Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/linville/wirel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
42 #include <linux/slab.h>
43
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "ext4_extents.h"
48
49 #include <trace/events/ext4.h>
50
51 #define MPAGE_DA_EXTENT_TAIL 0x01
52
53 static inline int ext4_begin_ordered_truncate(struct inode *inode,
54 loff_t new_size)
55 {
56 return jbd2_journal_begin_ordered_truncate(
57 EXT4_SB(inode->i_sb)->s_journal,
58 &EXT4_I(inode)->jinode,
59 new_size);
60 }
61
62 static void ext4_invalidatepage(struct page *page, unsigned long offset);
63
64 /*
65 * Test whether an inode is a fast symlink.
66 */
67 static int ext4_inode_is_fast_symlink(struct inode *inode)
68 {
69 int ea_blocks = EXT4_I(inode)->i_file_acl ?
70 (inode->i_sb->s_blocksize >> 9) : 0;
71
72 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
73 }
74
75 /*
76 * Work out how many blocks we need to proceed with the next chunk of a
77 * truncate transaction.
78 */
79 static unsigned long blocks_for_truncate(struct inode *inode)
80 {
81 ext4_lblk_t needed;
82
83 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
84
85 /* Give ourselves just enough room to cope with inodes in which
86 * i_blocks is corrupt: we've seen disk corruptions in the past
87 * which resulted in random data in an inode which looked enough
88 * like a regular file for ext4 to try to delete it. Things
89 * will go a bit crazy if that happens, but at least we should
90 * try not to panic the whole kernel. */
91 if (needed < 2)
92 needed = 2;
93
94 /* But we need to bound the transaction so we don't overflow the
95 * journal. */
96 if (needed > EXT4_MAX_TRANS_DATA)
97 needed = EXT4_MAX_TRANS_DATA;
98
99 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
100 }
101
102 /*
103 * Truncate transactions can be complex and absolutely huge. So we need to
104 * be able to restart the transaction at a conventient checkpoint to make
105 * sure we don't overflow the journal.
106 *
107 * start_transaction gets us a new handle for a truncate transaction,
108 * and extend_transaction tries to extend the existing one a bit. If
109 * extend fails, we need to propagate the failure up and restart the
110 * transaction in the top-level truncate loop. --sct
111 */
112 static handle_t *start_transaction(struct inode *inode)
113 {
114 handle_t *result;
115
116 result = ext4_journal_start(inode, blocks_for_truncate(inode));
117 if (!IS_ERR(result))
118 return result;
119
120 ext4_std_error(inode->i_sb, PTR_ERR(result));
121 return result;
122 }
123
124 /*
125 * Try to extend this transaction for the purposes of truncation.
126 *
127 * Returns 0 if we managed to create more room. If we can't create more
128 * room, and the transaction must be restarted we return 1.
129 */
130 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
131 {
132 if (!ext4_handle_valid(handle))
133 return 0;
134 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
135 return 0;
136 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
137 return 0;
138 return 1;
139 }
140
141 /*
142 * Restart the transaction associated with *handle. This does a commit,
143 * so before we call here everything must be consistently dirtied against
144 * this transaction.
145 */
146 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
147 int nblocks)
148 {
149 int ret;
150
151 /*
152 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
153 * moment, get_block can be called only for blocks inside i_size since
154 * page cache has been already dropped and writes are blocked by
155 * i_mutex. So we can safely drop the i_data_sem here.
156 */
157 BUG_ON(EXT4_JOURNAL(inode) == NULL);
158 jbd_debug(2, "restarting handle %p\n", handle);
159 up_write(&EXT4_I(inode)->i_data_sem);
160 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
161 down_write(&EXT4_I(inode)->i_data_sem);
162 ext4_discard_preallocations(inode);
163
164 return ret;
165 }
166
167 /*
168 * Called at the last iput() if i_nlink is zero.
169 */
170 void ext4_delete_inode(struct inode *inode)
171 {
172 handle_t *handle;
173 int err;
174
175 if (!is_bad_inode(inode))
176 dquot_initialize(inode);
177
178 if (ext4_should_order_data(inode))
179 ext4_begin_ordered_truncate(inode, 0);
180 truncate_inode_pages(&inode->i_data, 0);
181
182 if (is_bad_inode(inode))
183 goto no_delete;
184
185 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
186 if (IS_ERR(handle)) {
187 ext4_std_error(inode->i_sb, PTR_ERR(handle));
188 /*
189 * If we're going to skip the normal cleanup, we still need to
190 * make sure that the in-core orphan linked list is properly
191 * cleaned up.
192 */
193 ext4_orphan_del(NULL, inode);
194 goto no_delete;
195 }
196
197 if (IS_SYNC(inode))
198 ext4_handle_sync(handle);
199 inode->i_size = 0;
200 err = ext4_mark_inode_dirty(handle, inode);
201 if (err) {
202 ext4_warning(inode->i_sb,
203 "couldn't mark inode dirty (err %d)", err);
204 goto stop_handle;
205 }
206 if (inode->i_blocks)
207 ext4_truncate(inode);
208
209 /*
210 * ext4_ext_truncate() doesn't reserve any slop when it
211 * restarts journal transactions; therefore there may not be
212 * enough credits left in the handle to remove the inode from
213 * the orphan list and set the dtime field.
214 */
215 if (!ext4_handle_has_enough_credits(handle, 3)) {
216 err = ext4_journal_extend(handle, 3);
217 if (err > 0)
218 err = ext4_journal_restart(handle, 3);
219 if (err != 0) {
220 ext4_warning(inode->i_sb,
221 "couldn't extend journal (err %d)", err);
222 stop_handle:
223 ext4_journal_stop(handle);
224 goto no_delete;
225 }
226 }
227
228 /*
229 * Kill off the orphan record which ext4_truncate created.
230 * AKPM: I think this can be inside the above `if'.
231 * Note that ext4_orphan_del() has to be able to cope with the
232 * deletion of a non-existent orphan - this is because we don't
233 * know if ext4_truncate() actually created an orphan record.
234 * (Well, we could do this if we need to, but heck - it works)
235 */
236 ext4_orphan_del(handle, inode);
237 EXT4_I(inode)->i_dtime = get_seconds();
238
239 /*
240 * One subtle ordering requirement: if anything has gone wrong
241 * (transaction abort, IO errors, whatever), then we can still
242 * do these next steps (the fs will already have been marked as
243 * having errors), but we can't free the inode if the mark_dirty
244 * fails.
245 */
246 if (ext4_mark_inode_dirty(handle, inode))
247 /* If that failed, just do the required in-core inode clear. */
248 clear_inode(inode);
249 else
250 ext4_free_inode(handle, inode);
251 ext4_journal_stop(handle);
252 return;
253 no_delete:
254 clear_inode(inode); /* We must guarantee clearing of inode... */
255 }
256
257 typedef struct {
258 __le32 *p;
259 __le32 key;
260 struct buffer_head *bh;
261 } Indirect;
262
263 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
264 {
265 p->key = *(p->p = v);
266 p->bh = bh;
267 }
268
269 /**
270 * ext4_block_to_path - parse the block number into array of offsets
271 * @inode: inode in question (we are only interested in its superblock)
272 * @i_block: block number to be parsed
273 * @offsets: array to store the offsets in
274 * @boundary: set this non-zero if the referred-to block is likely to be
275 * followed (on disk) by an indirect block.
276 *
277 * To store the locations of file's data ext4 uses a data structure common
278 * for UNIX filesystems - tree of pointers anchored in the inode, with
279 * data blocks at leaves and indirect blocks in intermediate nodes.
280 * This function translates the block number into path in that tree -
281 * return value is the path length and @offsets[n] is the offset of
282 * pointer to (n+1)th node in the nth one. If @block is out of range
283 * (negative or too large) warning is printed and zero returned.
284 *
285 * Note: function doesn't find node addresses, so no IO is needed. All
286 * we need to know is the capacity of indirect blocks (taken from the
287 * inode->i_sb).
288 */
289
290 /*
291 * Portability note: the last comparison (check that we fit into triple
292 * indirect block) is spelled differently, because otherwise on an
293 * architecture with 32-bit longs and 8Kb pages we might get into trouble
294 * if our filesystem had 8Kb blocks. We might use long long, but that would
295 * kill us on x86. Oh, well, at least the sign propagation does not matter -
296 * i_block would have to be negative in the very beginning, so we would not
297 * get there at all.
298 */
299
300 static int ext4_block_to_path(struct inode *inode,
301 ext4_lblk_t i_block,
302 ext4_lblk_t offsets[4], int *boundary)
303 {
304 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
305 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
306 const long direct_blocks = EXT4_NDIR_BLOCKS,
307 indirect_blocks = ptrs,
308 double_blocks = (1 << (ptrs_bits * 2));
309 int n = 0;
310 int final = 0;
311
312 if (i_block < direct_blocks) {
313 offsets[n++] = i_block;
314 final = direct_blocks;
315 } else if ((i_block -= direct_blocks) < indirect_blocks) {
316 offsets[n++] = EXT4_IND_BLOCK;
317 offsets[n++] = i_block;
318 final = ptrs;
319 } else if ((i_block -= indirect_blocks) < double_blocks) {
320 offsets[n++] = EXT4_DIND_BLOCK;
321 offsets[n++] = i_block >> ptrs_bits;
322 offsets[n++] = i_block & (ptrs - 1);
323 final = ptrs;
324 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
325 offsets[n++] = EXT4_TIND_BLOCK;
326 offsets[n++] = i_block >> (ptrs_bits * 2);
327 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
328 offsets[n++] = i_block & (ptrs - 1);
329 final = ptrs;
330 } else {
331 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
332 i_block + direct_blocks +
333 indirect_blocks + double_blocks, inode->i_ino);
334 }
335 if (boundary)
336 *boundary = final - 1 - (i_block & (ptrs - 1));
337 return n;
338 }
339
340 static int __ext4_check_blockref(const char *function, struct inode *inode,
341 __le32 *p, unsigned int max)
342 {
343 __le32 *bref = p;
344 unsigned int blk;
345
346 while (bref < p+max) {
347 blk = le32_to_cpu(*bref++);
348 if (blk &&
349 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
350 blk, 1))) {
351 ext4_error_inode(function, inode,
352 "invalid block reference %u", blk);
353 return -EIO;
354 }
355 }
356 return 0;
357 }
358
359
360 #define ext4_check_indirect_blockref(inode, bh) \
361 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
362 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
363
364 #define ext4_check_inode_blockref(inode) \
365 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
366 EXT4_NDIR_BLOCKS)
367
368 /**
369 * ext4_get_branch - read the chain of indirect blocks leading to data
370 * @inode: inode in question
371 * @depth: depth of the chain (1 - direct pointer, etc.)
372 * @offsets: offsets of pointers in inode/indirect blocks
373 * @chain: place to store the result
374 * @err: here we store the error value
375 *
376 * Function fills the array of triples <key, p, bh> and returns %NULL
377 * if everything went OK or the pointer to the last filled triple
378 * (incomplete one) otherwise. Upon the return chain[i].key contains
379 * the number of (i+1)-th block in the chain (as it is stored in memory,
380 * i.e. little-endian 32-bit), chain[i].p contains the address of that
381 * number (it points into struct inode for i==0 and into the bh->b_data
382 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
383 * block for i>0 and NULL for i==0. In other words, it holds the block
384 * numbers of the chain, addresses they were taken from (and where we can
385 * verify that chain did not change) and buffer_heads hosting these
386 * numbers.
387 *
388 * Function stops when it stumbles upon zero pointer (absent block)
389 * (pointer to last triple returned, *@err == 0)
390 * or when it gets an IO error reading an indirect block
391 * (ditto, *@err == -EIO)
392 * or when it reads all @depth-1 indirect blocks successfully and finds
393 * the whole chain, all way to the data (returns %NULL, *err == 0).
394 *
395 * Need to be called with
396 * down_read(&EXT4_I(inode)->i_data_sem)
397 */
398 static Indirect *ext4_get_branch(struct inode *inode, int depth,
399 ext4_lblk_t *offsets,
400 Indirect chain[4], int *err)
401 {
402 struct super_block *sb = inode->i_sb;
403 Indirect *p = chain;
404 struct buffer_head *bh;
405
406 *err = 0;
407 /* i_data is not going away, no lock needed */
408 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
409 if (!p->key)
410 goto no_block;
411 while (--depth) {
412 bh = sb_getblk(sb, le32_to_cpu(p->key));
413 if (unlikely(!bh))
414 goto failure;
415
416 if (!bh_uptodate_or_lock(bh)) {
417 if (bh_submit_read(bh) < 0) {
418 put_bh(bh);
419 goto failure;
420 }
421 /* validate block references */
422 if (ext4_check_indirect_blockref(inode, bh)) {
423 put_bh(bh);
424 goto failure;
425 }
426 }
427
428 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
429 /* Reader: end */
430 if (!p->key)
431 goto no_block;
432 }
433 return NULL;
434
435 failure:
436 *err = -EIO;
437 no_block:
438 return p;
439 }
440
441 /**
442 * ext4_find_near - find a place for allocation with sufficient locality
443 * @inode: owner
444 * @ind: descriptor of indirect block.
445 *
446 * This function returns the preferred place for block allocation.
447 * It is used when heuristic for sequential allocation fails.
448 * Rules are:
449 * + if there is a block to the left of our position - allocate near it.
450 * + if pointer will live in indirect block - allocate near that block.
451 * + if pointer will live in inode - allocate in the same
452 * cylinder group.
453 *
454 * In the latter case we colour the starting block by the callers PID to
455 * prevent it from clashing with concurrent allocations for a different inode
456 * in the same block group. The PID is used here so that functionally related
457 * files will be close-by on-disk.
458 *
459 * Caller must make sure that @ind is valid and will stay that way.
460 */
461 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
462 {
463 struct ext4_inode_info *ei = EXT4_I(inode);
464 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
465 __le32 *p;
466 ext4_fsblk_t bg_start;
467 ext4_fsblk_t last_block;
468 ext4_grpblk_t colour;
469 ext4_group_t block_group;
470 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
471
472 /* Try to find previous block */
473 for (p = ind->p - 1; p >= start; p--) {
474 if (*p)
475 return le32_to_cpu(*p);
476 }
477
478 /* No such thing, so let's try location of indirect block */
479 if (ind->bh)
480 return ind->bh->b_blocknr;
481
482 /*
483 * It is going to be referred to from the inode itself? OK, just put it
484 * into the same cylinder group then.
485 */
486 block_group = ei->i_block_group;
487 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
488 block_group &= ~(flex_size-1);
489 if (S_ISREG(inode->i_mode))
490 block_group++;
491 }
492 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
493 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
494
495 /*
496 * If we are doing delayed allocation, we don't need take
497 * colour into account.
498 */
499 if (test_opt(inode->i_sb, DELALLOC))
500 return bg_start;
501
502 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
503 colour = (current->pid % 16) *
504 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
505 else
506 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
507 return bg_start + colour;
508 }
509
510 /**
511 * ext4_find_goal - find a preferred place for allocation.
512 * @inode: owner
513 * @block: block we want
514 * @partial: pointer to the last triple within a chain
515 *
516 * Normally this function find the preferred place for block allocation,
517 * returns it.
518 * Because this is only used for non-extent files, we limit the block nr
519 * to 32 bits.
520 */
521 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
522 Indirect *partial)
523 {
524 ext4_fsblk_t goal;
525
526 /*
527 * XXX need to get goal block from mballoc's data structures
528 */
529
530 goal = ext4_find_near(inode, partial);
531 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
532 return goal;
533 }
534
535 /**
536 * ext4_blks_to_allocate: Look up the block map and count the number
537 * of direct blocks need to be allocated for the given branch.
538 *
539 * @branch: chain of indirect blocks
540 * @k: number of blocks need for indirect blocks
541 * @blks: number of data blocks to be mapped.
542 * @blocks_to_boundary: the offset in the indirect block
543 *
544 * return the total number of blocks to be allocate, including the
545 * direct and indirect blocks.
546 */
547 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
548 int blocks_to_boundary)
549 {
550 unsigned int count = 0;
551
552 /*
553 * Simple case, [t,d]Indirect block(s) has not allocated yet
554 * then it's clear blocks on that path have not allocated
555 */
556 if (k > 0) {
557 /* right now we don't handle cross boundary allocation */
558 if (blks < blocks_to_boundary + 1)
559 count += blks;
560 else
561 count += blocks_to_boundary + 1;
562 return count;
563 }
564
565 count++;
566 while (count < blks && count <= blocks_to_boundary &&
567 le32_to_cpu(*(branch[0].p + count)) == 0) {
568 count++;
569 }
570 return count;
571 }
572
573 /**
574 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
575 * @indirect_blks: the number of blocks need to allocate for indirect
576 * blocks
577 *
578 * @new_blocks: on return it will store the new block numbers for
579 * the indirect blocks(if needed) and the first direct block,
580 * @blks: on return it will store the total number of allocated
581 * direct blocks
582 */
583 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
584 ext4_lblk_t iblock, ext4_fsblk_t goal,
585 int indirect_blks, int blks,
586 ext4_fsblk_t new_blocks[4], int *err)
587 {
588 struct ext4_allocation_request ar;
589 int target, i;
590 unsigned long count = 0, blk_allocated = 0;
591 int index = 0;
592 ext4_fsblk_t current_block = 0;
593 int ret = 0;
594
595 /*
596 * Here we try to allocate the requested multiple blocks at once,
597 * on a best-effort basis.
598 * To build a branch, we should allocate blocks for
599 * the indirect blocks(if not allocated yet), and at least
600 * the first direct block of this branch. That's the
601 * minimum number of blocks need to allocate(required)
602 */
603 /* first we try to allocate the indirect blocks */
604 target = indirect_blks;
605 while (target > 0) {
606 count = target;
607 /* allocating blocks for indirect blocks and direct blocks */
608 current_block = ext4_new_meta_blocks(handle, inode,
609 goal, &count, err);
610 if (*err)
611 goto failed_out;
612
613 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
614 EXT4_ERROR_INODE(inode,
615 "current_block %llu + count %lu > %d!",
616 current_block, count,
617 EXT4_MAX_BLOCK_FILE_PHYS);
618 *err = -EIO;
619 goto failed_out;
620 }
621
622 target -= count;
623 /* allocate blocks for indirect blocks */
624 while (index < indirect_blks && count) {
625 new_blocks[index++] = current_block++;
626 count--;
627 }
628 if (count > 0) {
629 /*
630 * save the new block number
631 * for the first direct block
632 */
633 new_blocks[index] = current_block;
634 printk(KERN_INFO "%s returned more blocks than "
635 "requested\n", __func__);
636 WARN_ON(1);
637 break;
638 }
639 }
640
641 target = blks - count ;
642 blk_allocated = count;
643 if (!target)
644 goto allocated;
645 /* Now allocate data blocks */
646 memset(&ar, 0, sizeof(ar));
647 ar.inode = inode;
648 ar.goal = goal;
649 ar.len = target;
650 ar.logical = iblock;
651 if (S_ISREG(inode->i_mode))
652 /* enable in-core preallocation only for regular files */
653 ar.flags = EXT4_MB_HINT_DATA;
654
655 current_block = ext4_mb_new_blocks(handle, &ar, err);
656 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
657 EXT4_ERROR_INODE(inode,
658 "current_block %llu + ar.len %d > %d!",
659 current_block, ar.len,
660 EXT4_MAX_BLOCK_FILE_PHYS);
661 *err = -EIO;
662 goto failed_out;
663 }
664
665 if (*err && (target == blks)) {
666 /*
667 * if the allocation failed and we didn't allocate
668 * any blocks before
669 */
670 goto failed_out;
671 }
672 if (!*err) {
673 if (target == blks) {
674 /*
675 * save the new block number
676 * for the first direct block
677 */
678 new_blocks[index] = current_block;
679 }
680 blk_allocated += ar.len;
681 }
682 allocated:
683 /* total number of blocks allocated for direct blocks */
684 ret = blk_allocated;
685 *err = 0;
686 return ret;
687 failed_out:
688 for (i = 0; i < index; i++)
689 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
690 return ret;
691 }
692
693 /**
694 * ext4_alloc_branch - allocate and set up a chain of blocks.
695 * @inode: owner
696 * @indirect_blks: number of allocated indirect blocks
697 * @blks: number of allocated direct blocks
698 * @offsets: offsets (in the blocks) to store the pointers to next.
699 * @branch: place to store the chain in.
700 *
701 * This function allocates blocks, zeroes out all but the last one,
702 * links them into chain and (if we are synchronous) writes them to disk.
703 * In other words, it prepares a branch that can be spliced onto the
704 * inode. It stores the information about that chain in the branch[], in
705 * the same format as ext4_get_branch() would do. We are calling it after
706 * we had read the existing part of chain and partial points to the last
707 * triple of that (one with zero ->key). Upon the exit we have the same
708 * picture as after the successful ext4_get_block(), except that in one
709 * place chain is disconnected - *branch->p is still zero (we did not
710 * set the last link), but branch->key contains the number that should
711 * be placed into *branch->p to fill that gap.
712 *
713 * If allocation fails we free all blocks we've allocated (and forget
714 * their buffer_heads) and return the error value the from failed
715 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
716 * as described above and return 0.
717 */
718 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
719 ext4_lblk_t iblock, int indirect_blks,
720 int *blks, ext4_fsblk_t goal,
721 ext4_lblk_t *offsets, Indirect *branch)
722 {
723 int blocksize = inode->i_sb->s_blocksize;
724 int i, n = 0;
725 int err = 0;
726 struct buffer_head *bh;
727 int num;
728 ext4_fsblk_t new_blocks[4];
729 ext4_fsblk_t current_block;
730
731 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
732 *blks, new_blocks, &err);
733 if (err)
734 return err;
735
736 branch[0].key = cpu_to_le32(new_blocks[0]);
737 /*
738 * metadata blocks and data blocks are allocated.
739 */
740 for (n = 1; n <= indirect_blks; n++) {
741 /*
742 * Get buffer_head for parent block, zero it out
743 * and set the pointer to new one, then send
744 * parent to disk.
745 */
746 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
747 branch[n].bh = bh;
748 lock_buffer(bh);
749 BUFFER_TRACE(bh, "call get_create_access");
750 err = ext4_journal_get_create_access(handle, bh);
751 if (err) {
752 /* Don't brelse(bh) here; it's done in
753 * ext4_journal_forget() below */
754 unlock_buffer(bh);
755 goto failed;
756 }
757
758 memset(bh->b_data, 0, blocksize);
759 branch[n].p = (__le32 *) bh->b_data + offsets[n];
760 branch[n].key = cpu_to_le32(new_blocks[n]);
761 *branch[n].p = branch[n].key;
762 if (n == indirect_blks) {
763 current_block = new_blocks[n];
764 /*
765 * End of chain, update the last new metablock of
766 * the chain to point to the new allocated
767 * data blocks numbers
768 */
769 for (i = 1; i < num; i++)
770 *(branch[n].p + i) = cpu_to_le32(++current_block);
771 }
772 BUFFER_TRACE(bh, "marking uptodate");
773 set_buffer_uptodate(bh);
774 unlock_buffer(bh);
775
776 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
777 err = ext4_handle_dirty_metadata(handle, inode, bh);
778 if (err)
779 goto failed;
780 }
781 *blks = num;
782 return err;
783 failed:
784 /* Allocation failed, free what we already allocated */
785 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
786 for (i = 1; i <= n ; i++) {
787 /*
788 * branch[i].bh is newly allocated, so there is no
789 * need to revoke the block, which is why we don't
790 * need to set EXT4_FREE_BLOCKS_METADATA.
791 */
792 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
793 EXT4_FREE_BLOCKS_FORGET);
794 }
795 for (i = n+1; i < indirect_blks; i++)
796 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
797
798 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
799
800 return err;
801 }
802
803 /**
804 * ext4_splice_branch - splice the allocated branch onto inode.
805 * @inode: owner
806 * @block: (logical) number of block we are adding
807 * @chain: chain of indirect blocks (with a missing link - see
808 * ext4_alloc_branch)
809 * @where: location of missing link
810 * @num: number of indirect blocks we are adding
811 * @blks: number of direct blocks we are adding
812 *
813 * This function fills the missing link and does all housekeeping needed in
814 * inode (->i_blocks, etc.). In case of success we end up with the full
815 * chain to new block and return 0.
816 */
817 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
818 ext4_lblk_t block, Indirect *where, int num,
819 int blks)
820 {
821 int i;
822 int err = 0;
823 ext4_fsblk_t current_block;
824
825 /*
826 * If we're splicing into a [td]indirect block (as opposed to the
827 * inode) then we need to get write access to the [td]indirect block
828 * before the splice.
829 */
830 if (where->bh) {
831 BUFFER_TRACE(where->bh, "get_write_access");
832 err = ext4_journal_get_write_access(handle, where->bh);
833 if (err)
834 goto err_out;
835 }
836 /* That's it */
837
838 *where->p = where->key;
839
840 /*
841 * Update the host buffer_head or inode to point to more just allocated
842 * direct blocks blocks
843 */
844 if (num == 0 && blks > 1) {
845 current_block = le32_to_cpu(where->key) + 1;
846 for (i = 1; i < blks; i++)
847 *(where->p + i) = cpu_to_le32(current_block++);
848 }
849
850 /* We are done with atomic stuff, now do the rest of housekeeping */
851 /* had we spliced it onto indirect block? */
852 if (where->bh) {
853 /*
854 * If we spliced it onto an indirect block, we haven't
855 * altered the inode. Note however that if it is being spliced
856 * onto an indirect block at the very end of the file (the
857 * file is growing) then we *will* alter the inode to reflect
858 * the new i_size. But that is not done here - it is done in
859 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
860 */
861 jbd_debug(5, "splicing indirect only\n");
862 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
863 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
864 if (err)
865 goto err_out;
866 } else {
867 /*
868 * OK, we spliced it into the inode itself on a direct block.
869 */
870 ext4_mark_inode_dirty(handle, inode);
871 jbd_debug(5, "splicing direct\n");
872 }
873 return err;
874
875 err_out:
876 for (i = 1; i <= num; i++) {
877 /*
878 * branch[i].bh is newly allocated, so there is no
879 * need to revoke the block, which is why we don't
880 * need to set EXT4_FREE_BLOCKS_METADATA.
881 */
882 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
883 EXT4_FREE_BLOCKS_FORGET);
884 }
885 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
886 blks, 0);
887
888 return err;
889 }
890
891 /*
892 * The ext4_ind_map_blocks() function handles non-extents inodes
893 * (i.e., using the traditional indirect/double-indirect i_blocks
894 * scheme) for ext4_map_blocks().
895 *
896 * Allocation strategy is simple: if we have to allocate something, we will
897 * have to go the whole way to leaf. So let's do it before attaching anything
898 * to tree, set linkage between the newborn blocks, write them if sync is
899 * required, recheck the path, free and repeat if check fails, otherwise
900 * set the last missing link (that will protect us from any truncate-generated
901 * removals - all blocks on the path are immune now) and possibly force the
902 * write on the parent block.
903 * That has a nice additional property: no special recovery from the failed
904 * allocations is needed - we simply release blocks and do not touch anything
905 * reachable from inode.
906 *
907 * `handle' can be NULL if create == 0.
908 *
909 * return > 0, # of blocks mapped or allocated.
910 * return = 0, if plain lookup failed.
911 * return < 0, error case.
912 *
913 * The ext4_ind_get_blocks() function should be called with
914 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
915 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
916 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
917 * blocks.
918 */
919 static int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
920 struct ext4_map_blocks *map,
921 int flags)
922 {
923 int err = -EIO;
924 ext4_lblk_t offsets[4];
925 Indirect chain[4];
926 Indirect *partial;
927 ext4_fsblk_t goal;
928 int indirect_blks;
929 int blocks_to_boundary = 0;
930 int depth;
931 int count = 0;
932 ext4_fsblk_t first_block = 0;
933
934 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
935 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
936 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
937 &blocks_to_boundary);
938
939 if (depth == 0)
940 goto out;
941
942 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
943
944 /* Simplest case - block found, no allocation needed */
945 if (!partial) {
946 first_block = le32_to_cpu(chain[depth - 1].key);
947 count++;
948 /*map more blocks*/
949 while (count < map->m_len && count <= blocks_to_boundary) {
950 ext4_fsblk_t blk;
951
952 blk = le32_to_cpu(*(chain[depth-1].p + count));
953
954 if (blk == first_block + count)
955 count++;
956 else
957 break;
958 }
959 goto got_it;
960 }
961
962 /* Next simple case - plain lookup or failed read of indirect block */
963 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
964 goto cleanup;
965
966 /*
967 * Okay, we need to do block allocation.
968 */
969 goal = ext4_find_goal(inode, map->m_lblk, partial);
970
971 /* the number of blocks need to allocate for [d,t]indirect blocks */
972 indirect_blks = (chain + depth) - partial - 1;
973
974 /*
975 * Next look up the indirect map to count the totoal number of
976 * direct blocks to allocate for this branch.
977 */
978 count = ext4_blks_to_allocate(partial, indirect_blks,
979 map->m_len, blocks_to_boundary);
980 /*
981 * Block out ext4_truncate while we alter the tree
982 */
983 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
984 &count, goal,
985 offsets + (partial - chain), partial);
986
987 /*
988 * The ext4_splice_branch call will free and forget any buffers
989 * on the new chain if there is a failure, but that risks using
990 * up transaction credits, especially for bitmaps where the
991 * credits cannot be returned. Can we handle this somehow? We
992 * may need to return -EAGAIN upwards in the worst case. --sct
993 */
994 if (!err)
995 err = ext4_splice_branch(handle, inode, map->m_lblk,
996 partial, indirect_blks, count);
997 if (err)
998 goto cleanup;
999
1000 map->m_flags |= EXT4_MAP_NEW;
1001
1002 ext4_update_inode_fsync_trans(handle, inode, 1);
1003 got_it:
1004 map->m_flags |= EXT4_MAP_MAPPED;
1005 map->m_pblk = le32_to_cpu(chain[depth-1].key);
1006 map->m_len = count;
1007 if (count > blocks_to_boundary)
1008 map->m_flags |= EXT4_MAP_BOUNDARY;
1009 err = count;
1010 /* Clean up and exit */
1011 partial = chain + depth - 1; /* the whole chain */
1012 cleanup:
1013 while (partial > chain) {
1014 BUFFER_TRACE(partial->bh, "call brelse");
1015 brelse(partial->bh);
1016 partial--;
1017 }
1018 out:
1019 return err;
1020 }
1021
1022 #ifdef CONFIG_QUOTA
1023 qsize_t *ext4_get_reserved_space(struct inode *inode)
1024 {
1025 return &EXT4_I(inode)->i_reserved_quota;
1026 }
1027 #endif
1028
1029 /*
1030 * Calculate the number of metadata blocks need to reserve
1031 * to allocate a new block at @lblocks for non extent file based file
1032 */
1033 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1034 sector_t lblock)
1035 {
1036 struct ext4_inode_info *ei = EXT4_I(inode);
1037 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
1038 int blk_bits;
1039
1040 if (lblock < EXT4_NDIR_BLOCKS)
1041 return 0;
1042
1043 lblock -= EXT4_NDIR_BLOCKS;
1044
1045 if (ei->i_da_metadata_calc_len &&
1046 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1047 ei->i_da_metadata_calc_len++;
1048 return 0;
1049 }
1050 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1051 ei->i_da_metadata_calc_len = 1;
1052 blk_bits = order_base_2(lblock);
1053 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1054 }
1055
1056 /*
1057 * Calculate the number of metadata blocks need to reserve
1058 * to allocate a block located at @lblock
1059 */
1060 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1061 {
1062 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1063 return ext4_ext_calc_metadata_amount(inode, lblock);
1064
1065 return ext4_indirect_calc_metadata_amount(inode, lblock);
1066 }
1067
1068 /*
1069 * Called with i_data_sem down, which is important since we can call
1070 * ext4_discard_preallocations() from here.
1071 */
1072 void ext4_da_update_reserve_space(struct inode *inode,
1073 int used, int quota_claim)
1074 {
1075 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1076 struct ext4_inode_info *ei = EXT4_I(inode);
1077
1078 spin_lock(&ei->i_block_reservation_lock);
1079 trace_ext4_da_update_reserve_space(inode, used);
1080 if (unlikely(used > ei->i_reserved_data_blocks)) {
1081 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1082 "with only %d reserved data blocks\n",
1083 __func__, inode->i_ino, used,
1084 ei->i_reserved_data_blocks);
1085 WARN_ON(1);
1086 used = ei->i_reserved_data_blocks;
1087 }
1088
1089 /* Update per-inode reservations */
1090 ei->i_reserved_data_blocks -= used;
1091 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1092 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1093 used + ei->i_allocated_meta_blocks);
1094 ei->i_allocated_meta_blocks = 0;
1095
1096 if (ei->i_reserved_data_blocks == 0) {
1097 /*
1098 * We can release all of the reserved metadata blocks
1099 * only when we have written all of the delayed
1100 * allocation blocks.
1101 */
1102 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1103 ei->i_reserved_meta_blocks);
1104 ei->i_reserved_meta_blocks = 0;
1105 ei->i_da_metadata_calc_len = 0;
1106 }
1107 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1108
1109 /* Update quota subsystem for data blocks */
1110 if (quota_claim)
1111 dquot_claim_block(inode, used);
1112 else {
1113 /*
1114 * We did fallocate with an offset that is already delayed
1115 * allocated. So on delayed allocated writeback we should
1116 * not re-claim the quota for fallocated blocks.
1117 */
1118 dquot_release_reservation_block(inode, used);
1119 }
1120
1121 /*
1122 * If we have done all the pending block allocations and if
1123 * there aren't any writers on the inode, we can discard the
1124 * inode's preallocations.
1125 */
1126 if ((ei->i_reserved_data_blocks == 0) &&
1127 (atomic_read(&inode->i_writecount) == 0))
1128 ext4_discard_preallocations(inode);
1129 }
1130
1131 static int check_block_validity(struct inode *inode, const char *func,
1132 struct ext4_map_blocks *map)
1133 {
1134 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
1135 map->m_len)) {
1136 ext4_error_inode(func, inode,
1137 "lblock %lu mapped to illegal pblock %llu "
1138 "(length %d)", (unsigned long) map->m_lblk,
1139 map->m_pblk, map->m_len);
1140 return -EIO;
1141 }
1142 return 0;
1143 }
1144
1145 /*
1146 * Return the number of contiguous dirty pages in a given inode
1147 * starting at page frame idx.
1148 */
1149 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1150 unsigned int max_pages)
1151 {
1152 struct address_space *mapping = inode->i_mapping;
1153 pgoff_t index;
1154 struct pagevec pvec;
1155 pgoff_t num = 0;
1156 int i, nr_pages, done = 0;
1157
1158 if (max_pages == 0)
1159 return 0;
1160 pagevec_init(&pvec, 0);
1161 while (!done) {
1162 index = idx;
1163 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1164 PAGECACHE_TAG_DIRTY,
1165 (pgoff_t)PAGEVEC_SIZE);
1166 if (nr_pages == 0)
1167 break;
1168 for (i = 0; i < nr_pages; i++) {
1169 struct page *page = pvec.pages[i];
1170 struct buffer_head *bh, *head;
1171
1172 lock_page(page);
1173 if (unlikely(page->mapping != mapping) ||
1174 !PageDirty(page) ||
1175 PageWriteback(page) ||
1176 page->index != idx) {
1177 done = 1;
1178 unlock_page(page);
1179 break;
1180 }
1181 if (page_has_buffers(page)) {
1182 bh = head = page_buffers(page);
1183 do {
1184 if (!buffer_delay(bh) &&
1185 !buffer_unwritten(bh))
1186 done = 1;
1187 bh = bh->b_this_page;
1188 } while (!done && (bh != head));
1189 }
1190 unlock_page(page);
1191 if (done)
1192 break;
1193 idx++;
1194 num++;
1195 if (num >= max_pages)
1196 break;
1197 }
1198 pagevec_release(&pvec);
1199 }
1200 return num;
1201 }
1202
1203 /*
1204 * The ext4_map_blocks() function tries to look up the requested blocks,
1205 * and returns if the blocks are already mapped.
1206 *
1207 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1208 * and store the allocated blocks in the result buffer head and mark it
1209 * mapped.
1210 *
1211 * If file type is extents based, it will call ext4_ext_map_blocks(),
1212 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
1213 * based files
1214 *
1215 * On success, it returns the number of blocks being mapped or allocate.
1216 * if create==0 and the blocks are pre-allocated and uninitialized block,
1217 * the result buffer head is unmapped. If the create ==1, it will make sure
1218 * the buffer head is mapped.
1219 *
1220 * It returns 0 if plain look up failed (blocks have not been allocated), in
1221 * that casem, buffer head is unmapped
1222 *
1223 * It returns the error in case of allocation failure.
1224 */
1225 int ext4_map_blocks(handle_t *handle, struct inode *inode,
1226 struct ext4_map_blocks *map, int flags)
1227 {
1228 int retval;
1229
1230 map->m_flags = 0;
1231 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
1232 "logical block %lu\n", inode->i_ino, flags, map->m_len,
1233 (unsigned long) map->m_lblk);
1234 /*
1235 * Try to see if we can get the block without requesting a new
1236 * file system block.
1237 */
1238 down_read((&EXT4_I(inode)->i_data_sem));
1239 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1240 retval = ext4_ext_map_blocks(handle, inode, map, 0);
1241 } else {
1242 retval = ext4_ind_map_blocks(handle, inode, map, 0);
1243 }
1244 up_read((&EXT4_I(inode)->i_data_sem));
1245
1246 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1247 int ret = check_block_validity(inode, __func__, map);
1248 if (ret != 0)
1249 return ret;
1250 }
1251
1252 /* If it is only a block(s) look up */
1253 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1254 return retval;
1255
1256 /*
1257 * Returns if the blocks have already allocated
1258 *
1259 * Note that if blocks have been preallocated
1260 * ext4_ext_get_block() returns th create = 0
1261 * with buffer head unmapped.
1262 */
1263 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
1264 return retval;
1265
1266 /*
1267 * When we call get_blocks without the create flag, the
1268 * BH_Unwritten flag could have gotten set if the blocks
1269 * requested were part of a uninitialized extent. We need to
1270 * clear this flag now that we are committed to convert all or
1271 * part of the uninitialized extent to be an initialized
1272 * extent. This is because we need to avoid the combination
1273 * of BH_Unwritten and BH_Mapped flags being simultaneously
1274 * set on the buffer_head.
1275 */
1276 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
1277
1278 /*
1279 * New blocks allocate and/or writing to uninitialized extent
1280 * will possibly result in updating i_data, so we take
1281 * the write lock of i_data_sem, and call get_blocks()
1282 * with create == 1 flag.
1283 */
1284 down_write((&EXT4_I(inode)->i_data_sem));
1285
1286 /*
1287 * if the caller is from delayed allocation writeout path
1288 * we have already reserved fs blocks for allocation
1289 * let the underlying get_block() function know to
1290 * avoid double accounting
1291 */
1292 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1293 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1294 /*
1295 * We need to check for EXT4 here because migrate
1296 * could have changed the inode type in between
1297 */
1298 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
1299 retval = ext4_ext_map_blocks(handle, inode, map, flags);
1300 } else {
1301 retval = ext4_ind_map_blocks(handle, inode, map, flags);
1302
1303 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
1304 /*
1305 * We allocated new blocks which will result in
1306 * i_data's format changing. Force the migrate
1307 * to fail by clearing migrate flags
1308 */
1309 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1310 }
1311
1312 /*
1313 * Update reserved blocks/metadata blocks after successful
1314 * block allocation which had been deferred till now. We don't
1315 * support fallocate for non extent files. So we can update
1316 * reserve space here.
1317 */
1318 if ((retval > 0) &&
1319 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1320 ext4_da_update_reserve_space(inode, retval, 1);
1321 }
1322 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1323 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1324
1325 up_write((&EXT4_I(inode)->i_data_sem));
1326 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
1327 int ret = check_block_validity(inode,
1328 "ext4_map_blocks_after_alloc",
1329 map);
1330 if (ret != 0)
1331 return ret;
1332 }
1333 return retval;
1334 }
1335
1336 /* Maximum number of blocks we map for direct IO at once. */
1337 #define DIO_MAX_BLOCKS 4096
1338
1339 static int _ext4_get_block(struct inode *inode, sector_t iblock,
1340 struct buffer_head *bh, int flags)
1341 {
1342 handle_t *handle = ext4_journal_current_handle();
1343 struct ext4_map_blocks map;
1344 int ret = 0, started = 0;
1345 int dio_credits;
1346
1347 map.m_lblk = iblock;
1348 map.m_len = bh->b_size >> inode->i_blkbits;
1349
1350 if (flags && !handle) {
1351 /* Direct IO write... */
1352 if (map.m_len > DIO_MAX_BLOCKS)
1353 map.m_len = DIO_MAX_BLOCKS;
1354 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
1355 handle = ext4_journal_start(inode, dio_credits);
1356 if (IS_ERR(handle)) {
1357 ret = PTR_ERR(handle);
1358 return ret;
1359 }
1360 started = 1;
1361 }
1362
1363 ret = ext4_map_blocks(handle, inode, &map, flags);
1364 if (ret > 0) {
1365 map_bh(bh, inode->i_sb, map.m_pblk);
1366 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1367 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
1368 ret = 0;
1369 }
1370 if (started)
1371 ext4_journal_stop(handle);
1372 return ret;
1373 }
1374
1375 int ext4_get_block(struct inode *inode, sector_t iblock,
1376 struct buffer_head *bh, int create)
1377 {
1378 return _ext4_get_block(inode, iblock, bh,
1379 create ? EXT4_GET_BLOCKS_CREATE : 0);
1380 }
1381
1382 /*
1383 * `handle' can be NULL if create is zero
1384 */
1385 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1386 ext4_lblk_t block, int create, int *errp)
1387 {
1388 struct ext4_map_blocks map;
1389 struct buffer_head *bh;
1390 int fatal = 0, err;
1391
1392 J_ASSERT(handle != NULL || create == 0);
1393
1394 map.m_lblk = block;
1395 map.m_len = 1;
1396 err = ext4_map_blocks(handle, inode, &map,
1397 create ? EXT4_GET_BLOCKS_CREATE : 0);
1398
1399 if (err < 0)
1400 *errp = err;
1401 if (err <= 0)
1402 return NULL;
1403 *errp = 0;
1404
1405 bh = sb_getblk(inode->i_sb, map.m_pblk);
1406 if (!bh) {
1407 *errp = -EIO;
1408 return NULL;
1409 }
1410 if (map.m_flags & EXT4_MAP_NEW) {
1411 J_ASSERT(create != 0);
1412 J_ASSERT(handle != NULL);
1413
1414 /*
1415 * Now that we do not always journal data, we should
1416 * keep in mind whether this should always journal the
1417 * new buffer as metadata. For now, regular file
1418 * writes use ext4_get_block instead, so it's not a
1419 * problem.
1420 */
1421 lock_buffer(bh);
1422 BUFFER_TRACE(bh, "call get_create_access");
1423 fatal = ext4_journal_get_create_access(handle, bh);
1424 if (!fatal && !buffer_uptodate(bh)) {
1425 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1426 set_buffer_uptodate(bh);
1427 }
1428 unlock_buffer(bh);
1429 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1430 err = ext4_handle_dirty_metadata(handle, inode, bh);
1431 if (!fatal)
1432 fatal = err;
1433 } else {
1434 BUFFER_TRACE(bh, "not a new buffer");
1435 }
1436 if (fatal) {
1437 *errp = fatal;
1438 brelse(bh);
1439 bh = NULL;
1440 }
1441 return bh;
1442 }
1443
1444 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1445 ext4_lblk_t block, int create, int *err)
1446 {
1447 struct buffer_head *bh;
1448
1449 bh = ext4_getblk(handle, inode, block, create, err);
1450 if (!bh)
1451 return bh;
1452 if (buffer_uptodate(bh))
1453 return bh;
1454 ll_rw_block(READ_META, 1, &bh);
1455 wait_on_buffer(bh);
1456 if (buffer_uptodate(bh))
1457 return bh;
1458 put_bh(bh);
1459 *err = -EIO;
1460 return NULL;
1461 }
1462
1463 static int walk_page_buffers(handle_t *handle,
1464 struct buffer_head *head,
1465 unsigned from,
1466 unsigned to,
1467 int *partial,
1468 int (*fn)(handle_t *handle,
1469 struct buffer_head *bh))
1470 {
1471 struct buffer_head *bh;
1472 unsigned block_start, block_end;
1473 unsigned blocksize = head->b_size;
1474 int err, ret = 0;
1475 struct buffer_head *next;
1476
1477 for (bh = head, block_start = 0;
1478 ret == 0 && (bh != head || !block_start);
1479 block_start = block_end, bh = next) {
1480 next = bh->b_this_page;
1481 block_end = block_start + blocksize;
1482 if (block_end <= from || block_start >= to) {
1483 if (partial && !buffer_uptodate(bh))
1484 *partial = 1;
1485 continue;
1486 }
1487 err = (*fn)(handle, bh);
1488 if (!ret)
1489 ret = err;
1490 }
1491 return ret;
1492 }
1493
1494 /*
1495 * To preserve ordering, it is essential that the hole instantiation and
1496 * the data write be encapsulated in a single transaction. We cannot
1497 * close off a transaction and start a new one between the ext4_get_block()
1498 * and the commit_write(). So doing the jbd2_journal_start at the start of
1499 * prepare_write() is the right place.
1500 *
1501 * Also, this function can nest inside ext4_writepage() ->
1502 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1503 * has generated enough buffer credits to do the whole page. So we won't
1504 * block on the journal in that case, which is good, because the caller may
1505 * be PF_MEMALLOC.
1506 *
1507 * By accident, ext4 can be reentered when a transaction is open via
1508 * quota file writes. If we were to commit the transaction while thus
1509 * reentered, there can be a deadlock - we would be holding a quota
1510 * lock, and the commit would never complete if another thread had a
1511 * transaction open and was blocking on the quota lock - a ranking
1512 * violation.
1513 *
1514 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1515 * will _not_ run commit under these circumstances because handle->h_ref
1516 * is elevated. We'll still have enough credits for the tiny quotafile
1517 * write.
1518 */
1519 static int do_journal_get_write_access(handle_t *handle,
1520 struct buffer_head *bh)
1521 {
1522 if (!buffer_mapped(bh) || buffer_freed(bh))
1523 return 0;
1524 return ext4_journal_get_write_access(handle, bh);
1525 }
1526
1527 /*
1528 * Truncate blocks that were not used by write. We have to truncate the
1529 * pagecache as well so that corresponding buffers get properly unmapped.
1530 */
1531 static void ext4_truncate_failed_write(struct inode *inode)
1532 {
1533 truncate_inode_pages(inode->i_mapping, inode->i_size);
1534 ext4_truncate(inode);
1535 }
1536
1537 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1538 struct buffer_head *bh_result, int create);
1539 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1540 loff_t pos, unsigned len, unsigned flags,
1541 struct page **pagep, void **fsdata)
1542 {
1543 struct inode *inode = mapping->host;
1544 int ret, needed_blocks;
1545 handle_t *handle;
1546 int retries = 0;
1547 struct page *page;
1548 pgoff_t index;
1549 unsigned from, to;
1550
1551 trace_ext4_write_begin(inode, pos, len, flags);
1552 /*
1553 * Reserve one block more for addition to orphan list in case
1554 * we allocate blocks but write fails for some reason
1555 */
1556 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1557 index = pos >> PAGE_CACHE_SHIFT;
1558 from = pos & (PAGE_CACHE_SIZE - 1);
1559 to = from + len;
1560
1561 retry:
1562 handle = ext4_journal_start(inode, needed_blocks);
1563 if (IS_ERR(handle)) {
1564 ret = PTR_ERR(handle);
1565 goto out;
1566 }
1567
1568 /* We cannot recurse into the filesystem as the transaction is already
1569 * started */
1570 flags |= AOP_FLAG_NOFS;
1571
1572 page = grab_cache_page_write_begin(mapping, index, flags);
1573 if (!page) {
1574 ext4_journal_stop(handle);
1575 ret = -ENOMEM;
1576 goto out;
1577 }
1578 *pagep = page;
1579
1580 if (ext4_should_dioread_nolock(inode))
1581 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1582 fsdata, ext4_get_block_write);
1583 else
1584 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1585 fsdata, ext4_get_block);
1586
1587 if (!ret && ext4_should_journal_data(inode)) {
1588 ret = walk_page_buffers(handle, page_buffers(page),
1589 from, to, NULL, do_journal_get_write_access);
1590 }
1591
1592 if (ret) {
1593 unlock_page(page);
1594 page_cache_release(page);
1595 /*
1596 * block_write_begin may have instantiated a few blocks
1597 * outside i_size. Trim these off again. Don't need
1598 * i_size_read because we hold i_mutex.
1599 *
1600 * Add inode to orphan list in case we crash before
1601 * truncate finishes
1602 */
1603 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1604 ext4_orphan_add(handle, inode);
1605
1606 ext4_journal_stop(handle);
1607 if (pos + len > inode->i_size) {
1608 ext4_truncate_failed_write(inode);
1609 /*
1610 * If truncate failed early the inode might
1611 * still be on the orphan list; we need to
1612 * make sure the inode is removed from the
1613 * orphan list in that case.
1614 */
1615 if (inode->i_nlink)
1616 ext4_orphan_del(NULL, inode);
1617 }
1618 }
1619
1620 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1621 goto retry;
1622 out:
1623 return ret;
1624 }
1625
1626 /* For write_end() in data=journal mode */
1627 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1628 {
1629 if (!buffer_mapped(bh) || buffer_freed(bh))
1630 return 0;
1631 set_buffer_uptodate(bh);
1632 return ext4_handle_dirty_metadata(handle, NULL, bh);
1633 }
1634
1635 static int ext4_generic_write_end(struct file *file,
1636 struct address_space *mapping,
1637 loff_t pos, unsigned len, unsigned copied,
1638 struct page *page, void *fsdata)
1639 {
1640 int i_size_changed = 0;
1641 struct inode *inode = mapping->host;
1642 handle_t *handle = ext4_journal_current_handle();
1643
1644 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1645
1646 /*
1647 * No need to use i_size_read() here, the i_size
1648 * cannot change under us because we hold i_mutex.
1649 *
1650 * But it's important to update i_size while still holding page lock:
1651 * page writeout could otherwise come in and zero beyond i_size.
1652 */
1653 if (pos + copied > inode->i_size) {
1654 i_size_write(inode, pos + copied);
1655 i_size_changed = 1;
1656 }
1657
1658 if (pos + copied > EXT4_I(inode)->i_disksize) {
1659 /* We need to mark inode dirty even if
1660 * new_i_size is less that inode->i_size
1661 * bu greater than i_disksize.(hint delalloc)
1662 */
1663 ext4_update_i_disksize(inode, (pos + copied));
1664 i_size_changed = 1;
1665 }
1666 unlock_page(page);
1667 page_cache_release(page);
1668
1669 /*
1670 * Don't mark the inode dirty under page lock. First, it unnecessarily
1671 * makes the holding time of page lock longer. Second, it forces lock
1672 * ordering of page lock and transaction start for journaling
1673 * filesystems.
1674 */
1675 if (i_size_changed)
1676 ext4_mark_inode_dirty(handle, inode);
1677
1678 return copied;
1679 }
1680
1681 /*
1682 * We need to pick up the new inode size which generic_commit_write gave us
1683 * `file' can be NULL - eg, when called from page_symlink().
1684 *
1685 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1686 * buffers are managed internally.
1687 */
1688 static int ext4_ordered_write_end(struct file *file,
1689 struct address_space *mapping,
1690 loff_t pos, unsigned len, unsigned copied,
1691 struct page *page, void *fsdata)
1692 {
1693 handle_t *handle = ext4_journal_current_handle();
1694 struct inode *inode = mapping->host;
1695 int ret = 0, ret2;
1696
1697 trace_ext4_ordered_write_end(inode, pos, len, copied);
1698 ret = ext4_jbd2_file_inode(handle, inode);
1699
1700 if (ret == 0) {
1701 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1702 page, fsdata);
1703 copied = ret2;
1704 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1705 /* if we have allocated more blocks and copied
1706 * less. We will have blocks allocated outside
1707 * inode->i_size. So truncate them
1708 */
1709 ext4_orphan_add(handle, inode);
1710 if (ret2 < 0)
1711 ret = ret2;
1712 }
1713 ret2 = ext4_journal_stop(handle);
1714 if (!ret)
1715 ret = ret2;
1716
1717 if (pos + len > inode->i_size) {
1718 ext4_truncate_failed_write(inode);
1719 /*
1720 * If truncate failed early the inode might still be
1721 * on the orphan list; we need to make sure the inode
1722 * is removed from the orphan list in that case.
1723 */
1724 if (inode->i_nlink)
1725 ext4_orphan_del(NULL, inode);
1726 }
1727
1728
1729 return ret ? ret : copied;
1730 }
1731
1732 static int ext4_writeback_write_end(struct file *file,
1733 struct address_space *mapping,
1734 loff_t pos, unsigned len, unsigned copied,
1735 struct page *page, void *fsdata)
1736 {
1737 handle_t *handle = ext4_journal_current_handle();
1738 struct inode *inode = mapping->host;
1739 int ret = 0, ret2;
1740
1741 trace_ext4_writeback_write_end(inode, pos, len, copied);
1742 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1743 page, fsdata);
1744 copied = ret2;
1745 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1746 /* if we have allocated more blocks and copied
1747 * less. We will have blocks allocated outside
1748 * inode->i_size. So truncate them
1749 */
1750 ext4_orphan_add(handle, inode);
1751
1752 if (ret2 < 0)
1753 ret = ret2;
1754
1755 ret2 = ext4_journal_stop(handle);
1756 if (!ret)
1757 ret = ret2;
1758
1759 if (pos + len > inode->i_size) {
1760 ext4_truncate_failed_write(inode);
1761 /*
1762 * If truncate failed early the inode might still be
1763 * on the orphan list; we need to make sure the inode
1764 * is removed from the orphan list in that case.
1765 */
1766 if (inode->i_nlink)
1767 ext4_orphan_del(NULL, inode);
1768 }
1769
1770 return ret ? ret : copied;
1771 }
1772
1773 static int ext4_journalled_write_end(struct file *file,
1774 struct address_space *mapping,
1775 loff_t pos, unsigned len, unsigned copied,
1776 struct page *page, void *fsdata)
1777 {
1778 handle_t *handle = ext4_journal_current_handle();
1779 struct inode *inode = mapping->host;
1780 int ret = 0, ret2;
1781 int partial = 0;
1782 unsigned from, to;
1783 loff_t new_i_size;
1784
1785 trace_ext4_journalled_write_end(inode, pos, len, copied);
1786 from = pos & (PAGE_CACHE_SIZE - 1);
1787 to = from + len;
1788
1789 if (copied < len) {
1790 if (!PageUptodate(page))
1791 copied = 0;
1792 page_zero_new_buffers(page, from+copied, to);
1793 }
1794
1795 ret = walk_page_buffers(handle, page_buffers(page), from,
1796 to, &partial, write_end_fn);
1797 if (!partial)
1798 SetPageUptodate(page);
1799 new_i_size = pos + copied;
1800 if (new_i_size > inode->i_size)
1801 i_size_write(inode, pos+copied);
1802 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1803 if (new_i_size > EXT4_I(inode)->i_disksize) {
1804 ext4_update_i_disksize(inode, new_i_size);
1805 ret2 = ext4_mark_inode_dirty(handle, inode);
1806 if (!ret)
1807 ret = ret2;
1808 }
1809
1810 unlock_page(page);
1811 page_cache_release(page);
1812 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1813 /* if we have allocated more blocks and copied
1814 * less. We will have blocks allocated outside
1815 * inode->i_size. So truncate them
1816 */
1817 ext4_orphan_add(handle, inode);
1818
1819 ret2 = ext4_journal_stop(handle);
1820 if (!ret)
1821 ret = ret2;
1822 if (pos + len > inode->i_size) {
1823 ext4_truncate_failed_write(inode);
1824 /*
1825 * If truncate failed early the inode might still be
1826 * on the orphan list; we need to make sure the inode
1827 * is removed from the orphan list in that case.
1828 */
1829 if (inode->i_nlink)
1830 ext4_orphan_del(NULL, inode);
1831 }
1832
1833 return ret ? ret : copied;
1834 }
1835
1836 /*
1837 * Reserve a single block located at lblock
1838 */
1839 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1840 {
1841 int retries = 0;
1842 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1843 struct ext4_inode_info *ei = EXT4_I(inode);
1844 unsigned long md_needed;
1845 int ret;
1846
1847 /*
1848 * recalculate the amount of metadata blocks to reserve
1849 * in order to allocate nrblocks
1850 * worse case is one extent per block
1851 */
1852 repeat:
1853 spin_lock(&ei->i_block_reservation_lock);
1854 md_needed = ext4_calc_metadata_amount(inode, lblock);
1855 trace_ext4_da_reserve_space(inode, md_needed);
1856 spin_unlock(&ei->i_block_reservation_lock);
1857
1858 /*
1859 * We will charge metadata quota at writeout time; this saves
1860 * us from metadata over-estimation, though we may go over by
1861 * a small amount in the end. Here we just reserve for data.
1862 */
1863 ret = dquot_reserve_block(inode, 1);
1864 if (ret)
1865 return ret;
1866 /*
1867 * We do still charge estimated metadata to the sb though;
1868 * we cannot afford to run out of free blocks.
1869 */
1870 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1871 dquot_release_reservation_block(inode, 1);
1872 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1873 yield();
1874 goto repeat;
1875 }
1876 return -ENOSPC;
1877 }
1878 spin_lock(&ei->i_block_reservation_lock);
1879 ei->i_reserved_data_blocks++;
1880 ei->i_reserved_meta_blocks += md_needed;
1881 spin_unlock(&ei->i_block_reservation_lock);
1882
1883 return 0; /* success */
1884 }
1885
1886 static void ext4_da_release_space(struct inode *inode, int to_free)
1887 {
1888 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1889 struct ext4_inode_info *ei = EXT4_I(inode);
1890
1891 if (!to_free)
1892 return; /* Nothing to release, exit */
1893
1894 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1895
1896 trace_ext4_da_release_space(inode, to_free);
1897 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1898 /*
1899 * if there aren't enough reserved blocks, then the
1900 * counter is messed up somewhere. Since this
1901 * function is called from invalidate page, it's
1902 * harmless to return without any action.
1903 */
1904 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1905 "ino %lu, to_free %d with only %d reserved "
1906 "data blocks\n", inode->i_ino, to_free,
1907 ei->i_reserved_data_blocks);
1908 WARN_ON(1);
1909 to_free = ei->i_reserved_data_blocks;
1910 }
1911 ei->i_reserved_data_blocks -= to_free;
1912
1913 if (ei->i_reserved_data_blocks == 0) {
1914 /*
1915 * We can release all of the reserved metadata blocks
1916 * only when we have written all of the delayed
1917 * allocation blocks.
1918 */
1919 percpu_counter_sub(&sbi->s_dirtyblocks_counter,
1920 ei->i_reserved_meta_blocks);
1921 ei->i_reserved_meta_blocks = 0;
1922 ei->i_da_metadata_calc_len = 0;
1923 }
1924
1925 /* update fs dirty data blocks counter */
1926 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1927
1928 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1929
1930 dquot_release_reservation_block(inode, to_free);
1931 }
1932
1933 static void ext4_da_page_release_reservation(struct page *page,
1934 unsigned long offset)
1935 {
1936 int to_release = 0;
1937 struct buffer_head *head, *bh;
1938 unsigned int curr_off = 0;
1939
1940 head = page_buffers(page);
1941 bh = head;
1942 do {
1943 unsigned int next_off = curr_off + bh->b_size;
1944
1945 if ((offset <= curr_off) && (buffer_delay(bh))) {
1946 to_release++;
1947 clear_buffer_delay(bh);
1948 }
1949 curr_off = next_off;
1950 } while ((bh = bh->b_this_page) != head);
1951 ext4_da_release_space(page->mapping->host, to_release);
1952 }
1953
1954 /*
1955 * Delayed allocation stuff
1956 */
1957
1958 /*
1959 * mpage_da_submit_io - walks through extent of pages and try to write
1960 * them with writepage() call back
1961 *
1962 * @mpd->inode: inode
1963 * @mpd->first_page: first page of the extent
1964 * @mpd->next_page: page after the last page of the extent
1965 *
1966 * By the time mpage_da_submit_io() is called we expect all blocks
1967 * to be allocated. this may be wrong if allocation failed.
1968 *
1969 * As pages are already locked by write_cache_pages(), we can't use it
1970 */
1971 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1972 {
1973 long pages_skipped;
1974 struct pagevec pvec;
1975 unsigned long index, end;
1976 int ret = 0, err, nr_pages, i;
1977 struct inode *inode = mpd->inode;
1978 struct address_space *mapping = inode->i_mapping;
1979
1980 BUG_ON(mpd->next_page <= mpd->first_page);
1981 /*
1982 * We need to start from the first_page to the next_page - 1
1983 * to make sure we also write the mapped dirty buffer_heads.
1984 * If we look at mpd->b_blocknr we would only be looking
1985 * at the currently mapped buffer_heads.
1986 */
1987 index = mpd->first_page;
1988 end = mpd->next_page - 1;
1989
1990 pagevec_init(&pvec, 0);
1991 while (index <= end) {
1992 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1993 if (nr_pages == 0)
1994 break;
1995 for (i = 0; i < nr_pages; i++) {
1996 struct page *page = pvec.pages[i];
1997
1998 index = page->index;
1999 if (index > end)
2000 break;
2001 index++;
2002
2003 BUG_ON(!PageLocked(page));
2004 BUG_ON(PageWriteback(page));
2005
2006 pages_skipped = mpd->wbc->pages_skipped;
2007 err = mapping->a_ops->writepage(page, mpd->wbc);
2008 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2009 /*
2010 * have successfully written the page
2011 * without skipping the same
2012 */
2013 mpd->pages_written++;
2014 /*
2015 * In error case, we have to continue because
2016 * remaining pages are still locked
2017 * XXX: unlock and re-dirty them?
2018 */
2019 if (ret == 0)
2020 ret = err;
2021 }
2022 pagevec_release(&pvec);
2023 }
2024 return ret;
2025 }
2026
2027 /*
2028 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2029 *
2030 * the function goes through all passed space and put actual disk
2031 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2032 */
2033 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd,
2034 struct ext4_map_blocks *map)
2035 {
2036 struct inode *inode = mpd->inode;
2037 struct address_space *mapping = inode->i_mapping;
2038 int blocks = map->m_len;
2039 sector_t pblock = map->m_pblk, cur_logical;
2040 struct buffer_head *head, *bh;
2041 pgoff_t index, end;
2042 struct pagevec pvec;
2043 int nr_pages, i;
2044
2045 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2046 end = (map->m_lblk + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2047 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2048
2049 pagevec_init(&pvec, 0);
2050
2051 while (index <= end) {
2052 /* XXX: optimize tail */
2053 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2054 if (nr_pages == 0)
2055 break;
2056 for (i = 0; i < nr_pages; i++) {
2057 struct page *page = pvec.pages[i];
2058
2059 index = page->index;
2060 if (index > end)
2061 break;
2062 index++;
2063
2064 BUG_ON(!PageLocked(page));
2065 BUG_ON(PageWriteback(page));
2066 BUG_ON(!page_has_buffers(page));
2067
2068 bh = page_buffers(page);
2069 head = bh;
2070
2071 /* skip blocks out of the range */
2072 do {
2073 if (cur_logical >= map->m_lblk)
2074 break;
2075 cur_logical++;
2076 } while ((bh = bh->b_this_page) != head);
2077
2078 do {
2079 if (cur_logical >= map->m_lblk + blocks)
2080 break;
2081
2082 if (buffer_delay(bh) || buffer_unwritten(bh)) {
2083
2084 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2085
2086 if (buffer_delay(bh)) {
2087 clear_buffer_delay(bh);
2088 bh->b_blocknr = pblock;
2089 } else {
2090 /*
2091 * unwritten already should have
2092 * blocknr assigned. Verify that
2093 */
2094 clear_buffer_unwritten(bh);
2095 BUG_ON(bh->b_blocknr != pblock);
2096 }
2097
2098 } else if (buffer_mapped(bh))
2099 BUG_ON(bh->b_blocknr != pblock);
2100
2101 if (map->m_flags & EXT4_MAP_UNINIT)
2102 set_buffer_uninit(bh);
2103 cur_logical++;
2104 pblock++;
2105 } while ((bh = bh->b_this_page) != head);
2106 }
2107 pagevec_release(&pvec);
2108 }
2109 }
2110
2111
2112 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2113 sector_t logical, long blk_cnt)
2114 {
2115 int nr_pages, i;
2116 pgoff_t index, end;
2117 struct pagevec pvec;
2118 struct inode *inode = mpd->inode;
2119 struct address_space *mapping = inode->i_mapping;
2120
2121 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2122 end = (logical + blk_cnt - 1) >>
2123 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2124 while (index <= end) {
2125 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2126 if (nr_pages == 0)
2127 break;
2128 for (i = 0; i < nr_pages; i++) {
2129 struct page *page = pvec.pages[i];
2130 if (page->index > end)
2131 break;
2132 BUG_ON(!PageLocked(page));
2133 BUG_ON(PageWriteback(page));
2134 block_invalidatepage(page, 0);
2135 ClearPageUptodate(page);
2136 unlock_page(page);
2137 }
2138 index = pvec.pages[nr_pages - 1]->index + 1;
2139 pagevec_release(&pvec);
2140 }
2141 return;
2142 }
2143
2144 static void ext4_print_free_blocks(struct inode *inode)
2145 {
2146 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2147 printk(KERN_CRIT "Total free blocks count %lld\n",
2148 ext4_count_free_blocks(inode->i_sb));
2149 printk(KERN_CRIT "Free/Dirty block details\n");
2150 printk(KERN_CRIT "free_blocks=%lld\n",
2151 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2152 printk(KERN_CRIT "dirty_blocks=%lld\n",
2153 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2154 printk(KERN_CRIT "Block reservation details\n");
2155 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2156 EXT4_I(inode)->i_reserved_data_blocks);
2157 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2158 EXT4_I(inode)->i_reserved_meta_blocks);
2159 return;
2160 }
2161
2162 /*
2163 * mpage_da_map_blocks - go through given space
2164 *
2165 * @mpd - bh describing space
2166 *
2167 * The function skips space we know is already mapped to disk blocks.
2168 *
2169 */
2170 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2171 {
2172 int err, blks, get_blocks_flags;
2173 struct ext4_map_blocks map;
2174 sector_t next = mpd->b_blocknr;
2175 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2176 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2177 handle_t *handle = NULL;
2178
2179 /*
2180 * We consider only non-mapped and non-allocated blocks
2181 */
2182 if ((mpd->b_state & (1 << BH_Mapped)) &&
2183 !(mpd->b_state & (1 << BH_Delay)) &&
2184 !(mpd->b_state & (1 << BH_Unwritten)))
2185 return 0;
2186
2187 /*
2188 * If we didn't accumulate anything to write simply return
2189 */
2190 if (!mpd->b_size)
2191 return 0;
2192
2193 handle = ext4_journal_current_handle();
2194 BUG_ON(!handle);
2195
2196 /*
2197 * Call ext4_get_blocks() to allocate any delayed allocation
2198 * blocks, or to convert an uninitialized extent to be
2199 * initialized (in the case where we have written into
2200 * one or more preallocated blocks).
2201 *
2202 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2203 * indicate that we are on the delayed allocation path. This
2204 * affects functions in many different parts of the allocation
2205 * call path. This flag exists primarily because we don't
2206 * want to change *many* call functions, so ext4_get_blocks()
2207 * will set the magic i_delalloc_reserved_flag once the
2208 * inode's allocation semaphore is taken.
2209 *
2210 * If the blocks in questions were delalloc blocks, set
2211 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2212 * variables are updated after the blocks have been allocated.
2213 */
2214 map.m_lblk = next;
2215 map.m_len = max_blocks;
2216 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2217 if (ext4_should_dioread_nolock(mpd->inode))
2218 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2219 if (mpd->b_state & (1 << BH_Delay))
2220 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2221
2222 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2223 if (blks < 0) {
2224 err = blks;
2225 /*
2226 * If get block returns with error we simply
2227 * return. Later writepage will redirty the page and
2228 * writepages will find the dirty page again
2229 */
2230 if (err == -EAGAIN)
2231 return 0;
2232
2233 if (err == -ENOSPC &&
2234 ext4_count_free_blocks(mpd->inode->i_sb)) {
2235 mpd->retval = err;
2236 return 0;
2237 }
2238
2239 /*
2240 * get block failure will cause us to loop in
2241 * writepages, because a_ops->writepage won't be able
2242 * to make progress. The page will be redirtied by
2243 * writepage and writepages will again try to write
2244 * the same.
2245 */
2246 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2247 "delayed block allocation failed for inode %lu at "
2248 "logical offset %llu with max blocks %zd with "
2249 "error %d", mpd->inode->i_ino,
2250 (unsigned long long) next,
2251 mpd->b_size >> mpd->inode->i_blkbits, err);
2252 printk(KERN_CRIT "This should not happen!! "
2253 "Data will be lost\n");
2254 if (err == -ENOSPC) {
2255 ext4_print_free_blocks(mpd->inode);
2256 }
2257 /* invalidate all the pages */
2258 ext4_da_block_invalidatepages(mpd, next,
2259 mpd->b_size >> mpd->inode->i_blkbits);
2260 return err;
2261 }
2262 BUG_ON(blks == 0);
2263
2264 if (map.m_flags & EXT4_MAP_NEW) {
2265 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
2266 int i;
2267
2268 for (i = 0; i < map.m_len; i++)
2269 unmap_underlying_metadata(bdev, map.m_pblk + i);
2270 }
2271
2272 /*
2273 * If blocks are delayed marked, we need to
2274 * put actual blocknr and drop delayed bit
2275 */
2276 if ((mpd->b_state & (1 << BH_Delay)) ||
2277 (mpd->b_state & (1 << BH_Unwritten)))
2278 mpage_put_bnr_to_bhs(mpd, &map);
2279
2280 if (ext4_should_order_data(mpd->inode)) {
2281 err = ext4_jbd2_file_inode(handle, mpd->inode);
2282 if (err)
2283 return err;
2284 }
2285
2286 /*
2287 * Update on-disk size along with block allocation.
2288 */
2289 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2290 if (disksize > i_size_read(mpd->inode))
2291 disksize = i_size_read(mpd->inode);
2292 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2293 ext4_update_i_disksize(mpd->inode, disksize);
2294 return ext4_mark_inode_dirty(handle, mpd->inode);
2295 }
2296
2297 return 0;
2298 }
2299
2300 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2301 (1 << BH_Delay) | (1 << BH_Unwritten))
2302
2303 /*
2304 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2305 *
2306 * @mpd->lbh - extent of blocks
2307 * @logical - logical number of the block in the file
2308 * @bh - bh of the block (used to access block's state)
2309 *
2310 * the function is used to collect contig. blocks in same state
2311 */
2312 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2313 sector_t logical, size_t b_size,
2314 unsigned long b_state)
2315 {
2316 sector_t next;
2317 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2318
2319 /*
2320 * XXX Don't go larger than mballoc is willing to allocate
2321 * This is a stopgap solution. We eventually need to fold
2322 * mpage_da_submit_io() into this function and then call
2323 * ext4_get_blocks() multiple times in a loop
2324 */
2325 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
2326 goto flush_it;
2327
2328 /* check if thereserved journal credits might overflow */
2329 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
2330 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2331 /*
2332 * With non-extent format we are limited by the journal
2333 * credit available. Total credit needed to insert
2334 * nrblocks contiguous blocks is dependent on the
2335 * nrblocks. So limit nrblocks.
2336 */
2337 goto flush_it;
2338 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2339 EXT4_MAX_TRANS_DATA) {
2340 /*
2341 * Adding the new buffer_head would make it cross the
2342 * allowed limit for which we have journal credit
2343 * reserved. So limit the new bh->b_size
2344 */
2345 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2346 mpd->inode->i_blkbits;
2347 /* we will do mpage_da_submit_io in the next loop */
2348 }
2349 }
2350 /*
2351 * First block in the extent
2352 */
2353 if (mpd->b_size == 0) {
2354 mpd->b_blocknr = logical;
2355 mpd->b_size = b_size;
2356 mpd->b_state = b_state & BH_FLAGS;
2357 return;
2358 }
2359
2360 next = mpd->b_blocknr + nrblocks;
2361 /*
2362 * Can we merge the block to our big extent?
2363 */
2364 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2365 mpd->b_size += b_size;
2366 return;
2367 }
2368
2369 flush_it:
2370 /*
2371 * We couldn't merge the block to our extent, so we
2372 * need to flush current extent and start new one
2373 */
2374 if (mpage_da_map_blocks(mpd) == 0)
2375 mpage_da_submit_io(mpd);
2376 mpd->io_done = 1;
2377 return;
2378 }
2379
2380 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2381 {
2382 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2383 }
2384
2385 /*
2386 * __mpage_da_writepage - finds extent of pages and blocks
2387 *
2388 * @page: page to consider
2389 * @wbc: not used, we just follow rules
2390 * @data: context
2391 *
2392 * The function finds extents of pages and scan them for all blocks.
2393 */
2394 static int __mpage_da_writepage(struct page *page,
2395 struct writeback_control *wbc, void *data)
2396 {
2397 struct mpage_da_data *mpd = data;
2398 struct inode *inode = mpd->inode;
2399 struct buffer_head *bh, *head;
2400 sector_t logical;
2401
2402 /*
2403 * Can we merge this page to current extent?
2404 */
2405 if (mpd->next_page != page->index) {
2406 /*
2407 * Nope, we can't. So, we map non-allocated blocks
2408 * and start IO on them using writepage()
2409 */
2410 if (mpd->next_page != mpd->first_page) {
2411 if (mpage_da_map_blocks(mpd) == 0)
2412 mpage_da_submit_io(mpd);
2413 /*
2414 * skip rest of the page in the page_vec
2415 */
2416 mpd->io_done = 1;
2417 redirty_page_for_writepage(wbc, page);
2418 unlock_page(page);
2419 return MPAGE_DA_EXTENT_TAIL;
2420 }
2421
2422 /*
2423 * Start next extent of pages ...
2424 */
2425 mpd->first_page = page->index;
2426
2427 /*
2428 * ... and blocks
2429 */
2430 mpd->b_size = 0;
2431 mpd->b_state = 0;
2432 mpd->b_blocknr = 0;
2433 }
2434
2435 mpd->next_page = page->index + 1;
2436 logical = (sector_t) page->index <<
2437 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2438
2439 if (!page_has_buffers(page)) {
2440 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2441 (1 << BH_Dirty) | (1 << BH_Uptodate));
2442 if (mpd->io_done)
2443 return MPAGE_DA_EXTENT_TAIL;
2444 } else {
2445 /*
2446 * Page with regular buffer heads, just add all dirty ones
2447 */
2448 head = page_buffers(page);
2449 bh = head;
2450 do {
2451 BUG_ON(buffer_locked(bh));
2452 /*
2453 * We need to try to allocate
2454 * unmapped blocks in the same page.
2455 * Otherwise we won't make progress
2456 * with the page in ext4_writepage
2457 */
2458 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2459 mpage_add_bh_to_extent(mpd, logical,
2460 bh->b_size,
2461 bh->b_state);
2462 if (mpd->io_done)
2463 return MPAGE_DA_EXTENT_TAIL;
2464 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2465 /*
2466 * mapped dirty buffer. We need to update
2467 * the b_state because we look at
2468 * b_state in mpage_da_map_blocks. We don't
2469 * update b_size because if we find an
2470 * unmapped buffer_head later we need to
2471 * use the b_state flag of that buffer_head.
2472 */
2473 if (mpd->b_size == 0)
2474 mpd->b_state = bh->b_state & BH_FLAGS;
2475 }
2476 logical++;
2477 } while ((bh = bh->b_this_page) != head);
2478 }
2479
2480 return 0;
2481 }
2482
2483 /*
2484 * This is a special get_blocks_t callback which is used by
2485 * ext4_da_write_begin(). It will either return mapped block or
2486 * reserve space for a single block.
2487 *
2488 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2489 * We also have b_blocknr = -1 and b_bdev initialized properly
2490 *
2491 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2492 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2493 * initialized properly.
2494 */
2495 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2496 struct buffer_head *bh, int create)
2497 {
2498 struct ext4_map_blocks map;
2499 int ret = 0;
2500 sector_t invalid_block = ~((sector_t) 0xffff);
2501
2502 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2503 invalid_block = ~0;
2504
2505 BUG_ON(create == 0);
2506 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
2507
2508 map.m_lblk = iblock;
2509 map.m_len = 1;
2510
2511 /*
2512 * first, we need to know whether the block is allocated already
2513 * preallocated blocks are unmapped but should treated
2514 * the same as allocated blocks.
2515 */
2516 ret = ext4_map_blocks(NULL, inode, &map, 0);
2517 if (ret < 0)
2518 return ret;
2519 if (ret == 0) {
2520 if (buffer_delay(bh))
2521 return 0; /* Not sure this could or should happen */
2522 /*
2523 * XXX: __block_prepare_write() unmaps passed block,
2524 * is it OK?
2525 */
2526 ret = ext4_da_reserve_space(inode, iblock);
2527 if (ret)
2528 /* not enough space to reserve */
2529 return ret;
2530
2531 map_bh(bh, inode->i_sb, invalid_block);
2532 set_buffer_new(bh);
2533 set_buffer_delay(bh);
2534 return 0;
2535 }
2536
2537 map_bh(bh, inode->i_sb, map.m_pblk);
2538 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
2539
2540 if (buffer_unwritten(bh)) {
2541 /* A delayed write to unwritten bh should be marked
2542 * new and mapped. Mapped ensures that we don't do
2543 * get_block multiple times when we write to the same
2544 * offset and new ensures that we do proper zero out
2545 * for partial write.
2546 */
2547 set_buffer_new(bh);
2548 set_buffer_mapped(bh);
2549 }
2550 return 0;
2551 }
2552
2553 /*
2554 * This function is used as a standard get_block_t calback function
2555 * when there is no desire to allocate any blocks. It is used as a
2556 * callback function for block_prepare_write(), nobh_writepage(), and
2557 * block_write_full_page(). These functions should only try to map a
2558 * single block at a time.
2559 *
2560 * Since this function doesn't do block allocations even if the caller
2561 * requests it by passing in create=1, it is critically important that
2562 * any caller checks to make sure that any buffer heads are returned
2563 * by this function are either all already mapped or marked for
2564 * delayed allocation before calling nobh_writepage() or
2565 * block_write_full_page(). Otherwise, b_blocknr could be left
2566 * unitialized, and the page write functions will be taken by
2567 * surprise.
2568 */
2569 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2570 struct buffer_head *bh_result, int create)
2571 {
2572 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2573 return _ext4_get_block(inode, iblock, bh_result, 0);
2574 }
2575
2576 static int bget_one(handle_t *handle, struct buffer_head *bh)
2577 {
2578 get_bh(bh);
2579 return 0;
2580 }
2581
2582 static int bput_one(handle_t *handle, struct buffer_head *bh)
2583 {
2584 put_bh(bh);
2585 return 0;
2586 }
2587
2588 static int __ext4_journalled_writepage(struct page *page,
2589 unsigned int len)
2590 {
2591 struct address_space *mapping = page->mapping;
2592 struct inode *inode = mapping->host;
2593 struct buffer_head *page_bufs;
2594 handle_t *handle = NULL;
2595 int ret = 0;
2596 int err;
2597
2598 page_bufs = page_buffers(page);
2599 BUG_ON(!page_bufs);
2600 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2601 /* As soon as we unlock the page, it can go away, but we have
2602 * references to buffers so we are safe */
2603 unlock_page(page);
2604
2605 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2606 if (IS_ERR(handle)) {
2607 ret = PTR_ERR(handle);
2608 goto out;
2609 }
2610
2611 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2612 do_journal_get_write_access);
2613
2614 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2615 write_end_fn);
2616 if (ret == 0)
2617 ret = err;
2618 err = ext4_journal_stop(handle);
2619 if (!ret)
2620 ret = err;
2621
2622 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2623 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2624 out:
2625 return ret;
2626 }
2627
2628 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2629 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2630
2631 /*
2632 * Note that we don't need to start a transaction unless we're journaling data
2633 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2634 * need to file the inode to the transaction's list in ordered mode because if
2635 * we are writing back data added by write(), the inode is already there and if
2636 * we are writing back data modified via mmap(), noone guarantees in which
2637 * transaction the data will hit the disk. In case we are journaling data, we
2638 * cannot start transaction directly because transaction start ranks above page
2639 * lock so we have to do some magic.
2640 *
2641 * This function can get called via...
2642 * - ext4_da_writepages after taking page lock (have journal handle)
2643 * - journal_submit_inode_data_buffers (no journal handle)
2644 * - shrink_page_list via pdflush (no journal handle)
2645 * - grab_page_cache when doing write_begin (have journal handle)
2646 *
2647 * We don't do any block allocation in this function. If we have page with
2648 * multiple blocks we need to write those buffer_heads that are mapped. This
2649 * is important for mmaped based write. So if we do with blocksize 1K
2650 * truncate(f, 1024);
2651 * a = mmap(f, 0, 4096);
2652 * a[0] = 'a';
2653 * truncate(f, 4096);
2654 * we have in the page first buffer_head mapped via page_mkwrite call back
2655 * but other bufer_heads would be unmapped but dirty(dirty done via the
2656 * do_wp_page). So writepage should write the first block. If we modify
2657 * the mmap area beyond 1024 we will again get a page_fault and the
2658 * page_mkwrite callback will do the block allocation and mark the
2659 * buffer_heads mapped.
2660 *
2661 * We redirty the page if we have any buffer_heads that is either delay or
2662 * unwritten in the page.
2663 *
2664 * We can get recursively called as show below.
2665 *
2666 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2667 * ext4_writepage()
2668 *
2669 * But since we don't do any block allocation we should not deadlock.
2670 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2671 */
2672 static int ext4_writepage(struct page *page,
2673 struct writeback_control *wbc)
2674 {
2675 int ret = 0;
2676 loff_t size;
2677 unsigned int len;
2678 struct buffer_head *page_bufs = NULL;
2679 struct inode *inode = page->mapping->host;
2680
2681 trace_ext4_writepage(inode, page);
2682 size = i_size_read(inode);
2683 if (page->index == size >> PAGE_CACHE_SHIFT)
2684 len = size & ~PAGE_CACHE_MASK;
2685 else
2686 len = PAGE_CACHE_SIZE;
2687
2688 if (page_has_buffers(page)) {
2689 page_bufs = page_buffers(page);
2690 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2691 ext4_bh_delay_or_unwritten)) {
2692 /*
2693 * We don't want to do block allocation
2694 * So redirty the page and return
2695 * We may reach here when we do a journal commit
2696 * via journal_submit_inode_data_buffers.
2697 * If we don't have mapping block we just ignore
2698 * them. We can also reach here via shrink_page_list
2699 */
2700 redirty_page_for_writepage(wbc, page);
2701 unlock_page(page);
2702 return 0;
2703 }
2704 } else {
2705 /*
2706 * The test for page_has_buffers() is subtle:
2707 * We know the page is dirty but it lost buffers. That means
2708 * that at some moment in time after write_begin()/write_end()
2709 * has been called all buffers have been clean and thus they
2710 * must have been written at least once. So they are all
2711 * mapped and we can happily proceed with mapping them
2712 * and writing the page.
2713 *
2714 * Try to initialize the buffer_heads and check whether
2715 * all are mapped and non delay. We don't want to
2716 * do block allocation here.
2717 */
2718 ret = block_prepare_write(page, 0, len,
2719 noalloc_get_block_write);
2720 if (!ret) {
2721 page_bufs = page_buffers(page);
2722 /* check whether all are mapped and non delay */
2723 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2724 ext4_bh_delay_or_unwritten)) {
2725 redirty_page_for_writepage(wbc, page);
2726 unlock_page(page);
2727 return 0;
2728 }
2729 } else {
2730 /*
2731 * We can't do block allocation here
2732 * so just redity the page and unlock
2733 * and return
2734 */
2735 redirty_page_for_writepage(wbc, page);
2736 unlock_page(page);
2737 return 0;
2738 }
2739 /* now mark the buffer_heads as dirty and uptodate */
2740 block_commit_write(page, 0, len);
2741 }
2742
2743 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2744 /*
2745 * It's mmapped pagecache. Add buffers and journal it. There
2746 * doesn't seem much point in redirtying the page here.
2747 */
2748 ClearPageChecked(page);
2749 return __ext4_journalled_writepage(page, len);
2750 }
2751
2752 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2753 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2754 else if (page_bufs && buffer_uninit(page_bufs)) {
2755 ext4_set_bh_endio(page_bufs, inode);
2756 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2757 wbc, ext4_end_io_buffer_write);
2758 } else
2759 ret = block_write_full_page(page, noalloc_get_block_write,
2760 wbc);
2761
2762 return ret;
2763 }
2764
2765 /*
2766 * This is called via ext4_da_writepages() to
2767 * calulate the total number of credits to reserve to fit
2768 * a single extent allocation into a single transaction,
2769 * ext4_da_writpeages() will loop calling this before
2770 * the block allocation.
2771 */
2772
2773 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2774 {
2775 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2776
2777 /*
2778 * With non-extent format the journal credit needed to
2779 * insert nrblocks contiguous block is dependent on
2780 * number of contiguous block. So we will limit
2781 * number of contiguous block to a sane value
2782 */
2783 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
2784 (max_blocks > EXT4_MAX_TRANS_DATA))
2785 max_blocks = EXT4_MAX_TRANS_DATA;
2786
2787 return ext4_chunk_trans_blocks(inode, max_blocks);
2788 }
2789
2790 /*
2791 * write_cache_pages_da - walk the list of dirty pages of the given
2792 * address space and call the callback function (which usually writes
2793 * the pages).
2794 *
2795 * This is a forked version of write_cache_pages(). Differences:
2796 * Range cyclic is ignored.
2797 * no_nrwrite_index_update is always presumed true
2798 */
2799 static int write_cache_pages_da(struct address_space *mapping,
2800 struct writeback_control *wbc,
2801 struct mpage_da_data *mpd)
2802 {
2803 int ret = 0;
2804 int done = 0;
2805 struct pagevec pvec;
2806 int nr_pages;
2807 pgoff_t index;
2808 pgoff_t end; /* Inclusive */
2809 long nr_to_write = wbc->nr_to_write;
2810
2811 pagevec_init(&pvec, 0);
2812 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2813 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2814
2815 while (!done && (index <= end)) {
2816 int i;
2817
2818 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2819 PAGECACHE_TAG_DIRTY,
2820 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2821 if (nr_pages == 0)
2822 break;
2823
2824 for (i = 0; i < nr_pages; i++) {
2825 struct page *page = pvec.pages[i];
2826
2827 /*
2828 * At this point, the page may be truncated or
2829 * invalidated (changing page->mapping to NULL), or
2830 * even swizzled back from swapper_space to tmpfs file
2831 * mapping. However, page->index will not change
2832 * because we have a reference on the page.
2833 */
2834 if (page->index > end) {
2835 done = 1;
2836 break;
2837 }
2838
2839 lock_page(page);
2840
2841 /*
2842 * Page truncated or invalidated. We can freely skip it
2843 * then, even for data integrity operations: the page
2844 * has disappeared concurrently, so there could be no
2845 * real expectation of this data interity operation
2846 * even if there is now a new, dirty page at the same
2847 * pagecache address.
2848 */
2849 if (unlikely(page->mapping != mapping)) {
2850 continue_unlock:
2851 unlock_page(page);
2852 continue;
2853 }
2854
2855 if (!PageDirty(page)) {
2856 /* someone wrote it for us */
2857 goto continue_unlock;
2858 }
2859
2860 if (PageWriteback(page)) {
2861 if (wbc->sync_mode != WB_SYNC_NONE)
2862 wait_on_page_writeback(page);
2863 else
2864 goto continue_unlock;
2865 }
2866
2867 BUG_ON(PageWriteback(page));
2868 if (!clear_page_dirty_for_io(page))
2869 goto continue_unlock;
2870
2871 ret = __mpage_da_writepage(page, wbc, mpd);
2872 if (unlikely(ret)) {
2873 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2874 unlock_page(page);
2875 ret = 0;
2876 } else {
2877 done = 1;
2878 break;
2879 }
2880 }
2881
2882 if (nr_to_write > 0) {
2883 nr_to_write--;
2884 if (nr_to_write == 0 &&
2885 wbc->sync_mode == WB_SYNC_NONE) {
2886 /*
2887 * We stop writing back only if we are
2888 * not doing integrity sync. In case of
2889 * integrity sync we have to keep going
2890 * because someone may be concurrently
2891 * dirtying pages, and we might have
2892 * synced a lot of newly appeared dirty
2893 * pages, but have not synced all of the
2894 * old dirty pages.
2895 */
2896 done = 1;
2897 break;
2898 }
2899 }
2900 }
2901 pagevec_release(&pvec);
2902 cond_resched();
2903 }
2904 return ret;
2905 }
2906
2907
2908 static int ext4_da_writepages(struct address_space *mapping,
2909 struct writeback_control *wbc)
2910 {
2911 pgoff_t index;
2912 int range_whole = 0;
2913 handle_t *handle = NULL;
2914 struct mpage_da_data mpd;
2915 struct inode *inode = mapping->host;
2916 int pages_written = 0;
2917 long pages_skipped;
2918 unsigned int max_pages;
2919 int range_cyclic, cycled = 1, io_done = 0;
2920 int needed_blocks, ret = 0;
2921 long desired_nr_to_write, nr_to_writebump = 0;
2922 loff_t range_start = wbc->range_start;
2923 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2924
2925 trace_ext4_da_writepages(inode, wbc);
2926
2927 /*
2928 * No pages to write? This is mainly a kludge to avoid starting
2929 * a transaction for special inodes like journal inode on last iput()
2930 * because that could violate lock ordering on umount
2931 */
2932 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2933 return 0;
2934
2935 /*
2936 * If the filesystem has aborted, it is read-only, so return
2937 * right away instead of dumping stack traces later on that
2938 * will obscure the real source of the problem. We test
2939 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2940 * the latter could be true if the filesystem is mounted
2941 * read-only, and in that case, ext4_da_writepages should
2942 * *never* be called, so if that ever happens, we would want
2943 * the stack trace.
2944 */
2945 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2946 return -EROFS;
2947
2948 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2949 range_whole = 1;
2950
2951 range_cyclic = wbc->range_cyclic;
2952 if (wbc->range_cyclic) {
2953 index = mapping->writeback_index;
2954 if (index)
2955 cycled = 0;
2956 wbc->range_start = index << PAGE_CACHE_SHIFT;
2957 wbc->range_end = LLONG_MAX;
2958 wbc->range_cyclic = 0;
2959 } else
2960 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2961
2962 /*
2963 * This works around two forms of stupidity. The first is in
2964 * the writeback code, which caps the maximum number of pages
2965 * written to be 1024 pages. This is wrong on multiple
2966 * levels; different architectues have a different page size,
2967 * which changes the maximum amount of data which gets
2968 * written. Secondly, 4 megabytes is way too small. XFS
2969 * forces this value to be 16 megabytes by multiplying
2970 * nr_to_write parameter by four, and then relies on its
2971 * allocator to allocate larger extents to make them
2972 * contiguous. Unfortunately this brings us to the second
2973 * stupidity, which is that ext4's mballoc code only allocates
2974 * at most 2048 blocks. So we force contiguous writes up to
2975 * the number of dirty blocks in the inode, or
2976 * sbi->max_writeback_mb_bump whichever is smaller.
2977 */
2978 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2979 if (!range_cyclic && range_whole)
2980 desired_nr_to_write = wbc->nr_to_write * 8;
2981 else
2982 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2983 max_pages);
2984 if (desired_nr_to_write > max_pages)
2985 desired_nr_to_write = max_pages;
2986
2987 if (wbc->nr_to_write < desired_nr_to_write) {
2988 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2989 wbc->nr_to_write = desired_nr_to_write;
2990 }
2991
2992 mpd.wbc = wbc;
2993 mpd.inode = mapping->host;
2994
2995 pages_skipped = wbc->pages_skipped;
2996
2997 retry:
2998 while (!ret && wbc->nr_to_write > 0) {
2999
3000 /*
3001 * we insert one extent at a time. So we need
3002 * credit needed for single extent allocation.
3003 * journalled mode is currently not supported
3004 * by delalloc
3005 */
3006 BUG_ON(ext4_should_journal_data(inode));
3007 needed_blocks = ext4_da_writepages_trans_blocks(inode);
3008
3009 /* start a new transaction*/
3010 handle = ext4_journal_start(inode, needed_blocks);
3011 if (IS_ERR(handle)) {
3012 ret = PTR_ERR(handle);
3013 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
3014 "%ld pages, ino %lu; err %d", __func__,
3015 wbc->nr_to_write, inode->i_ino, ret);
3016 goto out_writepages;
3017 }
3018
3019 /*
3020 * Now call __mpage_da_writepage to find the next
3021 * contiguous region of logical blocks that need
3022 * blocks to be allocated by ext4. We don't actually
3023 * submit the blocks for I/O here, even though
3024 * write_cache_pages thinks it will, and will set the
3025 * pages as clean for write before calling
3026 * __mpage_da_writepage().
3027 */
3028 mpd.b_size = 0;
3029 mpd.b_state = 0;
3030 mpd.b_blocknr = 0;
3031 mpd.first_page = 0;
3032 mpd.next_page = 0;
3033 mpd.io_done = 0;
3034 mpd.pages_written = 0;
3035 mpd.retval = 0;
3036 ret = write_cache_pages_da(mapping, wbc, &mpd);
3037 /*
3038 * If we have a contiguous extent of pages and we
3039 * haven't done the I/O yet, map the blocks and submit
3040 * them for I/O.
3041 */
3042 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
3043 if (mpage_da_map_blocks(&mpd) == 0)
3044 mpage_da_submit_io(&mpd);
3045 mpd.io_done = 1;
3046 ret = MPAGE_DA_EXTENT_TAIL;
3047 }
3048 trace_ext4_da_write_pages(inode, &mpd);
3049 wbc->nr_to_write -= mpd.pages_written;
3050
3051 ext4_journal_stop(handle);
3052
3053 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
3054 /* commit the transaction which would
3055 * free blocks released in the transaction
3056 * and try again
3057 */
3058 jbd2_journal_force_commit_nested(sbi->s_journal);
3059 wbc->pages_skipped = pages_skipped;
3060 ret = 0;
3061 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
3062 /*
3063 * got one extent now try with
3064 * rest of the pages
3065 */
3066 pages_written += mpd.pages_written;
3067 wbc->pages_skipped = pages_skipped;
3068 ret = 0;
3069 io_done = 1;
3070 } else if (wbc->nr_to_write)
3071 /*
3072 * There is no more writeout needed
3073 * or we requested for a noblocking writeout
3074 * and we found the device congested
3075 */
3076 break;
3077 }
3078 if (!io_done && !cycled) {
3079 cycled = 1;
3080 index = 0;
3081 wbc->range_start = index << PAGE_CACHE_SHIFT;
3082 wbc->range_end = mapping->writeback_index - 1;
3083 goto retry;
3084 }
3085 if (pages_skipped != wbc->pages_skipped)
3086 ext4_msg(inode->i_sb, KERN_CRIT,
3087 "This should not happen leaving %s "
3088 "with nr_to_write = %ld ret = %d",
3089 __func__, wbc->nr_to_write, ret);
3090
3091 /* Update index */
3092 index += pages_written;
3093 wbc->range_cyclic = range_cyclic;
3094 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3095 /*
3096 * set the writeback_index so that range_cyclic
3097 * mode will write it back later
3098 */
3099 mapping->writeback_index = index;
3100
3101 out_writepages:
3102 wbc->nr_to_write -= nr_to_writebump;
3103 wbc->range_start = range_start;
3104 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3105 return ret;
3106 }
3107
3108 #define FALL_BACK_TO_NONDELALLOC 1
3109 static int ext4_nonda_switch(struct super_block *sb)
3110 {
3111 s64 free_blocks, dirty_blocks;
3112 struct ext4_sb_info *sbi = EXT4_SB(sb);
3113
3114 /*
3115 * switch to non delalloc mode if we are running low
3116 * on free block. The free block accounting via percpu
3117 * counters can get slightly wrong with percpu_counter_batch getting
3118 * accumulated on each CPU without updating global counters
3119 * Delalloc need an accurate free block accounting. So switch
3120 * to non delalloc when we are near to error range.
3121 */
3122 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3123 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3124 if (2 * free_blocks < 3 * dirty_blocks ||
3125 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3126 /*
3127 * free block count is less than 150% of dirty blocks
3128 * or free blocks is less than watermark
3129 */
3130 return 1;
3131 }
3132 /*
3133 * Even if we don't switch but are nearing capacity,
3134 * start pushing delalloc when 1/2 of free blocks are dirty.
3135 */
3136 if (free_blocks < 2 * dirty_blocks)
3137 writeback_inodes_sb_if_idle(sb);
3138
3139 return 0;
3140 }
3141
3142 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3143 loff_t pos, unsigned len, unsigned flags,
3144 struct page **pagep, void **fsdata)
3145 {
3146 int ret, retries = 0;
3147 struct page *page;
3148 pgoff_t index;
3149 unsigned from, to;
3150 struct inode *inode = mapping->host;
3151 handle_t *handle;
3152
3153 index = pos >> PAGE_CACHE_SHIFT;
3154 from = pos & (PAGE_CACHE_SIZE - 1);
3155 to = from + len;
3156
3157 if (ext4_nonda_switch(inode->i_sb)) {
3158 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3159 return ext4_write_begin(file, mapping, pos,
3160 len, flags, pagep, fsdata);
3161 }
3162 *fsdata = (void *)0;
3163 trace_ext4_da_write_begin(inode, pos, len, flags);
3164 retry:
3165 /*
3166 * With delayed allocation, we don't log the i_disksize update
3167 * if there is delayed block allocation. But we still need
3168 * to journalling the i_disksize update if writes to the end
3169 * of file which has an already mapped buffer.
3170 */
3171 handle = ext4_journal_start(inode, 1);
3172 if (IS_ERR(handle)) {
3173 ret = PTR_ERR(handle);
3174 goto out;
3175 }
3176 /* We cannot recurse into the filesystem as the transaction is already
3177 * started */
3178 flags |= AOP_FLAG_NOFS;
3179
3180 page = grab_cache_page_write_begin(mapping, index, flags);
3181 if (!page) {
3182 ext4_journal_stop(handle);
3183 ret = -ENOMEM;
3184 goto out;
3185 }
3186 *pagep = page;
3187
3188 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3189 ext4_da_get_block_prep);
3190 if (ret < 0) {
3191 unlock_page(page);
3192 ext4_journal_stop(handle);
3193 page_cache_release(page);
3194 /*
3195 * block_write_begin may have instantiated a few blocks
3196 * outside i_size. Trim these off again. Don't need
3197 * i_size_read because we hold i_mutex.
3198 */
3199 if (pos + len > inode->i_size)
3200 ext4_truncate_failed_write(inode);
3201 }
3202
3203 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3204 goto retry;
3205 out:
3206 return ret;
3207 }
3208
3209 /*
3210 * Check if we should update i_disksize
3211 * when write to the end of file but not require block allocation
3212 */
3213 static int ext4_da_should_update_i_disksize(struct page *page,
3214 unsigned long offset)
3215 {
3216 struct buffer_head *bh;
3217 struct inode *inode = page->mapping->host;
3218 unsigned int idx;
3219 int i;
3220
3221 bh = page_buffers(page);
3222 idx = offset >> inode->i_blkbits;
3223
3224 for (i = 0; i < idx; i++)
3225 bh = bh->b_this_page;
3226
3227 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3228 return 0;
3229 return 1;
3230 }
3231
3232 static int ext4_da_write_end(struct file *file,
3233 struct address_space *mapping,
3234 loff_t pos, unsigned len, unsigned copied,
3235 struct page *page, void *fsdata)
3236 {
3237 struct inode *inode = mapping->host;
3238 int ret = 0, ret2;
3239 handle_t *handle = ext4_journal_current_handle();
3240 loff_t new_i_size;
3241 unsigned long start, end;
3242 int write_mode = (int)(unsigned long)fsdata;
3243
3244 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3245 if (ext4_should_order_data(inode)) {
3246 return ext4_ordered_write_end(file, mapping, pos,
3247 len, copied, page, fsdata);
3248 } else if (ext4_should_writeback_data(inode)) {
3249 return ext4_writeback_write_end(file, mapping, pos,
3250 len, copied, page, fsdata);
3251 } else {
3252 BUG();
3253 }
3254 }
3255
3256 trace_ext4_da_write_end(inode, pos, len, copied);
3257 start = pos & (PAGE_CACHE_SIZE - 1);
3258 end = start + copied - 1;
3259
3260 /*
3261 * generic_write_end() will run mark_inode_dirty() if i_size
3262 * changes. So let's piggyback the i_disksize mark_inode_dirty
3263 * into that.
3264 */
3265
3266 new_i_size = pos + copied;
3267 if (new_i_size > EXT4_I(inode)->i_disksize) {
3268 if (ext4_da_should_update_i_disksize(page, end)) {
3269 down_write(&EXT4_I(inode)->i_data_sem);
3270 if (new_i_size > EXT4_I(inode)->i_disksize) {
3271 /*
3272 * Updating i_disksize when extending file
3273 * without needing block allocation
3274 */
3275 if (ext4_should_order_data(inode))
3276 ret = ext4_jbd2_file_inode(handle,
3277 inode);
3278
3279 EXT4_I(inode)->i_disksize = new_i_size;
3280 }
3281 up_write(&EXT4_I(inode)->i_data_sem);
3282 /* We need to mark inode dirty even if
3283 * new_i_size is less that inode->i_size
3284 * bu greater than i_disksize.(hint delalloc)
3285 */
3286 ext4_mark_inode_dirty(handle, inode);
3287 }
3288 }
3289 ret2 = generic_write_end(file, mapping, pos, len, copied,
3290 page, fsdata);
3291 copied = ret2;
3292 if (ret2 < 0)
3293 ret = ret2;
3294 ret2 = ext4_journal_stop(handle);
3295 if (!ret)
3296 ret = ret2;
3297
3298 return ret ? ret : copied;
3299 }
3300
3301 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3302 {
3303 /*
3304 * Drop reserved blocks
3305 */
3306 BUG_ON(!PageLocked(page));
3307 if (!page_has_buffers(page))
3308 goto out;
3309
3310 ext4_da_page_release_reservation(page, offset);
3311
3312 out:
3313 ext4_invalidatepage(page, offset);
3314
3315 return;
3316 }
3317
3318 /*
3319 * Force all delayed allocation blocks to be allocated for a given inode.
3320 */
3321 int ext4_alloc_da_blocks(struct inode *inode)
3322 {
3323 trace_ext4_alloc_da_blocks(inode);
3324
3325 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3326 !EXT4_I(inode)->i_reserved_meta_blocks)
3327 return 0;
3328
3329 /*
3330 * We do something simple for now. The filemap_flush() will
3331 * also start triggering a write of the data blocks, which is
3332 * not strictly speaking necessary (and for users of
3333 * laptop_mode, not even desirable). However, to do otherwise
3334 * would require replicating code paths in:
3335 *
3336 * ext4_da_writepages() ->
3337 * write_cache_pages() ---> (via passed in callback function)
3338 * __mpage_da_writepage() -->
3339 * mpage_add_bh_to_extent()
3340 * mpage_da_map_blocks()
3341 *
3342 * The problem is that write_cache_pages(), located in
3343 * mm/page-writeback.c, marks pages clean in preparation for
3344 * doing I/O, which is not desirable if we're not planning on
3345 * doing I/O at all.
3346 *
3347 * We could call write_cache_pages(), and then redirty all of
3348 * the pages by calling redirty_page_for_writeback() but that
3349 * would be ugly in the extreme. So instead we would need to
3350 * replicate parts of the code in the above functions,
3351 * simplifying them becuase we wouldn't actually intend to
3352 * write out the pages, but rather only collect contiguous
3353 * logical block extents, call the multi-block allocator, and
3354 * then update the buffer heads with the block allocations.
3355 *
3356 * For now, though, we'll cheat by calling filemap_flush(),
3357 * which will map the blocks, and start the I/O, but not
3358 * actually wait for the I/O to complete.
3359 */
3360 return filemap_flush(inode->i_mapping);
3361 }
3362
3363 /*
3364 * bmap() is special. It gets used by applications such as lilo and by
3365 * the swapper to find the on-disk block of a specific piece of data.
3366 *
3367 * Naturally, this is dangerous if the block concerned is still in the
3368 * journal. If somebody makes a swapfile on an ext4 data-journaling
3369 * filesystem and enables swap, then they may get a nasty shock when the
3370 * data getting swapped to that swapfile suddenly gets overwritten by
3371 * the original zero's written out previously to the journal and
3372 * awaiting writeback in the kernel's buffer cache.
3373 *
3374 * So, if we see any bmap calls here on a modified, data-journaled file,
3375 * take extra steps to flush any blocks which might be in the cache.
3376 */
3377 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3378 {
3379 struct inode *inode = mapping->host;
3380 journal_t *journal;
3381 int err;
3382
3383 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3384 test_opt(inode->i_sb, DELALLOC)) {
3385 /*
3386 * With delalloc we want to sync the file
3387 * so that we can make sure we allocate
3388 * blocks for file
3389 */
3390 filemap_write_and_wait(mapping);
3391 }
3392
3393 if (EXT4_JOURNAL(inode) &&
3394 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3395 /*
3396 * This is a REALLY heavyweight approach, but the use of
3397 * bmap on dirty files is expected to be extremely rare:
3398 * only if we run lilo or swapon on a freshly made file
3399 * do we expect this to happen.
3400 *
3401 * (bmap requires CAP_SYS_RAWIO so this does not
3402 * represent an unprivileged user DOS attack --- we'd be
3403 * in trouble if mortal users could trigger this path at
3404 * will.)
3405 *
3406 * NB. EXT4_STATE_JDATA is not set on files other than
3407 * regular files. If somebody wants to bmap a directory
3408 * or symlink and gets confused because the buffer
3409 * hasn't yet been flushed to disk, they deserve
3410 * everything they get.
3411 */
3412
3413 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3414 journal = EXT4_JOURNAL(inode);
3415 jbd2_journal_lock_updates(journal);
3416 err = jbd2_journal_flush(journal);
3417 jbd2_journal_unlock_updates(journal);
3418
3419 if (err)
3420 return 0;
3421 }
3422
3423 return generic_block_bmap(mapping, block, ext4_get_block);
3424 }
3425
3426 static int ext4_readpage(struct file *file, struct page *page)
3427 {
3428 return mpage_readpage(page, ext4_get_block);
3429 }
3430
3431 static int
3432 ext4_readpages(struct file *file, struct address_space *mapping,
3433 struct list_head *pages, unsigned nr_pages)
3434 {
3435 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3436 }
3437
3438 static void ext4_free_io_end(ext4_io_end_t *io)
3439 {
3440 BUG_ON(!io);
3441 if (io->page)
3442 put_page(io->page);
3443 iput(io->inode);
3444 kfree(io);
3445 }
3446
3447 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3448 {
3449 struct buffer_head *head, *bh;
3450 unsigned int curr_off = 0;
3451
3452 if (!page_has_buffers(page))
3453 return;
3454 head = bh = page_buffers(page);
3455 do {
3456 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3457 && bh->b_private) {
3458 ext4_free_io_end(bh->b_private);
3459 bh->b_private = NULL;
3460 bh->b_end_io = NULL;
3461 }
3462 curr_off = curr_off + bh->b_size;
3463 bh = bh->b_this_page;
3464 } while (bh != head);
3465 }
3466
3467 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3468 {
3469 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3470
3471 /*
3472 * free any io_end structure allocated for buffers to be discarded
3473 */
3474 if (ext4_should_dioread_nolock(page->mapping->host))
3475 ext4_invalidatepage_free_endio(page, offset);
3476 /*
3477 * If it's a full truncate we just forget about the pending dirtying
3478 */
3479 if (offset == 0)
3480 ClearPageChecked(page);
3481
3482 if (journal)
3483 jbd2_journal_invalidatepage(journal, page, offset);
3484 else
3485 block_invalidatepage(page, offset);
3486 }
3487
3488 static int ext4_releasepage(struct page *page, gfp_t wait)
3489 {
3490 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3491
3492 WARN_ON(PageChecked(page));
3493 if (!page_has_buffers(page))
3494 return 0;
3495 if (journal)
3496 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3497 else
3498 return try_to_free_buffers(page);
3499 }
3500
3501 /*
3502 * O_DIRECT for ext3 (or indirect map) based files
3503 *
3504 * If the O_DIRECT write will extend the file then add this inode to the
3505 * orphan list. So recovery will truncate it back to the original size
3506 * if the machine crashes during the write.
3507 *
3508 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3509 * crashes then stale disk data _may_ be exposed inside the file. But current
3510 * VFS code falls back into buffered path in that case so we are safe.
3511 */
3512 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3513 const struct iovec *iov, loff_t offset,
3514 unsigned long nr_segs)
3515 {
3516 struct file *file = iocb->ki_filp;
3517 struct inode *inode = file->f_mapping->host;
3518 struct ext4_inode_info *ei = EXT4_I(inode);
3519 handle_t *handle;
3520 ssize_t ret;
3521 int orphan = 0;
3522 size_t count = iov_length(iov, nr_segs);
3523 int retries = 0;
3524
3525 if (rw == WRITE) {
3526 loff_t final_size = offset + count;
3527
3528 if (final_size > inode->i_size) {
3529 /* Credits for sb + inode write */
3530 handle = ext4_journal_start(inode, 2);
3531 if (IS_ERR(handle)) {
3532 ret = PTR_ERR(handle);
3533 goto out;
3534 }
3535 ret = ext4_orphan_add(handle, inode);
3536 if (ret) {
3537 ext4_journal_stop(handle);
3538 goto out;
3539 }
3540 orphan = 1;
3541 ei->i_disksize = inode->i_size;
3542 ext4_journal_stop(handle);
3543 }
3544 }
3545
3546 retry:
3547 if (rw == READ && ext4_should_dioread_nolock(inode))
3548 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3549 inode->i_sb->s_bdev, iov,
3550 offset, nr_segs,
3551 ext4_get_block, NULL);
3552 else
3553 ret = blockdev_direct_IO(rw, iocb, inode,
3554 inode->i_sb->s_bdev, iov,
3555 offset, nr_segs,
3556 ext4_get_block, NULL);
3557 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3558 goto retry;
3559
3560 if (orphan) {
3561 int err;
3562
3563 /* Credits for sb + inode write */
3564 handle = ext4_journal_start(inode, 2);
3565 if (IS_ERR(handle)) {
3566 /* This is really bad luck. We've written the data
3567 * but cannot extend i_size. Bail out and pretend
3568 * the write failed... */
3569 ret = PTR_ERR(handle);
3570 if (inode->i_nlink)
3571 ext4_orphan_del(NULL, inode);
3572
3573 goto out;
3574 }
3575 if (inode->i_nlink)
3576 ext4_orphan_del(handle, inode);
3577 if (ret > 0) {
3578 loff_t end = offset + ret;
3579 if (end > inode->i_size) {
3580 ei->i_disksize = end;
3581 i_size_write(inode, end);
3582 /*
3583 * We're going to return a positive `ret'
3584 * here due to non-zero-length I/O, so there's
3585 * no way of reporting error returns from
3586 * ext4_mark_inode_dirty() to userspace. So
3587 * ignore it.
3588 */
3589 ext4_mark_inode_dirty(handle, inode);
3590 }
3591 }
3592 err = ext4_journal_stop(handle);
3593 if (ret == 0)
3594 ret = err;
3595 }
3596 out:
3597 return ret;
3598 }
3599
3600 /*
3601 * ext4_get_block used when preparing for a DIO write or buffer write.
3602 * We allocate an uinitialized extent if blocks haven't been allocated.
3603 * The extent will be converted to initialized after the IO is complete.
3604 */
3605 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3606 struct buffer_head *bh_result, int create)
3607 {
3608 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3609 inode->i_ino, create);
3610 return _ext4_get_block(inode, iblock, bh_result,
3611 EXT4_GET_BLOCKS_IO_CREATE_EXT);
3612 }
3613
3614 static void dump_completed_IO(struct inode * inode)
3615 {
3616 #ifdef EXT4_DEBUG
3617 struct list_head *cur, *before, *after;
3618 ext4_io_end_t *io, *io0, *io1;
3619 unsigned long flags;
3620
3621 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3622 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3623 return;
3624 }
3625
3626 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3627 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3628 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3629 cur = &io->list;
3630 before = cur->prev;
3631 io0 = container_of(before, ext4_io_end_t, list);
3632 after = cur->next;
3633 io1 = container_of(after, ext4_io_end_t, list);
3634
3635 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3636 io, inode->i_ino, io0, io1);
3637 }
3638 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3639 #endif
3640 }
3641
3642 /*
3643 * check a range of space and convert unwritten extents to written.
3644 */
3645 static int ext4_end_io_nolock(ext4_io_end_t *io)
3646 {
3647 struct inode *inode = io->inode;
3648 loff_t offset = io->offset;
3649 ssize_t size = io->size;
3650 int ret = 0;
3651
3652 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3653 "list->prev 0x%p\n",
3654 io, inode->i_ino, io->list.next, io->list.prev);
3655
3656 if (list_empty(&io->list))
3657 return ret;
3658
3659 if (io->flag != EXT4_IO_UNWRITTEN)
3660 return ret;
3661
3662 ret = ext4_convert_unwritten_extents(inode, offset, size);
3663 if (ret < 0) {
3664 printk(KERN_EMERG "%s: failed to convert unwritten"
3665 "extents to written extents, error is %d"
3666 " io is still on inode %lu aio dio list\n",
3667 __func__, ret, inode->i_ino);
3668 return ret;
3669 }
3670
3671 /* clear the DIO AIO unwritten flag */
3672 io->flag = 0;
3673 return ret;
3674 }
3675
3676 /*
3677 * work on completed aio dio IO, to convert unwritten extents to extents
3678 */
3679 static void ext4_end_io_work(struct work_struct *work)
3680 {
3681 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3682 struct inode *inode = io->inode;
3683 struct ext4_inode_info *ei = EXT4_I(inode);
3684 unsigned long flags;
3685 int ret;
3686
3687 mutex_lock(&inode->i_mutex);
3688 ret = ext4_end_io_nolock(io);
3689 if (ret < 0) {
3690 mutex_unlock(&inode->i_mutex);
3691 return;
3692 }
3693
3694 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3695 if (!list_empty(&io->list))
3696 list_del_init(&io->list);
3697 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3698 mutex_unlock(&inode->i_mutex);
3699 ext4_free_io_end(io);
3700 }
3701
3702 /*
3703 * This function is called from ext4_sync_file().
3704 *
3705 * When IO is completed, the work to convert unwritten extents to
3706 * written is queued on workqueue but may not get immediately
3707 * scheduled. When fsync is called, we need to ensure the
3708 * conversion is complete before fsync returns.
3709 * The inode keeps track of a list of pending/completed IO that
3710 * might needs to do the conversion. This function walks through
3711 * the list and convert the related unwritten extents for completed IO
3712 * to written.
3713 * The function return the number of pending IOs on success.
3714 */
3715 int flush_completed_IO(struct inode *inode)
3716 {
3717 ext4_io_end_t *io;
3718 struct ext4_inode_info *ei = EXT4_I(inode);
3719 unsigned long flags;
3720 int ret = 0;
3721 int ret2 = 0;
3722
3723 if (list_empty(&ei->i_completed_io_list))
3724 return ret;
3725
3726 dump_completed_IO(inode);
3727 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3728 while (!list_empty(&ei->i_completed_io_list)){
3729 io = list_entry(ei->i_completed_io_list.next,
3730 ext4_io_end_t, list);
3731 /*
3732 * Calling ext4_end_io_nolock() to convert completed
3733 * IO to written.
3734 *
3735 * When ext4_sync_file() is called, run_queue() may already
3736 * about to flush the work corresponding to this io structure.
3737 * It will be upset if it founds the io structure related
3738 * to the work-to-be schedule is freed.
3739 *
3740 * Thus we need to keep the io structure still valid here after
3741 * convertion finished. The io structure has a flag to
3742 * avoid double converting from both fsync and background work
3743 * queue work.
3744 */
3745 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3746 ret = ext4_end_io_nolock(io);
3747 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3748 if (ret < 0)
3749 ret2 = ret;
3750 else
3751 list_del_init(&io->list);
3752 }
3753 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3754 return (ret2 < 0) ? ret2 : 0;
3755 }
3756
3757 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3758 {
3759 ext4_io_end_t *io = NULL;
3760
3761 io = kmalloc(sizeof(*io), flags);
3762
3763 if (io) {
3764 igrab(inode);
3765 io->inode = inode;
3766 io->flag = 0;
3767 io->offset = 0;
3768 io->size = 0;
3769 io->page = NULL;
3770 INIT_WORK(&io->work, ext4_end_io_work);
3771 INIT_LIST_HEAD(&io->list);
3772 }
3773
3774 return io;
3775 }
3776
3777 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3778 ssize_t size, void *private)
3779 {
3780 ext4_io_end_t *io_end = iocb->private;
3781 struct workqueue_struct *wq;
3782 unsigned long flags;
3783 struct ext4_inode_info *ei;
3784
3785 /* if not async direct IO or dio with 0 bytes write, just return */
3786 if (!io_end || !size)
3787 return;
3788
3789 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3790 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3791 iocb->private, io_end->inode->i_ino, iocb, offset,
3792 size);
3793
3794 /* if not aio dio with unwritten extents, just free io and return */
3795 if (io_end->flag != EXT4_IO_UNWRITTEN){
3796 ext4_free_io_end(io_end);
3797 iocb->private = NULL;
3798 return;
3799 }
3800
3801 io_end->offset = offset;
3802 io_end->size = size;
3803 io_end->flag = EXT4_IO_UNWRITTEN;
3804 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3805
3806 /* queue the work to convert unwritten extents to written */
3807 queue_work(wq, &io_end->work);
3808
3809 /* Add the io_end to per-inode completed aio dio list*/
3810 ei = EXT4_I(io_end->inode);
3811 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3812 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3813 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3814 iocb->private = NULL;
3815 }
3816
3817 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3818 {
3819 ext4_io_end_t *io_end = bh->b_private;
3820 struct workqueue_struct *wq;
3821 struct inode *inode;
3822 unsigned long flags;
3823
3824 if (!test_clear_buffer_uninit(bh) || !io_end)
3825 goto out;
3826
3827 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3828 printk("sb umounted, discard end_io request for inode %lu\n",
3829 io_end->inode->i_ino);
3830 ext4_free_io_end(io_end);
3831 goto out;
3832 }
3833
3834 io_end->flag = EXT4_IO_UNWRITTEN;
3835 inode = io_end->inode;
3836
3837 /* Add the io_end to per-inode completed io list*/
3838 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3839 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3840 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3841
3842 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3843 /* queue the work to convert unwritten extents to written */
3844 queue_work(wq, &io_end->work);
3845 out:
3846 bh->b_private = NULL;
3847 bh->b_end_io = NULL;
3848 clear_buffer_uninit(bh);
3849 end_buffer_async_write(bh, uptodate);
3850 }
3851
3852 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3853 {
3854 ext4_io_end_t *io_end;
3855 struct page *page = bh->b_page;
3856 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3857 size_t size = bh->b_size;
3858
3859 retry:
3860 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3861 if (!io_end) {
3862 if (printk_ratelimit())
3863 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3864 schedule();
3865 goto retry;
3866 }
3867 io_end->offset = offset;
3868 io_end->size = size;
3869 /*
3870 * We need to hold a reference to the page to make sure it
3871 * doesn't get evicted before ext4_end_io_work() has a chance
3872 * to convert the extent from written to unwritten.
3873 */
3874 io_end->page = page;
3875 get_page(io_end->page);
3876
3877 bh->b_private = io_end;
3878 bh->b_end_io = ext4_end_io_buffer_write;
3879 return 0;
3880 }
3881
3882 /*
3883 * For ext4 extent files, ext4 will do direct-io write to holes,
3884 * preallocated extents, and those write extend the file, no need to
3885 * fall back to buffered IO.
3886 *
3887 * For holes, we fallocate those blocks, mark them as unintialized
3888 * If those blocks were preallocated, we mark sure they are splited, but
3889 * still keep the range to write as unintialized.
3890 *
3891 * The unwrritten extents will be converted to written when DIO is completed.
3892 * For async direct IO, since the IO may still pending when return, we
3893 * set up an end_io call back function, which will do the convertion
3894 * when async direct IO completed.
3895 *
3896 * If the O_DIRECT write will extend the file then add this inode to the
3897 * orphan list. So recovery will truncate it back to the original size
3898 * if the machine crashes during the write.
3899 *
3900 */
3901 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3902 const struct iovec *iov, loff_t offset,
3903 unsigned long nr_segs)
3904 {
3905 struct file *file = iocb->ki_filp;
3906 struct inode *inode = file->f_mapping->host;
3907 ssize_t ret;
3908 size_t count = iov_length(iov, nr_segs);
3909
3910 loff_t final_size = offset + count;
3911 if (rw == WRITE && final_size <= inode->i_size) {
3912 /*
3913 * We could direct write to holes and fallocate.
3914 *
3915 * Allocated blocks to fill the hole are marked as uninitialized
3916 * to prevent paralel buffered read to expose the stale data
3917 * before DIO complete the data IO.
3918 *
3919 * As to previously fallocated extents, ext4 get_block
3920 * will just simply mark the buffer mapped but still
3921 * keep the extents uninitialized.
3922 *
3923 * for non AIO case, we will convert those unwritten extents
3924 * to written after return back from blockdev_direct_IO.
3925 *
3926 * for async DIO, the conversion needs to be defered when
3927 * the IO is completed. The ext4 end_io callback function
3928 * will be called to take care of the conversion work.
3929 * Here for async case, we allocate an io_end structure to
3930 * hook to the iocb.
3931 */
3932 iocb->private = NULL;
3933 EXT4_I(inode)->cur_aio_dio = NULL;
3934 if (!is_sync_kiocb(iocb)) {
3935 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3936 if (!iocb->private)
3937 return -ENOMEM;
3938 /*
3939 * we save the io structure for current async
3940 * direct IO, so that later ext4_get_blocks()
3941 * could flag the io structure whether there
3942 * is a unwritten extents needs to be converted
3943 * when IO is completed.
3944 */
3945 EXT4_I(inode)->cur_aio_dio = iocb->private;
3946 }
3947
3948 ret = blockdev_direct_IO(rw, iocb, inode,
3949 inode->i_sb->s_bdev, iov,
3950 offset, nr_segs,
3951 ext4_get_block_write,
3952 ext4_end_io_dio);
3953 if (iocb->private)
3954 EXT4_I(inode)->cur_aio_dio = NULL;
3955 /*
3956 * The io_end structure takes a reference to the inode,
3957 * that structure needs to be destroyed and the
3958 * reference to the inode need to be dropped, when IO is
3959 * complete, even with 0 byte write, or failed.
3960 *
3961 * In the successful AIO DIO case, the io_end structure will be
3962 * desctroyed and the reference to the inode will be dropped
3963 * after the end_io call back function is called.
3964 *
3965 * In the case there is 0 byte write, or error case, since
3966 * VFS direct IO won't invoke the end_io call back function,
3967 * we need to free the end_io structure here.
3968 */
3969 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3970 ext4_free_io_end(iocb->private);
3971 iocb->private = NULL;
3972 } else if (ret > 0 && ext4_test_inode_state(inode,
3973 EXT4_STATE_DIO_UNWRITTEN)) {
3974 int err;
3975 /*
3976 * for non AIO case, since the IO is already
3977 * completed, we could do the convertion right here
3978 */
3979 err = ext4_convert_unwritten_extents(inode,
3980 offset, ret);
3981 if (err < 0)
3982 ret = err;
3983 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3984 }
3985 return ret;
3986 }
3987
3988 /* for write the the end of file case, we fall back to old way */
3989 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3990 }
3991
3992 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3993 const struct iovec *iov, loff_t offset,
3994 unsigned long nr_segs)
3995 {
3996 struct file *file = iocb->ki_filp;
3997 struct inode *inode = file->f_mapping->host;
3998
3999 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4000 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
4001
4002 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
4003 }
4004
4005 /*
4006 * Pages can be marked dirty completely asynchronously from ext4's journalling
4007 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
4008 * much here because ->set_page_dirty is called under VFS locks. The page is
4009 * not necessarily locked.
4010 *
4011 * We cannot just dirty the page and leave attached buffers clean, because the
4012 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
4013 * or jbddirty because all the journalling code will explode.
4014 *
4015 * So what we do is to mark the page "pending dirty" and next time writepage
4016 * is called, propagate that into the buffers appropriately.
4017 */
4018 static int ext4_journalled_set_page_dirty(struct page *page)
4019 {
4020 SetPageChecked(page);
4021 return __set_page_dirty_nobuffers(page);
4022 }
4023
4024 static const struct address_space_operations ext4_ordered_aops = {
4025 .readpage = ext4_readpage,
4026 .readpages = ext4_readpages,
4027 .writepage = ext4_writepage,
4028 .sync_page = block_sync_page,
4029 .write_begin = ext4_write_begin,
4030 .write_end = ext4_ordered_write_end,
4031 .bmap = ext4_bmap,
4032 .invalidatepage = ext4_invalidatepage,
4033 .releasepage = ext4_releasepage,
4034 .direct_IO = ext4_direct_IO,
4035 .migratepage = buffer_migrate_page,
4036 .is_partially_uptodate = block_is_partially_uptodate,
4037 .error_remove_page = generic_error_remove_page,
4038 };
4039
4040 static const struct address_space_operations ext4_writeback_aops = {
4041 .readpage = ext4_readpage,
4042 .readpages = ext4_readpages,
4043 .writepage = ext4_writepage,
4044 .sync_page = block_sync_page,
4045 .write_begin = ext4_write_begin,
4046 .write_end = ext4_writeback_write_end,
4047 .bmap = ext4_bmap,
4048 .invalidatepage = ext4_invalidatepage,
4049 .releasepage = ext4_releasepage,
4050 .direct_IO = ext4_direct_IO,
4051 .migratepage = buffer_migrate_page,
4052 .is_partially_uptodate = block_is_partially_uptodate,
4053 .error_remove_page = generic_error_remove_page,
4054 };
4055
4056 static const struct address_space_operations ext4_journalled_aops = {
4057 .readpage = ext4_readpage,
4058 .readpages = ext4_readpages,
4059 .writepage = ext4_writepage,
4060 .sync_page = block_sync_page,
4061 .write_begin = ext4_write_begin,
4062 .write_end = ext4_journalled_write_end,
4063 .set_page_dirty = ext4_journalled_set_page_dirty,
4064 .bmap = ext4_bmap,
4065 .invalidatepage = ext4_invalidatepage,
4066 .releasepage = ext4_releasepage,
4067 .is_partially_uptodate = block_is_partially_uptodate,
4068 .error_remove_page = generic_error_remove_page,
4069 };
4070
4071 static const struct address_space_operations ext4_da_aops = {
4072 .readpage = ext4_readpage,
4073 .readpages = ext4_readpages,
4074 .writepage = ext4_writepage,
4075 .writepages = ext4_da_writepages,
4076 .sync_page = block_sync_page,
4077 .write_begin = ext4_da_write_begin,
4078 .write_end = ext4_da_write_end,
4079 .bmap = ext4_bmap,
4080 .invalidatepage = ext4_da_invalidatepage,
4081 .releasepage = ext4_releasepage,
4082 .direct_IO = ext4_direct_IO,
4083 .migratepage = buffer_migrate_page,
4084 .is_partially_uptodate = block_is_partially_uptodate,
4085 .error_remove_page = generic_error_remove_page,
4086 };
4087
4088 void ext4_set_aops(struct inode *inode)
4089 {
4090 if (ext4_should_order_data(inode) &&
4091 test_opt(inode->i_sb, DELALLOC))
4092 inode->i_mapping->a_ops = &ext4_da_aops;
4093 else if (ext4_should_order_data(inode))
4094 inode->i_mapping->a_ops = &ext4_ordered_aops;
4095 else if (ext4_should_writeback_data(inode) &&
4096 test_opt(inode->i_sb, DELALLOC))
4097 inode->i_mapping->a_ops = &ext4_da_aops;
4098 else if (ext4_should_writeback_data(inode))
4099 inode->i_mapping->a_ops = &ext4_writeback_aops;
4100 else
4101 inode->i_mapping->a_ops = &ext4_journalled_aops;
4102 }
4103
4104 /*
4105 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4106 * up to the end of the block which corresponds to `from'.
4107 * This required during truncate. We need to physically zero the tail end
4108 * of that block so it doesn't yield old data if the file is later grown.
4109 */
4110 int ext4_block_truncate_page(handle_t *handle,
4111 struct address_space *mapping, loff_t from)
4112 {
4113 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4114 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4115 unsigned blocksize, length, pos;
4116 ext4_lblk_t iblock;
4117 struct inode *inode = mapping->host;
4118 struct buffer_head *bh;
4119 struct page *page;
4120 int err = 0;
4121
4122 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4123 mapping_gfp_mask(mapping) & ~__GFP_FS);
4124 if (!page)
4125 return -EINVAL;
4126
4127 blocksize = inode->i_sb->s_blocksize;
4128 length = blocksize - (offset & (blocksize - 1));
4129 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4130
4131 /*
4132 * For "nobh" option, we can only work if we don't need to
4133 * read-in the page - otherwise we create buffers to do the IO.
4134 */
4135 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
4136 ext4_should_writeback_data(inode) && PageUptodate(page)) {
4137 zero_user(page, offset, length);
4138 set_page_dirty(page);
4139 goto unlock;
4140 }
4141
4142 if (!page_has_buffers(page))
4143 create_empty_buffers(page, blocksize, 0);
4144
4145 /* Find the buffer that contains "offset" */
4146 bh = page_buffers(page);
4147 pos = blocksize;
4148 while (offset >= pos) {
4149 bh = bh->b_this_page;
4150 iblock++;
4151 pos += blocksize;
4152 }
4153
4154 err = 0;
4155 if (buffer_freed(bh)) {
4156 BUFFER_TRACE(bh, "freed: skip");
4157 goto unlock;
4158 }
4159
4160 if (!buffer_mapped(bh)) {
4161 BUFFER_TRACE(bh, "unmapped");
4162 ext4_get_block(inode, iblock, bh, 0);
4163 /* unmapped? It's a hole - nothing to do */
4164 if (!buffer_mapped(bh)) {
4165 BUFFER_TRACE(bh, "still unmapped");
4166 goto unlock;
4167 }
4168 }
4169
4170 /* Ok, it's mapped. Make sure it's up-to-date */
4171 if (PageUptodate(page))
4172 set_buffer_uptodate(bh);
4173
4174 if (!buffer_uptodate(bh)) {
4175 err = -EIO;
4176 ll_rw_block(READ, 1, &bh);
4177 wait_on_buffer(bh);
4178 /* Uhhuh. Read error. Complain and punt. */
4179 if (!buffer_uptodate(bh))
4180 goto unlock;
4181 }
4182
4183 if (ext4_should_journal_data(inode)) {
4184 BUFFER_TRACE(bh, "get write access");
4185 err = ext4_journal_get_write_access(handle, bh);
4186 if (err)
4187 goto unlock;
4188 }
4189
4190 zero_user(page, offset, length);
4191
4192 BUFFER_TRACE(bh, "zeroed end of block");
4193
4194 err = 0;
4195 if (ext4_should_journal_data(inode)) {
4196 err = ext4_handle_dirty_metadata(handle, inode, bh);
4197 } else {
4198 if (ext4_should_order_data(inode))
4199 err = ext4_jbd2_file_inode(handle, inode);
4200 mark_buffer_dirty(bh);
4201 }
4202
4203 unlock:
4204 unlock_page(page);
4205 page_cache_release(page);
4206 return err;
4207 }
4208
4209 /*
4210 * Probably it should be a library function... search for first non-zero word
4211 * or memcmp with zero_page, whatever is better for particular architecture.
4212 * Linus?
4213 */
4214 static inline int all_zeroes(__le32 *p, __le32 *q)
4215 {
4216 while (p < q)
4217 if (*p++)
4218 return 0;
4219 return 1;
4220 }
4221
4222 /**
4223 * ext4_find_shared - find the indirect blocks for partial truncation.
4224 * @inode: inode in question
4225 * @depth: depth of the affected branch
4226 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4227 * @chain: place to store the pointers to partial indirect blocks
4228 * @top: place to the (detached) top of branch
4229 *
4230 * This is a helper function used by ext4_truncate().
4231 *
4232 * When we do truncate() we may have to clean the ends of several
4233 * indirect blocks but leave the blocks themselves alive. Block is
4234 * partially truncated if some data below the new i_size is refered
4235 * from it (and it is on the path to the first completely truncated
4236 * data block, indeed). We have to free the top of that path along
4237 * with everything to the right of the path. Since no allocation
4238 * past the truncation point is possible until ext4_truncate()
4239 * finishes, we may safely do the latter, but top of branch may
4240 * require special attention - pageout below the truncation point
4241 * might try to populate it.
4242 *
4243 * We atomically detach the top of branch from the tree, store the
4244 * block number of its root in *@top, pointers to buffer_heads of
4245 * partially truncated blocks - in @chain[].bh and pointers to
4246 * their last elements that should not be removed - in
4247 * @chain[].p. Return value is the pointer to last filled element
4248 * of @chain.
4249 *
4250 * The work left to caller to do the actual freeing of subtrees:
4251 * a) free the subtree starting from *@top
4252 * b) free the subtrees whose roots are stored in
4253 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4254 * c) free the subtrees growing from the inode past the @chain[0].
4255 * (no partially truncated stuff there). */
4256
4257 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4258 ext4_lblk_t offsets[4], Indirect chain[4],
4259 __le32 *top)
4260 {
4261 Indirect *partial, *p;
4262 int k, err;
4263
4264 *top = 0;
4265 /* Make k index the deepest non-null offset + 1 */
4266 for (k = depth; k > 1 && !offsets[k-1]; k--)
4267 ;
4268 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4269 /* Writer: pointers */
4270 if (!partial)
4271 partial = chain + k-1;
4272 /*
4273 * If the branch acquired continuation since we've looked at it -
4274 * fine, it should all survive and (new) top doesn't belong to us.
4275 */
4276 if (!partial->key && *partial->p)
4277 /* Writer: end */
4278 goto no_top;
4279 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4280 ;
4281 /*
4282 * OK, we've found the last block that must survive. The rest of our
4283 * branch should be detached before unlocking. However, if that rest
4284 * of branch is all ours and does not grow immediately from the inode
4285 * it's easier to cheat and just decrement partial->p.
4286 */
4287 if (p == chain + k - 1 && p > chain) {
4288 p->p--;
4289 } else {
4290 *top = *p->p;
4291 /* Nope, don't do this in ext4. Must leave the tree intact */
4292 #if 0
4293 *p->p = 0;
4294 #endif
4295 }
4296 /* Writer: end */
4297
4298 while (partial > p) {
4299 brelse(partial->bh);
4300 partial--;
4301 }
4302 no_top:
4303 return partial;
4304 }
4305
4306 /*
4307 * Zero a number of block pointers in either an inode or an indirect block.
4308 * If we restart the transaction we must again get write access to the
4309 * indirect block for further modification.
4310 *
4311 * We release `count' blocks on disk, but (last - first) may be greater
4312 * than `count' because there can be holes in there.
4313 */
4314 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4315 struct buffer_head *bh,
4316 ext4_fsblk_t block_to_free,
4317 unsigned long count, __le32 *first,
4318 __le32 *last)
4319 {
4320 __le32 *p;
4321 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4322
4323 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4324 flags |= EXT4_FREE_BLOCKS_METADATA;
4325
4326 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4327 count)) {
4328 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
4329 "blocks %llu len %lu",
4330 (unsigned long long) block_to_free, count);
4331 return 1;
4332 }
4333
4334 if (try_to_extend_transaction(handle, inode)) {
4335 if (bh) {
4336 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4337 ext4_handle_dirty_metadata(handle, inode, bh);
4338 }
4339 ext4_mark_inode_dirty(handle, inode);
4340 ext4_truncate_restart_trans(handle, inode,
4341 blocks_for_truncate(inode));
4342 if (bh) {
4343 BUFFER_TRACE(bh, "retaking write access");
4344 ext4_journal_get_write_access(handle, bh);
4345 }
4346 }
4347
4348 for (p = first; p < last; p++)
4349 *p = 0;
4350
4351 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4352 return 0;
4353 }
4354
4355 /**
4356 * ext4_free_data - free a list of data blocks
4357 * @handle: handle for this transaction
4358 * @inode: inode we are dealing with
4359 * @this_bh: indirect buffer_head which contains *@first and *@last
4360 * @first: array of block numbers
4361 * @last: points immediately past the end of array
4362 *
4363 * We are freeing all blocks refered from that array (numbers are stored as
4364 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4365 *
4366 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4367 * blocks are contiguous then releasing them at one time will only affect one
4368 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4369 * actually use a lot of journal space.
4370 *
4371 * @this_bh will be %NULL if @first and @last point into the inode's direct
4372 * block pointers.
4373 */
4374 static void ext4_free_data(handle_t *handle, struct inode *inode,
4375 struct buffer_head *this_bh,
4376 __le32 *first, __le32 *last)
4377 {
4378 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4379 unsigned long count = 0; /* Number of blocks in the run */
4380 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4381 corresponding to
4382 block_to_free */
4383 ext4_fsblk_t nr; /* Current block # */
4384 __le32 *p; /* Pointer into inode/ind
4385 for current block */
4386 int err;
4387
4388 if (this_bh) { /* For indirect block */
4389 BUFFER_TRACE(this_bh, "get_write_access");
4390 err = ext4_journal_get_write_access(handle, this_bh);
4391 /* Important: if we can't update the indirect pointers
4392 * to the blocks, we can't free them. */
4393 if (err)
4394 return;
4395 }
4396
4397 for (p = first; p < last; p++) {
4398 nr = le32_to_cpu(*p);
4399 if (nr) {
4400 /* accumulate blocks to free if they're contiguous */
4401 if (count == 0) {
4402 block_to_free = nr;
4403 block_to_free_p = p;
4404 count = 1;
4405 } else if (nr == block_to_free + count) {
4406 count++;
4407 } else {
4408 if (ext4_clear_blocks(handle, inode, this_bh,
4409 block_to_free, count,
4410 block_to_free_p, p))
4411 break;
4412 block_to_free = nr;
4413 block_to_free_p = p;
4414 count = 1;
4415 }
4416 }
4417 }
4418
4419 if (count > 0)
4420 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4421 count, block_to_free_p, p);
4422
4423 if (this_bh) {
4424 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4425
4426 /*
4427 * The buffer head should have an attached journal head at this
4428 * point. However, if the data is corrupted and an indirect
4429 * block pointed to itself, it would have been detached when
4430 * the block was cleared. Check for this instead of OOPSing.
4431 */
4432 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4433 ext4_handle_dirty_metadata(handle, inode, this_bh);
4434 else
4435 EXT4_ERROR_INODE(inode,
4436 "circular indirect block detected at "
4437 "block %llu",
4438 (unsigned long long) this_bh->b_blocknr);
4439 }
4440 }
4441
4442 /**
4443 * ext4_free_branches - free an array of branches
4444 * @handle: JBD handle for this transaction
4445 * @inode: inode we are dealing with
4446 * @parent_bh: the buffer_head which contains *@first and *@last
4447 * @first: array of block numbers
4448 * @last: pointer immediately past the end of array
4449 * @depth: depth of the branches to free
4450 *
4451 * We are freeing all blocks refered from these branches (numbers are
4452 * stored as little-endian 32-bit) and updating @inode->i_blocks
4453 * appropriately.
4454 */
4455 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4456 struct buffer_head *parent_bh,
4457 __le32 *first, __le32 *last, int depth)
4458 {
4459 ext4_fsblk_t nr;
4460 __le32 *p;
4461
4462 if (ext4_handle_is_aborted(handle))
4463 return;
4464
4465 if (depth--) {
4466 struct buffer_head *bh;
4467 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4468 p = last;
4469 while (--p >= first) {
4470 nr = le32_to_cpu(*p);
4471 if (!nr)
4472 continue; /* A hole */
4473
4474 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4475 nr, 1)) {
4476 EXT4_ERROR_INODE(inode,
4477 "invalid indirect mapped "
4478 "block %lu (level %d)",
4479 (unsigned long) nr, depth);
4480 break;
4481 }
4482
4483 /* Go read the buffer for the next level down */
4484 bh = sb_bread(inode->i_sb, nr);
4485
4486 /*
4487 * A read failure? Report error and clear slot
4488 * (should be rare).
4489 */
4490 if (!bh) {
4491 EXT4_ERROR_INODE(inode,
4492 "Read failure block=%llu",
4493 (unsigned long long) nr);
4494 continue;
4495 }
4496
4497 /* This zaps the entire block. Bottom up. */
4498 BUFFER_TRACE(bh, "free child branches");
4499 ext4_free_branches(handle, inode, bh,
4500 (__le32 *) bh->b_data,
4501 (__le32 *) bh->b_data + addr_per_block,
4502 depth);
4503
4504 /*
4505 * We've probably journalled the indirect block several
4506 * times during the truncate. But it's no longer
4507 * needed and we now drop it from the transaction via
4508 * jbd2_journal_revoke().
4509 *
4510 * That's easy if it's exclusively part of this
4511 * transaction. But if it's part of the committing
4512 * transaction then jbd2_journal_forget() will simply
4513 * brelse() it. That means that if the underlying
4514 * block is reallocated in ext4_get_block(),
4515 * unmap_underlying_metadata() will find this block
4516 * and will try to get rid of it. damn, damn.
4517 *
4518 * If this block has already been committed to the
4519 * journal, a revoke record will be written. And
4520 * revoke records must be emitted *before* clearing
4521 * this block's bit in the bitmaps.
4522 */
4523 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4524
4525 /*
4526 * Everything below this this pointer has been
4527 * released. Now let this top-of-subtree go.
4528 *
4529 * We want the freeing of this indirect block to be
4530 * atomic in the journal with the updating of the
4531 * bitmap block which owns it. So make some room in
4532 * the journal.
4533 *
4534 * We zero the parent pointer *after* freeing its
4535 * pointee in the bitmaps, so if extend_transaction()
4536 * for some reason fails to put the bitmap changes and
4537 * the release into the same transaction, recovery
4538 * will merely complain about releasing a free block,
4539 * rather than leaking blocks.
4540 */
4541 if (ext4_handle_is_aborted(handle))
4542 return;
4543 if (try_to_extend_transaction(handle, inode)) {
4544 ext4_mark_inode_dirty(handle, inode);
4545 ext4_truncate_restart_trans(handle, inode,
4546 blocks_for_truncate(inode));
4547 }
4548
4549 ext4_free_blocks(handle, inode, 0, nr, 1,
4550 EXT4_FREE_BLOCKS_METADATA);
4551
4552 if (parent_bh) {
4553 /*
4554 * The block which we have just freed is
4555 * pointed to by an indirect block: journal it
4556 */
4557 BUFFER_TRACE(parent_bh, "get_write_access");
4558 if (!ext4_journal_get_write_access(handle,
4559 parent_bh)){
4560 *p = 0;
4561 BUFFER_TRACE(parent_bh,
4562 "call ext4_handle_dirty_metadata");
4563 ext4_handle_dirty_metadata(handle,
4564 inode,
4565 parent_bh);
4566 }
4567 }
4568 }
4569 } else {
4570 /* We have reached the bottom of the tree. */
4571 BUFFER_TRACE(parent_bh, "free data blocks");
4572 ext4_free_data(handle, inode, parent_bh, first, last);
4573 }
4574 }
4575
4576 int ext4_can_truncate(struct inode *inode)
4577 {
4578 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4579 return 0;
4580 if (S_ISREG(inode->i_mode))
4581 return 1;
4582 if (S_ISDIR(inode->i_mode))
4583 return 1;
4584 if (S_ISLNK(inode->i_mode))
4585 return !ext4_inode_is_fast_symlink(inode);
4586 return 0;
4587 }
4588
4589 /*
4590 * ext4_truncate()
4591 *
4592 * We block out ext4_get_block() block instantiations across the entire
4593 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4594 * simultaneously on behalf of the same inode.
4595 *
4596 * As we work through the truncate and commmit bits of it to the journal there
4597 * is one core, guiding principle: the file's tree must always be consistent on
4598 * disk. We must be able to restart the truncate after a crash.
4599 *
4600 * The file's tree may be transiently inconsistent in memory (although it
4601 * probably isn't), but whenever we close off and commit a journal transaction,
4602 * the contents of (the filesystem + the journal) must be consistent and
4603 * restartable. It's pretty simple, really: bottom up, right to left (although
4604 * left-to-right works OK too).
4605 *
4606 * Note that at recovery time, journal replay occurs *before* the restart of
4607 * truncate against the orphan inode list.
4608 *
4609 * The committed inode has the new, desired i_size (which is the same as
4610 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4611 * that this inode's truncate did not complete and it will again call
4612 * ext4_truncate() to have another go. So there will be instantiated blocks
4613 * to the right of the truncation point in a crashed ext4 filesystem. But
4614 * that's fine - as long as they are linked from the inode, the post-crash
4615 * ext4_truncate() run will find them and release them.
4616 */
4617 void ext4_truncate(struct inode *inode)
4618 {
4619 handle_t *handle;
4620 struct ext4_inode_info *ei = EXT4_I(inode);
4621 __le32 *i_data = ei->i_data;
4622 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4623 struct address_space *mapping = inode->i_mapping;
4624 ext4_lblk_t offsets[4];
4625 Indirect chain[4];
4626 Indirect *partial;
4627 __le32 nr = 0;
4628 int n;
4629 ext4_lblk_t last_block;
4630 unsigned blocksize = inode->i_sb->s_blocksize;
4631
4632 if (!ext4_can_truncate(inode))
4633 return;
4634
4635 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4636
4637 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4638 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4639
4640 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4641 ext4_ext_truncate(inode);
4642 return;
4643 }
4644
4645 handle = start_transaction(inode);
4646 if (IS_ERR(handle))
4647 return; /* AKPM: return what? */
4648
4649 last_block = (inode->i_size + blocksize-1)
4650 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4651
4652 if (inode->i_size & (blocksize - 1))
4653 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4654 goto out_stop;
4655
4656 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4657 if (n == 0)
4658 goto out_stop; /* error */
4659
4660 /*
4661 * OK. This truncate is going to happen. We add the inode to the
4662 * orphan list, so that if this truncate spans multiple transactions,
4663 * and we crash, we will resume the truncate when the filesystem
4664 * recovers. It also marks the inode dirty, to catch the new size.
4665 *
4666 * Implication: the file must always be in a sane, consistent
4667 * truncatable state while each transaction commits.
4668 */
4669 if (ext4_orphan_add(handle, inode))
4670 goto out_stop;
4671
4672 /*
4673 * From here we block out all ext4_get_block() callers who want to
4674 * modify the block allocation tree.
4675 */
4676 down_write(&ei->i_data_sem);
4677
4678 ext4_discard_preallocations(inode);
4679
4680 /*
4681 * The orphan list entry will now protect us from any crash which
4682 * occurs before the truncate completes, so it is now safe to propagate
4683 * the new, shorter inode size (held for now in i_size) into the
4684 * on-disk inode. We do this via i_disksize, which is the value which
4685 * ext4 *really* writes onto the disk inode.
4686 */
4687 ei->i_disksize = inode->i_size;
4688
4689 if (n == 1) { /* direct blocks */
4690 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4691 i_data + EXT4_NDIR_BLOCKS);
4692 goto do_indirects;
4693 }
4694
4695 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4696 /* Kill the top of shared branch (not detached) */
4697 if (nr) {
4698 if (partial == chain) {
4699 /* Shared branch grows from the inode */
4700 ext4_free_branches(handle, inode, NULL,
4701 &nr, &nr+1, (chain+n-1) - partial);
4702 *partial->p = 0;
4703 /*
4704 * We mark the inode dirty prior to restart,
4705 * and prior to stop. No need for it here.
4706 */
4707 } else {
4708 /* Shared branch grows from an indirect block */
4709 BUFFER_TRACE(partial->bh, "get_write_access");
4710 ext4_free_branches(handle, inode, partial->bh,
4711 partial->p,
4712 partial->p+1, (chain+n-1) - partial);
4713 }
4714 }
4715 /* Clear the ends of indirect blocks on the shared branch */
4716 while (partial > chain) {
4717 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4718 (__le32*)partial->bh->b_data+addr_per_block,
4719 (chain+n-1) - partial);
4720 BUFFER_TRACE(partial->bh, "call brelse");
4721 brelse(partial->bh);
4722 partial--;
4723 }
4724 do_indirects:
4725 /* Kill the remaining (whole) subtrees */
4726 switch (offsets[0]) {
4727 default:
4728 nr = i_data[EXT4_IND_BLOCK];
4729 if (nr) {
4730 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4731 i_data[EXT4_IND_BLOCK] = 0;
4732 }
4733 case EXT4_IND_BLOCK:
4734 nr = i_data[EXT4_DIND_BLOCK];
4735 if (nr) {
4736 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4737 i_data[EXT4_DIND_BLOCK] = 0;
4738 }
4739 case EXT4_DIND_BLOCK:
4740 nr = i_data[EXT4_TIND_BLOCK];
4741 if (nr) {
4742 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4743 i_data[EXT4_TIND_BLOCK] = 0;
4744 }
4745 case EXT4_TIND_BLOCK:
4746 ;
4747 }
4748
4749 up_write(&ei->i_data_sem);
4750 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4751 ext4_mark_inode_dirty(handle, inode);
4752
4753 /*
4754 * In a multi-transaction truncate, we only make the final transaction
4755 * synchronous
4756 */
4757 if (IS_SYNC(inode))
4758 ext4_handle_sync(handle);
4759 out_stop:
4760 /*
4761 * If this was a simple ftruncate(), and the file will remain alive
4762 * then we need to clear up the orphan record which we created above.
4763 * However, if this was a real unlink then we were called by
4764 * ext4_delete_inode(), and we allow that function to clean up the
4765 * orphan info for us.
4766 */
4767 if (inode->i_nlink)
4768 ext4_orphan_del(handle, inode);
4769
4770 ext4_journal_stop(handle);
4771 }
4772
4773 /*
4774 * ext4_get_inode_loc returns with an extra refcount against the inode's
4775 * underlying buffer_head on success. If 'in_mem' is true, we have all
4776 * data in memory that is needed to recreate the on-disk version of this
4777 * inode.
4778 */
4779 static int __ext4_get_inode_loc(struct inode *inode,
4780 struct ext4_iloc *iloc, int in_mem)
4781 {
4782 struct ext4_group_desc *gdp;
4783 struct buffer_head *bh;
4784 struct super_block *sb = inode->i_sb;
4785 ext4_fsblk_t block;
4786 int inodes_per_block, inode_offset;
4787
4788 iloc->bh = NULL;
4789 if (!ext4_valid_inum(sb, inode->i_ino))
4790 return -EIO;
4791
4792 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4793 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4794 if (!gdp)
4795 return -EIO;
4796
4797 /*
4798 * Figure out the offset within the block group inode table
4799 */
4800 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4801 inode_offset = ((inode->i_ino - 1) %
4802 EXT4_INODES_PER_GROUP(sb));
4803 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4804 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4805
4806 bh = sb_getblk(sb, block);
4807 if (!bh) {
4808 EXT4_ERROR_INODE(inode, "unable to read inode block - "
4809 "block %llu", block);
4810 return -EIO;
4811 }
4812 if (!buffer_uptodate(bh)) {
4813 lock_buffer(bh);
4814
4815 /*
4816 * If the buffer has the write error flag, we have failed
4817 * to write out another inode in the same block. In this
4818 * case, we don't have to read the block because we may
4819 * read the old inode data successfully.
4820 */
4821 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4822 set_buffer_uptodate(bh);
4823
4824 if (buffer_uptodate(bh)) {
4825 /* someone brought it uptodate while we waited */
4826 unlock_buffer(bh);
4827 goto has_buffer;
4828 }
4829
4830 /*
4831 * If we have all information of the inode in memory and this
4832 * is the only valid inode in the block, we need not read the
4833 * block.
4834 */
4835 if (in_mem) {
4836 struct buffer_head *bitmap_bh;
4837 int i, start;
4838
4839 start = inode_offset & ~(inodes_per_block - 1);
4840
4841 /* Is the inode bitmap in cache? */
4842 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4843 if (!bitmap_bh)
4844 goto make_io;
4845
4846 /*
4847 * If the inode bitmap isn't in cache then the
4848 * optimisation may end up performing two reads instead
4849 * of one, so skip it.
4850 */
4851 if (!buffer_uptodate(bitmap_bh)) {
4852 brelse(bitmap_bh);
4853 goto make_io;
4854 }
4855 for (i = start; i < start + inodes_per_block; i++) {
4856 if (i == inode_offset)
4857 continue;
4858 if (ext4_test_bit(i, bitmap_bh->b_data))
4859 break;
4860 }
4861 brelse(bitmap_bh);
4862 if (i == start + inodes_per_block) {
4863 /* all other inodes are free, so skip I/O */
4864 memset(bh->b_data, 0, bh->b_size);
4865 set_buffer_uptodate(bh);
4866 unlock_buffer(bh);
4867 goto has_buffer;
4868 }
4869 }
4870
4871 make_io:
4872 /*
4873 * If we need to do any I/O, try to pre-readahead extra
4874 * blocks from the inode table.
4875 */
4876 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4877 ext4_fsblk_t b, end, table;
4878 unsigned num;
4879
4880 table = ext4_inode_table(sb, gdp);
4881 /* s_inode_readahead_blks is always a power of 2 */
4882 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4883 if (table > b)
4884 b = table;
4885 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4886 num = EXT4_INODES_PER_GROUP(sb);
4887 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4888 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4889 num -= ext4_itable_unused_count(sb, gdp);
4890 table += num / inodes_per_block;
4891 if (end > table)
4892 end = table;
4893 while (b <= end)
4894 sb_breadahead(sb, b++);
4895 }
4896
4897 /*
4898 * There are other valid inodes in the buffer, this inode
4899 * has in-inode xattrs, or we don't have this inode in memory.
4900 * Read the block from disk.
4901 */
4902 get_bh(bh);
4903 bh->b_end_io = end_buffer_read_sync;
4904 submit_bh(READ_META, bh);
4905 wait_on_buffer(bh);
4906 if (!buffer_uptodate(bh)) {
4907 EXT4_ERROR_INODE(inode, "unable to read inode "
4908 "block %llu", block);
4909 brelse(bh);
4910 return -EIO;
4911 }
4912 }
4913 has_buffer:
4914 iloc->bh = bh;
4915 return 0;
4916 }
4917
4918 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4919 {
4920 /* We have all inode data except xattrs in memory here. */
4921 return __ext4_get_inode_loc(inode, iloc,
4922 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4923 }
4924
4925 void ext4_set_inode_flags(struct inode *inode)
4926 {
4927 unsigned int flags = EXT4_I(inode)->i_flags;
4928
4929 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4930 if (flags & EXT4_SYNC_FL)
4931 inode->i_flags |= S_SYNC;
4932 if (flags & EXT4_APPEND_FL)
4933 inode->i_flags |= S_APPEND;
4934 if (flags & EXT4_IMMUTABLE_FL)
4935 inode->i_flags |= S_IMMUTABLE;
4936 if (flags & EXT4_NOATIME_FL)
4937 inode->i_flags |= S_NOATIME;
4938 if (flags & EXT4_DIRSYNC_FL)
4939 inode->i_flags |= S_DIRSYNC;
4940 }
4941
4942 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4943 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4944 {
4945 unsigned int flags = ei->vfs_inode.i_flags;
4946
4947 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4948 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4949 if (flags & S_SYNC)
4950 ei->i_flags |= EXT4_SYNC_FL;
4951 if (flags & S_APPEND)
4952 ei->i_flags |= EXT4_APPEND_FL;
4953 if (flags & S_IMMUTABLE)
4954 ei->i_flags |= EXT4_IMMUTABLE_FL;
4955 if (flags & S_NOATIME)
4956 ei->i_flags |= EXT4_NOATIME_FL;
4957 if (flags & S_DIRSYNC)
4958 ei->i_flags |= EXT4_DIRSYNC_FL;
4959 }
4960
4961 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4962 struct ext4_inode_info *ei)
4963 {
4964 blkcnt_t i_blocks ;
4965 struct inode *inode = &(ei->vfs_inode);
4966 struct super_block *sb = inode->i_sb;
4967
4968 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4969 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4970 /* we are using combined 48 bit field */
4971 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4972 le32_to_cpu(raw_inode->i_blocks_lo);
4973 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4974 /* i_blocks represent file system block size */
4975 return i_blocks << (inode->i_blkbits - 9);
4976 } else {
4977 return i_blocks;
4978 }
4979 } else {
4980 return le32_to_cpu(raw_inode->i_blocks_lo);
4981 }
4982 }
4983
4984 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4985 {
4986 struct ext4_iloc iloc;
4987 struct ext4_inode *raw_inode;
4988 struct ext4_inode_info *ei;
4989 struct inode *inode;
4990 journal_t *journal = EXT4_SB(sb)->s_journal;
4991 long ret;
4992 int block;
4993
4994 inode = iget_locked(sb, ino);
4995 if (!inode)
4996 return ERR_PTR(-ENOMEM);
4997 if (!(inode->i_state & I_NEW))
4998 return inode;
4999
5000 ei = EXT4_I(inode);
5001 iloc.bh = 0;
5002
5003 ret = __ext4_get_inode_loc(inode, &iloc, 0);
5004 if (ret < 0)
5005 goto bad_inode;
5006 raw_inode = ext4_raw_inode(&iloc);
5007 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
5008 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
5009 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
5010 if (!(test_opt(inode->i_sb, NO_UID32))) {
5011 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
5012 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
5013 }
5014 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
5015
5016 ei->i_state_flags = 0;
5017 ei->i_dir_start_lookup = 0;
5018 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
5019 /* We now have enough fields to check if the inode was active or not.
5020 * This is needed because nfsd might try to access dead inodes
5021 * the test is that same one that e2fsck uses
5022 * NeilBrown 1999oct15
5023 */
5024 if (inode->i_nlink == 0) {
5025 if (inode->i_mode == 0 ||
5026 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5027 /* this inode is deleted */
5028 ret = -ESTALE;
5029 goto bad_inode;
5030 }
5031 /* The only unlinked inodes we let through here have
5032 * valid i_mode and are being read by the orphan
5033 * recovery code: that's fine, we're about to complete
5034 * the process of deleting those. */
5035 }
5036 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5037 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5038 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5039 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
5040 ei->i_file_acl |=
5041 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5042 inode->i_size = ext4_isize(raw_inode);
5043 ei->i_disksize = inode->i_size;
5044 #ifdef CONFIG_QUOTA
5045 ei->i_reserved_quota = 0;
5046 #endif
5047 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5048 ei->i_block_group = iloc.block_group;
5049 ei->i_last_alloc_group = ~0;
5050 /*
5051 * NOTE! The in-memory inode i_data array is in little-endian order
5052 * even on big-endian machines: we do NOT byteswap the block numbers!
5053 */
5054 for (block = 0; block < EXT4_N_BLOCKS; block++)
5055 ei->i_data[block] = raw_inode->i_block[block];
5056 INIT_LIST_HEAD(&ei->i_orphan);
5057
5058 /*
5059 * Set transaction id's of transactions that have to be committed
5060 * to finish f[data]sync. We set them to currently running transaction
5061 * as we cannot be sure that the inode or some of its metadata isn't
5062 * part of the transaction - the inode could have been reclaimed and
5063 * now it is reread from disk.
5064 */
5065 if (journal) {
5066 transaction_t *transaction;
5067 tid_t tid;
5068
5069 spin_lock(&journal->j_state_lock);
5070 if (journal->j_running_transaction)
5071 transaction = journal->j_running_transaction;
5072 else
5073 transaction = journal->j_committing_transaction;
5074 if (transaction)
5075 tid = transaction->t_tid;
5076 else
5077 tid = journal->j_commit_sequence;
5078 spin_unlock(&journal->j_state_lock);
5079 ei->i_sync_tid = tid;
5080 ei->i_datasync_tid = tid;
5081 }
5082
5083 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5084 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5085 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5086 EXT4_INODE_SIZE(inode->i_sb)) {
5087 ret = -EIO;
5088 goto bad_inode;
5089 }
5090 if (ei->i_extra_isize == 0) {
5091 /* The extra space is currently unused. Use it. */
5092 ei->i_extra_isize = sizeof(struct ext4_inode) -
5093 EXT4_GOOD_OLD_INODE_SIZE;
5094 } else {
5095 __le32 *magic = (void *)raw_inode +
5096 EXT4_GOOD_OLD_INODE_SIZE +
5097 ei->i_extra_isize;
5098 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5099 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5100 }
5101 } else
5102 ei->i_extra_isize = 0;
5103
5104 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5105 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5106 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5107 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5108
5109 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5110 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5111 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5112 inode->i_version |=
5113 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5114 }
5115
5116 ret = 0;
5117 if (ei->i_file_acl &&
5118 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5119 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
5120 ei->i_file_acl);
5121 ret = -EIO;
5122 goto bad_inode;
5123 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
5124 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5125 (S_ISLNK(inode->i_mode) &&
5126 !ext4_inode_is_fast_symlink(inode)))
5127 /* Validate extent which is part of inode */
5128 ret = ext4_ext_check_inode(inode);
5129 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5130 (S_ISLNK(inode->i_mode) &&
5131 !ext4_inode_is_fast_symlink(inode))) {
5132 /* Validate block references which are part of inode */
5133 ret = ext4_check_inode_blockref(inode);
5134 }
5135 if (ret)
5136 goto bad_inode;
5137
5138 if (S_ISREG(inode->i_mode)) {
5139 inode->i_op = &ext4_file_inode_operations;
5140 inode->i_fop = &ext4_file_operations;
5141 ext4_set_aops(inode);
5142 } else if (S_ISDIR(inode->i_mode)) {
5143 inode->i_op = &ext4_dir_inode_operations;
5144 inode->i_fop = &ext4_dir_operations;
5145 } else if (S_ISLNK(inode->i_mode)) {
5146 if (ext4_inode_is_fast_symlink(inode)) {
5147 inode->i_op = &ext4_fast_symlink_inode_operations;
5148 nd_terminate_link(ei->i_data, inode->i_size,
5149 sizeof(ei->i_data) - 1);
5150 } else {
5151 inode->i_op = &ext4_symlink_inode_operations;
5152 ext4_set_aops(inode);
5153 }
5154 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5155 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5156 inode->i_op = &ext4_special_inode_operations;
5157 if (raw_inode->i_block[0])
5158 init_special_inode(inode, inode->i_mode,
5159 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5160 else
5161 init_special_inode(inode, inode->i_mode,
5162 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5163 } else {
5164 ret = -EIO;
5165 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
5166 goto bad_inode;
5167 }
5168 brelse(iloc.bh);
5169 ext4_set_inode_flags(inode);
5170 unlock_new_inode(inode);
5171 return inode;
5172
5173 bad_inode:
5174 brelse(iloc.bh);
5175 iget_failed(inode);
5176 return ERR_PTR(ret);
5177 }
5178
5179 static int ext4_inode_blocks_set(handle_t *handle,
5180 struct ext4_inode *raw_inode,
5181 struct ext4_inode_info *ei)
5182 {
5183 struct inode *inode = &(ei->vfs_inode);
5184 u64 i_blocks = inode->i_blocks;
5185 struct super_block *sb = inode->i_sb;
5186
5187 if (i_blocks <= ~0U) {
5188 /*
5189 * i_blocks can be represnted in a 32 bit variable
5190 * as multiple of 512 bytes
5191 */
5192 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5193 raw_inode->i_blocks_high = 0;
5194 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5195 return 0;
5196 }
5197 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5198 return -EFBIG;
5199
5200 if (i_blocks <= 0xffffffffffffULL) {
5201 /*
5202 * i_blocks can be represented in a 48 bit variable
5203 * as multiple of 512 bytes
5204 */
5205 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5206 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5207 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5208 } else {
5209 ei->i_flags |= EXT4_HUGE_FILE_FL;
5210 /* i_block is stored in file system block size */
5211 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5212 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5213 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5214 }
5215 return 0;
5216 }
5217
5218 /*
5219 * Post the struct inode info into an on-disk inode location in the
5220 * buffer-cache. This gobbles the caller's reference to the
5221 * buffer_head in the inode location struct.
5222 *
5223 * The caller must have write access to iloc->bh.
5224 */
5225 static int ext4_do_update_inode(handle_t *handle,
5226 struct inode *inode,
5227 struct ext4_iloc *iloc)
5228 {
5229 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5230 struct ext4_inode_info *ei = EXT4_I(inode);
5231 struct buffer_head *bh = iloc->bh;
5232 int err = 0, rc, block;
5233
5234 /* For fields not not tracking in the in-memory inode,
5235 * initialise them to zero for new inodes. */
5236 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5237 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5238
5239 ext4_get_inode_flags(ei);
5240 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5241 if (!(test_opt(inode->i_sb, NO_UID32))) {
5242 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5243 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5244 /*
5245 * Fix up interoperability with old kernels. Otherwise, old inodes get
5246 * re-used with the upper 16 bits of the uid/gid intact
5247 */
5248 if (!ei->i_dtime) {
5249 raw_inode->i_uid_high =
5250 cpu_to_le16(high_16_bits(inode->i_uid));
5251 raw_inode->i_gid_high =
5252 cpu_to_le16(high_16_bits(inode->i_gid));
5253 } else {
5254 raw_inode->i_uid_high = 0;
5255 raw_inode->i_gid_high = 0;
5256 }
5257 } else {
5258 raw_inode->i_uid_low =
5259 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5260 raw_inode->i_gid_low =
5261 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5262 raw_inode->i_uid_high = 0;
5263 raw_inode->i_gid_high = 0;
5264 }
5265 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5266
5267 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5268 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5269 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5270 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5271
5272 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5273 goto out_brelse;
5274 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5275 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5276 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5277 cpu_to_le32(EXT4_OS_HURD))
5278 raw_inode->i_file_acl_high =
5279 cpu_to_le16(ei->i_file_acl >> 32);
5280 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5281 ext4_isize_set(raw_inode, ei->i_disksize);
5282 if (ei->i_disksize > 0x7fffffffULL) {
5283 struct super_block *sb = inode->i_sb;
5284 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5285 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5286 EXT4_SB(sb)->s_es->s_rev_level ==
5287 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5288 /* If this is the first large file
5289 * created, add a flag to the superblock.
5290 */
5291 err = ext4_journal_get_write_access(handle,
5292 EXT4_SB(sb)->s_sbh);
5293 if (err)
5294 goto out_brelse;
5295 ext4_update_dynamic_rev(sb);
5296 EXT4_SET_RO_COMPAT_FEATURE(sb,
5297 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5298 sb->s_dirt = 1;
5299 ext4_handle_sync(handle);
5300 err = ext4_handle_dirty_metadata(handle, NULL,
5301 EXT4_SB(sb)->s_sbh);
5302 }
5303 }
5304 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5305 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5306 if (old_valid_dev(inode->i_rdev)) {
5307 raw_inode->i_block[0] =
5308 cpu_to_le32(old_encode_dev(inode->i_rdev));
5309 raw_inode->i_block[1] = 0;
5310 } else {
5311 raw_inode->i_block[0] = 0;
5312 raw_inode->i_block[1] =
5313 cpu_to_le32(new_encode_dev(inode->i_rdev));
5314 raw_inode->i_block[2] = 0;
5315 }
5316 } else
5317 for (block = 0; block < EXT4_N_BLOCKS; block++)
5318 raw_inode->i_block[block] = ei->i_data[block];
5319
5320 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5321 if (ei->i_extra_isize) {
5322 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5323 raw_inode->i_version_hi =
5324 cpu_to_le32(inode->i_version >> 32);
5325 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5326 }
5327
5328 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5329 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5330 if (!err)
5331 err = rc;
5332 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5333
5334 ext4_update_inode_fsync_trans(handle, inode, 0);
5335 out_brelse:
5336 brelse(bh);
5337 ext4_std_error(inode->i_sb, err);
5338 return err;
5339 }
5340
5341 /*
5342 * ext4_write_inode()
5343 *
5344 * We are called from a few places:
5345 *
5346 * - Within generic_file_write() for O_SYNC files.
5347 * Here, there will be no transaction running. We wait for any running
5348 * trasnaction to commit.
5349 *
5350 * - Within sys_sync(), kupdate and such.
5351 * We wait on commit, if tol to.
5352 *
5353 * - Within prune_icache() (PF_MEMALLOC == true)
5354 * Here we simply return. We can't afford to block kswapd on the
5355 * journal commit.
5356 *
5357 * In all cases it is actually safe for us to return without doing anything,
5358 * because the inode has been copied into a raw inode buffer in
5359 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5360 * knfsd.
5361 *
5362 * Note that we are absolutely dependent upon all inode dirtiers doing the
5363 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5364 * which we are interested.
5365 *
5366 * It would be a bug for them to not do this. The code:
5367 *
5368 * mark_inode_dirty(inode)
5369 * stuff();
5370 * inode->i_size = expr;
5371 *
5372 * is in error because a kswapd-driven write_inode() could occur while
5373 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5374 * will no longer be on the superblock's dirty inode list.
5375 */
5376 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5377 {
5378 int err;
5379
5380 if (current->flags & PF_MEMALLOC)
5381 return 0;
5382
5383 if (EXT4_SB(inode->i_sb)->s_journal) {
5384 if (ext4_journal_current_handle()) {
5385 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5386 dump_stack();
5387 return -EIO;
5388 }
5389
5390 if (wbc->sync_mode != WB_SYNC_ALL)
5391 return 0;
5392
5393 err = ext4_force_commit(inode->i_sb);
5394 } else {
5395 struct ext4_iloc iloc;
5396
5397 err = __ext4_get_inode_loc(inode, &iloc, 0);
5398 if (err)
5399 return err;
5400 if (wbc->sync_mode == WB_SYNC_ALL)
5401 sync_dirty_buffer(iloc.bh);
5402 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5403 EXT4_ERROR_INODE(inode,
5404 "IO error syncing inode (block=%llu)",
5405 (unsigned long long) iloc.bh->b_blocknr);
5406 err = -EIO;
5407 }
5408 brelse(iloc.bh);
5409 }
5410 return err;
5411 }
5412
5413 /*
5414 * ext4_setattr()
5415 *
5416 * Called from notify_change.
5417 *
5418 * We want to trap VFS attempts to truncate the file as soon as
5419 * possible. In particular, we want to make sure that when the VFS
5420 * shrinks i_size, we put the inode on the orphan list and modify
5421 * i_disksize immediately, so that during the subsequent flushing of
5422 * dirty pages and freeing of disk blocks, we can guarantee that any
5423 * commit will leave the blocks being flushed in an unused state on
5424 * disk. (On recovery, the inode will get truncated and the blocks will
5425 * be freed, so we have a strong guarantee that no future commit will
5426 * leave these blocks visible to the user.)
5427 *
5428 * Another thing we have to assure is that if we are in ordered mode
5429 * and inode is still attached to the committing transaction, we must
5430 * we start writeout of all the dirty pages which are being truncated.
5431 * This way we are sure that all the data written in the previous
5432 * transaction are already on disk (truncate waits for pages under
5433 * writeback).
5434 *
5435 * Called with inode->i_mutex down.
5436 */
5437 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5438 {
5439 struct inode *inode = dentry->d_inode;
5440 int error, rc = 0;
5441 const unsigned int ia_valid = attr->ia_valid;
5442
5443 error = inode_change_ok(inode, attr);
5444 if (error)
5445 return error;
5446
5447 if (is_quota_modification(inode, attr))
5448 dquot_initialize(inode);
5449 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5450 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5451 handle_t *handle;
5452
5453 /* (user+group)*(old+new) structure, inode write (sb,
5454 * inode block, ? - but truncate inode update has it) */
5455 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5456 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5457 if (IS_ERR(handle)) {
5458 error = PTR_ERR(handle);
5459 goto err_out;
5460 }
5461 error = dquot_transfer(inode, attr);
5462 if (error) {
5463 ext4_journal_stop(handle);
5464 return error;
5465 }
5466 /* Update corresponding info in inode so that everything is in
5467 * one transaction */
5468 if (attr->ia_valid & ATTR_UID)
5469 inode->i_uid = attr->ia_uid;
5470 if (attr->ia_valid & ATTR_GID)
5471 inode->i_gid = attr->ia_gid;
5472 error = ext4_mark_inode_dirty(handle, inode);
5473 ext4_journal_stop(handle);
5474 }
5475
5476 if (attr->ia_valid & ATTR_SIZE) {
5477 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5478 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5479
5480 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5481 error = -EFBIG;
5482 goto err_out;
5483 }
5484 }
5485 }
5486
5487 if (S_ISREG(inode->i_mode) &&
5488 attr->ia_valid & ATTR_SIZE &&
5489 (attr->ia_size < inode->i_size ||
5490 (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))) {
5491 handle_t *handle;
5492
5493 handle = ext4_journal_start(inode, 3);
5494 if (IS_ERR(handle)) {
5495 error = PTR_ERR(handle);
5496 goto err_out;
5497 }
5498
5499 error = ext4_orphan_add(handle, inode);
5500 EXT4_I(inode)->i_disksize = attr->ia_size;
5501 rc = ext4_mark_inode_dirty(handle, inode);
5502 if (!error)
5503 error = rc;
5504 ext4_journal_stop(handle);
5505
5506 if (ext4_should_order_data(inode)) {
5507 error = ext4_begin_ordered_truncate(inode,
5508 attr->ia_size);
5509 if (error) {
5510 /* Do as much error cleanup as possible */
5511 handle = ext4_journal_start(inode, 3);
5512 if (IS_ERR(handle)) {
5513 ext4_orphan_del(NULL, inode);
5514 goto err_out;
5515 }
5516 ext4_orphan_del(handle, inode);
5517 ext4_journal_stop(handle);
5518 goto err_out;
5519 }
5520 }
5521 /* ext4_truncate will clear the flag */
5522 if ((ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS)))
5523 ext4_truncate(inode);
5524 }
5525
5526 rc = inode_setattr(inode, attr);
5527
5528 /* If inode_setattr's call to ext4_truncate failed to get a
5529 * transaction handle at all, we need to clean up the in-core
5530 * orphan list manually. */
5531 if (inode->i_nlink)
5532 ext4_orphan_del(NULL, inode);
5533
5534 if (!rc && (ia_valid & ATTR_MODE))
5535 rc = ext4_acl_chmod(inode);
5536
5537 err_out:
5538 ext4_std_error(inode->i_sb, error);
5539 if (!error)
5540 error = rc;
5541 return error;
5542 }
5543
5544 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5545 struct kstat *stat)
5546 {
5547 struct inode *inode;
5548 unsigned long delalloc_blocks;
5549
5550 inode = dentry->d_inode;
5551 generic_fillattr(inode, stat);
5552
5553 /*
5554 * We can't update i_blocks if the block allocation is delayed
5555 * otherwise in the case of system crash before the real block
5556 * allocation is done, we will have i_blocks inconsistent with
5557 * on-disk file blocks.
5558 * We always keep i_blocks updated together with real
5559 * allocation. But to not confuse with user, stat
5560 * will return the blocks that include the delayed allocation
5561 * blocks for this file.
5562 */
5563 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5564 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5565 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5566
5567 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5568 return 0;
5569 }
5570
5571 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5572 int chunk)
5573 {
5574 int indirects;
5575
5576 /* if nrblocks are contiguous */
5577 if (chunk) {
5578 /*
5579 * With N contiguous data blocks, it need at most
5580 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5581 * 2 dindirect blocks
5582 * 1 tindirect block
5583 */
5584 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5585 return indirects + 3;
5586 }
5587 /*
5588 * if nrblocks are not contiguous, worse case, each block touch
5589 * a indirect block, and each indirect block touch a double indirect
5590 * block, plus a triple indirect block
5591 */
5592 indirects = nrblocks * 2 + 1;
5593 return indirects;
5594 }
5595
5596 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5597 {
5598 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5599 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5600 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5601 }
5602
5603 /*
5604 * Account for index blocks, block groups bitmaps and block group
5605 * descriptor blocks if modify datablocks and index blocks
5606 * worse case, the indexs blocks spread over different block groups
5607 *
5608 * If datablocks are discontiguous, they are possible to spread over
5609 * different block groups too. If they are contiuguous, with flexbg,
5610 * they could still across block group boundary.
5611 *
5612 * Also account for superblock, inode, quota and xattr blocks
5613 */
5614 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5615 {
5616 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5617 int gdpblocks;
5618 int idxblocks;
5619 int ret = 0;
5620
5621 /*
5622 * How many index blocks need to touch to modify nrblocks?
5623 * The "Chunk" flag indicating whether the nrblocks is
5624 * physically contiguous on disk
5625 *
5626 * For Direct IO and fallocate, they calls get_block to allocate
5627 * one single extent at a time, so they could set the "Chunk" flag
5628 */
5629 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5630
5631 ret = idxblocks;
5632
5633 /*
5634 * Now let's see how many group bitmaps and group descriptors need
5635 * to account
5636 */
5637 groups = idxblocks;
5638 if (chunk)
5639 groups += 1;
5640 else
5641 groups += nrblocks;
5642
5643 gdpblocks = groups;
5644 if (groups > ngroups)
5645 groups = ngroups;
5646 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5647 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5648
5649 /* bitmaps and block group descriptor blocks */
5650 ret += groups + gdpblocks;
5651
5652 /* Blocks for super block, inode, quota and xattr blocks */
5653 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5654
5655 return ret;
5656 }
5657
5658 /*
5659 * Calulate the total number of credits to reserve to fit
5660 * the modification of a single pages into a single transaction,
5661 * which may include multiple chunks of block allocations.
5662 *
5663 * This could be called via ext4_write_begin()
5664 *
5665 * We need to consider the worse case, when
5666 * one new block per extent.
5667 */
5668 int ext4_writepage_trans_blocks(struct inode *inode)
5669 {
5670 int bpp = ext4_journal_blocks_per_page(inode);
5671 int ret;
5672
5673 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5674
5675 /* Account for data blocks for journalled mode */
5676 if (ext4_should_journal_data(inode))
5677 ret += bpp;
5678 return ret;
5679 }
5680
5681 /*
5682 * Calculate the journal credits for a chunk of data modification.
5683 *
5684 * This is called from DIO, fallocate or whoever calling
5685 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5686 *
5687 * journal buffers for data blocks are not included here, as DIO
5688 * and fallocate do no need to journal data buffers.
5689 */
5690 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5691 {
5692 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5693 }
5694
5695 /*
5696 * The caller must have previously called ext4_reserve_inode_write().
5697 * Give this, we know that the caller already has write access to iloc->bh.
5698 */
5699 int ext4_mark_iloc_dirty(handle_t *handle,
5700 struct inode *inode, struct ext4_iloc *iloc)
5701 {
5702 int err = 0;
5703
5704 if (test_opt(inode->i_sb, I_VERSION))
5705 inode_inc_iversion(inode);
5706
5707 /* the do_update_inode consumes one bh->b_count */
5708 get_bh(iloc->bh);
5709
5710 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5711 err = ext4_do_update_inode(handle, inode, iloc);
5712 put_bh(iloc->bh);
5713 return err;
5714 }
5715
5716 /*
5717 * On success, We end up with an outstanding reference count against
5718 * iloc->bh. This _must_ be cleaned up later.
5719 */
5720
5721 int
5722 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5723 struct ext4_iloc *iloc)
5724 {
5725 int err;
5726
5727 err = ext4_get_inode_loc(inode, iloc);
5728 if (!err) {
5729 BUFFER_TRACE(iloc->bh, "get_write_access");
5730 err = ext4_journal_get_write_access(handle, iloc->bh);
5731 if (err) {
5732 brelse(iloc->bh);
5733 iloc->bh = NULL;
5734 }
5735 }
5736 ext4_std_error(inode->i_sb, err);
5737 return err;
5738 }
5739
5740 /*
5741 * Expand an inode by new_extra_isize bytes.
5742 * Returns 0 on success or negative error number on failure.
5743 */
5744 static int ext4_expand_extra_isize(struct inode *inode,
5745 unsigned int new_extra_isize,
5746 struct ext4_iloc iloc,
5747 handle_t *handle)
5748 {
5749 struct ext4_inode *raw_inode;
5750 struct ext4_xattr_ibody_header *header;
5751 struct ext4_xattr_entry *entry;
5752
5753 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5754 return 0;
5755
5756 raw_inode = ext4_raw_inode(&iloc);
5757
5758 header = IHDR(inode, raw_inode);
5759 entry = IFIRST(header);
5760
5761 /* No extended attributes present */
5762 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5763 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5764 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5765 new_extra_isize);
5766 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5767 return 0;
5768 }
5769
5770 /* try to expand with EAs present */
5771 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5772 raw_inode, handle);
5773 }
5774
5775 /*
5776 * What we do here is to mark the in-core inode as clean with respect to inode
5777 * dirtiness (it may still be data-dirty).
5778 * This means that the in-core inode may be reaped by prune_icache
5779 * without having to perform any I/O. This is a very good thing,
5780 * because *any* task may call prune_icache - even ones which
5781 * have a transaction open against a different journal.
5782 *
5783 * Is this cheating? Not really. Sure, we haven't written the
5784 * inode out, but prune_icache isn't a user-visible syncing function.
5785 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5786 * we start and wait on commits.
5787 *
5788 * Is this efficient/effective? Well, we're being nice to the system
5789 * by cleaning up our inodes proactively so they can be reaped
5790 * without I/O. But we are potentially leaving up to five seconds'
5791 * worth of inodes floating about which prune_icache wants us to
5792 * write out. One way to fix that would be to get prune_icache()
5793 * to do a write_super() to free up some memory. It has the desired
5794 * effect.
5795 */
5796 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5797 {
5798 struct ext4_iloc iloc;
5799 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5800 static unsigned int mnt_count;
5801 int err, ret;
5802
5803 might_sleep();
5804 err = ext4_reserve_inode_write(handle, inode, &iloc);
5805 if (ext4_handle_valid(handle) &&
5806 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5807 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5808 /*
5809 * We need extra buffer credits since we may write into EA block
5810 * with this same handle. If journal_extend fails, then it will
5811 * only result in a minor loss of functionality for that inode.
5812 * If this is felt to be critical, then e2fsck should be run to
5813 * force a large enough s_min_extra_isize.
5814 */
5815 if ((jbd2_journal_extend(handle,
5816 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5817 ret = ext4_expand_extra_isize(inode,
5818 sbi->s_want_extra_isize,
5819 iloc, handle);
5820 if (ret) {
5821 ext4_set_inode_state(inode,
5822 EXT4_STATE_NO_EXPAND);
5823 if (mnt_count !=
5824 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5825 ext4_warning(inode->i_sb,
5826 "Unable to expand inode %lu. Delete"
5827 " some EAs or run e2fsck.",
5828 inode->i_ino);
5829 mnt_count =
5830 le16_to_cpu(sbi->s_es->s_mnt_count);
5831 }
5832 }
5833 }
5834 }
5835 if (!err)
5836 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5837 return err;
5838 }
5839
5840 /*
5841 * ext4_dirty_inode() is called from __mark_inode_dirty()
5842 *
5843 * We're really interested in the case where a file is being extended.
5844 * i_size has been changed by generic_commit_write() and we thus need
5845 * to include the updated inode in the current transaction.
5846 *
5847 * Also, dquot_alloc_block() will always dirty the inode when blocks
5848 * are allocated to the file.
5849 *
5850 * If the inode is marked synchronous, we don't honour that here - doing
5851 * so would cause a commit on atime updates, which we don't bother doing.
5852 * We handle synchronous inodes at the highest possible level.
5853 */
5854 void ext4_dirty_inode(struct inode *inode)
5855 {
5856 handle_t *handle;
5857
5858 handle = ext4_journal_start(inode, 2);
5859 if (IS_ERR(handle))
5860 goto out;
5861
5862 ext4_mark_inode_dirty(handle, inode);
5863
5864 ext4_journal_stop(handle);
5865 out:
5866 return;
5867 }
5868
5869 #if 0
5870 /*
5871 * Bind an inode's backing buffer_head into this transaction, to prevent
5872 * it from being flushed to disk early. Unlike
5873 * ext4_reserve_inode_write, this leaves behind no bh reference and
5874 * returns no iloc structure, so the caller needs to repeat the iloc
5875 * lookup to mark the inode dirty later.
5876 */
5877 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5878 {
5879 struct ext4_iloc iloc;
5880
5881 int err = 0;
5882 if (handle) {
5883 err = ext4_get_inode_loc(inode, &iloc);
5884 if (!err) {
5885 BUFFER_TRACE(iloc.bh, "get_write_access");
5886 err = jbd2_journal_get_write_access(handle, iloc.bh);
5887 if (!err)
5888 err = ext4_handle_dirty_metadata(handle,
5889 NULL,
5890 iloc.bh);
5891 brelse(iloc.bh);
5892 }
5893 }
5894 ext4_std_error(inode->i_sb, err);
5895 return err;
5896 }
5897 #endif
5898
5899 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5900 {
5901 journal_t *journal;
5902 handle_t *handle;
5903 int err;
5904
5905 /*
5906 * We have to be very careful here: changing a data block's
5907 * journaling status dynamically is dangerous. If we write a
5908 * data block to the journal, change the status and then delete
5909 * that block, we risk forgetting to revoke the old log record
5910 * from the journal and so a subsequent replay can corrupt data.
5911 * So, first we make sure that the journal is empty and that
5912 * nobody is changing anything.
5913 */
5914
5915 journal = EXT4_JOURNAL(inode);
5916 if (!journal)
5917 return 0;
5918 if (is_journal_aborted(journal))
5919 return -EROFS;
5920
5921 jbd2_journal_lock_updates(journal);
5922 jbd2_journal_flush(journal);
5923
5924 /*
5925 * OK, there are no updates running now, and all cached data is
5926 * synced to disk. We are now in a completely consistent state
5927 * which doesn't have anything in the journal, and we know that
5928 * no filesystem updates are running, so it is safe to modify
5929 * the inode's in-core data-journaling state flag now.
5930 */
5931
5932 if (val)
5933 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5934 else
5935 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5936 ext4_set_aops(inode);
5937
5938 jbd2_journal_unlock_updates(journal);
5939
5940 /* Finally we can mark the inode as dirty. */
5941
5942 handle = ext4_journal_start(inode, 1);
5943 if (IS_ERR(handle))
5944 return PTR_ERR(handle);
5945
5946 err = ext4_mark_inode_dirty(handle, inode);
5947 ext4_handle_sync(handle);
5948 ext4_journal_stop(handle);
5949 ext4_std_error(inode->i_sb, err);
5950
5951 return err;
5952 }
5953
5954 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5955 {
5956 return !buffer_mapped(bh);
5957 }
5958
5959 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5960 {
5961 struct page *page = vmf->page;
5962 loff_t size;
5963 unsigned long len;
5964 int ret = -EINVAL;
5965 void *fsdata;
5966 struct file *file = vma->vm_file;
5967 struct inode *inode = file->f_path.dentry->d_inode;
5968 struct address_space *mapping = inode->i_mapping;
5969
5970 /*
5971 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5972 * get i_mutex because we are already holding mmap_sem.
5973 */
5974 down_read(&inode->i_alloc_sem);
5975 size = i_size_read(inode);
5976 if (page->mapping != mapping || size <= page_offset(page)
5977 || !PageUptodate(page)) {
5978 /* page got truncated from under us? */
5979 goto out_unlock;
5980 }
5981 ret = 0;
5982 if (PageMappedToDisk(page))
5983 goto out_unlock;
5984
5985 if (page->index == size >> PAGE_CACHE_SHIFT)
5986 len = size & ~PAGE_CACHE_MASK;
5987 else
5988 len = PAGE_CACHE_SIZE;
5989
5990 lock_page(page);
5991 /*
5992 * return if we have all the buffers mapped. This avoid
5993 * the need to call write_begin/write_end which does a
5994 * journal_start/journal_stop which can block and take
5995 * long time
5996 */
5997 if (page_has_buffers(page)) {
5998 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5999 ext4_bh_unmapped)) {
6000 unlock_page(page);
6001 goto out_unlock;
6002 }
6003 }
6004 unlock_page(page);
6005 /*
6006 * OK, we need to fill the hole... Do write_begin write_end
6007 * to do block allocation/reservation.We are not holding
6008 * inode.i__mutex here. That allow * parallel write_begin,
6009 * write_end call. lock_page prevent this from happening
6010 * on the same page though
6011 */
6012 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
6013 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
6014 if (ret < 0)
6015 goto out_unlock;
6016 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
6017 len, len, page, fsdata);
6018 if (ret < 0)
6019 goto out_unlock;
6020 ret = 0;
6021 out_unlock:
6022 if (ret)
6023 ret = VM_FAULT_SIGBUS;
6024 up_read(&inode->i_alloc_sem);
6025 return ret;
6026 }