
2434 * Try to initialize the buffer_heads and check whether
2435 * all are mapped and non delay. We don't want to
2436 * do block allocation here.
2437 */
2438 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2439 ext4_normal_get_block_write);
2440 if (!ret) {
2441 page_bufs = page_buffers(page);
2442 /* check whether all are mapped and non delay */
2443 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2444 ext4_bh_unmapped_or_delay)) {
2445 redirty_page_for_writepage(wbc, page);
2446 unlock_page(page);
2447 return 0;
2448 }
2449 } else {
2450 /*
2451 * We can't do block allocation here
2452 * so just redity the page and unlock
2453 * and return
2454 */
2455 redirty_page_for_writepage(wbc, page);
2456 unlock_page(page);
2457 return 0;
2458 }
2459 /* now mark the buffer_heads as dirty and uptodate */
2460 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2461 }
2462
2463 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2464 ret = nobh_writepage(page, ext4_normal_get_block_write, wbc);
2465 else
2466 ret = block_write_full_page(page,
2467 ext4_normal_get_block_write,
2468 wbc);
2469
2470 return ret;
2471 }
2472
2473 /*
2474 * This is called via ext4_da_writepages() to
2475 * calulate the total number of credits to reserve to fit
2476 * a single extent allocation into a single transaction,
2477 * ext4_da_writpeages() will loop calling this before
2478 * the block allocation.
2479 */
2480
2481 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2482 {
2483 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2484
2485 /*
2486 * With non-extent format the journal credit needed to
2487 * insert nrblocks contiguous block is dependent on
2488 * number of contiguous block. So we will limit
2489 * number of contiguous block to a sane value
2490 */
2491 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2492 (max_blocks > EXT4_MAX_TRANS_DATA))
2493 max_blocks = EXT4_MAX_TRANS_DATA;
2494
2495 return ext4_chunk_trans_blocks(inode, max_blocks);
2496 }
2497
2498 static int ext4_da_writepages(struct address_space *mapping,
2499 struct writeback_control *wbc)
2500 {
2501 pgoff_t index;
2502 int range_whole = 0;
2503 handle_t *handle = NULL;
2504 struct mpage_da_data mpd;
2505 struct inode *inode = mapping->host;
2506 int no_nrwrite_index_update;
2507 int pages_written = 0;
2508 long pages_skipped;
2509 int range_cyclic, cycled = 1, io_done = 0;
2510 int needed_blocks, ret = 0, nr_to_writebump = 0;
2511 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2512
2513 trace_mark(ext4_da_writepages,
2514 "dev %s ino %lu nr_t_write %ld "
2515 "pages_skipped %ld range_start %llu "
2516 "range_end %llu nonblocking %d "
2517 "for_kupdate %d for_reclaim %d "
2518 "for_writepages %d range_cyclic %d",
2519 inode->i_sb->s_id, inode->i_ino,
2520 wbc->nr_to_write, wbc->pages_skipped,
2521 (unsigned long long) wbc->range_start,
2522 (unsigned long long) wbc->range_end,
2523 wbc->nonblocking, wbc->for_kupdate,
2524 wbc->for_reclaim, wbc->for_writepages,
2525 wbc->range_cyclic);
2526
2527 /*
2528 * No pages to write? This is mainly a kludge to avoid starting
2529 * a transaction for special inodes like journal inode on last iput()
2530 * because that could violate lock ordering on umount
2531 */
2532 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2533 return 0;
2534
2535 /*
2536 * If the filesystem has aborted, it is read-only, so return
2537 * right away instead of dumping stack traces later on that
2538 * will obscure the real source of the problem. We test
2539 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2540 * the latter could be true if the filesystem is mounted
2541 * read-only, and in that case, ext4_da_writepages should
2542 * *never* be called, so if that ever happens, we would want
2543 * the stack trace.
2544 */
2545 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2546 return -EROFS;
2547
2548 /*
2549 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2550 * This make sure small files blocks are allocated in
2551 * single attempt. This ensure that small files
2552 * get less fragmented.
2553 */
2554 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2555 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2556 wbc->nr_to_write = sbi->s_mb_stream_request;
2557 }
2558 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2559 range_whole = 1;
2560
2561 range_cyclic = wbc->range_cyclic;
2562 if (wbc->range_cyclic) {
2563 index = mapping->writeback_index;
2564 if (index)
2565 cycled = 0;
2566 wbc->range_start = index << PAGE_CACHE_SHIFT;
2567 wbc->range_end = LLONG_MAX;
2568 wbc->range_cyclic = 0;
2569 } else
2570 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2571
2572 mpd.wbc = wbc;
2573 mpd.inode = mapping->host;
2574
2575 /*
2576 * we don't want write_cache_pages to update
2577 * nr_to_write and writeback_index
2578 */
2579 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2580 wbc->no_nrwrite_index_update = 1;
2581 pages_skipped = wbc->pages_skipped;
2582
2583 retry:
2584 while (!ret && wbc->nr_to_write > 0) {
2585
2586 /*
2587 * we insert one extent at a time. So we need
2588 * credit needed for single extent allocation.
2589 * journalled mode is currently not supported
2590 * by delalloc
2591 */
2592 BUG_ON(ext4_should_journal_data(inode));
2593 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2594
2595 /* start a new transaction*/
2596 handle = ext4_journal_start(inode, needed_blocks);
2597 if (IS_ERR(handle)) {
2598 ret = PTR_ERR(handle);
2599 printk(KERN_CRIT "%s: jbd2_start: "
2600 "%ld pages, ino %lu; err %d\n", __func__,
2601 wbc->nr_to_write, inode->i_ino, ret);
2602 dump_stack();
2603 goto out_writepages;
2604 }
2605
2606 /*
2607 * Now call __mpage_da_writepage to find the next
2608 * contiguous region of logical blocks that need
2609 * blocks to be allocated by ext4. We don't actually
2610 * submit the blocks for I/O here, even though
2611 * write_cache_pages thinks it will, and will set the
2612 * pages as clean for write before calling
2613 * __mpage_da_writepage().
2614 */
2615 mpd.b_size = 0;
2616 mpd.b_state = 0;
2617 mpd.b_blocknr = 0;
2618 mpd.first_page = 0;
2619 mpd.next_page = 0;
2620 mpd.io_done = 0;
2621 mpd.pages_written = 0;
2622 mpd.retval = 0;
2623 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2624 &mpd);
2625 /*
2626 * If we have a contigous extent of pages and we
2627 * haven't done the I/O yet, map the blocks and submit
2628 * them for I/O.
2629 */
2630 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2631 if (mpage_da_map_blocks(&mpd) == 0)
2632 mpage_da_submit_io(&mpd);
2633 mpd.io_done = 1;
2634 ret = MPAGE_DA_EXTENT_TAIL;
2635 }
2636 wbc->nr_to_write -= mpd.pages_written;
2637
2638 ext4_journal_stop(handle);
2639
2640 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2641 /* commit the transaction which would
2642 * free blocks released in the transaction
2643 * and try again
2644 */
2645 jbd2_journal_force_commit_nested(sbi->s_journal);
2646 wbc->pages_skipped = pages_skipped;
2647 ret = 0;
2648 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2649 /*
2650 * got one extent now try with
2651 * rest of the pages
2652 */
2653 pages_written += mpd.pages_written;
2654 wbc->pages_skipped = pages_skipped;
2655 ret = 0;
2656 io_done = 1;
2657 } else if (wbc->nr_to_write)
2658 /*
2659 * There is no more writeout needed
2660 * or we requested for a noblocking writeout
2661 * and we found the device congested
2662 */
2663 break;
2664 }
2665 if (!io_done && !cycled) {
2666 cycled = 1;
2667 index = 0;
2668 wbc->range_start = index << PAGE_CACHE_SHIFT;
2669 wbc->range_end = mapping->writeback_index - 1;
2670 goto retry;
2671 }
2672 if (pages_skipped != wbc->pages_skipped)
2673 printk(KERN_EMERG "This should not happen leaving %s "
2674 "with nr_to_write = %ld ret = %d\n",
2675 __func__, wbc->nr_to_write, ret);
2676
2677 /* Update index */
2678 index += pages_written;
2679 wbc->range_cyclic = range_cyclic;
2680 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2681 /*
2682 * set the writeback_index so that range_cyclic
2683 * mode will write it back later
2684 */
2685 mapping->writeback_index = index;
2686
2687 out_writepages:
2688 if (!no_nrwrite_index_update)
2689 wbc->no_nrwrite_index_update = 0;
2690 wbc->nr_to_write -= nr_to_writebump;
2691 trace_mark(ext4_da_writepage_result,
2692 "dev %s ino %lu ret %d pages_written %d "
2693 "pages_skipped %ld congestion %d "
2694 "more_io %d no_nrwrite_index_update %d",
2695 inode->i_sb->s_id, inode->i_ino, ret,
2696 pages_written, wbc->pages_skipped,
2697 wbc->encountered_congestion, wbc->more_io,
2698 wbc->no_nrwrite_index_update);
2699 return ret;
2700 }
2701
2702 #define FALL_BACK_TO_NONDELALLOC 1
2703 static int ext4_nonda_switch(struct super_block *sb)
2704 {
2705 s64 free_blocks, dirty_blocks;
2706 struct ext4_sb_info *sbi = EXT4_SB(sb);
2707
2708 /*
2709 * switch to non delalloc mode if we are running low
2710 * on free block. The free block accounting via percpu
2711 * counters can get slightly wrong with percpu_counter_batch getting
2712 * accumulated on each CPU without updating global counters
2713 * Delalloc need an accurate free block accounting. So switch
2714 * to non delalloc when we are near to error range.
2715 */
2716 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2717 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2718 if (2 * free_blocks < 3 * dirty_blocks ||
2719 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2720 /*
2721 * free block count is less that 150% of dirty blocks
2722 * or free blocks is less that watermark
2723 */
2724 return 1;
2725 }
2726 return 0;
2727 }
2728
2729 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2730 loff_t pos, unsigned len, unsigned flags,
2731 struct page **pagep, void **fsdata)
2732 {
2733 int ret, retries = 0;
2734 struct page *page;
2735 pgoff_t index;
2736 unsigned from, to;
2737 struct inode *inode = mapping->host;
2738 handle_t *handle;
2739
2740 index = pos >> PAGE_CACHE_SHIFT;
2741 from = pos & (PAGE_CACHE_SIZE - 1);
2742 to = from + len;
2743
2744 if (ext4_nonda_switch(inode->i_sb)) {
2745 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2746 return ext4_write_begin(file, mapping, pos,
2747 len, flags, pagep, fsdata);
2748 }
2749 *fsdata = (void *)0;
2750
2751 trace_mark(ext4_da_write_begin,
2752 "dev %s ino %lu pos %llu len %u flags %u",
2753 inode->i_sb->s_id, inode->i_ino,
2754 (unsigned long long) pos, len, flags);
2755 retry:
2756 /*
2757 * With delayed allocation, we don't log the i_disksize update
2758 * if there is delayed block allocation. But we still need
2759 * to journalling the i_disksize update if writes to the end
2760 * of file which has an already mapped buffer.
2761 */
2762 handle = ext4_journal_start(inode, 1);
2763 if (IS_ERR(handle)) {
2764 ret = PTR_ERR(handle);
2765 goto out;
2766 }
2767 /* We cannot recurse into the filesystem as the transaction is already
2768 * started */
2769 flags |= AOP_FLAG_NOFS;
2770
2771 page = grab_cache_page_write_begin(mapping, index, flags);
2772 if (!page) {
2773 ext4_journal_stop(handle);
2774 ret = -ENOMEM;
2775 goto out;
2776 }
2777 *pagep = page;
2778
2779 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2780 ext4_da_get_block_prep);
2781 if (ret < 0) {
2782 unlock_page(page);
2783 ext4_journal_stop(handle);
2784 page_cache_release(page);
2785 /*
2786 * block_write_begin may have instantiated a few blocks
2787 * outside i_size. Trim these off again. Don't need
2788 * i_size_read because we hold i_mutex.
2789 */
2790 if (pos + len > inode->i_size)
2791 vmtruncate(inode, inode->i_size);
2792 }
2793
2794 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2795 goto retry;
2796 out:
2797 return ret;
2798 }
2799
2800 /*
2801 * Check if we should update i_disksize
2802 * when write to the end of file but not require block allocation
2803 */
2804 static int ext4_da_should_update_i_disksize(struct page *page,
2805 unsigned long offset)
2806 {
2807 struct buffer_head *bh;
2808 struct inode *inode = page->mapping->host;
2809 unsigned int idx;
2810 int i;
2811
2812 bh = page_buffers(page);
2813 idx = offset >> inode->i_blkbits;
2814
2815 for (i = 0; i < idx; i++)
2816 bh = bh->b_this_page;
2817
2818 if (!buffer_mapped(bh) || (buffer_delay(bh)))
2819 return 0;
2820 return 1;
2821 }
2822
2823 static int ext4_da_write_end(struct file *file,
2824 struct address_space *mapping,
2825 loff_t pos, unsigned len, unsigned copied,
2826 struct page *page, void *fsdata)
2827 {
2828 struct inode *inode = mapping->host;
2829 int ret = 0, ret2;
2830 handle_t *handle = ext4_journal_current_handle();
2831 loff_t new_i_size;
2832 unsigned long start, end;
2833 int write_mode = (int)(unsigned long)fsdata;
2834
2835 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2836 if (ext4_should_order_data(inode)) {
2837 return ext4_ordered_write_end(file, mapping, pos,
2838 len, copied, page, fsdata);
2839 } else if (ext4_should_writeback_data(inode)) {
2840 return ext4_writeback_write_end(file, mapping, pos,
2841 len, copied, page, fsdata);
2842 } else {
2843 BUG();
2844 }
2845 }
2846
2847 trace_mark(ext4_da_write_end,
2848 "dev %s ino %lu pos %llu len %u copied %u",
2849 inode->i_sb->s_id, inode->i_ino,
2850 (unsigned long long) pos, len, copied);
2851 start = pos & (PAGE_CACHE_SIZE - 1);
2852 end = start + copied - 1;
2853
2854 /*
2855 * generic_write_end() will run mark_inode_dirty() if i_size
2856 * changes. So let's piggyback the i_disksize mark_inode_dirty
2857 * into that.
2858 */
2859
2860 new_i_size = pos + copied;
2861 if (new_i_size > EXT4_I(inode)->i_disksize) {
2862 if (ext4_da_should_update_i_disksize(page, end)) {
2863 down_write(&EXT4_I(inode)->i_data_sem);
2864 if (new_i_size > EXT4_I(inode)->i_disksize) {
2865 /*
2866 * Updating i_disksize when extending file
2867 * without needing block allocation
2868 */
2869 if (ext4_should_order_data(inode))
2870 ret = ext4_jbd2_file_inode(handle,
2871 inode);
2872
2873 EXT4_I(inode)->i_disksize = new_i_size;
2874 }
2875 up_write(&EXT4_I(inode)->i_data_sem);
2876 /* We need to mark inode dirty even if
2877 * new_i_size is less that inode->i_size
2878 * bu greater than i_disksize.(hint delalloc)
2879 */
2880 ext4_mark_inode_dirty(handle, inode);
2881 }
2882 }
2883 ret2 = generic_write_end(file, mapping, pos, len, copied,
2884 page, fsdata);
2885 copied = ret2;
2886 if (ret2 < 0)
2887 ret = ret2;
2888 ret2 = ext4_journal_stop(handle);
2889 if (!ret)
2890 ret = ret2;
2891
2892 return ret ? ret : copied;
2893 }
2894
2895 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2896 {
2897 /*
2898 * Drop reserved blocks
2899 */
2900 BUG_ON(!PageLocked(page));
2901 if (!page_has_buffers(page))
2902 goto out;
2903
2904 ext4_da_page_release_reservation(page, offset);
2905
2906 out:
2907 ext4_invalidatepage(page, offset);
2908
2909 return;
2910 }
2911
2912 /*
2913 * Force all delayed allocation blocks to be allocated for a given inode.
2914 */
2915 int ext4_alloc_da_blocks(struct inode *inode)
2916 {
2917 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2918 !EXT4_I(inode)->i_reserved_meta_blocks)
2919 return 0;
2920
2921 /*
2922 * We do something simple for now. The filemap_flush() will
2923 * also start triggering a write of the data blocks, which is
2924 * not strictly speaking necessary (and for users of
2925 * laptop_mode, not even desirable). However, to do otherwise
2926 * would require replicating code paths in:
2927 *
2928 * ext4_da_writepages() ->
2929 * write_cache_pages() ---> (via passed in callback function)
2930 * __mpage_da_writepage() -->
2931 * mpage_add_bh_to_extent()
2932 * mpage_da_map_blocks()
2933 *
2934 * The problem is that write_cache_pages(), located in
2935 * mm/page-writeback.c, marks pages clean in preparation for
2936 * doing I/O, which is not desirable if we're not planning on
2937 * doing I/O at all.
2938 *
2939 * We could call write_cache_pages(), and then redirty all of
2940 * the pages by calling redirty_page_for_writeback() but that
2941 * would be ugly in the extreme. So instead we would need to
2942 * replicate parts of the code in the above functions,
2943 * simplifying them becuase we wouldn't actually intend to
2944 * write out the pages, but rather only collect contiguous
2945 * logical block extents, call the multi-block allocator, and
2946 * then update the buffer heads with the block allocations.
2947 *
2948 * For now, though, we'll cheat by calling filemap_flush(),
2949 * which will map the blocks, and start the I/O, but not
2950 * actually wait for the I/O to complete.
2951 */
2952 return filemap_flush(inode->i_mapping);
2953 }
2954
2955 /*
2956 * bmap() is special. It gets used by applications such as lilo and by
2957 * the swapper to find the on-disk block of a specific piece of data.
2958 *
2959 * Naturally, this is dangerous if the block concerned is still in the
2960 * journal. If somebody makes a swapfile on an ext4 data-journaling
2961 * filesystem and enables swap, then they may get a nasty shock when the
2962 * data getting swapped to that swapfile suddenly gets overwritten by
2963 * the original zero's written out previously to the journal and
2964 * awaiting writeback in the kernel's buffer cache.
2965 *
2966 * So, if we see any bmap calls here on a modified, data-journaled file,
2967 * take extra steps to flush any blocks which might be in the cache.
2968 */
2969 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2970 {
2971 struct inode *inode = mapping->host;
2972 journal_t *journal;
2973 int err;
2974
2975 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2976 test_opt(inode->i_sb, DELALLOC)) {
2977 /*
2978 * With delalloc we want to sync the file
2979 * so that we can make sure we allocate
2980 * blocks for file
2981 */
2982 filemap_write_and_wait(mapping);
2983 }
2984
2985 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
2986 /*
2987 * This is a REALLY heavyweight approach, but the use of
2988 * bmap on dirty files is expected to be extremely rare:
2989 * only if we run lilo or swapon on a freshly made file
2990 * do we expect this to happen.
2991 *
2992 * (bmap requires CAP_SYS_RAWIO so this does not
2993 * represent an unprivileged user DOS attack --- we'd be
2994 * in trouble if mortal users could trigger this path at
2995 * will.)
2996 *
2997 * NB. EXT4_STATE_JDATA is not set on files other than
2998 * regular files. If somebody wants to bmap a directory
2999 * or symlink and gets confused because the buffer
3000 * hasn't yet been flushed to disk, they deserve
3001 * everything they get.
3002 */
3003
3004 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3005 journal = EXT4_JOURNAL(inode);
3006 jbd2_journal_lock_updates(journal);
3007 err = jbd2_journal_flush(journal);
3008 jbd2_journal_unlock_updates(journal);
3009
3010 if (err)
3011 return 0;
3012 }
3013
3014 return generic_block_bmap(mapping, block, ext4_get_block);
3015 }
3016
3017 static int bget_one(handle_t *handle, struct buffer_head *bh)
3018 {
3019 get_bh(bh);
3020 return 0;
3021 }
3022
3023 static int bput_one(handle_t *handle, struct buffer_head *bh)
3024 {
3025 put_bh(bh);
3026 return 0;
3027 }
3028
3029 /*
3030 * Note that we don't need to start a transaction unless we're journaling data
3031 * because we should have holes filled from ext4_page_mkwrite(). We even don't
3032 * need to file the inode to the transaction's list in ordered mode because if
3033 * we are writing back data added by write(), the inode is already there and if
3034 * we are writing back data modified via mmap(), noone guarantees in which
3035 * transaction the data will hit the disk. In case we are journaling data, we
3036 * cannot start transaction directly because transaction start ranks above page
3037 * lock so we have to do some magic.
3038 *
3039 * In all journaling modes block_write_full_page() will start the I/O.
3040 *
3041 * Problem:
3042 *
3043 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3044 * ext4_writepage()
3045 *
3046 * Similar for:
3047 *
3048 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3049 *
3050 * Same applies to ext4_get_block(). We will deadlock on various things like
3051 * lock_journal and i_data_sem
3052 *
3053 * Setting PF_MEMALLOC here doesn't work - too many internal memory
3054 * allocations fail.
3055 *
3056 * 16May01: If we're reentered then journal_current_handle() will be
3057 * non-zero. We simply *return*.
3058 *
3059 * 1 July 2001: @@@ FIXME:
3060 * In journalled data mode, a data buffer may be metadata against the
3061 * current transaction. But the same file is part of a shared mapping
3062 * and someone does a writepage() on it.
3063 *
3064 * We will move the buffer onto the async_data list, but *after* it has
3065 * been dirtied. So there's a small window where we have dirty data on
3066 * BJ_Metadata.
3067 *
3068 * Note that this only applies to the last partial page in the file. The
3069 * bit which block_write_full_page() uses prepare/commit for. (That's
3070 * broken code anyway: it's wrong for msync()).
3071 *
3072 * It's a rare case: affects the final partial page, for journalled data
3073 * where the file is subject to bith write() and writepage() in the same
3074 * transction. To fix it we'll need a custom block_write_full_page().
3075 * We'll probably need that anyway for journalling writepage() output.
3076 *
3077 * We don't honour synchronous mounts for writepage(). That would be
3078 * disastrous. Any write() or metadata operation will sync the fs for
3079 * us.
3080 *
3081 */
3082 static int __ext4_normal_writepage(struct page *page,
3083 struct writeback_control *wbc)
3084 {
3085 struct inode *inode = page->mapping->host;
3086
3087 if (test_opt(inode->i_sb, NOBH))
3088 return nobh_writepage(page,
3089 ext4_normal_get_block_write, wbc);
3090 else
3091 return block_write_full_page(page,
3092 ext4_normal_get_block_write,
3093 wbc);
3094 }
3095
3096 static int ext4_normal_writepage(struct page *page,
3097 struct writeback_control *wbc)
3098 {
3099 struct inode *inode = page->mapping->host;
3100 loff_t size = i_size_read(inode);
3101 loff_t len;
3102
3103 trace_mark(ext4_normal_writepage,
3104 "dev %s ino %lu page_index %lu",
3105 inode->i_sb->s_id, inode->i_ino, page->index);
3106 J_ASSERT(PageLocked(page));
3107 if (page->index == size >> PAGE_CACHE_SHIFT)
3108 len = size & ~PAGE_CACHE_MASK;
3109 else
3110 len = PAGE_CACHE_SIZE;
3111
3112 if (page_has_buffers(page)) {
3113 /* if page has buffers it should all be mapped
3114 * and allocated. If there are not buffers attached
3115 * to the page we know the page is dirty but it lost
3116 * buffers. That means that at some moment in time
3117 * after write_begin() / write_end() has been called
3118 * all buffers have been clean and thus they must have been
3119 * written at least once. So they are all mapped and we can
3120 * happily proceed with mapping them and writing the page.
3121 */
3122 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3123 ext4_bh_unmapped_or_delay));
3124 }
3125
3126 if (!ext4_journal_current_handle())
3127 return __ext4_normal_writepage(page, wbc);
3128
3129 redirty_page_for_writepage(wbc, page);
3130 unlock_page(page);
3131 return 0;
3132 }
3133
3134 static int __ext4_journalled_writepage(struct page *page,
3135 struct writeback_control *wbc)
3136 {
3137 struct address_space *mapping = page->mapping;
3138 struct inode *inode = mapping->host;
3139 struct buffer_head *page_bufs;
3140 handle_t *handle = NULL;
3141 int ret = 0;
3142 int err;
3143
3144 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3145 ext4_normal_get_block_write);
3146 if (ret != 0)
3147 goto out_unlock;
3148
3149 page_bufs = page_buffers(page);
3150 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3151 bget_one);
3152 /* As soon as we unlock the page, it can go away, but we have
3153 * references to buffers so we are safe */
3154 unlock_page(page);
3155
3156 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3157 if (IS_ERR(handle)) {
3158 ret = PTR_ERR(handle);
3159 goto out;
3160 }
3161
3162 ret = walk_page_buffers(handle, page_bufs, 0,
3163 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3164
3165 err = walk_page_buffers(handle, page_bufs, 0,
3166 PAGE_CACHE_SIZE, NULL, write_end_fn);
3167 if (ret == 0)
3168 ret = err;
3169 err = ext4_journal_stop(handle);
3170 if (!ret)
3171 ret = err;
3172
3173 walk_page_buffers(handle, page_bufs, 0,
3174 PAGE_CACHE_SIZE, NULL, bput_one);
3175 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3176 goto out;
3177
3178 out_unlock:
3179 unlock_page(page);
3180 out:
3181 return ret;
3182 }
3183
3184 static int ext4_journalled_writepage(struct page *page,
3185 struct writeback_control *wbc)
3186 {
3187 struct inode *inode = page->mapping->host;
3188 loff_t size = i_size_read(inode);
3189 loff_t len;
3190
3191 trace_mark(ext4_journalled_writepage,
3192 "dev %s ino %lu page_index %lu",
3193 inode->i_sb->s_id, inode->i_ino, page->index);
3194 J_ASSERT(PageLocked(page));
3195 if (page->index == size >> PAGE_CACHE_SHIFT)
3196 len = size & ~PAGE_CACHE_MASK;
3197 else
3198 len = PAGE_CACHE_SIZE;
3199
3200 if (page_has_buffers(page)) {
3201 /* if page has buffers it should all be mapped
3202 * and allocated. If there are not buffers attached
3203 * to the page we know the page is dirty but it lost
3204 * buffers. That means that at some moment in time
3205 * after write_begin() / write_end() has been called
3206 * all buffers have been clean and thus they must have been
3207 * written at least once. So they are all mapped and we can
3208 * happily proceed with mapping them and writing the page.
3209 */
3210 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3211 ext4_bh_unmapped_or_delay));
3212 }
3213
3214 if (ext4_journal_current_handle())
3215 goto no_write;
3216
3217 if (PageChecked(page)) {
3218 /*
3219 * It's mmapped pagecache. Add buffers and journal it. There
3220 * doesn't seem much point in redirtying the page here.
3221 */
3222 ClearPageChecked(page);
3223 return __ext4_journalled_writepage(page, wbc);
3224 } else {
3225 /*
3226 * It may be a page full of checkpoint-mode buffers. We don't
3227 * really know unless we go poke around in the buffer_heads.
3228 * But block_write_full_page will do the right thing.
3229 */
3230 return block_write_full_page(page,
3231 ext4_normal_get_block_write,
3232 wbc);
3233 }
3234 no_write:
3235 redirty_page_for_writepage(wbc, page);
3236 unlock_page(page);
3237 return 0;
3238 }
3239
3240 static int ext4_readpage(struct file *file, struct page *page)
3241 {
3242 return mpage_readpage(page, ext4_get_block);
3243 }
3244
3245 static int
3246 ext4_readpages(struct file *file, struct address_space *mapping,
3247 struct list_head *pages, unsigned nr_pages)
3248 {
3249 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3250 }
3251
3252 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3253 {
3254 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3255
3256 /*
3257 * If it's a full truncate we just forget about the pending dirtying
3258 */
3259 if (offset == 0)
3260 ClearPageChecked(page);
3261
3262 if (journal)
3263 jbd2_journal_invalidatepage(journal, page, offset);
3264 else
3265 block_invalidatepage(page, offset);
3266 }
3267
3268 static int ext4_releasepage(struct page *page, gfp_t wait)
3269 {
3270 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3271
3272 WARN_ON(PageChecked(page));
3273 if (!page_has_buffers(page))
3274 return 0;
3275 if (journal)
3276 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3277 else
3278 return try_to_free_buffers(page);
3279 }
3280
3281 /*
3282 * If the O_DIRECT write will extend the file then add this inode to the
3283 * orphan list. So recovery will truncate it back to the original size
3284 * if the machine crashes during the write.
3285 *
3286 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3287 * crashes then stale disk data _may_ be exposed inside the file. But current
3288 * VFS code falls back into buffered path in that case so we are safe.
3289 */
3290 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3291 const struct iovec *iov, loff_t offset,
3292 unsigned long nr_segs)
3293 {
3294 struct file *file = iocb->ki_filp;
3295 struct inode *inode = file->f_mapping->host;
3296 struct ext4_inode_info *ei = EXT4_I(inode);
3297 handle_t *handle;
3298 ssize_t ret;
3299 int orphan = 0;
3300 size_t count = iov_length(iov, nr_segs);
3301
3302 if (rw == WRITE) {
3303 loff_t final_size = offset + count;
3304
3305 if (final_size > inode->i_size) {
3306 /* Credits for sb + inode write */
3307 handle = ext4_journal_start(inode, 2);
3308 if (IS_ERR(handle)) {
3309 ret = PTR_ERR(handle);
3310 goto out;
3311 }
3312 ret = ext4_orphan_add(handle, inode);
3313 if (ret) {
3314 ext4_journal_stop(handle);
3315 goto out;
3316 }
3317 orphan = 1;
3318 ei->i_disksize = inode->i_size;
3319 ext4_journal_stop(handle);
3320 }
3321 }
3322
3323 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3324 offset, nr_segs,
3325 ext4_get_block, NULL);
3326
3327 if (orphan) {
3328 int err;
3329
3330 /* Credits for sb + inode write */
3331 handle = ext4_journal_start(inode, 2);
3332 if (IS_ERR(handle)) {
3333 /* This is really bad luck. We've written the data
3334 * but cannot extend i_size. Bail out and pretend
3335 * the write failed... */
3336 ret = PTR_ERR(handle);
3337 goto out;
3338 }
3339 if (inode->i_nlink)
3340 ext4_orphan_del(handle, inode);
3341 if (ret > 0) {
3342 loff_t end = offset + ret;
3343 if (end > inode->i_size) {
3344 ei->i_disksize = end;
3345 i_size_write(inode, end);
3346 /*
3347 * We're going to return a positive `ret'
3348 * here due to non-zero-length I/O, so there's
3349 * no way of reporting error returns from
3350 * ext4_mark_inode_dirty() to userspace. So
3351 * ignore it.
3352 */
3353 ext4_mark_inode_dirty(handle, inode);
3354 }
3355 }
3356 err = ext4_journal_stop(handle);
3357 if (ret == 0)
3358 ret = err;
3359 }
3360 out:
3361 return ret;
3362 }
3363
3364 /*
3365 * Pages can be marked dirty completely asynchronously from ext4's journalling
3366 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3367 * much here because ->set_page_dirty is called under VFS locks. The page is
3368 * not necessarily locked.
3369 *
3370 * We cannot just dirty the page and leave attached buffers clean, because the
3371 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3372 * or jbddirty because all the journalling code will explode.
3373 *
3374 * So what we do is to mark the page "pending dirty" and next time writepage
3375 * is called, propagate that into the buffers appropriately.
3376 */
3377 static int ext4_journalled_set_page_dirty(struct page *page)
3378 {
3379 SetPageChecked(page);
3380 return __set_page_dirty_nobuffers(page);
3381 }
3382
3383 static const struct address_space_operations ext4_ordered_aops = {
3384 .readpage = ext4_readpage,
3385 .readpages = ext4_readpages,
3386 .writepage = ext4_normal_writepage,
3387 .sync_page = block_sync_page,
3388 .write_begin = ext4_write_begin,
3389 .write_end = ext4_ordered_write_end,
3390 .bmap = ext4_bmap,
3391 .invalidatepage = ext4_invalidatepage,
3392 .releasepage = ext4_releasepage,
3393 .direct_IO = ext4_direct_IO,
3394 .migratepage = buffer_migrate_page,
3395 .is_partially_uptodate = block_is_partially_uptodate,
3396 };
3397
3398 static const struct address_space_operations ext4_writeback_aops = {
3399 .readpage = ext4_readpage,
3400 .readpages = ext4_readpages,
3401 .writepage = ext4_normal_writepage,
3402 .sync_page = block_sync_page,
3403 .write_begin = ext4_write_begin,
3404 .write_end = ext4_writeback_write_end,
3405 .bmap = ext4_bmap,
3406 .invalidatepage = ext4_invalidatepage,
3407 .releasepage = ext4_releasepage,
3408 .direct_IO = ext4_direct_IO,
3409 .migratepage = buffer_migrate_page,
3410 .is_partially_uptodate = block_is_partially_uptodate,
3411 };
3412
3413 static const struct address_space_operations ext4_journalled_aops = {
3414 .readpage = ext4_readpage,
3415 .readpages = ext4_readpages,
3416 .writepage = ext4_journalled_writepage,
3417 .sync_page = block_sync_page,
3418 .write_begin = ext4_write_begin,
3419 .write_end = ext4_journalled_write_end,
3420 .set_page_dirty = ext4_journalled_set_page_dirty,
3421 .bmap = ext4_bmap,
3422 .invalidatepage = ext4_invalidatepage,
3423 .releasepage = ext4_releasepage,
3424 .is_partially_uptodate = block_is_partially_uptodate,
3425 };
3426
3427 static const struct address_space_operations ext4_da_aops = {
3428 .readpage = ext4_readpage,
3429 .readpages = ext4_readpages,
3430 .writepage = ext4_da_writepage,
3431 .writepages = ext4_da_writepages,
3432 .sync_page = block_sync_page,
3433 .write_begin = ext4_da_write_begin,
3434 .write_end = ext4_da_write_end,
3435 .bmap = ext4_bmap,
3436 .invalidatepage = ext4_da_invalidatepage,
3437 .releasepage = ext4_releasepage,
3438 .direct_IO = ext4_direct_IO,
3439 .migratepage = buffer_migrate_page,
3440 .is_partially_uptodate = block_is_partially_uptodate,
3441 };
3442
3443 void ext4_set_aops(struct inode *inode)
3444 {
3445 if (ext4_should_order_data(inode) &&
3446 test_opt(inode->i_sb, DELALLOC))
3447 inode->i_mapping->a_ops = &ext4_da_aops;
3448 else if (ext4_should_order_data(inode))
3449 inode->i_mapping->a_ops = &ext4_ordered_aops;
3450 else if (ext4_should_writeback_data(inode) &&
3451 test_opt(inode->i_sb, DELALLOC))
3452 inode->i_mapping->a_ops = &ext4_da_aops;
3453 else if (ext4_should_writeback_data(inode))
3454 inode->i_mapping->a_ops = &ext4_writeback_aops;
3455 else
3456 inode->i_mapping->a_ops = &ext4_journalled_aops;
3457 }
3458
3459 /*
3460 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3461 * up to the end of the block which corresponds to `from'.
3462 * This required during truncate. We need to physically zero the tail end
3463 * of that block so it doesn't yield old data if the file is later grown.
3464 */
3465 int ext4_block_truncate_page(handle_t *handle,
3466 struct address_space *mapping, loff_t from)
3467 {
3468 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3469 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3470 unsigned blocksize, length, pos;
3471 ext4_lblk_t iblock;
3472 struct inode *inode = mapping->host;
3473 struct buffer_head *bh;
3474 struct page *page;
3475 int err = 0;
3476
3477 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3478 if (!page)
3479 return -EINVAL;
3480
3481 blocksize = inode->i_sb->s_blocksize;
3482 length = blocksize - (offset & (blocksize - 1));
3483 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3484
3485 /*
3486 * For "nobh" option, we can only work if we don't need to
3487 * read-in the page - otherwise we create buffers to do the IO.
3488 */
3489 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3490 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3491 zero_user(page, offset, length);
3492 set_page_dirty(page);
3493 goto unlock;
3494 }
3495
3496 if (!page_has_buffers(page))
3497 create_empty_buffers(page, blocksize, 0);
3498
3499 /* Find the buffer that contains "offset" */
3500 bh = page_buffers(page);
3501 pos = blocksize;
3502 while (offset >= pos) {
3503 bh = bh->b_this_page;
3504 iblock++;
3505 pos += blocksize;
3506 }
3507
3508 err = 0;
3509 if (buffer_freed(bh)) {
3510 BUFFER_TRACE(bh, "freed: skip");
3511 goto unlock;
3512 }
3513
3514 if (!buffer_mapped(bh)) {
3515 BUFFER_TRACE(bh, "unmapped");
3516 ext4_get_block(inode, iblock, bh, 0);
3517 /* unmapped? It's a hole - nothing to do */
3518 if (!buffer_mapped(bh)) {
3519 BUFFER_TRACE(bh, "still unmapped");
3520 goto unlock;
3521 }
3522 }
3523
3524 /* Ok, it's mapped. Make sure it's up-to-date */
3525 if (PageUptodate(page))
3526 set_buffer_uptodate(bh);
3527
3528 if (!buffer_uptodate(bh)) {
3529 err = -EIO;
3530 ll_rw_block(READ, 1, &bh);
3531 wait_on_buffer(bh);
3532 /* Uhhuh. Read error. Complain and punt. */
3533 if (!buffer_uptodate(bh))
3534 goto unlock;
3535 }
3536
3537 if (ext4_should_journal_data(inode)) {
3538 BUFFER_TRACE(bh, "get write access");
3539 err = ext4_journal_get_write_access(handle, bh);
3540 if (err)
3541 goto unlock;
3542 }
3543
3544 zero_user(page, offset, length);
3545
3546 BUFFER_TRACE(bh, "zeroed end of block");
3547
3548 err = 0;
3549 if (ext4_should_journal_data(inode)) {
3550 err = ext4_handle_dirty_metadata(handle, inode, bh);
3551 } else {
3552 if (ext4_should_order_data(inode))
3553 err = ext4_jbd2_file_inode(handle, inode);
3554 mark_buffer_dirty(bh);
3555 }
3556
3557 unlock:
3558 unlock_page(page);
3559 page_cache_release(page);
3560 return err;
3561 }
3562
3563 /*
3564 * Probably it should be a library function... search for first non-zero word
3565 * or memcmp with zero_page, whatever is better for particular architecture.
3566 * Linus?
3567 */
3568 static inline int all_zeroes(__le32 *p, __le32 *q)
3569 {
3570 while (p < q)
3571 if (*p++)
3572 return 0;
3573 return 1;
3574 }
3575
3576 /**
3577 * ext4_find_shared - find the indirect blocks for partial truncation.
3578 * @inode: inode in question
3579 * @depth: depth of the affected branch
3580 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3581 * @chain: place to store the pointers to partial indirect blocks
3582 * @top: place to the (detached) top of branch
3583 *
3584 * This is a helper function used by ext4_truncate().
3585 *
3586 * When we do truncate() we may have to clean the ends of several
3587 * indirect blocks but leave the blocks themselves alive. Block is
3588 * partially truncated if some data below the new i_size is refered
3589 * from it (and it is on the path to the first completely truncated
3590 * data block, indeed). We have to free the top of that path along
3591 * with everything to the right of the path. Since no allocation
3592 * past the truncation point is possible until ext4_truncate()
3593 * finishes, we may safely do the latter, but top of branch may
3594 * require special attention - pageout below the truncation point
3595 * might try to populate it.
3596 *
3597 * We atomically detach the top of branch from the tree, store the
3598 * block number of its root in *@top, pointers to buffer_heads of
3599 * partially truncated blocks - in @chain[].bh and pointers to
3600 * their last elements that should not be removed - in
3601 * @chain[].p. Return value is the pointer to last filled element
3602 * of @chain.
3603 *
3604 * The work left to caller to do the actual freeing of subtrees:
3605 * a) free the subtree starting from *@top
3606 * b) free the subtrees whose roots are stored in
3607 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3608 * c) free the subtrees growing from the inode past the @chain[0].
3609 * (no partially truncated stuff there). */
3610
3611 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3612 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3613 {
3614 Indirect *partial, *p;
3615 int k, err;
3616
3617 *top = 0;
3618 /* Make k index the deepest non-null offest + 1 */
3619 for (k = depth; k > 1 && !offsets[k-1]; k--)
3620 ;
3621 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3622 /* Writer: pointers */
3623 if (!partial)
3624 partial = chain + k-1;
3625 /*
3626 * If the branch acquired continuation since we've looked at it -
3627 * fine, it should all survive and (new) top doesn't belong to us.
3628 */
3629 if (!partial->key && *partial->p)
3630 /* Writer: end */
3631 goto no_top;
3632 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3633 ;
3634 /*
3635 * OK, we've found the last block that must survive. The rest of our
3636 * branch should be detached before unlocking. However, if that rest
3637 * of branch is all ours and does not grow immediately from the inode
3638 * it's easier to cheat and just decrement partial->p.
3639 */
3640 if (p == chain + k - 1 && p > chain) {
3641 p->p--;
3642 } else {
3643 *top = *p->p;
3644 /* Nope, don't do this in ext4. Must leave the tree intact */
3645 #if 0
3646 *p->p = 0;
3647 #endif
3648 }
3649 /* Writer: end */
3650
3651 while (partial > p) {
3652 brelse(partial->bh);
3653 partial--;
3654 }
3655 no_top:
3656 return partial;
3657 }
3658
3659 /*
3660 * Zero a number of block pointers in either an inode or an indirect block.
3661 * If we restart the transaction we must again get write access to the
3662 * indirect block for further modification.
3663 *
3664 * We release `count' blocks on disk, but (last - first) may be greater
3665 * than `count' because there can be holes in there.
3666 */
3667 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3668 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3669 unsigned long count, __le32 *first, __le32 *last)
3670 {
3671 __le32 *p;
3672 if (try_to_extend_transaction(handle, inode)) {
3673 if (bh) {
3674 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3675 ext4_handle_dirty_metadata(handle, inode, bh);
3676 }
3677 ext4_mark_inode_dirty(handle, inode);
3678 ext4_journal_test_restart(handle, inode);
3679 if (bh) {
3680 BUFFER_TRACE(bh, "retaking write access");
3681 ext4_journal_get_write_access(handle, bh);
3682 }
3683 }
3684
3685 /*
3686 * Any buffers which are on the journal will be in memory. We find
3687 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3688 * on them. We've already detached each block from the file, so
3689 * bforget() in jbd2_journal_forget() should be safe.
3690 *
3691 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3692 */
3693 for (p = first; p < last; p++) {
3694 u32 nr = le32_to_cpu(*p);
3695 if (nr) {
3696 struct buffer_head *tbh;
3697
3698 *p = 0;
3699 tbh = sb_find_get_block(inode->i_sb, nr);
3700 ext4_forget(handle, 0, inode, tbh, nr);
3701 }
3702 }
3703
3704 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3705 }
3706
3707 /**
3708 * ext4_free_data - free a list of data blocks
3709 * @handle: handle for this transaction
3710 * @inode: inode we are dealing with
3711 * @this_bh: indirect buffer_head which contains *@first and *@last
3712 * @first: array of block numbers
3713 * @last: points immediately past the end of array
3714 *
3715 * We are freeing all blocks refered from that array (numbers are stored as
3716 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3717 *
3718 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3719 * blocks are contiguous then releasing them at one time will only affect one
3720 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3721 * actually use a lot of journal space.
3722 *
3723 * @this_bh will be %NULL if @first and @last point into the inode's direct
3724 * block pointers.
3725 */
3726 static void ext4_free_data(handle_t *handle, struct inode *inode,
3727 struct buffer_head *this_bh,
3728 __le32 *first, __le32 *last)
3729 {
3730 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3731 unsigned long count = 0; /* Number of blocks in the run */
3732 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3733 corresponding to
3734 block_to_free */
3735 ext4_fsblk_t nr; /* Current block # */
3736 __le32 *p; /* Pointer into inode/ind
3737 for current block */
3738 int err;
3739
3740 if (this_bh) { /* For indirect block */
3741 BUFFER_TRACE(this_bh, "get_write_access");
3742 err = ext4_journal_get_write_access(handle, this_bh);
3743 /* Important: if we can't update the indirect pointers
3744 * to the blocks, we can't free them. */
3745 if (err)
3746 return;
3747 }
3748
3749 for (p = first; p < last; p++) {
3750 nr = le32_to_cpu(*p);
3751 if (nr) {
3752 /* accumulate blocks to free if they're contiguous */
3753 if (count == 0) {
3754 block_to_free = nr;
3755 block_to_free_p = p;
3756 count = 1;
3757 } else if (nr == block_to_free + count) {
3758 count++;
3759 } else {
3760 ext4_clear_blocks(handle, inode, this_bh,
3761 block_to_free,
3762 count, block_to_free_p, p);
3763 block_to_free = nr;
3764 block_to_free_p = p;
3765 count = 1;
3766 }
3767 }
3768 }
3769
3770 if (count > 0)
3771 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3772 count, block_to_free_p, p);
3773
3774 if (this_bh) {
3775 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3776
3777 /*
3778 * The buffer head should have an attached journal head at this
3779 * point. However, if the data is corrupted and an indirect
3780 * block pointed to itself, it would have been detached when
3781 * the block was cleared. Check for this instead of OOPSing.
3782 */
3783 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3784 ext4_handle_dirty_metadata(handle, inode, this_bh);
3785 else
3786 ext4_error(inode->i_sb, __func__,
3787 "circular indirect block detected, "
3788 "inode=%lu, block=%llu",
3789 inode->i_ino,
3790 (unsigned long long) this_bh->b_blocknr);
3791 }
3792 }
3793
3794 /**
3795 * ext4_free_branches - free an array of branches
3796 * @handle: JBD handle for this transaction
3797 * @inode: inode we are dealing with
3798 * @parent_bh: the buffer_head which contains *@first and *@last
3799 * @first: array of block numbers
3800 * @last: pointer immediately past the end of array
3801 * @depth: depth of the branches to free
3802 *
3803 * We are freeing all blocks refered from these branches (numbers are
3804 * stored as little-endian 32-bit) and updating @inode->i_blocks
3805 * appropriately.
3806 */
3807 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3808 struct buffer_head *parent_bh,
3809 __le32 *first, __le32 *last, int depth)
3810 {
3811 ext4_fsblk_t nr;
3812 __le32 *p;
3813
3814 if (ext4_handle_is_aborted(handle))
3815 return;
3816
3817 if (depth--) {
3818 struct buffer_head *bh;
3819 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3820 p = last;
3821 while (--p >= first) {
3822 nr = le32_to_cpu(*p);
3823 if (!nr)
3824 continue; /* A hole */
3825
3826 /* Go read the buffer for the next level down */
3827 bh = sb_bread(inode->i_sb, nr);
3828
3829 /*
3830 * A read failure? Report error and clear slot
3831 * (should be rare).
3832 */
3833 if (!bh) {
3834 ext4_error(inode->i_sb, "ext4_free_branches",
3835 "Read failure, inode=%lu, block=%llu",
3836 inode->i_ino, nr);
3837 continue;
3838 }
3839
3840 /* This zaps the entire block. Bottom up. */
3841 BUFFER_TRACE(bh, "free child branches");
3842 ext4_free_branches(handle, inode, bh,
3843 (__le32 *) bh->b_data,
3844 (__le32 *) bh->b_data + addr_per_block,
3845 depth);
3846
3847 /*
3848 * We've probably journalled the indirect block several
3849 * times during the truncate. But it's no longer
3850 * needed and we now drop it from the transaction via
3851 * jbd2_journal_revoke().
3852 *
3853 * That's easy if it's exclusively part of this
3854 * transaction. But if it's part of the committing
3855 * transaction then jbd2_journal_forget() will simply
3856 * brelse() it. That means that if the underlying
3857 * block is reallocated in ext4_get_block(),
3858 * unmap_underlying_metadata() will find this block
3859 * and will try to get rid of it. damn, damn.
3860 *
3861 * If this block has already been committed to the
3862 * journal, a revoke record will be written. And
3863 * revoke records must be emitted *before* clearing
3864 * this block's bit in the bitmaps.
3865 */
3866 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3867
3868 /*
3869 * Everything below this this pointer has been
3870 * released. Now let this top-of-subtree go.
3871 *
3872 * We want the freeing of this indirect block to be
3873 * atomic in the journal with the updating of the
3874 * bitmap block which owns it. So make some room in
3875 * the journal.
3876 *
3877 * We zero the parent pointer *after* freeing its
3878 * pointee in the bitmaps, so if extend_transaction()
3879 * for some reason fails to put the bitmap changes and
3880 * the release into the same transaction, recovery
3881 * will merely complain about releasing a free block,
3882 * rather than leaking blocks.
3883 */
3884 if (ext4_handle_is_aborted(handle))
3885 return;
3886 if (try_to_extend_transaction(handle, inode)) {
3887 ext4_mark_inode_dirty(handle, inode);
3888 ext4_journal_test_restart(handle, inode);
3889 }
3890
3891 ext4_free_blocks(handle, inode, nr, 1, 1);
3892
3893 if (parent_bh) {
3894 /*
3895 * The block which we have just freed is
3896 * pointed to by an indirect block: journal it
3897 */
3898 BUFFER_TRACE(parent_bh, "get_write_access");
3899 if (!ext4_journal_get_write_access(handle,
3900 parent_bh)){
3901 *p = 0;
3902 BUFFER_TRACE(parent_bh,
3903 "call ext4_handle_dirty_metadata");
3904 ext4_handle_dirty_metadata(handle,
3905 inode,
3906 parent_bh);
3907 }
3908 }
3909 }
3910 } else {
3911 /* We have reached the bottom of the tree. */
3912 BUFFER_TRACE(parent_bh, "free data blocks");
3913 ext4_free_data(handle, inode, parent_bh, first, last);
3914 }
3915 }
3916
3917 int ext4_can_truncate(struct inode *inode)
3918 {
3919 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3920 return 0;
3921 if (S_ISREG(inode->i_mode))
3922 return 1;
3923 if (S_ISDIR(inode->i_mode))
3924 return 1;
3925 if (S_ISLNK(inode->i_mode))
3926 return !ext4_inode_is_fast_symlink(inode);
3927 return 0;
3928 }
3929
3930 /*
3931 * ext4_truncate()
3932 *
3933 * We block out ext4_get_block() block instantiations across the entire
3934 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3935 * simultaneously on behalf of the same inode.
3936 *
3937 * As we work through the truncate and commmit bits of it to the journal there
3938 * is one core, guiding principle: the file's tree must always be consistent on
3939 * disk. We must be able to restart the truncate after a crash.
3940 *
3941 * The file's tree may be transiently inconsistent in memory (although it
3942 * probably isn't), but whenever we close off and commit a journal transaction,
3943 * the contents of (the filesystem + the journal) must be consistent and
3944 * restartable. It's pretty simple, really: bottom up, right to left (although
3945 * left-to-right works OK too).
3946 *
3947 * Note that at recovery time, journal replay occurs *before* the restart of
3948 * truncate against the orphan inode list.
3949 *
3950 * The committed inode has the new, desired i_size (which is the same as
3951 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3952 * that this inode's truncate did not complete and it will again call
3953 * ext4_truncate() to have another go. So there will be instantiated blocks
3954 * to the right of the truncation point in a crashed ext4 filesystem. But
3955 * that's fine - as long as they are linked from the inode, the post-crash
3956 * ext4_truncate() run will find them and release them.
3957 */
3958 void ext4_truncate(struct inode *inode)
3959 {
3960 handle_t *handle;
3961 struct ext4_inode_info *ei = EXT4_I(inode);
3962 __le32 *i_data = ei->i_data;
3963 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3964 struct address_space *mapping = inode->i_mapping;
3965 ext4_lblk_t offsets[4];
3966 Indirect chain[4];
3967 Indirect *partial;
3968 __le32 nr = 0;
3969 int n;
3970 ext4_lblk_t last_block;
3971 unsigned blocksize = inode->i_sb->s_blocksize;
3972
3973 if (!ext4_can_truncate(inode))
3974 return;
3975
3976 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3977 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
3978
3979 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
3980 ext4_ext_truncate(inode);
3981 return;
3982 }
3983
3984 handle = start_transaction(inode);
3985 if (IS_ERR(handle))
3986 return; /* AKPM: return what? */
3987
3988 last_block = (inode->i_size + blocksize-1)
3989 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
3990
3991 if (inode->i_size & (blocksize - 1))
3992 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
3993 goto out_stop;
3994
3995 n = ext4_block_to_path(inode, last_block, offsets, NULL);
3996 if (n == 0)
3997 goto out_stop; /* error */
3998
3999 /*
4000 * OK. This truncate is going to happen. We add the inode to the
4001 * orphan list, so that if this truncate spans multiple transactions,
4002 * and we crash, we will resume the truncate when the filesystem
4003 * recovers. It also marks the inode dirty, to catch the new size.
4004 *
4005 * Implication: the file must always be in a sane, consistent
4006 * truncatable state while each transaction commits.
4007 */
4008 if (ext4_orphan_add(handle, inode))
4009 goto out_stop;
4010
4011 /*
4012 * From here we block out all ext4_get_block() callers who want to
4013 * modify the block allocation tree.
4014 */
4015 down_write(&ei->i_data_sem);
4016
4017 ext4_discard_preallocations(inode);
4018
4019 /*
4020 * The orphan list entry will now protect us from any crash which
4021 * occurs before the truncate completes, so it is now safe to propagate
4022 * the new, shorter inode size (held for now in i_size) into the
4023 * on-disk inode. We do this via i_disksize, which is the value which
4024 * ext4 *really* writes onto the disk inode.
4025 */
4026 ei->i_disksize = inode->i_size;
4027
4028 if (n == 1) { /* direct blocks */
4029 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4030 i_data + EXT4_NDIR_BLOCKS);
4031 goto do_indirects;
4032 }
4033
4034 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4035 /* Kill the top of shared branch (not detached) */
4036 if (nr) {
4037 if (partial == chain) {
4038 /* Shared branch grows from the inode */
4039 ext4_free_branches(handle, inode, NULL,
4040 &nr, &nr+1, (chain+n-1) - partial);
4041 *partial->p = 0;
4042 /*
4043 * We mark the inode dirty prior to restart,
4044 * and prior to stop. No need for it here.
4045 */
4046 } else {
4047 /* Shared branch grows from an indirect block */
4048 BUFFER_TRACE(partial->bh, "get_write_access");
4049 ext4_free_branches(handle, inode, partial->bh,
4050 partial->p,
4051 partial->p+1, (chain+n-1) - partial);
4052 }
4053 }
4054 /* Clear the ends of indirect blocks on the shared branch */
4055 while (partial > chain) {
4056 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4057 (__le32*)partial->bh->b_data+addr_per_block,
4058 (chain+n-1) - partial);
4059 BUFFER_TRACE(partial->bh, "call brelse");
4060 brelse (partial->bh);
4061 partial--;
4062 }
4063 do_indirects:
4064 /* Kill the remaining (whole) subtrees */
4065 switch (offsets[0]) {
4066 default:
4067 nr = i_data[EXT4_IND_BLOCK];
4068 if (nr) {
4069 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4070 i_data[EXT4_IND_BLOCK] = 0;
4071 }
4072 case EXT4_IND_BLOCK:
4073 nr = i_data[EXT4_DIND_BLOCK];
4074 if (nr) {
4075 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4076 i_data[EXT4_DIND_BLOCK] = 0;
4077 }
4078 case EXT4_DIND_BLOCK:
4079 nr = i_data[EXT4_TIND_BLOCK];
4080 if (nr) {
4081 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4082 i_data[EXT4_TIND_BLOCK] = 0;
4083 }
4084 case EXT4_TIND_BLOCK:
4085 ;
4086 }
4087
4088 up_write(&ei->i_data_sem);
4089 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4090 ext4_mark_inode_dirty(handle, inode);
4091
4092 /*
4093 * In a multi-transaction truncate, we only make the final transaction
4094 * synchronous
4095 */
4096 if (IS_SYNC(inode))
4097 ext4_handle_sync(handle);
4098 out_stop:
4099 /*
4100 * If this was a simple ftruncate(), and the file will remain alive
4101 * then we need to clear up the orphan record which we created above.
4102 * However, if this was a real unlink then we were called by
4103 * ext4_delete_inode(), and we allow that function to clean up the
4104 * orphan info for us.
4105 */
4106 if (inode->i_nlink)
4107 ext4_orphan_del(handle, inode);
4108
4109 ext4_journal_stop(handle);
4110 }
4111
4112 /*
4113 * ext4_get_inode_loc returns with an extra refcount against the inode's
4114 * underlying buffer_head on success. If 'in_mem' is true, we have all
4115 * data in memory that is needed to recreate the on-disk version of this
4116 * inode.
4117 */
4118 static int __ext4_get_inode_loc(struct inode *inode,
4119 struct ext4_iloc *iloc, int in_mem)
4120 {
4121 struct ext4_group_desc *gdp;
4122 struct buffer_head *bh;
4123 struct super_block *sb = inode->i_sb;
4124 ext4_fsblk_t block;
4125 int inodes_per_block, inode_offset;
4126
4127 iloc->bh = NULL;
4128 if (!ext4_valid_inum(sb, inode->i_ino))
4129 return -EIO;
4130
4131 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4132 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4133 if (!gdp)
4134 return -EIO;
4135
4136 /*
4137 * Figure out the offset within the block group inode table
4138 */
4139 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4140 inode_offset = ((inode->i_ino - 1) %
4141 EXT4_INODES_PER_GROUP(sb));
4142 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4143 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4144
4145 bh = sb_getblk(sb, block);
4146 if (!bh) {
4147 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4148 "inode block - inode=%lu, block=%llu",
4149 inode->i_ino, block);
4150 return -EIO;
4151 }
4152 if (!buffer_uptodate(bh)) {
4153 lock_buffer(bh);
4154
4155 /*
4156 * If the buffer has the write error flag, we have failed
4157 * to write out another inode in the same block. In this
4158 * case, we don't have to read the block because we may
4159 * read the old inode data successfully.
4160 */
4161 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4162 set_buffer_uptodate(bh);
4163
4164 if (buffer_uptodate(bh)) {
4165 /* someone brought it uptodate while we waited */
4166 unlock_buffer(bh);
4167 goto has_buffer;
4168 }
4169
4170 /*
4171 * If we have all information of the inode in memory and this
4172 * is the only valid inode in the block, we need not read the
4173 * block.
4174 */
4175 if (in_mem) {
4176 struct buffer_head *bitmap_bh;
4177 int i, start;
4178
4179 start = inode_offset & ~(inodes_per_block - 1);
4180
4181 /* Is the inode bitmap in cache? */
4182 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4183 if (!bitmap_bh)
4184 goto make_io;
4185
4186 /*
4187 * If the inode bitmap isn't in cache then the
4188 * optimisation may end up performing two reads instead
4189 * of one, so skip it.
4190 */
4191 if (!buffer_uptodate(bitmap_bh)) {
4192 brelse(bitmap_bh);
4193 goto make_io;
4194 }
4195 for (i = start; i < start + inodes_per_block; i++) {
4196 if (i == inode_offset)
4197 continue;
4198 if (ext4_test_bit(i, bitmap_bh->b_data))
4199 break;
4200 }
4201 brelse(bitmap_bh);
4202 if (i == start + inodes_per_block) {
4203 /* all other inodes are free, so skip I/O */
4204 memset(bh->b_data, 0, bh->b_size);
4205 set_buffer_uptodate(bh);
4206 unlock_buffer(bh);
4207 goto has_buffer;
4208 }
4209 }
4210
4211 make_io:
4212 /*
4213 * If we need to do any I/O, try to pre-readahead extra
4214 * blocks from the inode table.
4215 */
4216 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4217 ext4_fsblk_t b, end, table;
4218 unsigned num;
4219
4220 table = ext4_inode_table(sb, gdp);
4221 /* s_inode_readahead_blks is always a power of 2 */
4222 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4223 if (table > b)
4224 b = table;
4225 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4226 num = EXT4_INODES_PER_GROUP(sb);
4227 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4228 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4229 num -= ext4_itable_unused_count(sb, gdp);
4230 table += num / inodes_per_block;
4231 if (end > table)
4232 end = table;
4233 while (b <= end)
4234 sb_breadahead(sb, b++);
4235 }
4236
4237 /*
4238 * There are other valid inodes in the buffer, this inode
4239 * has in-inode xattrs, or we don't have this inode in memory.
4240 * Read the block from disk.
4241 */
4242 get_bh(bh);
4243 bh->b_end_io = end_buffer_read_sync;
4244 submit_bh(READ_META, bh);
4245 wait_on_buffer(bh);
4246 if (!buffer_uptodate(bh)) {
4247 ext4_error(sb, __func__,
4248 "unable to read inode block - inode=%lu, "
4249 "block=%llu", inode->i_ino, block);
4250 brelse(bh);
4251 return -EIO;
4252 }
4253 }
4254 has_buffer:
4255 iloc->bh = bh;
4256 return 0;
4257 }
4258
4259 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4260 {
4261 /* We have all inode data except xattrs in memory here. */
4262 return __ext4_get_inode_loc(inode, iloc,
4263 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4264 }
4265
4266 void ext4_set_inode_flags(struct inode *inode)
4267 {
4268 unsigned int flags = EXT4_I(inode)->i_flags;
4269
4270 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4271 if (flags & EXT4_SYNC_FL)
4272 inode->i_flags |= S_SYNC;
4273 if (flags & EXT4_APPEND_FL)
4274 inode->i_flags |= S_APPEND;
4275 if (flags & EXT4_IMMUTABLE_FL)
4276 inode->i_flags |= S_IMMUTABLE;
4277 if (flags & EXT4_NOATIME_FL)
4278 inode->i_flags |= S_NOATIME;
4279 if (flags & EXT4_DIRSYNC_FL)
4280 inode->i_flags |= S_DIRSYNC;
4281 }
4282
4283 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4284 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4285 {
4286 unsigned int flags = ei->vfs_inode.i_flags;
4287
4288 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4289 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4290 if (flags & S_SYNC)
4291 ei->i_flags |= EXT4_SYNC_FL;
4292 if (flags & S_APPEND)
4293 ei->i_flags |= EXT4_APPEND_FL;
4294 if (flags & S_IMMUTABLE)
4295 ei->i_flags |= EXT4_IMMUTABLE_FL;
4296 if (flags & S_NOATIME)
4297 ei->i_flags |= EXT4_NOATIME_FL;
4298 if (flags & S_DIRSYNC)
4299 ei->i_flags |= EXT4_DIRSYNC_FL;
4300 }
4301 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4302 struct ext4_inode_info *ei)
4303 {
4304 blkcnt_t i_blocks ;
4305 struct inode *inode = &(ei->vfs_inode);
4306 struct super_block *sb = inode->i_sb;
4307
4308 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4309 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4310 /* we are using combined 48 bit field */
4311 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4312 le32_to_cpu(raw_inode->i_blocks_lo);
4313 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4314 /* i_blocks represent file system block size */
4315 return i_blocks << (inode->i_blkbits - 9);
4316 } else {
4317 return i_blocks;
4318 }
4319 } else {
4320 return le32_to_cpu(raw_inode->i_blocks_lo);
4321 }
4322 }
4323
4324 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4325 {
4326 struct ext4_iloc iloc;
4327 struct ext4_inode *raw_inode;
4328 struct ext4_inode_info *ei;
4329 struct buffer_head *bh;
4330 struct inode *inode;
4331 long ret;
4332 int block;
4333
4334 inode = iget_locked(sb, ino);
4335 if (!inode)
4336 return ERR_PTR(-ENOMEM);
4337 if (!(inode->i_state & I_NEW))
4338 return inode;
4339
4340 ei = EXT4_I(inode);
4341 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4342 ei->i_acl = EXT4_ACL_NOT_CACHED;
4343 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4344 #endif
4345
4346 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4347 if (ret < 0)
4348 goto bad_inode;
4349 bh = iloc.bh;
4350 raw_inode = ext4_raw_inode(&iloc);
4351 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4352 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4353 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4354 if (!(test_opt(inode->i_sb, NO_UID32))) {
4355 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4356 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4357 }
4358 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4359
4360 ei->i_state = 0;
4361 ei->i_dir_start_lookup = 0;
4362 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4363 /* We now have enough fields to check if the inode was active or not.
4364 * This is needed because nfsd might try to access dead inodes
4365 * the test is that same one that e2fsck uses
4366 * NeilBrown 1999oct15
4367 */
4368 if (inode->i_nlink == 0) {
4369 if (inode->i_mode == 0 ||
4370 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4371 /* this inode is deleted */
4372 brelse(bh);
4373 ret = -ESTALE;
4374 goto bad_inode;
4375 }
4376 /* The only unlinked inodes we let through here have
4377 * valid i_mode and are being read by the orphan
4378 * recovery code: that's fine, we're about to complete
4379 * the process of deleting those. */
4380 }
4381 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4382 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4383 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4384 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4385 ei->i_file_acl |=
4386 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4387 inode->i_size = ext4_isize(raw_inode);
4388 ei->i_disksize = inode->i_size;
4389 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4390 ei->i_block_group = iloc.block_group;
4391 ei->i_last_alloc_group = ~0;
4392 /*
4393 * NOTE! The in-memory inode i_data array is in little-endian order
4394 * even on big-endian machines: we do NOT byteswap the block numbers!
4395 */
4396 for (block = 0; block < EXT4_N_BLOCKS; block++)
4397 ei->i_data[block] = raw_inode->i_block[block];
4398 INIT_LIST_HEAD(&ei->i_orphan);
4399
4400 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4401 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4402 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4403 EXT4_INODE_SIZE(inode->i_sb)) {
4404 brelse(bh);
4405 ret = -EIO;
4406 goto bad_inode;
4407 }
4408 if (ei->i_extra_isize == 0) {
4409 /* The extra space is currently unused. Use it. */
4410 ei->i_extra_isize = sizeof(struct ext4_inode) -
4411 EXT4_GOOD_OLD_INODE_SIZE;
4412 } else {
4413 __le32 *magic = (void *)raw_inode +
4414 EXT4_GOOD_OLD_INODE_SIZE +
4415 ei->i_extra_isize;
4416 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4417 ei->i_state |= EXT4_STATE_XATTR;
4418 }
4419 } else
4420 ei->i_extra_isize = 0;
4421
4422 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4423 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4424 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4425 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4426
4427 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4428 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4429 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4430 inode->i_version |=
4431 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4432 }
4433
4434 ret = 0;
4435 if (ei->i_file_acl &&
4436 ((ei->i_file_acl <
4437 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4438 EXT4_SB(sb)->s_gdb_count)) ||
4439 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4440 ext4_error(sb, __func__,
4441 "bad extended attribute block %llu in inode #%lu",
4442 ei->i_file_acl, inode->i_ino);
4443 ret = -EIO;
4444 goto bad_inode;
4445 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4446 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4447 (S_ISLNK(inode->i_mode) &&
4448 !ext4_inode_is_fast_symlink(inode)))
4449 /* Validate extent which is part of inode */
4450 ret = ext4_ext_check_inode(inode);
4451 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4452 (S_ISLNK(inode->i_mode) &&
4453 !ext4_inode_is_fast_symlink(inode))) {
4454 /* Validate block references which are part of inode */
4455 ret = ext4_check_inode_blockref(inode);
4456 }
4457 if (ret) {
4458 brelse(bh);
4459 goto bad_inode;
4460 }
4461
4462 if (S_ISREG(inode->i_mode)) {
4463 inode->i_op = &ext4_file_inode_operations;
4464 inode->i_fop = &ext4_file_operations;
4465 ext4_set_aops(inode);
4466 } else if (S_ISDIR(inode->i_mode)) {
4467 inode->i_op = &ext4_dir_inode_operations;
4468 inode->i_fop = &ext4_dir_operations;
4469 } else if (S_ISLNK(inode->i_mode)) {
4470 if (ext4_inode_is_fast_symlink(inode)) {
4471 inode->i_op = &ext4_fast_symlink_inode_operations;
4472 nd_terminate_link(ei->i_data, inode->i_size,
4473 sizeof(ei->i_data) - 1);
4474 } else {
4475 inode->i_op = &ext4_symlink_inode_operations;
4476 ext4_set_aops(inode);
4477 }
4478 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4479 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4480 inode->i_op = &ext4_special_inode_operations;
4481 if (raw_inode->i_block[0])
4482 init_special_inode(inode, inode->i_mode,
4483 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4484 else
4485 init_special_inode(inode, inode->i_mode,
4486 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4487 } else {
4488 brelse(bh);
4489 ret = -EIO;
4490 ext4_error(inode->i_sb, __func__,
4491 "bogus i_mode (%o) for inode=%lu",
4492 inode->i_mode, inode->i_ino);
4493 goto bad_inode;
4494 }
4495 brelse(iloc.bh);
4496 ext4_set_inode_flags(inode);
4497 unlock_new_inode(inode);
4498 return inode;
4499
4500 bad_inode:
4501 iget_failed(inode);
4502 return ERR_PTR(ret);
4503 }
4504
4505 static int ext4_inode_blocks_set(handle_t *handle,
4506 struct ext4_inode *raw_inode,
4507 struct ext4_inode_info *ei)
4508 {
4509 struct inode *inode = &(ei->vfs_inode);
4510 u64 i_blocks = inode->i_blocks;
4511 struct super_block *sb = inode->i_sb;
4512
4513 if (i_blocks <= ~0U) {
4514 /*
4515 * i_blocks can be represnted in a 32 bit variable
4516 * as multiple of 512 bytes
4517 */
4518 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4519 raw_inode->i_blocks_high = 0;
4520 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4521 return 0;
4522 }
4523 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4524 return -EFBIG;
4525
4526 if (i_blocks <= 0xffffffffffffULL) {
4527 /*
4528 * i_blocks can be represented in a 48 bit variable
4529 * as multiple of 512 bytes
4530 */
4531 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4532 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4533 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4534 } else {
4535 ei->i_flags |= EXT4_HUGE_FILE_FL;
4536 /* i_block is stored in file system block size */
4537 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4538 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4539 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4540 }
4541 return 0;
4542 }
4543
4544 /*
4545 * Post the struct inode info into an on-disk inode location in the
4546 * buffer-cache. This gobbles the caller's reference to the
4547 * buffer_head in the inode location struct.
4548 *
4549 * The caller must have write access to iloc->bh.
4550 */
4551 static int ext4_do_update_inode(handle_t *handle,
4552 struct inode *inode,
4553 struct ext4_iloc *iloc)
4554 {
4555 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4556 struct ext4_inode_info *ei = EXT4_I(inode);
4557 struct buffer_head *bh = iloc->bh;
4558 int err = 0, rc, block;
4559
4560 /* For fields not not tracking in the in-memory inode,
4561 * initialise them to zero for new inodes. */
4562 if (ei->i_state & EXT4_STATE_NEW)
4563 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4564
4565 ext4_get_inode_flags(ei);
4566 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4567 if (!(test_opt(inode->i_sb, NO_UID32))) {
4568 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4569 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4570 /*
4571 * Fix up interoperability with old kernels. Otherwise, old inodes get
4572 * re-used with the upper 16 bits of the uid/gid intact
4573 */
4574 if (!ei->i_dtime) {
4575 raw_inode->i_uid_high =
4576 cpu_to_le16(high_16_bits(inode->i_uid));
4577 raw_inode->i_gid_high =
4578 cpu_to_le16(high_16_bits(inode->i_gid));
4579 } else {
4580 raw_inode->i_uid_high = 0;
4581 raw_inode->i_gid_high = 0;
4582 }
4583 } else {
4584 raw_inode->i_uid_low =
4585 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4586 raw_inode->i_gid_low =
4587 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4588 raw_inode->i_uid_high = 0;
4589 raw_inode->i_gid_high = 0;
4590 }
4591 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4592
4593 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4594 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4595 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4596 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4597
4598 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4599 goto out_brelse;
4600 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4601 /* clear the migrate flag in the raw_inode */
4602 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4603 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4604 cpu_to_le32(EXT4_OS_HURD))
4605 raw_inode->i_file_acl_high =
4606 cpu_to_le16(ei->i_file_acl >> 32);
4607 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4608 ext4_isize_set(raw_inode, ei->i_disksize);
4609 if (ei->i_disksize > 0x7fffffffULL) {
4610 struct super_block *sb = inode->i_sb;
4611 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4612 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4613 EXT4_SB(sb)->s_es->s_rev_level ==
4614 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4615 /* If this is the first large file
4616 * created, add a flag to the superblock.
4617 */
4618 err = ext4_journal_get_write_access(handle,
4619 EXT4_SB(sb)->s_sbh);
4620 if (err)
4621 goto out_brelse;
4622 ext4_update_dynamic_rev(sb);
4623 EXT4_SET_RO_COMPAT_FEATURE(sb,
4624 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4625 sb->s_dirt = 1;
4626 ext4_handle_sync(handle);
4627 err = ext4_handle_dirty_metadata(handle, inode,
4628 EXT4_SB(sb)->s_sbh);
4629 }
4630 }
4631 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4632 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4633 if (old_valid_dev(inode->i_rdev)) {
4634 raw_inode->i_block[0] =
4635 cpu_to_le32(old_encode_dev(inode->i_rdev));
4636 raw_inode->i_block[1] = 0;
4637 } else {
4638 raw_inode->i_block[0] = 0;
4639 raw_inode->i_block[1] =
4640 cpu_to_le32(new_encode_dev(inode->i_rdev));
4641 raw_inode->i_block[2] = 0;
4642 }
4643 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4644 raw_inode->i_block[block] = ei->i_data[block];
4645
4646 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4647 if (ei->i_extra_isize) {
4648 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4649 raw_inode->i_version_hi =
4650 cpu_to_le32(inode->i_version >> 32);
4651 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4652 }
4653
4654 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4655 rc = ext4_handle_dirty_metadata(handle, inode, bh);
4656 if (!err)
4657 err = rc;
4658 ei->i_state &= ~EXT4_STATE_NEW;
4659
4660 out_brelse:
4661 brelse(bh);
4662 ext4_std_error(inode->i_sb, err);
4663 return err;
4664 }
4665
4666 /*
4667 * ext4_write_inode()
4668 *
4669 * We are called from a few places:
4670 *
4671 * - Within generic_file_write() for O_SYNC files.
4672 * Here, there will be no transaction running. We wait for any running
4673 * trasnaction to commit.
4674 *
4675 * - Within sys_sync(), kupdate and such.
4676 * We wait on commit, if tol to.
4677 *
4678 * - Within prune_icache() (PF_MEMALLOC == true)
4679 * Here we simply return. We can't afford to block kswapd on the
4680 * journal commit.
4681 *
4682 * In all cases it is actually safe for us to return without doing anything,
4683 * because the inode has been copied into a raw inode buffer in
4684 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4685 * knfsd.
4686 *
4687 * Note that we are absolutely dependent upon all inode dirtiers doing the
4688 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4689 * which we are interested.
4690 *
4691 * It would be a bug for them to not do this. The code:
4692 *
4693 * mark_inode_dirty(inode)
4694 * stuff();
4695 * inode->i_size = expr;
4696 *
4697 * is in error because a kswapd-driven write_inode() could occur while
4698 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4699 * will no longer be on the superblock's dirty inode list.
4700 */
4701 int ext4_write_inode(struct inode *inode, int wait)
4702 {
4703 if (current->flags & PF_MEMALLOC)
4704 return 0;
4705
4706 if (ext4_journal_current_handle()) {
4707 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4708 dump_stack();
4709 return -EIO;
4710 }
4711
4712 if (!wait)
4713 return 0;
4714
4715 return ext4_force_commit(inode->i_sb);
4716 }
4717
4718 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4719 {
4720 int err = 0;
4721
4722 mark_buffer_dirty(bh);
4723 if (inode && inode_needs_sync(inode)) {
4724 sync_dirty_buffer(bh);
4725 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4726 ext4_error(inode->i_sb, __func__,
4727 "IO error syncing inode, "
4728 "inode=%lu, block=%llu",
4729 inode->i_ino,
4730 (unsigned long long)bh->b_blocknr);
4731 err = -EIO;
4732 }
4733 }
4734 return err;
4735 }
4736
4737 /*
4738 * ext4_setattr()
4739 *
4740 * Called from notify_change.
4741 *
4742 * We want to trap VFS attempts to truncate the file as soon as
4743 * possible. In particular, we want to make sure that when the VFS
4744 * shrinks i_size, we put the inode on the orphan list and modify
4745 * i_disksize immediately, so that during the subsequent flushing of
4746 * dirty pages and freeing of disk blocks, we can guarantee that any
4747 * commit will leave the blocks being flushed in an unused state on
4748 * disk. (On recovery, the inode will get truncated and the blocks will
4749 * be freed, so we have a strong guarantee that no future commit will
4750 * leave these blocks visible to the user.)
4751 *
4752 * Another thing we have to assure is that if we are in ordered mode
4753 * and inode is still attached to the committing transaction, we must
4754 * we start writeout of all the dirty pages which are being truncated.
4755 * This way we are sure that all the data written in the previous
4756 * transaction are already on disk (truncate waits for pages under
4757 * writeback).
4758 *
4759 * Called with inode->i_mutex down.
4760 */
4761 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4762 {
4763 struct inode *inode = dentry->d_inode;
4764 int error, rc = 0;
4765 const unsigned int ia_valid = attr->ia_valid;
4766
4767 error = inode_change_ok(inode, attr);
4768 if (error)
4769 return error;
4770
4771 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4772 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4773 handle_t *handle;
4774
4775 /* (user+group)*(old+new) structure, inode write (sb,
4776 * inode block, ? - but truncate inode update has it) */
4777 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4778 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4779 if (IS_ERR(handle)) {
4780 error = PTR_ERR(handle);
4781 goto err_out;
4782 }
4783 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4784 if (error) {
4785 ext4_journal_stop(handle);
4786 return error;
4787 }
4788 /* Update corresponding info in inode so that everything is in
4789 * one transaction */
4790 if (attr->ia_valid & ATTR_UID)
4791 inode->i_uid = attr->ia_uid;
4792 if (attr->ia_valid & ATTR_GID)
4793 inode->i_gid = attr->ia_gid;
4794 error = ext4_mark_inode_dirty(handle, inode);
4795 ext4_journal_stop(handle);
4796 }
4797
4798 if (attr->ia_valid & ATTR_SIZE) {
4799 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4800 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4801
4802 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4803 error = -EFBIG;
4804 goto err_out;
4805 }
4806 }
4807 }
4808
4809 if (S_ISREG(inode->i_mode) &&
4810 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4811 handle_t *handle;
4812
4813 handle = ext4_journal_start(inode, 3);
4814 if (IS_ERR(handle)) {
4815 error = PTR_ERR(handle);
4816 goto err_out;
4817 }
4818
4819 error = ext4_orphan_add(handle, inode);
4820 EXT4_I(inode)->i_disksize = attr->ia_size;
4821 rc = ext4_mark_inode_dirty(handle, inode);
4822 if (!error)
4823 error = rc;
4824 ext4_journal_stop(handle);
4825
4826 if (ext4_should_order_data(inode)) {
4827 error = ext4_begin_ordered_truncate(inode,
4828 attr->ia_size);
4829 if (error) {
4830 /* Do as much error cleanup as possible */
4831 handle = ext4_journal_start(inode, 3);
4832 if (IS_ERR(handle)) {
4833 ext4_orphan_del(NULL, inode);
4834 goto err_out;
4835 }
4836 ext4_orphan_del(handle, inode);
4837 ext4_journal_stop(handle);
4838 goto err_out;
4839 }
4840 }
4841 }
4842
4843 rc = inode_setattr(inode, attr);
4844
4845 /* If inode_setattr's call to ext4_truncate failed to get a
4846 * transaction handle at all, we need to clean up the in-core
4847 * orphan list manually. */
4848 if (inode->i_nlink)
4849 ext4_orphan_del(NULL, inode);
4850
4851 if (!rc && (ia_valid & ATTR_MODE))
4852 rc = ext4_acl_chmod(inode);
4853
4854 err_out:
4855 ext4_std_error(inode->i_sb, error);
4856 if (!error)
4857 error = rc;
4858 return error;
4859 }
4860
4861 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4862 struct kstat *stat)
4863 {
4864 struct inode *inode;
4865 unsigned long delalloc_blocks;
4866
4867 inode = dentry->d_inode;
4868 generic_fillattr(inode, stat);
4869
4870 /*
4871 * We can't update i_blocks if the block allocation is delayed
4872 * otherwise in the case of system crash before the real block
4873 * allocation is done, we will have i_blocks inconsistent with
4874 * on-disk file blocks.
4875 * We always keep i_blocks updated together with real
4876 * allocation. But to not confuse with user, stat
4877 * will return the blocks that include the delayed allocation
4878 * blocks for this file.
4879 */
4880 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4881 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4882 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4883
4884 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4885 return 0;
4886 }
4887
4888 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4889 int chunk)
4890 {
4891 int indirects;
4892
4893 /* if nrblocks are contiguous */
4894 if (chunk) {
4895 /*
4896 * With N contiguous data blocks, it need at most
4897 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4898 * 2 dindirect blocks
4899 * 1 tindirect block
4900 */
4901 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4902 return indirects + 3;
4903 }
4904 /*
4905 * if nrblocks are not contiguous, worse case, each block touch
4906 * a indirect block, and each indirect block touch a double indirect
4907 * block, plus a triple indirect block
4908 */
4909 indirects = nrblocks * 2 + 1;
4910 return indirects;
4911 }
4912
4913 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4914 {
4915 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4916 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4917 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4918 }
4919
4920 /*
4921 * Account for index blocks, block groups bitmaps and block group
4922 * descriptor blocks if modify datablocks and index blocks
4923 * worse case, the indexs blocks spread over different block groups
4924 *
4925 * If datablocks are discontiguous, they are possible to spread over
4926 * different block groups too. If they are contiugous, with flexbg,
4927 * they could still across block group boundary.
4928 *
4929 * Also account for superblock, inode, quota and xattr blocks
4930 */
4931 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4932 {
4933 int groups, gdpblocks;
4934 int idxblocks;
4935 int ret = 0;
4936
4937 /*
4938 * How many index blocks need to touch to modify nrblocks?
4939 * The "Chunk" flag indicating whether the nrblocks is
4940 * physically contiguous on disk
4941 *
4942 * For Direct IO and fallocate, they calls get_block to allocate
4943 * one single extent at a time, so they could set the "Chunk" flag
4944 */
4945 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4946
4947 ret = idxblocks;
4948
4949 /*
4950 * Now let's see how many group bitmaps and group descriptors need
4951 * to account
4952 */
4953 groups = idxblocks;
4954 if (chunk)
4955 groups += 1;
4956 else
4957 groups += nrblocks;
4958
4959 gdpblocks = groups;
4960 if (groups > EXT4_SB(inode->i_sb)->s_groups_count)
4961 groups = EXT4_SB(inode->i_sb)->s_groups_count;
4962 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4963 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4964
4965 /* bitmaps and block group descriptor blocks */
4966 ret += groups + gdpblocks;
4967
4968 /* Blocks for super block, inode, quota and xattr blocks */
4969 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4970
4971 return ret;
4972 }
4973
4974 /*
4975 * Calulate the total number of credits to reserve to fit
4976 * the modification of a single pages into a single transaction,
4977 * which may include multiple chunks of block allocations.
4978 *
4979 * This could be called via ext4_write_begin()
4980 *
4981 * We need to consider the worse case, when
4982 * one new block per extent.
4983 */
4984 int ext4_writepage_trans_blocks(struct inode *inode)
4985 {
4986 int bpp = ext4_journal_blocks_per_page(inode);
4987 int ret;
4988
4989 ret = ext4_meta_trans_blocks(inode, bpp, 0);
4990
4991 /* Account for data blocks for journalled mode */
4992 if (ext4_should_journal_data(inode))
4993 ret += bpp;
4994 return ret;
4995 }
4996
4997 /*
4998 * Calculate the journal credits for a chunk of data modification.
4999 *
5000 * This is called from DIO, fallocate or whoever calling
5001 * ext4_get_blocks_wrap() to map/allocate a chunk of contigous disk blocks.
5002 *
5003 * journal buffers for data blocks are not included here, as DIO
5004 * and fallocate do no need to journal data buffers.
5005 */
5006 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5007 {
5008 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5009 }
5010
5011 /*
5012 * The caller must have previously called ext4_reserve_inode_write().
5013 * Give this, we know that the caller already has write access to iloc->bh.
5014 */
5015 int ext4_mark_iloc_dirty(handle_t *handle,
5016 struct inode *inode, struct ext4_iloc *iloc)
5017 {
5018 int err = 0;
5019
5020 if (test_opt(inode->i_sb, I_VERSION))
5021 inode_inc_iversion(inode);
5022
5023 /* the do_update_inode consumes one bh->b_count */
5024 get_bh(iloc->bh);
5025
5026 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5027 err = ext4_do_update_inode(handle, inode, iloc);
5028 put_bh(iloc->bh);
5029 return err;
5030 }
5031
5032 /*
5033 * On success, We end up with an outstanding reference count against
5034 * iloc->bh. This _must_ be cleaned up later.
5035 */
5036
5037 int
5038 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5039 struct ext4_iloc *iloc)
5040 {
5041 int err;
5042
5043 err = ext4_get_inode_loc(inode, iloc);
5044 if (!err) {
5045 BUFFER_TRACE(iloc->bh, "get_write_access");
5046 err = ext4_journal_get_write_access(handle, iloc->bh);
5047 if (err) {
5048 brelse(iloc->bh);
5049 iloc->bh = NULL;
5050 }
5051 }
5052 ext4_std_error(inode->i_sb, err);
5053 return err;
5054 }
5055
5056 /*
5057 * Expand an inode by new_extra_isize bytes.
5058 * Returns 0 on success or negative error number on failure.
5059 */
5060 static int ext4_expand_extra_isize(struct inode *inode,
5061 unsigned int new_extra_isize,
5062 struct ext4_iloc iloc,
5063 handle_t *handle)
5064 {
5065 struct ext4_inode *raw_inode;
5066 struct ext4_xattr_ibody_header *header;
5067 struct ext4_xattr_entry *entry;
5068
5069 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5070 return 0;
5071
5072 raw_inode = ext4_raw_inode(&iloc);
5073
5074 header = IHDR(inode, raw_inode);
5075 entry = IFIRST(header);
5076
5077 /* No extended attributes present */
5078 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5079 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5080 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5081 new_extra_isize);
5082 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5083 return 0;
5084 }
5085
5086 /* try to expand with EAs present */
5087 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5088 raw_inode, handle);
5089 }
5090
5091 /*
5092 * What we do here is to mark the in-core inode as clean with respect to inode
5093 * dirtiness (it may still be data-dirty).
5094 * This means that the in-core inode may be reaped by prune_icache
5095 * without having to perform any I/O. This is a very good thing,
5096 * because *any* task may call prune_icache - even ones which
5097 * have a transaction open against a different journal.
5098 *
5099 * Is this cheating? Not really. Sure, we haven't written the
5100 * inode out, but prune_icache isn't a user-visible syncing function.
5101 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5102 * we start and wait on commits.
5103 *
5104 * Is this efficient/effective? Well, we're being nice to the system
5105 * by cleaning up our inodes proactively so they can be reaped
5106 * without I/O. But we are potentially leaving up to five seconds'
5107 * worth of inodes floating about which prune_icache wants us to
5108 * write out. One way to fix that would be to get prune_icache()
5109 * to do a write_super() to free up some memory. It has the desired
5110 * effect.
5111 */
5112 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5113 {
5114 struct ext4_iloc iloc;
5115 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5116 static unsigned int mnt_count;
5117 int err, ret;
5118
5119 might_sleep();
5120 err = ext4_reserve_inode_write(handle, inode, &iloc);
5121 if (ext4_handle_valid(handle) &&
5122 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5123 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5124 /*
5125 * We need extra buffer credits since we may write into EA block
5126 * with this same handle. If journal_extend fails, then it will
5127 * only result in a minor loss of functionality for that inode.
5128 * If this is felt to be critical, then e2fsck should be run to
5129 * force a large enough s_min_extra_isize.
5130 */
5131 if ((jbd2_journal_extend(handle,
5132 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5133 ret = ext4_expand_extra_isize(inode,
5134 sbi->s_want_extra_isize,
5135 iloc, handle);
5136 if (ret) {
5137 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5138 if (mnt_count !=
5139 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5140 ext4_warning(inode->i_sb, __func__,
5141 "Unable to expand inode %lu. Delete"
5142 " some EAs or run e2fsck.",
5143 inode->i_ino);
5144 mnt_count =
5145 le16_to_cpu(sbi->s_es->s_mnt_count);
5146 }
5147 }
5148 }
5149 }
5150 if (!err)
5151 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5152 return err;
5153 }
5154
5155 /*
5156 * ext4_dirty_inode() is called from __mark_inode_dirty()
5157 *
5158 * We're really interested in the case where a file is being extended.
5159 * i_size has been changed by generic_commit_write() and we thus need
5160 * to include the updated inode in the current transaction.
5161 *
5162 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5163 * are allocated to the file.
5164 *
5165 * If the inode is marked synchronous, we don't honour that here - doing
5166 * so would cause a commit on atime updates, which we don't bother doing.
5167 * We handle synchronous inodes at the highest possible level.
5168 */
5169 void ext4_dirty_inode(struct inode *inode)
5170 {
5171 handle_t *current_handle = ext4_journal_current_handle();
5172 handle_t *handle;
5173
5174 if (!ext4_handle_valid(current_handle)) {
5175 ext4_mark_inode_dirty(current_handle, inode);
5176 return;
5177 }
5178
5179 handle = ext4_journal_start(inode, 2);
5180 if (IS_ERR(handle))
5181 goto out;
5182 if (current_handle &&
5183 current_handle->h_transaction != handle->h_transaction) {
5184 /* This task has a transaction open against a different fs */
5185 printk(KERN_EMERG "%s: transactions do not match!\n",
5186 __func__);
5187 } else {
5188 jbd_debug(5, "marking dirty. outer handle=%p\n",
5189 current_handle);
5190 ext4_mark_inode_dirty(handle, inode);
5191 }
5192 ext4_journal_stop(handle);
5193 out:
5194 return;
5195 }
5196
5197 #if 0
5198 /*
5199 * Bind an inode's backing buffer_head into this transaction, to prevent
5200 * it from being flushed to disk early. Unlike
5201 * ext4_reserve_inode_write, this leaves behind no bh reference and
5202 * returns no iloc structure, so the caller needs to repeat the iloc
5203 * lookup to mark the inode dirty later.
5204 */
5205 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5206 {
5207 struct ext4_iloc iloc;
5208
5209 int err = 0;
5210 if (handle) {
5211 err = ext4_get_inode_loc(inode, &iloc);
5212 if (!err) {
5213 BUFFER_TRACE(iloc.bh, "get_write_access");
5214 err = jbd2_journal_get_write_access(handle, iloc.bh);
5215 if (!err)
5216 err = ext4_handle_dirty_metadata(handle,
5217 inode,
5218 iloc.bh);
5219 brelse(iloc.bh);
5220 }
5221 }
5222 ext4_std_error(inode->i_sb, err);
5223 return err;
5224 }
5225 #endif
5226
5227 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5228 {
5229 journal_t *journal;
5230 handle_t *handle;
5231 int err;
5232
5233 /*
5234 * We have to be very careful here: changing a data block's
5235 * journaling status dynamically is dangerous. If we write a
5236 * data block to the journal, change the status and then delete
5237 * that block, we risk forgetting to revoke the old log record
5238 * from the journal and so a subsequent replay can corrupt data.
5239 * So, first we make sure that the journal is empty and that
5240 * nobody is changing anything.
5241 */
5242
5243 journal = EXT4_JOURNAL(inode);
5244 if (!journal)
5245 return 0;
5246 if (is_journal_aborted(journal))
5247 return -EROFS;
5248
5249 jbd2_journal_lock_updates(journal);
5250 jbd2_journal_flush(journal);
5251
5252 /*
5253 * OK, there are no updates running now, and all cached data is
5254 * synced to disk. We are now in a completely consistent state
5255 * which doesn't have anything in the journal, and we know that
5256 * no filesystem updates are running, so it is safe to modify
5257 * the inode's in-core data-journaling state flag now.
5258 */
5259
5260 if (val)
5261 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5262 else
5263 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5264 ext4_set_aops(inode);
5265
5266 jbd2_journal_unlock_updates(journal);
5267
5268 /* Finally we can mark the inode as dirty. */
5269
5270 handle = ext4_journal_start(inode, 1);
5271 if (IS_ERR(handle))
5272 return PTR_ERR(handle);
5273
5274 err = ext4_mark_inode_dirty(handle, inode);
5275 ext4_handle_sync(handle);
5276 ext4_journal_stop(handle);
5277 ext4_std_error(inode->i_sb, err);
5278
5279 return err;
5280 }
5281
5282 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5283 {
5284 return !buffer_mapped(bh);
5285 }
5286
5287 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5288 {
5289 struct page *page = vmf->page;
5290 loff_t size;
5291 unsigned long len;
5292 int ret = -EINVAL;
5293 void *fsdata;
5294 struct file *file = vma->vm_file;
5295 struct inode *inode = file->f_path.dentry->d_inode;
5296 struct address_space *mapping = inode->i_mapping;
5297
5298 /*
5299 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5300 * get i_mutex because we are already holding mmap_sem.
5301 */
5302 down_read(&inode->i_alloc_sem);
5303 size = i_size_read(inode);
5304 if (page->mapping != mapping || size <= page_offset(page)
5305 || !PageUptodate(page)) {
5306 /* page got truncated from under us? */
5307 goto out_unlock;
5308 }
5309 ret = 0;
5310 if (PageMappedToDisk(page))
5311 goto out_unlock;
5312
5313 if (page->index == size >> PAGE_CACHE_SHIFT)
5314 len = size & ~PAGE_CACHE_MASK;
5315 else
5316 len = PAGE_CACHE_SIZE;
5317
5318 if (page_has_buffers(page)) {
5319 /* return if we have all the buffers mapped */
5320 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5321 ext4_bh_unmapped))
5322 goto out_unlock;
5323 }
5324 /*
5325 * OK, we need to fill the hole... Do write_begin write_end
5326 * to do block allocation/reservation.We are not holding
5327 * inode.i__mutex here. That allow * parallel write_begin,
5328 * write_end call. lock_page prevent this from happening
5329 * on the same page though
5330 */
5331 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5332 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5333 if (ret < 0)
5334 goto out_unlock;
5335 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5336 len, len, page, fsdata);
5337 if (ret < 0)
5338 goto out_unlock;
5339 ret = 0;
5340 out_unlock:
5341 if (ret)
5342 ret = VM_FAULT_SIGBUS;
5343 up_read(&inode->i_alloc_sem);
5344 return ret;
5345 }