ext4: Merge ext4_da_get_block_write() into mpage_da_map_blocks()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
1 /*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
21 *
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 */
24
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include "ext4_jbd2.h"
41 #include "xattr.h"
42 #include "acl.h"
43 #include "ext4_extents.h"
44
45 #define MPAGE_DA_EXTENT_TAIL 0x01
46
47 static inline int ext4_begin_ordered_truncate(struct inode *inode,
48 loff_t new_size)
49 {
50 return jbd2_journal_begin_ordered_truncate(
51 EXT4_SB(inode->i_sb)->s_journal,
52 &EXT4_I(inode)->jinode,
53 new_size);
54 }
55
56 static void ext4_invalidatepage(struct page *page, unsigned long offset);
57
58 /*
59 * Test whether an inode is a fast symlink.
60 */
61 static int ext4_inode_is_fast_symlink(struct inode *inode)
62 {
63 int ea_blocks = EXT4_I(inode)->i_file_acl ?
64 (inode->i_sb->s_blocksize >> 9) : 0;
65
66 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
67 }
68
69 /*
70 * The ext4 forget function must perform a revoke if we are freeing data
71 * which has been journaled. Metadata (eg. indirect blocks) must be
72 * revoked in all cases.
73 *
74 * "bh" may be NULL: a metadata block may have been freed from memory
75 * but there may still be a record of it in the journal, and that record
76 * still needs to be revoked.
77 *
78 * If the handle isn't valid we're not journaling so there's nothing to do.
79 */
80 int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
81 struct buffer_head *bh, ext4_fsblk_t blocknr)
82 {
83 int err;
84
85 if (!ext4_handle_valid(handle))
86 return 0;
87
88 might_sleep();
89
90 BUFFER_TRACE(bh, "enter");
91
92 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
93 "data mode %lx\n",
94 bh, is_metadata, inode->i_mode,
95 test_opt(inode->i_sb, DATA_FLAGS));
96
97 /* Never use the revoke function if we are doing full data
98 * journaling: there is no need to, and a V1 superblock won't
99 * support it. Otherwise, only skip the revoke on un-journaled
100 * data blocks. */
101
102 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
103 (!is_metadata && !ext4_should_journal_data(inode))) {
104 if (bh) {
105 BUFFER_TRACE(bh, "call jbd2_journal_forget");
106 return ext4_journal_forget(handle, bh);
107 }
108 return 0;
109 }
110
111 /*
112 * data!=journal && (is_metadata || should_journal_data(inode))
113 */
114 BUFFER_TRACE(bh, "call ext4_journal_revoke");
115 err = ext4_journal_revoke(handle, blocknr, bh);
116 if (err)
117 ext4_abort(inode->i_sb, __func__,
118 "error %d when attempting revoke", err);
119 BUFFER_TRACE(bh, "exit");
120 return err;
121 }
122
123 /*
124 * Work out how many blocks we need to proceed with the next chunk of a
125 * truncate transaction.
126 */
127 static unsigned long blocks_for_truncate(struct inode *inode)
128 {
129 ext4_lblk_t needed;
130
131 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
132
133 /* Give ourselves just enough room to cope with inodes in which
134 * i_blocks is corrupt: we've seen disk corruptions in the past
135 * which resulted in random data in an inode which looked enough
136 * like a regular file for ext4 to try to delete it. Things
137 * will go a bit crazy if that happens, but at least we should
138 * try not to panic the whole kernel. */
139 if (needed < 2)
140 needed = 2;
141
142 /* But we need to bound the transaction so we don't overflow the
143 * journal. */
144 if (needed > EXT4_MAX_TRANS_DATA)
145 needed = EXT4_MAX_TRANS_DATA;
146
147 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
148 }
149
150 /*
151 * Truncate transactions can be complex and absolutely huge. So we need to
152 * be able to restart the transaction at a conventient checkpoint to make
153 * sure we don't overflow the journal.
154 *
155 * start_transaction gets us a new handle for a truncate transaction,
156 * and extend_transaction tries to extend the existing one a bit. If
157 * extend fails, we need to propagate the failure up and restart the
158 * transaction in the top-level truncate loop. --sct
159 */
160 static handle_t *start_transaction(struct inode *inode)
161 {
162 handle_t *result;
163
164 result = ext4_journal_start(inode, blocks_for_truncate(inode));
165 if (!IS_ERR(result))
166 return result;
167
168 ext4_std_error(inode->i_sb, PTR_ERR(result));
169 return result;
170 }
171
172 /*
173 * Try to extend this transaction for the purposes of truncation.
174 *
175 * Returns 0 if we managed to create more room. If we can't create more
176 * room, and the transaction must be restarted we return 1.
177 */
178 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
179 {
180 if (!ext4_handle_valid(handle))
181 return 0;
182 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
183 return 0;
184 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
185 return 0;
186 return 1;
187 }
188
189 /*
190 * Restart the transaction associated with *handle. This does a commit,
191 * so before we call here everything must be consistently dirtied against
192 * this transaction.
193 */
194 static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
195 {
196 BUG_ON(EXT4_JOURNAL(inode) == NULL);
197 jbd_debug(2, "restarting handle %p\n", handle);
198 return ext4_journal_restart(handle, blocks_for_truncate(inode));
199 }
200
201 /*
202 * Called at the last iput() if i_nlink is zero.
203 */
204 void ext4_delete_inode(struct inode *inode)
205 {
206 handle_t *handle;
207 int err;
208
209 if (ext4_should_order_data(inode))
210 ext4_begin_ordered_truncate(inode, 0);
211 truncate_inode_pages(&inode->i_data, 0);
212
213 if (is_bad_inode(inode))
214 goto no_delete;
215
216 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
217 if (IS_ERR(handle)) {
218 ext4_std_error(inode->i_sb, PTR_ERR(handle));
219 /*
220 * If we're going to skip the normal cleanup, we still need to
221 * make sure that the in-core orphan linked list is properly
222 * cleaned up.
223 */
224 ext4_orphan_del(NULL, inode);
225 goto no_delete;
226 }
227
228 if (IS_SYNC(inode))
229 ext4_handle_sync(handle);
230 inode->i_size = 0;
231 err = ext4_mark_inode_dirty(handle, inode);
232 if (err) {
233 ext4_warning(inode->i_sb, __func__,
234 "couldn't mark inode dirty (err %d)", err);
235 goto stop_handle;
236 }
237 if (inode->i_blocks)
238 ext4_truncate(inode);
239
240 /*
241 * ext4_ext_truncate() doesn't reserve any slop when it
242 * restarts journal transactions; therefore there may not be
243 * enough credits left in the handle to remove the inode from
244 * the orphan list and set the dtime field.
245 */
246 if (!ext4_handle_has_enough_credits(handle, 3)) {
247 err = ext4_journal_extend(handle, 3);
248 if (err > 0)
249 err = ext4_journal_restart(handle, 3);
250 if (err != 0) {
251 ext4_warning(inode->i_sb, __func__,
252 "couldn't extend journal (err %d)", err);
253 stop_handle:
254 ext4_journal_stop(handle);
255 goto no_delete;
256 }
257 }
258
259 /*
260 * Kill off the orphan record which ext4_truncate created.
261 * AKPM: I think this can be inside the above `if'.
262 * Note that ext4_orphan_del() has to be able to cope with the
263 * deletion of a non-existent orphan - this is because we don't
264 * know if ext4_truncate() actually created an orphan record.
265 * (Well, we could do this if we need to, but heck - it works)
266 */
267 ext4_orphan_del(handle, inode);
268 EXT4_I(inode)->i_dtime = get_seconds();
269
270 /*
271 * One subtle ordering requirement: if anything has gone wrong
272 * (transaction abort, IO errors, whatever), then we can still
273 * do these next steps (the fs will already have been marked as
274 * having errors), but we can't free the inode if the mark_dirty
275 * fails.
276 */
277 if (ext4_mark_inode_dirty(handle, inode))
278 /* If that failed, just do the required in-core inode clear. */
279 clear_inode(inode);
280 else
281 ext4_free_inode(handle, inode);
282 ext4_journal_stop(handle);
283 return;
284 no_delete:
285 clear_inode(inode); /* We must guarantee clearing of inode... */
286 }
287
288 typedef struct {
289 __le32 *p;
290 __le32 key;
291 struct buffer_head *bh;
292 } Indirect;
293
294 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
295 {
296 p->key = *(p->p = v);
297 p->bh = bh;
298 }
299
300 /**
301 * ext4_block_to_path - parse the block number into array of offsets
302 * @inode: inode in question (we are only interested in its superblock)
303 * @i_block: block number to be parsed
304 * @offsets: array to store the offsets in
305 * @boundary: set this non-zero if the referred-to block is likely to be
306 * followed (on disk) by an indirect block.
307 *
308 * To store the locations of file's data ext4 uses a data structure common
309 * for UNIX filesystems - tree of pointers anchored in the inode, with
310 * data blocks at leaves and indirect blocks in intermediate nodes.
311 * This function translates the block number into path in that tree -
312 * return value is the path length and @offsets[n] is the offset of
313 * pointer to (n+1)th node in the nth one. If @block is out of range
314 * (negative or too large) warning is printed and zero returned.
315 *
316 * Note: function doesn't find node addresses, so no IO is needed. All
317 * we need to know is the capacity of indirect blocks (taken from the
318 * inode->i_sb).
319 */
320
321 /*
322 * Portability note: the last comparison (check that we fit into triple
323 * indirect block) is spelled differently, because otherwise on an
324 * architecture with 32-bit longs and 8Kb pages we might get into trouble
325 * if our filesystem had 8Kb blocks. We might use long long, but that would
326 * kill us on x86. Oh, well, at least the sign propagation does not matter -
327 * i_block would have to be negative in the very beginning, so we would not
328 * get there at all.
329 */
330
331 static int ext4_block_to_path(struct inode *inode,
332 ext4_lblk_t i_block,
333 ext4_lblk_t offsets[4], int *boundary)
334 {
335 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
336 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
337 const long direct_blocks = EXT4_NDIR_BLOCKS,
338 indirect_blocks = ptrs,
339 double_blocks = (1 << (ptrs_bits * 2));
340 int n = 0;
341 int final = 0;
342
343 if (i_block < 0) {
344 ext4_warning(inode->i_sb, "ext4_block_to_path", "block < 0");
345 } else if (i_block < direct_blocks) {
346 offsets[n++] = i_block;
347 final = direct_blocks;
348 } else if ((i_block -= direct_blocks) < indirect_blocks) {
349 offsets[n++] = EXT4_IND_BLOCK;
350 offsets[n++] = i_block;
351 final = ptrs;
352 } else if ((i_block -= indirect_blocks) < double_blocks) {
353 offsets[n++] = EXT4_DIND_BLOCK;
354 offsets[n++] = i_block >> ptrs_bits;
355 offsets[n++] = i_block & (ptrs - 1);
356 final = ptrs;
357 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
358 offsets[n++] = EXT4_TIND_BLOCK;
359 offsets[n++] = i_block >> (ptrs_bits * 2);
360 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
361 offsets[n++] = i_block & (ptrs - 1);
362 final = ptrs;
363 } else {
364 ext4_warning(inode->i_sb, "ext4_block_to_path",
365 "block %lu > max in inode %lu",
366 i_block + direct_blocks +
367 indirect_blocks + double_blocks, inode->i_ino);
368 }
369 if (boundary)
370 *boundary = final - 1 - (i_block & (ptrs - 1));
371 return n;
372 }
373
374 static int __ext4_check_blockref(const char *function, struct inode *inode,
375 __le32 *p, unsigned int max) {
376
377 unsigned int maxblocks = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es);
378 __le32 *bref = p;
379 while (bref < p+max) {
380 if (unlikely(le32_to_cpu(*bref) >= maxblocks)) {
381 ext4_error(inode->i_sb, function,
382 "block reference %u >= max (%u) "
383 "in inode #%lu, offset=%d",
384 le32_to_cpu(*bref), maxblocks,
385 inode->i_ino, (int)(bref-p));
386 return -EIO;
387 }
388 bref++;
389 }
390 return 0;
391 }
392
393
394 #define ext4_check_indirect_blockref(inode, bh) \
395 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
396 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
397
398 #define ext4_check_inode_blockref(inode) \
399 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
400 EXT4_NDIR_BLOCKS)
401
402 /**
403 * ext4_get_branch - read the chain of indirect blocks leading to data
404 * @inode: inode in question
405 * @depth: depth of the chain (1 - direct pointer, etc.)
406 * @offsets: offsets of pointers in inode/indirect blocks
407 * @chain: place to store the result
408 * @err: here we store the error value
409 *
410 * Function fills the array of triples <key, p, bh> and returns %NULL
411 * if everything went OK or the pointer to the last filled triple
412 * (incomplete one) otherwise. Upon the return chain[i].key contains
413 * the number of (i+1)-th block in the chain (as it is stored in memory,
414 * i.e. little-endian 32-bit), chain[i].p contains the address of that
415 * number (it points into struct inode for i==0 and into the bh->b_data
416 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
417 * block for i>0 and NULL for i==0. In other words, it holds the block
418 * numbers of the chain, addresses they were taken from (and where we can
419 * verify that chain did not change) and buffer_heads hosting these
420 * numbers.
421 *
422 * Function stops when it stumbles upon zero pointer (absent block)
423 * (pointer to last triple returned, *@err == 0)
424 * or when it gets an IO error reading an indirect block
425 * (ditto, *@err == -EIO)
426 * or when it reads all @depth-1 indirect blocks successfully and finds
427 * the whole chain, all way to the data (returns %NULL, *err == 0).
428 *
429 * Need to be called with
430 * down_read(&EXT4_I(inode)->i_data_sem)
431 */
432 static Indirect *ext4_get_branch(struct inode *inode, int depth,
433 ext4_lblk_t *offsets,
434 Indirect chain[4], int *err)
435 {
436 struct super_block *sb = inode->i_sb;
437 Indirect *p = chain;
438 struct buffer_head *bh;
439
440 *err = 0;
441 /* i_data is not going away, no lock needed */
442 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
443 if (!p->key)
444 goto no_block;
445 while (--depth) {
446 bh = sb_getblk(sb, le32_to_cpu(p->key));
447 if (unlikely(!bh))
448 goto failure;
449
450 if (!bh_uptodate_or_lock(bh)) {
451 if (bh_submit_read(bh) < 0) {
452 put_bh(bh);
453 goto failure;
454 }
455 /* validate block references */
456 if (ext4_check_indirect_blockref(inode, bh)) {
457 put_bh(bh);
458 goto failure;
459 }
460 }
461
462 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
463 /* Reader: end */
464 if (!p->key)
465 goto no_block;
466 }
467 return NULL;
468
469 failure:
470 *err = -EIO;
471 no_block:
472 return p;
473 }
474
475 /**
476 * ext4_find_near - find a place for allocation with sufficient locality
477 * @inode: owner
478 * @ind: descriptor of indirect block.
479 *
480 * This function returns the preferred place for block allocation.
481 * It is used when heuristic for sequential allocation fails.
482 * Rules are:
483 * + if there is a block to the left of our position - allocate near it.
484 * + if pointer will live in indirect block - allocate near that block.
485 * + if pointer will live in inode - allocate in the same
486 * cylinder group.
487 *
488 * In the latter case we colour the starting block by the callers PID to
489 * prevent it from clashing with concurrent allocations for a different inode
490 * in the same block group. The PID is used here so that functionally related
491 * files will be close-by on-disk.
492 *
493 * Caller must make sure that @ind is valid and will stay that way.
494 */
495 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
496 {
497 struct ext4_inode_info *ei = EXT4_I(inode);
498 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
499 __le32 *p;
500 ext4_fsblk_t bg_start;
501 ext4_fsblk_t last_block;
502 ext4_grpblk_t colour;
503 ext4_group_t block_group;
504 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
505
506 /* Try to find previous block */
507 for (p = ind->p - 1; p >= start; p--) {
508 if (*p)
509 return le32_to_cpu(*p);
510 }
511
512 /* No such thing, so let's try location of indirect block */
513 if (ind->bh)
514 return ind->bh->b_blocknr;
515
516 /*
517 * It is going to be referred to from the inode itself? OK, just put it
518 * into the same cylinder group then.
519 */
520 block_group = ei->i_block_group;
521 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
522 block_group &= ~(flex_size-1);
523 if (S_ISREG(inode->i_mode))
524 block_group++;
525 }
526 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
527 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
528
529 /*
530 * If we are doing delayed allocation, we don't need take
531 * colour into account.
532 */
533 if (test_opt(inode->i_sb, DELALLOC))
534 return bg_start;
535
536 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
537 colour = (current->pid % 16) *
538 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
539 else
540 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
541 return bg_start + colour;
542 }
543
544 /**
545 * ext4_find_goal - find a preferred place for allocation.
546 * @inode: owner
547 * @block: block we want
548 * @partial: pointer to the last triple within a chain
549 *
550 * Normally this function find the preferred place for block allocation,
551 * returns it.
552 */
553 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
554 Indirect *partial)
555 {
556 /*
557 * XXX need to get goal block from mballoc's data structures
558 */
559
560 return ext4_find_near(inode, partial);
561 }
562
563 /**
564 * ext4_blks_to_allocate: Look up the block map and count the number
565 * of direct blocks need to be allocated for the given branch.
566 *
567 * @branch: chain of indirect blocks
568 * @k: number of blocks need for indirect blocks
569 * @blks: number of data blocks to be mapped.
570 * @blocks_to_boundary: the offset in the indirect block
571 *
572 * return the total number of blocks to be allocate, including the
573 * direct and indirect blocks.
574 */
575 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
576 int blocks_to_boundary)
577 {
578 unsigned int count = 0;
579
580 /*
581 * Simple case, [t,d]Indirect block(s) has not allocated yet
582 * then it's clear blocks on that path have not allocated
583 */
584 if (k > 0) {
585 /* right now we don't handle cross boundary allocation */
586 if (blks < blocks_to_boundary + 1)
587 count += blks;
588 else
589 count += blocks_to_boundary + 1;
590 return count;
591 }
592
593 count++;
594 while (count < blks && count <= blocks_to_boundary &&
595 le32_to_cpu(*(branch[0].p + count)) == 0) {
596 count++;
597 }
598 return count;
599 }
600
601 /**
602 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
603 * @indirect_blks: the number of blocks need to allocate for indirect
604 * blocks
605 *
606 * @new_blocks: on return it will store the new block numbers for
607 * the indirect blocks(if needed) and the first direct block,
608 * @blks: on return it will store the total number of allocated
609 * direct blocks
610 */
611 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
612 ext4_lblk_t iblock, ext4_fsblk_t goal,
613 int indirect_blks, int blks,
614 ext4_fsblk_t new_blocks[4], int *err)
615 {
616 struct ext4_allocation_request ar;
617 int target, i;
618 unsigned long count = 0, blk_allocated = 0;
619 int index = 0;
620 ext4_fsblk_t current_block = 0;
621 int ret = 0;
622
623 /*
624 * Here we try to allocate the requested multiple blocks at once,
625 * on a best-effort basis.
626 * To build a branch, we should allocate blocks for
627 * the indirect blocks(if not allocated yet), and at least
628 * the first direct block of this branch. That's the
629 * minimum number of blocks need to allocate(required)
630 */
631 /* first we try to allocate the indirect blocks */
632 target = indirect_blks;
633 while (target > 0) {
634 count = target;
635 /* allocating blocks for indirect blocks and direct blocks */
636 current_block = ext4_new_meta_blocks(handle, inode,
637 goal, &count, err);
638 if (*err)
639 goto failed_out;
640
641 target -= count;
642 /* allocate blocks for indirect blocks */
643 while (index < indirect_blks && count) {
644 new_blocks[index++] = current_block++;
645 count--;
646 }
647 if (count > 0) {
648 /*
649 * save the new block number
650 * for the first direct block
651 */
652 new_blocks[index] = current_block;
653 printk(KERN_INFO "%s returned more blocks than "
654 "requested\n", __func__);
655 WARN_ON(1);
656 break;
657 }
658 }
659
660 target = blks - count ;
661 blk_allocated = count;
662 if (!target)
663 goto allocated;
664 /* Now allocate data blocks */
665 memset(&ar, 0, sizeof(ar));
666 ar.inode = inode;
667 ar.goal = goal;
668 ar.len = target;
669 ar.logical = iblock;
670 if (S_ISREG(inode->i_mode))
671 /* enable in-core preallocation only for regular files */
672 ar.flags = EXT4_MB_HINT_DATA;
673
674 current_block = ext4_mb_new_blocks(handle, &ar, err);
675
676 if (*err && (target == blks)) {
677 /*
678 * if the allocation failed and we didn't allocate
679 * any blocks before
680 */
681 goto failed_out;
682 }
683 if (!*err) {
684 if (target == blks) {
685 /*
686 * save the new block number
687 * for the first direct block
688 */
689 new_blocks[index] = current_block;
690 }
691 blk_allocated += ar.len;
692 }
693 allocated:
694 /* total number of blocks allocated for direct blocks */
695 ret = blk_allocated;
696 *err = 0;
697 return ret;
698 failed_out:
699 for (i = 0; i < index; i++)
700 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
701 return ret;
702 }
703
704 /**
705 * ext4_alloc_branch - allocate and set up a chain of blocks.
706 * @inode: owner
707 * @indirect_blks: number of allocated indirect blocks
708 * @blks: number of allocated direct blocks
709 * @offsets: offsets (in the blocks) to store the pointers to next.
710 * @branch: place to store the chain in.
711 *
712 * This function allocates blocks, zeroes out all but the last one,
713 * links them into chain and (if we are synchronous) writes them to disk.
714 * In other words, it prepares a branch that can be spliced onto the
715 * inode. It stores the information about that chain in the branch[], in
716 * the same format as ext4_get_branch() would do. We are calling it after
717 * we had read the existing part of chain and partial points to the last
718 * triple of that (one with zero ->key). Upon the exit we have the same
719 * picture as after the successful ext4_get_block(), except that in one
720 * place chain is disconnected - *branch->p is still zero (we did not
721 * set the last link), but branch->key contains the number that should
722 * be placed into *branch->p to fill that gap.
723 *
724 * If allocation fails we free all blocks we've allocated (and forget
725 * their buffer_heads) and return the error value the from failed
726 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
727 * as described above and return 0.
728 */
729 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
730 ext4_lblk_t iblock, int indirect_blks,
731 int *blks, ext4_fsblk_t goal,
732 ext4_lblk_t *offsets, Indirect *branch)
733 {
734 int blocksize = inode->i_sb->s_blocksize;
735 int i, n = 0;
736 int err = 0;
737 struct buffer_head *bh;
738 int num;
739 ext4_fsblk_t new_blocks[4];
740 ext4_fsblk_t current_block;
741
742 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
743 *blks, new_blocks, &err);
744 if (err)
745 return err;
746
747 branch[0].key = cpu_to_le32(new_blocks[0]);
748 /*
749 * metadata blocks and data blocks are allocated.
750 */
751 for (n = 1; n <= indirect_blks; n++) {
752 /*
753 * Get buffer_head for parent block, zero it out
754 * and set the pointer to new one, then send
755 * parent to disk.
756 */
757 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
758 branch[n].bh = bh;
759 lock_buffer(bh);
760 BUFFER_TRACE(bh, "call get_create_access");
761 err = ext4_journal_get_create_access(handle, bh);
762 if (err) {
763 unlock_buffer(bh);
764 brelse(bh);
765 goto failed;
766 }
767
768 memset(bh->b_data, 0, blocksize);
769 branch[n].p = (__le32 *) bh->b_data + offsets[n];
770 branch[n].key = cpu_to_le32(new_blocks[n]);
771 *branch[n].p = branch[n].key;
772 if (n == indirect_blks) {
773 current_block = new_blocks[n];
774 /*
775 * End of chain, update the last new metablock of
776 * the chain to point to the new allocated
777 * data blocks numbers
778 */
779 for (i=1; i < num; i++)
780 *(branch[n].p + i) = cpu_to_le32(++current_block);
781 }
782 BUFFER_TRACE(bh, "marking uptodate");
783 set_buffer_uptodate(bh);
784 unlock_buffer(bh);
785
786 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
787 err = ext4_handle_dirty_metadata(handle, inode, bh);
788 if (err)
789 goto failed;
790 }
791 *blks = num;
792 return err;
793 failed:
794 /* Allocation failed, free what we already allocated */
795 for (i = 1; i <= n ; i++) {
796 BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
797 ext4_journal_forget(handle, branch[i].bh);
798 }
799 for (i = 0; i < indirect_blks; i++)
800 ext4_free_blocks(handle, inode, new_blocks[i], 1, 0);
801
802 ext4_free_blocks(handle, inode, new_blocks[i], num, 0);
803
804 return err;
805 }
806
807 /**
808 * ext4_splice_branch - splice the allocated branch onto inode.
809 * @inode: owner
810 * @block: (logical) number of block we are adding
811 * @chain: chain of indirect blocks (with a missing link - see
812 * ext4_alloc_branch)
813 * @where: location of missing link
814 * @num: number of indirect blocks we are adding
815 * @blks: number of direct blocks we are adding
816 *
817 * This function fills the missing link and does all housekeeping needed in
818 * inode (->i_blocks, etc.). In case of success we end up with the full
819 * chain to new block and return 0.
820 */
821 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
822 ext4_lblk_t block, Indirect *where, int num, int blks)
823 {
824 int i;
825 int err = 0;
826 ext4_fsblk_t current_block;
827
828 /*
829 * If we're splicing into a [td]indirect block (as opposed to the
830 * inode) then we need to get write access to the [td]indirect block
831 * before the splice.
832 */
833 if (where->bh) {
834 BUFFER_TRACE(where->bh, "get_write_access");
835 err = ext4_journal_get_write_access(handle, where->bh);
836 if (err)
837 goto err_out;
838 }
839 /* That's it */
840
841 *where->p = where->key;
842
843 /*
844 * Update the host buffer_head or inode to point to more just allocated
845 * direct blocks blocks
846 */
847 if (num == 0 && blks > 1) {
848 current_block = le32_to_cpu(where->key) + 1;
849 for (i = 1; i < blks; i++)
850 *(where->p + i) = cpu_to_le32(current_block++);
851 }
852
853 /* We are done with atomic stuff, now do the rest of housekeeping */
854
855 inode->i_ctime = ext4_current_time(inode);
856 ext4_mark_inode_dirty(handle, inode);
857
858 /* had we spliced it onto indirect block? */
859 if (where->bh) {
860 /*
861 * If we spliced it onto an indirect block, we haven't
862 * altered the inode. Note however that if it is being spliced
863 * onto an indirect block at the very end of the file (the
864 * file is growing) then we *will* alter the inode to reflect
865 * the new i_size. But that is not done here - it is done in
866 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
867 */
868 jbd_debug(5, "splicing indirect only\n");
869 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
870 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
871 if (err)
872 goto err_out;
873 } else {
874 /*
875 * OK, we spliced it into the inode itself on a direct block.
876 * Inode was dirtied above.
877 */
878 jbd_debug(5, "splicing direct\n");
879 }
880 return err;
881
882 err_out:
883 for (i = 1; i <= num; i++) {
884 BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
885 ext4_journal_forget(handle, where[i].bh);
886 ext4_free_blocks(handle, inode,
887 le32_to_cpu(where[i-1].key), 1, 0);
888 }
889 ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks, 0);
890
891 return err;
892 }
893
894 /*
895 * The ext4_ind_get_blocks() function handles non-extents inodes
896 * (i.e., using the traditional indirect/double-indirect i_blocks
897 * scheme) for ext4_get_blocks().
898 *
899 * Allocation strategy is simple: if we have to allocate something, we will
900 * have to go the whole way to leaf. So let's do it before attaching anything
901 * to tree, set linkage between the newborn blocks, write them if sync is
902 * required, recheck the path, free and repeat if check fails, otherwise
903 * set the last missing link (that will protect us from any truncate-generated
904 * removals - all blocks on the path are immune now) and possibly force the
905 * write on the parent block.
906 * That has a nice additional property: no special recovery from the failed
907 * allocations is needed - we simply release blocks and do not touch anything
908 * reachable from inode.
909 *
910 * `handle' can be NULL if create == 0.
911 *
912 * return > 0, # of blocks mapped or allocated.
913 * return = 0, if plain lookup failed.
914 * return < 0, error case.
915 *
916 * The ext4_ind_get_blocks() function should be called with
917 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
918 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
919 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
920 * blocks.
921 */
922 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
923 ext4_lblk_t iblock, unsigned int maxblocks,
924 struct buffer_head *bh_result,
925 int flags)
926 {
927 int err = -EIO;
928 ext4_lblk_t offsets[4];
929 Indirect chain[4];
930 Indirect *partial;
931 ext4_fsblk_t goal;
932 int indirect_blks;
933 int blocks_to_boundary = 0;
934 int depth;
935 struct ext4_inode_info *ei = EXT4_I(inode);
936 int count = 0;
937 ext4_fsblk_t first_block = 0;
938 loff_t disksize;
939
940
941 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
942 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
943 depth = ext4_block_to_path(inode, iblock, offsets,
944 &blocks_to_boundary);
945
946 if (depth == 0)
947 goto out;
948
949 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
950
951 /* Simplest case - block found, no allocation needed */
952 if (!partial) {
953 first_block = le32_to_cpu(chain[depth - 1].key);
954 clear_buffer_new(bh_result);
955 count++;
956 /*map more blocks*/
957 while (count < maxblocks && count <= blocks_to_boundary) {
958 ext4_fsblk_t blk;
959
960 blk = le32_to_cpu(*(chain[depth-1].p + count));
961
962 if (blk == first_block + count)
963 count++;
964 else
965 break;
966 }
967 goto got_it;
968 }
969
970 /* Next simple case - plain lookup or failed read of indirect block */
971 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
972 goto cleanup;
973
974 /*
975 * Okay, we need to do block allocation.
976 */
977 goal = ext4_find_goal(inode, iblock, partial);
978
979 /* the number of blocks need to allocate for [d,t]indirect blocks */
980 indirect_blks = (chain + depth) - partial - 1;
981
982 /*
983 * Next look up the indirect map to count the totoal number of
984 * direct blocks to allocate for this branch.
985 */
986 count = ext4_blks_to_allocate(partial, indirect_blks,
987 maxblocks, blocks_to_boundary);
988 /*
989 * Block out ext4_truncate while we alter the tree
990 */
991 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
992 &count, goal,
993 offsets + (partial - chain), partial);
994
995 /*
996 * The ext4_splice_branch call will free and forget any buffers
997 * on the new chain if there is a failure, but that risks using
998 * up transaction credits, especially for bitmaps where the
999 * credits cannot be returned. Can we handle this somehow? We
1000 * may need to return -EAGAIN upwards in the worst case. --sct
1001 */
1002 if (!err)
1003 err = ext4_splice_branch(handle, inode, iblock,
1004 partial, indirect_blks, count);
1005 /*
1006 * i_disksize growing is protected by i_data_sem. Don't forget to
1007 * protect it if you're about to implement concurrent
1008 * ext4_get_block() -bzzz
1009 */
1010 if (!err && (flags & EXT4_GET_BLOCKS_EXTEND_DISKSIZE)) {
1011 disksize = ((loff_t) iblock + count) << inode->i_blkbits;
1012 if (disksize > i_size_read(inode))
1013 disksize = i_size_read(inode);
1014 if (disksize > ei->i_disksize)
1015 ei->i_disksize = disksize;
1016 }
1017 if (err)
1018 goto cleanup;
1019
1020 set_buffer_new(bh_result);
1021 got_it:
1022 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1023 if (count > blocks_to_boundary)
1024 set_buffer_boundary(bh_result);
1025 err = count;
1026 /* Clean up and exit */
1027 partial = chain + depth - 1; /* the whole chain */
1028 cleanup:
1029 while (partial > chain) {
1030 BUFFER_TRACE(partial->bh, "call brelse");
1031 brelse(partial->bh);
1032 partial--;
1033 }
1034 BUFFER_TRACE(bh_result, "returned");
1035 out:
1036 return err;
1037 }
1038
1039 qsize_t ext4_get_reserved_space(struct inode *inode)
1040 {
1041 unsigned long long total;
1042
1043 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1044 total = EXT4_I(inode)->i_reserved_data_blocks +
1045 EXT4_I(inode)->i_reserved_meta_blocks;
1046 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1047
1048 return total;
1049 }
1050 /*
1051 * Calculate the number of metadata blocks need to reserve
1052 * to allocate @blocks for non extent file based file
1053 */
1054 static int ext4_indirect_calc_metadata_amount(struct inode *inode, int blocks)
1055 {
1056 int icap = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1057 int ind_blks, dind_blks, tind_blks;
1058
1059 /* number of new indirect blocks needed */
1060 ind_blks = (blocks + icap - 1) / icap;
1061
1062 dind_blks = (ind_blks + icap - 1) / icap;
1063
1064 tind_blks = 1;
1065
1066 return ind_blks + dind_blks + tind_blks;
1067 }
1068
1069 /*
1070 * Calculate the number of metadata blocks need to reserve
1071 * to allocate given number of blocks
1072 */
1073 static int ext4_calc_metadata_amount(struct inode *inode, int blocks)
1074 {
1075 if (!blocks)
1076 return 0;
1077
1078 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1079 return ext4_ext_calc_metadata_amount(inode, blocks);
1080
1081 return ext4_indirect_calc_metadata_amount(inode, blocks);
1082 }
1083
1084 static void ext4_da_update_reserve_space(struct inode *inode, int used)
1085 {
1086 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1087 int total, mdb, mdb_free;
1088
1089 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1090 /* recalculate the number of metablocks still need to be reserved */
1091 total = EXT4_I(inode)->i_reserved_data_blocks - used;
1092 mdb = ext4_calc_metadata_amount(inode, total);
1093
1094 /* figure out how many metablocks to release */
1095 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1096 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1097
1098 if (mdb_free) {
1099 /* Account for allocated meta_blocks */
1100 mdb_free -= EXT4_I(inode)->i_allocated_meta_blocks;
1101
1102 /* update fs dirty blocks counter */
1103 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1104 EXT4_I(inode)->i_allocated_meta_blocks = 0;
1105 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1106 }
1107
1108 /* update per-inode reservations */
1109 BUG_ON(used > EXT4_I(inode)->i_reserved_data_blocks);
1110 EXT4_I(inode)->i_reserved_data_blocks -= used;
1111 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1112
1113 /*
1114 * free those over-booking quota for metadata blocks
1115 */
1116 if (mdb_free)
1117 vfs_dq_release_reservation_block(inode, mdb_free);
1118
1119 /*
1120 * If we have done all the pending block allocations and if
1121 * there aren't any writers on the inode, we can discard the
1122 * inode's preallocations.
1123 */
1124 if (!total && (atomic_read(&inode->i_writecount) == 0))
1125 ext4_discard_preallocations(inode);
1126 }
1127
1128 /*
1129 * The ext4_get_blocks() function tries to look up the requested blocks,
1130 * and returns if the blocks are already mapped.
1131 *
1132 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1133 * and store the allocated blocks in the result buffer head and mark it
1134 * mapped.
1135 *
1136 * If file type is extents based, it will call ext4_ext_get_blocks(),
1137 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1138 * based files
1139 *
1140 * On success, it returns the number of blocks being mapped or allocate.
1141 * if create==0 and the blocks are pre-allocated and uninitialized block,
1142 * the result buffer head is unmapped. If the create ==1, it will make sure
1143 * the buffer head is mapped.
1144 *
1145 * It returns 0 if plain look up failed (blocks have not been allocated), in
1146 * that casem, buffer head is unmapped
1147 *
1148 * It returns the error in case of allocation failure.
1149 */
1150 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1151 unsigned int max_blocks, struct buffer_head *bh,
1152 int flags)
1153 {
1154 int retval;
1155
1156 clear_buffer_mapped(bh);
1157 clear_buffer_unwritten(bh);
1158
1159 /*
1160 * Try to see if we can get the block without requesting a new
1161 * file system block.
1162 */
1163 down_read((&EXT4_I(inode)->i_data_sem));
1164 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1165 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1166 bh, 0);
1167 } else {
1168 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1169 bh, 0);
1170 }
1171 up_read((&EXT4_I(inode)->i_data_sem));
1172
1173 /* If it is only a block(s) look up */
1174 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1175 return retval;
1176
1177 /*
1178 * Returns if the blocks have already allocated
1179 *
1180 * Note that if blocks have been preallocated
1181 * ext4_ext_get_block() returns th create = 0
1182 * with buffer head unmapped.
1183 */
1184 if (retval > 0 && buffer_mapped(bh))
1185 return retval;
1186
1187 /*
1188 * When we call get_blocks without the create flag, the
1189 * BH_Unwritten flag could have gotten set if the blocks
1190 * requested were part of a uninitialized extent. We need to
1191 * clear this flag now that we are committed to convert all or
1192 * part of the uninitialized extent to be an initialized
1193 * extent. This is because we need to avoid the combination
1194 * of BH_Unwritten and BH_Mapped flags being simultaneously
1195 * set on the buffer_head.
1196 */
1197 clear_buffer_unwritten(bh);
1198
1199 /*
1200 * New blocks allocate and/or writing to uninitialized extent
1201 * will possibly result in updating i_data, so we take
1202 * the write lock of i_data_sem, and call get_blocks()
1203 * with create == 1 flag.
1204 */
1205 down_write((&EXT4_I(inode)->i_data_sem));
1206
1207 /*
1208 * if the caller is from delayed allocation writeout path
1209 * we have already reserved fs blocks for allocation
1210 * let the underlying get_block() function know to
1211 * avoid double accounting
1212 */
1213 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1214 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1215 /*
1216 * We need to check for EXT4 here because migrate
1217 * could have changed the inode type in between
1218 */
1219 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1220 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1221 bh, flags);
1222 } else {
1223 retval = ext4_ind_get_blocks(handle, inode, block,
1224 max_blocks, bh, flags);
1225
1226 if (retval > 0 && buffer_new(bh)) {
1227 /*
1228 * We allocated new blocks which will result in
1229 * i_data's format changing. Force the migrate
1230 * to fail by clearing migrate flags
1231 */
1232 EXT4_I(inode)->i_flags = EXT4_I(inode)->i_flags &
1233 ~EXT4_EXT_MIGRATE;
1234 }
1235 }
1236
1237 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
1238 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1239 /*
1240 * Update reserved blocks/metadata blocks
1241 * after successful block allocation
1242 * which were deferred till now
1243 */
1244 if ((retval > 0) && buffer_delay(bh))
1245 ext4_da_update_reserve_space(inode, retval);
1246 }
1247
1248 up_write((&EXT4_I(inode)->i_data_sem));
1249 return retval;
1250 }
1251
1252 /* Maximum number of blocks we map for direct IO at once. */
1253 #define DIO_MAX_BLOCKS 4096
1254
1255 int ext4_get_block(struct inode *inode, sector_t iblock,
1256 struct buffer_head *bh_result, int create)
1257 {
1258 handle_t *handle = ext4_journal_current_handle();
1259 int ret = 0, started = 0;
1260 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1261 int dio_credits;
1262
1263 if (create && !handle) {
1264 /* Direct IO write... */
1265 if (max_blocks > DIO_MAX_BLOCKS)
1266 max_blocks = DIO_MAX_BLOCKS;
1267 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1268 handle = ext4_journal_start(inode, dio_credits);
1269 if (IS_ERR(handle)) {
1270 ret = PTR_ERR(handle);
1271 goto out;
1272 }
1273 started = 1;
1274 }
1275
1276 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1277 create ? EXT4_GET_BLOCKS_CREATE : 0);
1278 if (ret > 0) {
1279 bh_result->b_size = (ret << inode->i_blkbits);
1280 ret = 0;
1281 }
1282 if (started)
1283 ext4_journal_stop(handle);
1284 out:
1285 return ret;
1286 }
1287
1288 /*
1289 * `handle' can be NULL if create is zero
1290 */
1291 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1292 ext4_lblk_t block, int create, int *errp)
1293 {
1294 struct buffer_head dummy;
1295 int fatal = 0, err;
1296 int flags = EXT4_GET_BLOCKS_EXTEND_DISKSIZE;
1297
1298 J_ASSERT(handle != NULL || create == 0);
1299
1300 dummy.b_state = 0;
1301 dummy.b_blocknr = -1000;
1302 buffer_trace_init(&dummy.b_history);
1303 if (create)
1304 flags |= EXT4_GET_BLOCKS_CREATE;
1305 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1306 /*
1307 * ext4_get_blocks() returns number of blocks mapped. 0 in
1308 * case of a HOLE.
1309 */
1310 if (err > 0) {
1311 if (err > 1)
1312 WARN_ON(1);
1313 err = 0;
1314 }
1315 *errp = err;
1316 if (!err && buffer_mapped(&dummy)) {
1317 struct buffer_head *bh;
1318 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1319 if (!bh) {
1320 *errp = -EIO;
1321 goto err;
1322 }
1323 if (buffer_new(&dummy)) {
1324 J_ASSERT(create != 0);
1325 J_ASSERT(handle != NULL);
1326
1327 /*
1328 * Now that we do not always journal data, we should
1329 * keep in mind whether this should always journal the
1330 * new buffer as metadata. For now, regular file
1331 * writes use ext4_get_block instead, so it's not a
1332 * problem.
1333 */
1334 lock_buffer(bh);
1335 BUFFER_TRACE(bh, "call get_create_access");
1336 fatal = ext4_journal_get_create_access(handle, bh);
1337 if (!fatal && !buffer_uptodate(bh)) {
1338 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1339 set_buffer_uptodate(bh);
1340 }
1341 unlock_buffer(bh);
1342 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1343 err = ext4_handle_dirty_metadata(handle, inode, bh);
1344 if (!fatal)
1345 fatal = err;
1346 } else {
1347 BUFFER_TRACE(bh, "not a new buffer");
1348 }
1349 if (fatal) {
1350 *errp = fatal;
1351 brelse(bh);
1352 bh = NULL;
1353 }
1354 return bh;
1355 }
1356 err:
1357 return NULL;
1358 }
1359
1360 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1361 ext4_lblk_t block, int create, int *err)
1362 {
1363 struct buffer_head *bh;
1364
1365 bh = ext4_getblk(handle, inode, block, create, err);
1366 if (!bh)
1367 return bh;
1368 if (buffer_uptodate(bh))
1369 return bh;
1370 ll_rw_block(READ_META, 1, &bh);
1371 wait_on_buffer(bh);
1372 if (buffer_uptodate(bh))
1373 return bh;
1374 put_bh(bh);
1375 *err = -EIO;
1376 return NULL;
1377 }
1378
1379 static int walk_page_buffers(handle_t *handle,
1380 struct buffer_head *head,
1381 unsigned from,
1382 unsigned to,
1383 int *partial,
1384 int (*fn)(handle_t *handle,
1385 struct buffer_head *bh))
1386 {
1387 struct buffer_head *bh;
1388 unsigned block_start, block_end;
1389 unsigned blocksize = head->b_size;
1390 int err, ret = 0;
1391 struct buffer_head *next;
1392
1393 for (bh = head, block_start = 0;
1394 ret == 0 && (bh != head || !block_start);
1395 block_start = block_end, bh = next)
1396 {
1397 next = bh->b_this_page;
1398 block_end = block_start + blocksize;
1399 if (block_end <= from || block_start >= to) {
1400 if (partial && !buffer_uptodate(bh))
1401 *partial = 1;
1402 continue;
1403 }
1404 err = (*fn)(handle, bh);
1405 if (!ret)
1406 ret = err;
1407 }
1408 return ret;
1409 }
1410
1411 /*
1412 * To preserve ordering, it is essential that the hole instantiation and
1413 * the data write be encapsulated in a single transaction. We cannot
1414 * close off a transaction and start a new one between the ext4_get_block()
1415 * and the commit_write(). So doing the jbd2_journal_start at the start of
1416 * prepare_write() is the right place.
1417 *
1418 * Also, this function can nest inside ext4_writepage() ->
1419 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1420 * has generated enough buffer credits to do the whole page. So we won't
1421 * block on the journal in that case, which is good, because the caller may
1422 * be PF_MEMALLOC.
1423 *
1424 * By accident, ext4 can be reentered when a transaction is open via
1425 * quota file writes. If we were to commit the transaction while thus
1426 * reentered, there can be a deadlock - we would be holding a quota
1427 * lock, and the commit would never complete if another thread had a
1428 * transaction open and was blocking on the quota lock - a ranking
1429 * violation.
1430 *
1431 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1432 * will _not_ run commit under these circumstances because handle->h_ref
1433 * is elevated. We'll still have enough credits for the tiny quotafile
1434 * write.
1435 */
1436 static int do_journal_get_write_access(handle_t *handle,
1437 struct buffer_head *bh)
1438 {
1439 if (!buffer_mapped(bh) || buffer_freed(bh))
1440 return 0;
1441 return ext4_journal_get_write_access(handle, bh);
1442 }
1443
1444 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1445 loff_t pos, unsigned len, unsigned flags,
1446 struct page **pagep, void **fsdata)
1447 {
1448 struct inode *inode = mapping->host;
1449 int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1450 handle_t *handle;
1451 int retries = 0;
1452 struct page *page;
1453 pgoff_t index;
1454 unsigned from, to;
1455
1456 trace_mark(ext4_write_begin,
1457 "dev %s ino %lu pos %llu len %u flags %u",
1458 inode->i_sb->s_id, inode->i_ino,
1459 (unsigned long long) pos, len, flags);
1460 index = pos >> PAGE_CACHE_SHIFT;
1461 from = pos & (PAGE_CACHE_SIZE - 1);
1462 to = from + len;
1463
1464 retry:
1465 handle = ext4_journal_start(inode, needed_blocks);
1466 if (IS_ERR(handle)) {
1467 ret = PTR_ERR(handle);
1468 goto out;
1469 }
1470
1471 /* We cannot recurse into the filesystem as the transaction is already
1472 * started */
1473 flags |= AOP_FLAG_NOFS;
1474
1475 page = grab_cache_page_write_begin(mapping, index, flags);
1476 if (!page) {
1477 ext4_journal_stop(handle);
1478 ret = -ENOMEM;
1479 goto out;
1480 }
1481 *pagep = page;
1482
1483 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1484 ext4_get_block);
1485
1486 if (!ret && ext4_should_journal_data(inode)) {
1487 ret = walk_page_buffers(handle, page_buffers(page),
1488 from, to, NULL, do_journal_get_write_access);
1489 }
1490
1491 if (ret) {
1492 unlock_page(page);
1493 ext4_journal_stop(handle);
1494 page_cache_release(page);
1495 /*
1496 * block_write_begin may have instantiated a few blocks
1497 * outside i_size. Trim these off again. Don't need
1498 * i_size_read because we hold i_mutex.
1499 */
1500 if (pos + len > inode->i_size)
1501 vmtruncate(inode, inode->i_size);
1502 }
1503
1504 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1505 goto retry;
1506 out:
1507 return ret;
1508 }
1509
1510 /* For write_end() in data=journal mode */
1511 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1512 {
1513 if (!buffer_mapped(bh) || buffer_freed(bh))
1514 return 0;
1515 set_buffer_uptodate(bh);
1516 return ext4_handle_dirty_metadata(handle, NULL, bh);
1517 }
1518
1519 /*
1520 * We need to pick up the new inode size which generic_commit_write gave us
1521 * `file' can be NULL - eg, when called from page_symlink().
1522 *
1523 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1524 * buffers are managed internally.
1525 */
1526 static int ext4_ordered_write_end(struct file *file,
1527 struct address_space *mapping,
1528 loff_t pos, unsigned len, unsigned copied,
1529 struct page *page, void *fsdata)
1530 {
1531 handle_t *handle = ext4_journal_current_handle();
1532 struct inode *inode = mapping->host;
1533 int ret = 0, ret2;
1534
1535 trace_mark(ext4_ordered_write_end,
1536 "dev %s ino %lu pos %llu len %u copied %u",
1537 inode->i_sb->s_id, inode->i_ino,
1538 (unsigned long long) pos, len, copied);
1539 ret = ext4_jbd2_file_inode(handle, inode);
1540
1541 if (ret == 0) {
1542 loff_t new_i_size;
1543
1544 new_i_size = pos + copied;
1545 if (new_i_size > EXT4_I(inode)->i_disksize) {
1546 ext4_update_i_disksize(inode, new_i_size);
1547 /* We need to mark inode dirty even if
1548 * new_i_size is less that inode->i_size
1549 * bu greater than i_disksize.(hint delalloc)
1550 */
1551 ext4_mark_inode_dirty(handle, inode);
1552 }
1553
1554 ret2 = generic_write_end(file, mapping, pos, len, copied,
1555 page, fsdata);
1556 copied = ret2;
1557 if (ret2 < 0)
1558 ret = ret2;
1559 }
1560 ret2 = ext4_journal_stop(handle);
1561 if (!ret)
1562 ret = ret2;
1563
1564 return ret ? ret : copied;
1565 }
1566
1567 static int ext4_writeback_write_end(struct file *file,
1568 struct address_space *mapping,
1569 loff_t pos, unsigned len, unsigned copied,
1570 struct page *page, void *fsdata)
1571 {
1572 handle_t *handle = ext4_journal_current_handle();
1573 struct inode *inode = mapping->host;
1574 int ret = 0, ret2;
1575 loff_t new_i_size;
1576
1577 trace_mark(ext4_writeback_write_end,
1578 "dev %s ino %lu pos %llu len %u copied %u",
1579 inode->i_sb->s_id, inode->i_ino,
1580 (unsigned long long) pos, len, copied);
1581 new_i_size = pos + copied;
1582 if (new_i_size > EXT4_I(inode)->i_disksize) {
1583 ext4_update_i_disksize(inode, new_i_size);
1584 /* We need to mark inode dirty even if
1585 * new_i_size is less that inode->i_size
1586 * bu greater than i_disksize.(hint delalloc)
1587 */
1588 ext4_mark_inode_dirty(handle, inode);
1589 }
1590
1591 ret2 = generic_write_end(file, mapping, pos, len, copied,
1592 page, fsdata);
1593 copied = ret2;
1594 if (ret2 < 0)
1595 ret = ret2;
1596
1597 ret2 = ext4_journal_stop(handle);
1598 if (!ret)
1599 ret = ret2;
1600
1601 return ret ? ret : copied;
1602 }
1603
1604 static int ext4_journalled_write_end(struct file *file,
1605 struct address_space *mapping,
1606 loff_t pos, unsigned len, unsigned copied,
1607 struct page *page, void *fsdata)
1608 {
1609 handle_t *handle = ext4_journal_current_handle();
1610 struct inode *inode = mapping->host;
1611 int ret = 0, ret2;
1612 int partial = 0;
1613 unsigned from, to;
1614 loff_t new_i_size;
1615
1616 trace_mark(ext4_journalled_write_end,
1617 "dev %s ino %lu pos %llu len %u copied %u",
1618 inode->i_sb->s_id, inode->i_ino,
1619 (unsigned long long) pos, len, copied);
1620 from = pos & (PAGE_CACHE_SIZE - 1);
1621 to = from + len;
1622
1623 if (copied < len) {
1624 if (!PageUptodate(page))
1625 copied = 0;
1626 page_zero_new_buffers(page, from+copied, to);
1627 }
1628
1629 ret = walk_page_buffers(handle, page_buffers(page), from,
1630 to, &partial, write_end_fn);
1631 if (!partial)
1632 SetPageUptodate(page);
1633 new_i_size = pos + copied;
1634 if (new_i_size > inode->i_size)
1635 i_size_write(inode, pos+copied);
1636 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1637 if (new_i_size > EXT4_I(inode)->i_disksize) {
1638 ext4_update_i_disksize(inode, new_i_size);
1639 ret2 = ext4_mark_inode_dirty(handle, inode);
1640 if (!ret)
1641 ret = ret2;
1642 }
1643
1644 unlock_page(page);
1645 ret2 = ext4_journal_stop(handle);
1646 if (!ret)
1647 ret = ret2;
1648 page_cache_release(page);
1649
1650 return ret ? ret : copied;
1651 }
1652
1653 static int ext4_da_reserve_space(struct inode *inode, int nrblocks)
1654 {
1655 int retries = 0;
1656 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1657 unsigned long md_needed, mdblocks, total = 0;
1658
1659 /*
1660 * recalculate the amount of metadata blocks to reserve
1661 * in order to allocate nrblocks
1662 * worse case is one extent per block
1663 */
1664 repeat:
1665 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1666 total = EXT4_I(inode)->i_reserved_data_blocks + nrblocks;
1667 mdblocks = ext4_calc_metadata_amount(inode, total);
1668 BUG_ON(mdblocks < EXT4_I(inode)->i_reserved_meta_blocks);
1669
1670 md_needed = mdblocks - EXT4_I(inode)->i_reserved_meta_blocks;
1671 total = md_needed + nrblocks;
1672
1673 /*
1674 * Make quota reservation here to prevent quota overflow
1675 * later. Real quota accounting is done at pages writeout
1676 * time.
1677 */
1678 if (vfs_dq_reserve_block(inode, total)) {
1679 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1680 return -EDQUOT;
1681 }
1682
1683 if (ext4_claim_free_blocks(sbi, total)) {
1684 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1685 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1686 yield();
1687 goto repeat;
1688 }
1689 vfs_dq_release_reservation_block(inode, total);
1690 return -ENOSPC;
1691 }
1692 EXT4_I(inode)->i_reserved_data_blocks += nrblocks;
1693 EXT4_I(inode)->i_reserved_meta_blocks = mdblocks;
1694
1695 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1696 return 0; /* success */
1697 }
1698
1699 static void ext4_da_release_space(struct inode *inode, int to_free)
1700 {
1701 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1702 int total, mdb, mdb_free, release;
1703
1704 if (!to_free)
1705 return; /* Nothing to release, exit */
1706
1707 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1708
1709 if (!EXT4_I(inode)->i_reserved_data_blocks) {
1710 /*
1711 * if there is no reserved blocks, but we try to free some
1712 * then the counter is messed up somewhere.
1713 * but since this function is called from invalidate
1714 * page, it's harmless to return without any action
1715 */
1716 printk(KERN_INFO "ext4 delalloc try to release %d reserved "
1717 "blocks for inode %lu, but there is no reserved "
1718 "data blocks\n", to_free, inode->i_ino);
1719 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1720 return;
1721 }
1722
1723 /* recalculate the number of metablocks still need to be reserved */
1724 total = EXT4_I(inode)->i_reserved_data_blocks - to_free;
1725 mdb = ext4_calc_metadata_amount(inode, total);
1726
1727 /* figure out how many metablocks to release */
1728 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1729 mdb_free = EXT4_I(inode)->i_reserved_meta_blocks - mdb;
1730
1731 release = to_free + mdb_free;
1732
1733 /* update fs dirty blocks counter for truncate case */
1734 percpu_counter_sub(&sbi->s_dirtyblocks_counter, release);
1735
1736 /* update per-inode reservations */
1737 BUG_ON(to_free > EXT4_I(inode)->i_reserved_data_blocks);
1738 EXT4_I(inode)->i_reserved_data_blocks -= to_free;
1739
1740 BUG_ON(mdb > EXT4_I(inode)->i_reserved_meta_blocks);
1741 EXT4_I(inode)->i_reserved_meta_blocks = mdb;
1742 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1743
1744 vfs_dq_release_reservation_block(inode, release);
1745 }
1746
1747 static void ext4_da_page_release_reservation(struct page *page,
1748 unsigned long offset)
1749 {
1750 int to_release = 0;
1751 struct buffer_head *head, *bh;
1752 unsigned int curr_off = 0;
1753
1754 head = page_buffers(page);
1755 bh = head;
1756 do {
1757 unsigned int next_off = curr_off + bh->b_size;
1758
1759 if ((offset <= curr_off) && (buffer_delay(bh))) {
1760 to_release++;
1761 clear_buffer_delay(bh);
1762 }
1763 curr_off = next_off;
1764 } while ((bh = bh->b_this_page) != head);
1765 ext4_da_release_space(page->mapping->host, to_release);
1766 }
1767
1768 /*
1769 * Delayed allocation stuff
1770 */
1771
1772 struct mpage_da_data {
1773 struct inode *inode;
1774 sector_t b_blocknr; /* start block number of extent */
1775 size_t b_size; /* size of extent */
1776 unsigned long b_state; /* state of the extent */
1777 unsigned long first_page, next_page; /* extent of pages */
1778 struct writeback_control *wbc;
1779 int io_done;
1780 int pages_written;
1781 int retval;
1782 };
1783
1784 /*
1785 * mpage_da_submit_io - walks through extent of pages and try to write
1786 * them with writepage() call back
1787 *
1788 * @mpd->inode: inode
1789 * @mpd->first_page: first page of the extent
1790 * @mpd->next_page: page after the last page of the extent
1791 *
1792 * By the time mpage_da_submit_io() is called we expect all blocks
1793 * to be allocated. this may be wrong if allocation failed.
1794 *
1795 * As pages are already locked by write_cache_pages(), we can't use it
1796 */
1797 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1798 {
1799 long pages_skipped;
1800 struct pagevec pvec;
1801 unsigned long index, end;
1802 int ret = 0, err, nr_pages, i;
1803 struct inode *inode = mpd->inode;
1804 struct address_space *mapping = inode->i_mapping;
1805
1806 BUG_ON(mpd->next_page <= mpd->first_page);
1807 /*
1808 * We need to start from the first_page to the next_page - 1
1809 * to make sure we also write the mapped dirty buffer_heads.
1810 * If we look at mpd->b_blocknr we would only be looking
1811 * at the currently mapped buffer_heads.
1812 */
1813 index = mpd->first_page;
1814 end = mpd->next_page - 1;
1815
1816 pagevec_init(&pvec, 0);
1817 while (index <= end) {
1818 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1819 if (nr_pages == 0)
1820 break;
1821 for (i = 0; i < nr_pages; i++) {
1822 struct page *page = pvec.pages[i];
1823
1824 index = page->index;
1825 if (index > end)
1826 break;
1827 index++;
1828
1829 BUG_ON(!PageLocked(page));
1830 BUG_ON(PageWriteback(page));
1831
1832 pages_skipped = mpd->wbc->pages_skipped;
1833 err = mapping->a_ops->writepage(page, mpd->wbc);
1834 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
1835 /*
1836 * have successfully written the page
1837 * without skipping the same
1838 */
1839 mpd->pages_written++;
1840 /*
1841 * In error case, we have to continue because
1842 * remaining pages are still locked
1843 * XXX: unlock and re-dirty them?
1844 */
1845 if (ret == 0)
1846 ret = err;
1847 }
1848 pagevec_release(&pvec);
1849 }
1850 return ret;
1851 }
1852
1853 /*
1854 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
1855 *
1856 * @mpd->inode - inode to walk through
1857 * @exbh->b_blocknr - first block on a disk
1858 * @exbh->b_size - amount of space in bytes
1859 * @logical - first logical block to start assignment with
1860 *
1861 * the function goes through all passed space and put actual disk
1862 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
1863 */
1864 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
1865 struct buffer_head *exbh)
1866 {
1867 struct inode *inode = mpd->inode;
1868 struct address_space *mapping = inode->i_mapping;
1869 int blocks = exbh->b_size >> inode->i_blkbits;
1870 sector_t pblock = exbh->b_blocknr, cur_logical;
1871 struct buffer_head *head, *bh;
1872 pgoff_t index, end;
1873 struct pagevec pvec;
1874 int nr_pages, i;
1875
1876 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1877 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1878 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1879
1880 pagevec_init(&pvec, 0);
1881
1882 while (index <= end) {
1883 /* XXX: optimize tail */
1884 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1885 if (nr_pages == 0)
1886 break;
1887 for (i = 0; i < nr_pages; i++) {
1888 struct page *page = pvec.pages[i];
1889
1890 index = page->index;
1891 if (index > end)
1892 break;
1893 index++;
1894
1895 BUG_ON(!PageLocked(page));
1896 BUG_ON(PageWriteback(page));
1897 BUG_ON(!page_has_buffers(page));
1898
1899 bh = page_buffers(page);
1900 head = bh;
1901
1902 /* skip blocks out of the range */
1903 do {
1904 if (cur_logical >= logical)
1905 break;
1906 cur_logical++;
1907 } while ((bh = bh->b_this_page) != head);
1908
1909 do {
1910 if (cur_logical >= logical + blocks)
1911 break;
1912
1913 if (buffer_delay(bh) ||
1914 buffer_unwritten(bh)) {
1915
1916 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
1917
1918 if (buffer_delay(bh)) {
1919 clear_buffer_delay(bh);
1920 bh->b_blocknr = pblock;
1921 } else {
1922 /*
1923 * unwritten already should have
1924 * blocknr assigned. Verify that
1925 */
1926 clear_buffer_unwritten(bh);
1927 BUG_ON(bh->b_blocknr != pblock);
1928 }
1929
1930 } else if (buffer_mapped(bh))
1931 BUG_ON(bh->b_blocknr != pblock);
1932
1933 cur_logical++;
1934 pblock++;
1935 } while ((bh = bh->b_this_page) != head);
1936 }
1937 pagevec_release(&pvec);
1938 }
1939 }
1940
1941
1942 /*
1943 * __unmap_underlying_blocks - just a helper function to unmap
1944 * set of blocks described by @bh
1945 */
1946 static inline void __unmap_underlying_blocks(struct inode *inode,
1947 struct buffer_head *bh)
1948 {
1949 struct block_device *bdev = inode->i_sb->s_bdev;
1950 int blocks, i;
1951
1952 blocks = bh->b_size >> inode->i_blkbits;
1953 for (i = 0; i < blocks; i++)
1954 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
1955 }
1956
1957 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
1958 sector_t logical, long blk_cnt)
1959 {
1960 int nr_pages, i;
1961 pgoff_t index, end;
1962 struct pagevec pvec;
1963 struct inode *inode = mpd->inode;
1964 struct address_space *mapping = inode->i_mapping;
1965
1966 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
1967 end = (logical + blk_cnt - 1) >>
1968 (PAGE_CACHE_SHIFT - inode->i_blkbits);
1969 while (index <= end) {
1970 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1971 if (nr_pages == 0)
1972 break;
1973 for (i = 0; i < nr_pages; i++) {
1974 struct page *page = pvec.pages[i];
1975 index = page->index;
1976 if (index > end)
1977 break;
1978 index++;
1979
1980 BUG_ON(!PageLocked(page));
1981 BUG_ON(PageWriteback(page));
1982 block_invalidatepage(page, 0);
1983 ClearPageUptodate(page);
1984 unlock_page(page);
1985 }
1986 }
1987 return;
1988 }
1989
1990 static void ext4_print_free_blocks(struct inode *inode)
1991 {
1992 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1993 printk(KERN_EMERG "Total free blocks count %lld\n",
1994 ext4_count_free_blocks(inode->i_sb));
1995 printk(KERN_EMERG "Free/Dirty block details\n");
1996 printk(KERN_EMERG "free_blocks=%lld\n",
1997 (long long)percpu_counter_sum(&sbi->s_freeblocks_counter));
1998 printk(KERN_EMERG "dirty_blocks=%lld\n",
1999 (long long)percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2000 printk(KERN_EMERG "Block reservation details\n");
2001 printk(KERN_EMERG "i_reserved_data_blocks=%u\n",
2002 EXT4_I(inode)->i_reserved_data_blocks);
2003 printk(KERN_EMERG "i_reserved_meta_blocks=%u\n",
2004 EXT4_I(inode)->i_reserved_meta_blocks);
2005 return;
2006 }
2007
2008 /*
2009 * mpage_da_map_blocks - go through given space
2010 *
2011 * @mpd - bh describing space
2012 *
2013 * The function skips space we know is already mapped to disk blocks.
2014 *
2015 */
2016 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2017 {
2018 int err, blks;
2019 struct buffer_head new;
2020 sector_t next = mpd->b_blocknr;
2021 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2022 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2023 handle_t *handle = NULL;
2024
2025 /*
2026 * We consider only non-mapped and non-allocated blocks
2027 */
2028 if ((mpd->b_state & (1 << BH_Mapped)) &&
2029 !(mpd->b_state & (1 << BH_Delay)) &&
2030 !(mpd->b_state & (1 << BH_Unwritten)))
2031 return 0;
2032
2033 /*
2034 * If we didn't accumulate anything to write simply return
2035 */
2036 if (!mpd->b_size)
2037 return 0;
2038
2039 handle = ext4_journal_current_handle();
2040 BUG_ON(!handle);
2041
2042 /*
2043 * We need to make sure the BH_Delay flag is passed down to
2044 * ext4_da_get_block_write(), since it calls ext4_get_blocks()
2045 * with the EXT4_GET_BLOCKS_DELALLOC_RESERVE flag. This flag
2046 * causes ext4_get_blocks() to call
2047 * ext4_da_update_reserve_space() if the passed buffer head
2048 * has the BH_Delay flag set. In the future, once we clean up
2049 * the interfaces to ext4_get_blocks(), we should pass in a
2050 * separate flag which requests that the delayed allocation
2051 * statistics should be updated, instead of depending on the
2052 * state information getting passed down via the map_bh's
2053 * state bitmasks plus the magic
2054 * EXT4_GET_BLOCKS_DELALLOC_RESERVE flag.
2055 */
2056 new.b_state = mpd->b_state & (1 << BH_Delay);
2057 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2058 &new, EXT4_GET_BLOCKS_CREATE|
2059 EXT4_GET_BLOCKS_DELALLOC_RESERVE);
2060 if (blks < 0) {
2061 err = blks;
2062 /*
2063 * If get block returns with error we simply
2064 * return. Later writepage will redirty the page and
2065 * writepages will find the dirty page again
2066 */
2067 if (err == -EAGAIN)
2068 return 0;
2069
2070 if (err == -ENOSPC &&
2071 ext4_count_free_blocks(mpd->inode->i_sb)) {
2072 mpd->retval = err;
2073 return 0;
2074 }
2075
2076 /*
2077 * get block failure will cause us to loop in
2078 * writepages, because a_ops->writepage won't be able
2079 * to make progress. The page will be redirtied by
2080 * writepage and writepages will again try to write
2081 * the same.
2082 */
2083 printk(KERN_EMERG "%s block allocation failed for inode %lu "
2084 "at logical offset %llu with max blocks "
2085 "%zd with error %d\n",
2086 __func__, mpd->inode->i_ino,
2087 (unsigned long long)next,
2088 mpd->b_size >> mpd->inode->i_blkbits, err);
2089 printk(KERN_EMERG "This should not happen.!! "
2090 "Data will be lost\n");
2091 if (err == -ENOSPC) {
2092 ext4_print_free_blocks(mpd->inode);
2093 }
2094 /* invalidate all the pages */
2095 ext4_da_block_invalidatepages(mpd, next,
2096 mpd->b_size >> mpd->inode->i_blkbits);
2097 return err;
2098 }
2099 BUG_ON(blks == 0);
2100
2101 new.b_size = (blks << mpd->inode->i_blkbits);
2102
2103 if (buffer_new(&new))
2104 __unmap_underlying_blocks(mpd->inode, &new);
2105
2106 /*
2107 * If blocks are delayed marked, we need to
2108 * put actual blocknr and drop delayed bit
2109 */
2110 if ((mpd->b_state & (1 << BH_Delay)) ||
2111 (mpd->b_state & (1 << BH_Unwritten)))
2112 mpage_put_bnr_to_bhs(mpd, next, &new);
2113
2114 if (ext4_should_order_data(mpd->inode)) {
2115 err = ext4_jbd2_file_inode(handle, mpd->inode);
2116 if (err)
2117 return err;
2118 }
2119
2120 /*
2121 * Update on-disk size along with block allocation we don't
2122 * use EXT4_GET_BLOCKS_EXTEND_DISKSIZE as size may change
2123 * within already allocated block -bzzz
2124 */
2125 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2126 if (disksize > i_size_read(mpd->inode))
2127 disksize = i_size_read(mpd->inode);
2128 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2129 ext4_update_i_disksize(mpd->inode, disksize);
2130 return ext4_mark_inode_dirty(handle, mpd->inode);
2131 }
2132
2133 return 0;
2134 }
2135
2136 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2137 (1 << BH_Delay) | (1 << BH_Unwritten))
2138
2139 /*
2140 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2141 *
2142 * @mpd->lbh - extent of blocks
2143 * @logical - logical number of the block in the file
2144 * @bh - bh of the block (used to access block's state)
2145 *
2146 * the function is used to collect contig. blocks in same state
2147 */
2148 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2149 sector_t logical, size_t b_size,
2150 unsigned long b_state)
2151 {
2152 sector_t next;
2153 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2154
2155 /* check if thereserved journal credits might overflow */
2156 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2157 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2158 /*
2159 * With non-extent format we are limited by the journal
2160 * credit available. Total credit needed to insert
2161 * nrblocks contiguous blocks is dependent on the
2162 * nrblocks. So limit nrblocks.
2163 */
2164 goto flush_it;
2165 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2166 EXT4_MAX_TRANS_DATA) {
2167 /*
2168 * Adding the new buffer_head would make it cross the
2169 * allowed limit for which we have journal credit
2170 * reserved. So limit the new bh->b_size
2171 */
2172 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2173 mpd->inode->i_blkbits;
2174 /* we will do mpage_da_submit_io in the next loop */
2175 }
2176 }
2177 /*
2178 * First block in the extent
2179 */
2180 if (mpd->b_size == 0) {
2181 mpd->b_blocknr = logical;
2182 mpd->b_size = b_size;
2183 mpd->b_state = b_state & BH_FLAGS;
2184 return;
2185 }
2186
2187 next = mpd->b_blocknr + nrblocks;
2188 /*
2189 * Can we merge the block to our big extent?
2190 */
2191 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2192 mpd->b_size += b_size;
2193 return;
2194 }
2195
2196 flush_it:
2197 /*
2198 * We couldn't merge the block to our extent, so we
2199 * need to flush current extent and start new one
2200 */
2201 if (mpage_da_map_blocks(mpd) == 0)
2202 mpage_da_submit_io(mpd);
2203 mpd->io_done = 1;
2204 return;
2205 }
2206
2207 static int ext4_bh_unmapped_or_delay(handle_t *handle, struct buffer_head *bh)
2208 {
2209 /*
2210 * unmapped buffer is possible for holes.
2211 * delay buffer is possible with delayed allocation.
2212 * We also need to consider unwritten buffer as unmapped.
2213 */
2214 return (!buffer_mapped(bh) || buffer_delay(bh) ||
2215 buffer_unwritten(bh)) && buffer_dirty(bh);
2216 }
2217
2218 /*
2219 * __mpage_da_writepage - finds extent of pages and blocks
2220 *
2221 * @page: page to consider
2222 * @wbc: not used, we just follow rules
2223 * @data: context
2224 *
2225 * The function finds extents of pages and scan them for all blocks.
2226 */
2227 static int __mpage_da_writepage(struct page *page,
2228 struct writeback_control *wbc, void *data)
2229 {
2230 struct mpage_da_data *mpd = data;
2231 struct inode *inode = mpd->inode;
2232 struct buffer_head *bh, *head;
2233 sector_t logical;
2234
2235 if (mpd->io_done) {
2236 /*
2237 * Rest of the page in the page_vec
2238 * redirty then and skip then. We will
2239 * try to to write them again after
2240 * starting a new transaction
2241 */
2242 redirty_page_for_writepage(wbc, page);
2243 unlock_page(page);
2244 return MPAGE_DA_EXTENT_TAIL;
2245 }
2246 /*
2247 * Can we merge this page to current extent?
2248 */
2249 if (mpd->next_page != page->index) {
2250 /*
2251 * Nope, we can't. So, we map non-allocated blocks
2252 * and start IO on them using writepage()
2253 */
2254 if (mpd->next_page != mpd->first_page) {
2255 if (mpage_da_map_blocks(mpd) == 0)
2256 mpage_da_submit_io(mpd);
2257 /*
2258 * skip rest of the page in the page_vec
2259 */
2260 mpd->io_done = 1;
2261 redirty_page_for_writepage(wbc, page);
2262 unlock_page(page);
2263 return MPAGE_DA_EXTENT_TAIL;
2264 }
2265
2266 /*
2267 * Start next extent of pages ...
2268 */
2269 mpd->first_page = page->index;
2270
2271 /*
2272 * ... and blocks
2273 */
2274 mpd->b_size = 0;
2275 mpd->b_state = 0;
2276 mpd->b_blocknr = 0;
2277 }
2278
2279 mpd->next_page = page->index + 1;
2280 logical = (sector_t) page->index <<
2281 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2282
2283 if (!page_has_buffers(page)) {
2284 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2285 (1 << BH_Dirty) | (1 << BH_Uptodate));
2286 if (mpd->io_done)
2287 return MPAGE_DA_EXTENT_TAIL;
2288 } else {
2289 /*
2290 * Page with regular buffer heads, just add all dirty ones
2291 */
2292 head = page_buffers(page);
2293 bh = head;
2294 do {
2295 BUG_ON(buffer_locked(bh));
2296 /*
2297 * We need to try to allocate
2298 * unmapped blocks in the same page.
2299 * Otherwise we won't make progress
2300 * with the page in ext4_da_writepage
2301 */
2302 if (ext4_bh_unmapped_or_delay(NULL, bh)) {
2303 mpage_add_bh_to_extent(mpd, logical,
2304 bh->b_size,
2305 bh->b_state);
2306 if (mpd->io_done)
2307 return MPAGE_DA_EXTENT_TAIL;
2308 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2309 /*
2310 * mapped dirty buffer. We need to update
2311 * the b_state because we look at
2312 * b_state in mpage_da_map_blocks. We don't
2313 * update b_size because if we find an
2314 * unmapped buffer_head later we need to
2315 * use the b_state flag of that buffer_head.
2316 */
2317 if (mpd->b_size == 0)
2318 mpd->b_state = bh->b_state & BH_FLAGS;
2319 }
2320 logical++;
2321 } while ((bh = bh->b_this_page) != head);
2322 }
2323
2324 return 0;
2325 }
2326
2327 /*
2328 * This is a special get_blocks_t callback which is used by
2329 * ext4_da_write_begin(). It will either return mapped block or
2330 * reserve space for a single block.
2331 *
2332 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2333 * We also have b_blocknr = -1 and b_bdev initialized properly
2334 *
2335 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2336 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2337 * initialized properly.
2338 */
2339 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2340 struct buffer_head *bh_result, int create)
2341 {
2342 int ret = 0;
2343 sector_t invalid_block = ~((sector_t) 0xffff);
2344
2345 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2346 invalid_block = ~0;
2347
2348 BUG_ON(create == 0);
2349 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2350
2351 /*
2352 * first, we need to know whether the block is allocated already
2353 * preallocated blocks are unmapped but should treated
2354 * the same as allocated blocks.
2355 */
2356 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2357 if ((ret == 0) && !buffer_delay(bh_result)) {
2358 /* the block isn't (pre)allocated yet, let's reserve space */
2359 /*
2360 * XXX: __block_prepare_write() unmaps passed block,
2361 * is it OK?
2362 */
2363 ret = ext4_da_reserve_space(inode, 1);
2364 if (ret)
2365 /* not enough space to reserve */
2366 return ret;
2367
2368 map_bh(bh_result, inode->i_sb, invalid_block);
2369 set_buffer_new(bh_result);
2370 set_buffer_delay(bh_result);
2371 } else if (ret > 0) {
2372 bh_result->b_size = (ret << inode->i_blkbits);
2373 if (buffer_unwritten(bh_result)) {
2374 /* A delayed write to unwritten bh should
2375 * be marked new and mapped. Mapped ensures
2376 * that we don't do get_block multiple times
2377 * when we write to the same offset and new
2378 * ensures that we do proper zero out for
2379 * partial write.
2380 */
2381 set_buffer_new(bh_result);
2382 set_buffer_mapped(bh_result);
2383 }
2384 ret = 0;
2385 }
2386
2387 return ret;
2388 }
2389
2390 /*
2391 * This function is used as a standard get_block_t calback function
2392 * when there is no desire to allocate any blocks. It is used as a
2393 * callback function for block_prepare_write(), nobh_writepage(), and
2394 * block_write_full_page(). These functions should only try to map a
2395 * single block at a time.
2396 *
2397 * Since this function doesn't do block allocations even if the caller
2398 * requests it by passing in create=1, it is critically important that
2399 * any caller checks to make sure that any buffer heads are returned
2400 * by this function are either all already mapped or marked for
2401 * delayed allocation before calling nobh_writepage() or
2402 * block_write_full_page(). Otherwise, b_blocknr could be left
2403 * unitialized, and the page write functions will be taken by
2404 * surprise.
2405 */
2406 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2407 struct buffer_head *bh_result, int create)
2408 {
2409 int ret = 0;
2410 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2411
2412 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2413
2414 /*
2415 * we don't want to do block allocation in writepage
2416 * so call get_block_wrap with create = 0
2417 */
2418 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2419 BUG_ON(create && ret == 0);
2420 if (ret > 0) {
2421 bh_result->b_size = (ret << inode->i_blkbits);
2422 ret = 0;
2423 }
2424 return ret;
2425 }
2426
2427 /*
2428 * This function can get called via...
2429 * - ext4_da_writepages after taking page lock (have journal handle)
2430 * - journal_submit_inode_data_buffers (no journal handle)
2431 * - shrink_page_list via pdflush (no journal handle)
2432 * - grab_page_cache when doing write_begin (have journal handle)
2433 */
2434 static int ext4_da_writepage(struct page *page,
2435 struct writeback_control *wbc)
2436 {
2437 int ret = 0;
2438 loff_t size;
2439 unsigned int len;
2440 struct buffer_head *page_bufs;
2441 struct inode *inode = page->mapping->host;
2442
2443 trace_mark(ext4_da_writepage,
2444 "dev %s ino %lu page_index %lu",
2445 inode->i_sb->s_id, inode->i_ino, page->index);
2446 size = i_size_read(inode);
2447 if (page->index == size >> PAGE_CACHE_SHIFT)
2448 len = size & ~PAGE_CACHE_MASK;
2449 else
2450 len = PAGE_CACHE_SIZE;
2451
2452 if (page_has_buffers(page)) {
2453 page_bufs = page_buffers(page);
2454 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2455 ext4_bh_unmapped_or_delay)) {
2456 /*
2457 * We don't want to do block allocation
2458 * So redirty the page and return
2459 * We may reach here when we do a journal commit
2460 * via journal_submit_inode_data_buffers.
2461 * If we don't have mapping block we just ignore
2462 * them. We can also reach here via shrink_page_list
2463 */
2464 redirty_page_for_writepage(wbc, page);
2465 unlock_page(page);
2466 return 0;
2467 }
2468 } else {
2469 /*
2470 * The test for page_has_buffers() is subtle:
2471 * We know the page is dirty but it lost buffers. That means
2472 * that at some moment in time after write_begin()/write_end()
2473 * has been called all buffers have been clean and thus they
2474 * must have been written at least once. So they are all
2475 * mapped and we can happily proceed with mapping them
2476 * and writing the page.
2477 *
2478 * Try to initialize the buffer_heads and check whether
2479 * all are mapped and non delay. We don't want to
2480 * do block allocation here.
2481 */
2482 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
2483 noalloc_get_block_write);
2484 if (!ret) {
2485 page_bufs = page_buffers(page);
2486 /* check whether all are mapped and non delay */
2487 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2488 ext4_bh_unmapped_or_delay)) {
2489 redirty_page_for_writepage(wbc, page);
2490 unlock_page(page);
2491 return 0;
2492 }
2493 } else {
2494 /*
2495 * We can't do block allocation here
2496 * so just redity the page and unlock
2497 * and return
2498 */
2499 redirty_page_for_writepage(wbc, page);
2500 unlock_page(page);
2501 return 0;
2502 }
2503 /* now mark the buffer_heads as dirty and uptodate */
2504 block_commit_write(page, 0, PAGE_CACHE_SIZE);
2505 }
2506
2507 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2508 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2509 else
2510 ret = block_write_full_page(page, noalloc_get_block_write,
2511 wbc);
2512
2513 return ret;
2514 }
2515
2516 /*
2517 * This is called via ext4_da_writepages() to
2518 * calulate the total number of credits to reserve to fit
2519 * a single extent allocation into a single transaction,
2520 * ext4_da_writpeages() will loop calling this before
2521 * the block allocation.
2522 */
2523
2524 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2525 {
2526 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2527
2528 /*
2529 * With non-extent format the journal credit needed to
2530 * insert nrblocks contiguous block is dependent on
2531 * number of contiguous block. So we will limit
2532 * number of contiguous block to a sane value
2533 */
2534 if (!(inode->i_flags & EXT4_EXTENTS_FL) &&
2535 (max_blocks > EXT4_MAX_TRANS_DATA))
2536 max_blocks = EXT4_MAX_TRANS_DATA;
2537
2538 return ext4_chunk_trans_blocks(inode, max_blocks);
2539 }
2540
2541 static int ext4_da_writepages(struct address_space *mapping,
2542 struct writeback_control *wbc)
2543 {
2544 pgoff_t index;
2545 int range_whole = 0;
2546 handle_t *handle = NULL;
2547 struct mpage_da_data mpd;
2548 struct inode *inode = mapping->host;
2549 int no_nrwrite_index_update;
2550 int pages_written = 0;
2551 long pages_skipped;
2552 int range_cyclic, cycled = 1, io_done = 0;
2553 int needed_blocks, ret = 0, nr_to_writebump = 0;
2554 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2555
2556 trace_mark(ext4_da_writepages,
2557 "dev %s ino %lu nr_t_write %ld "
2558 "pages_skipped %ld range_start %llu "
2559 "range_end %llu nonblocking %d "
2560 "for_kupdate %d for_reclaim %d "
2561 "for_writepages %d range_cyclic %d",
2562 inode->i_sb->s_id, inode->i_ino,
2563 wbc->nr_to_write, wbc->pages_skipped,
2564 (unsigned long long) wbc->range_start,
2565 (unsigned long long) wbc->range_end,
2566 wbc->nonblocking, wbc->for_kupdate,
2567 wbc->for_reclaim, wbc->for_writepages,
2568 wbc->range_cyclic);
2569
2570 /*
2571 * No pages to write? This is mainly a kludge to avoid starting
2572 * a transaction for special inodes like journal inode on last iput()
2573 * because that could violate lock ordering on umount
2574 */
2575 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2576 return 0;
2577
2578 /*
2579 * If the filesystem has aborted, it is read-only, so return
2580 * right away instead of dumping stack traces later on that
2581 * will obscure the real source of the problem. We test
2582 * EXT4_MOUNT_ABORT instead of sb->s_flag's MS_RDONLY because
2583 * the latter could be true if the filesystem is mounted
2584 * read-only, and in that case, ext4_da_writepages should
2585 * *never* be called, so if that ever happens, we would want
2586 * the stack trace.
2587 */
2588 if (unlikely(sbi->s_mount_opt & EXT4_MOUNT_ABORT))
2589 return -EROFS;
2590
2591 /*
2592 * Make sure nr_to_write is >= sbi->s_mb_stream_request
2593 * This make sure small files blocks are allocated in
2594 * single attempt. This ensure that small files
2595 * get less fragmented.
2596 */
2597 if (wbc->nr_to_write < sbi->s_mb_stream_request) {
2598 nr_to_writebump = sbi->s_mb_stream_request - wbc->nr_to_write;
2599 wbc->nr_to_write = sbi->s_mb_stream_request;
2600 }
2601 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2602 range_whole = 1;
2603
2604 range_cyclic = wbc->range_cyclic;
2605 if (wbc->range_cyclic) {
2606 index = mapping->writeback_index;
2607 if (index)
2608 cycled = 0;
2609 wbc->range_start = index << PAGE_CACHE_SHIFT;
2610 wbc->range_end = LLONG_MAX;
2611 wbc->range_cyclic = 0;
2612 } else
2613 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2614
2615 mpd.wbc = wbc;
2616 mpd.inode = mapping->host;
2617
2618 /*
2619 * we don't want write_cache_pages to update
2620 * nr_to_write and writeback_index
2621 */
2622 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2623 wbc->no_nrwrite_index_update = 1;
2624 pages_skipped = wbc->pages_skipped;
2625
2626 retry:
2627 while (!ret && wbc->nr_to_write > 0) {
2628
2629 /*
2630 * we insert one extent at a time. So we need
2631 * credit needed for single extent allocation.
2632 * journalled mode is currently not supported
2633 * by delalloc
2634 */
2635 BUG_ON(ext4_should_journal_data(inode));
2636 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2637
2638 /* start a new transaction*/
2639 handle = ext4_journal_start(inode, needed_blocks);
2640 if (IS_ERR(handle)) {
2641 ret = PTR_ERR(handle);
2642 printk(KERN_CRIT "%s: jbd2_start: "
2643 "%ld pages, ino %lu; err %d\n", __func__,
2644 wbc->nr_to_write, inode->i_ino, ret);
2645 dump_stack();
2646 goto out_writepages;
2647 }
2648
2649 /*
2650 * Now call __mpage_da_writepage to find the next
2651 * contiguous region of logical blocks that need
2652 * blocks to be allocated by ext4. We don't actually
2653 * submit the blocks for I/O here, even though
2654 * write_cache_pages thinks it will, and will set the
2655 * pages as clean for write before calling
2656 * __mpage_da_writepage().
2657 */
2658 mpd.b_size = 0;
2659 mpd.b_state = 0;
2660 mpd.b_blocknr = 0;
2661 mpd.first_page = 0;
2662 mpd.next_page = 0;
2663 mpd.io_done = 0;
2664 mpd.pages_written = 0;
2665 mpd.retval = 0;
2666 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2667 &mpd);
2668 /*
2669 * If we have a contigous extent of pages and we
2670 * haven't done the I/O yet, map the blocks and submit
2671 * them for I/O.
2672 */
2673 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2674 if (mpage_da_map_blocks(&mpd) == 0)
2675 mpage_da_submit_io(&mpd);
2676 mpd.io_done = 1;
2677 ret = MPAGE_DA_EXTENT_TAIL;
2678 }
2679 wbc->nr_to_write -= mpd.pages_written;
2680
2681 ext4_journal_stop(handle);
2682
2683 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2684 /* commit the transaction which would
2685 * free blocks released in the transaction
2686 * and try again
2687 */
2688 jbd2_journal_force_commit_nested(sbi->s_journal);
2689 wbc->pages_skipped = pages_skipped;
2690 ret = 0;
2691 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2692 /*
2693 * got one extent now try with
2694 * rest of the pages
2695 */
2696 pages_written += mpd.pages_written;
2697 wbc->pages_skipped = pages_skipped;
2698 ret = 0;
2699 io_done = 1;
2700 } else if (wbc->nr_to_write)
2701 /*
2702 * There is no more writeout needed
2703 * or we requested for a noblocking writeout
2704 * and we found the device congested
2705 */
2706 break;
2707 }
2708 if (!io_done && !cycled) {
2709 cycled = 1;
2710 index = 0;
2711 wbc->range_start = index << PAGE_CACHE_SHIFT;
2712 wbc->range_end = mapping->writeback_index - 1;
2713 goto retry;
2714 }
2715 if (pages_skipped != wbc->pages_skipped)
2716 printk(KERN_EMERG "This should not happen leaving %s "
2717 "with nr_to_write = %ld ret = %d\n",
2718 __func__, wbc->nr_to_write, ret);
2719
2720 /* Update index */
2721 index += pages_written;
2722 wbc->range_cyclic = range_cyclic;
2723 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2724 /*
2725 * set the writeback_index so that range_cyclic
2726 * mode will write it back later
2727 */
2728 mapping->writeback_index = index;
2729
2730 out_writepages:
2731 if (!no_nrwrite_index_update)
2732 wbc->no_nrwrite_index_update = 0;
2733 wbc->nr_to_write -= nr_to_writebump;
2734 trace_mark(ext4_da_writepage_result,
2735 "dev %s ino %lu ret %d pages_written %d "
2736 "pages_skipped %ld congestion %d "
2737 "more_io %d no_nrwrite_index_update %d",
2738 inode->i_sb->s_id, inode->i_ino, ret,
2739 pages_written, wbc->pages_skipped,
2740 wbc->encountered_congestion, wbc->more_io,
2741 wbc->no_nrwrite_index_update);
2742 return ret;
2743 }
2744
2745 #define FALL_BACK_TO_NONDELALLOC 1
2746 static int ext4_nonda_switch(struct super_block *sb)
2747 {
2748 s64 free_blocks, dirty_blocks;
2749 struct ext4_sb_info *sbi = EXT4_SB(sb);
2750
2751 /*
2752 * switch to non delalloc mode if we are running low
2753 * on free block. The free block accounting via percpu
2754 * counters can get slightly wrong with percpu_counter_batch getting
2755 * accumulated on each CPU without updating global counters
2756 * Delalloc need an accurate free block accounting. So switch
2757 * to non delalloc when we are near to error range.
2758 */
2759 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
2760 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
2761 if (2 * free_blocks < 3 * dirty_blocks ||
2762 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
2763 /*
2764 * free block count is less that 150% of dirty blocks
2765 * or free blocks is less that watermark
2766 */
2767 return 1;
2768 }
2769 return 0;
2770 }
2771
2772 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2773 loff_t pos, unsigned len, unsigned flags,
2774 struct page **pagep, void **fsdata)
2775 {
2776 int ret, retries = 0;
2777 struct page *page;
2778 pgoff_t index;
2779 unsigned from, to;
2780 struct inode *inode = mapping->host;
2781 handle_t *handle;
2782
2783 index = pos >> PAGE_CACHE_SHIFT;
2784 from = pos & (PAGE_CACHE_SIZE - 1);
2785 to = from + len;
2786
2787 if (ext4_nonda_switch(inode->i_sb)) {
2788 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2789 return ext4_write_begin(file, mapping, pos,
2790 len, flags, pagep, fsdata);
2791 }
2792 *fsdata = (void *)0;
2793
2794 trace_mark(ext4_da_write_begin,
2795 "dev %s ino %lu pos %llu len %u flags %u",
2796 inode->i_sb->s_id, inode->i_ino,
2797 (unsigned long long) pos, len, flags);
2798 retry:
2799 /*
2800 * With delayed allocation, we don't log the i_disksize update
2801 * if there is delayed block allocation. But we still need
2802 * to journalling the i_disksize update if writes to the end
2803 * of file which has an already mapped buffer.
2804 */
2805 handle = ext4_journal_start(inode, 1);
2806 if (IS_ERR(handle)) {
2807 ret = PTR_ERR(handle);
2808 goto out;
2809 }
2810 /* We cannot recurse into the filesystem as the transaction is already
2811 * started */
2812 flags |= AOP_FLAG_NOFS;
2813
2814 page = grab_cache_page_write_begin(mapping, index, flags);
2815 if (!page) {
2816 ext4_journal_stop(handle);
2817 ret = -ENOMEM;
2818 goto out;
2819 }
2820 *pagep = page;
2821
2822 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
2823 ext4_da_get_block_prep);
2824 if (ret < 0) {
2825 unlock_page(page);
2826 ext4_journal_stop(handle);
2827 page_cache_release(page);
2828 /*
2829 * block_write_begin may have instantiated a few blocks
2830 * outside i_size. Trim these off again. Don't need
2831 * i_size_read because we hold i_mutex.
2832 */
2833 if (pos + len > inode->i_size)
2834 vmtruncate(inode, inode->i_size);
2835 }
2836
2837 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2838 goto retry;
2839 out:
2840 return ret;
2841 }
2842
2843 /*
2844 * Check if we should update i_disksize
2845 * when write to the end of file but not require block allocation
2846 */
2847 static int ext4_da_should_update_i_disksize(struct page *page,
2848 unsigned long offset)
2849 {
2850 struct buffer_head *bh;
2851 struct inode *inode = page->mapping->host;
2852 unsigned int idx;
2853 int i;
2854
2855 bh = page_buffers(page);
2856 idx = offset >> inode->i_blkbits;
2857
2858 for (i = 0; i < idx; i++)
2859 bh = bh->b_this_page;
2860
2861 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2862 return 0;
2863 return 1;
2864 }
2865
2866 static int ext4_da_write_end(struct file *file,
2867 struct address_space *mapping,
2868 loff_t pos, unsigned len, unsigned copied,
2869 struct page *page, void *fsdata)
2870 {
2871 struct inode *inode = mapping->host;
2872 int ret = 0, ret2;
2873 handle_t *handle = ext4_journal_current_handle();
2874 loff_t new_i_size;
2875 unsigned long start, end;
2876 int write_mode = (int)(unsigned long)fsdata;
2877
2878 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
2879 if (ext4_should_order_data(inode)) {
2880 return ext4_ordered_write_end(file, mapping, pos,
2881 len, copied, page, fsdata);
2882 } else if (ext4_should_writeback_data(inode)) {
2883 return ext4_writeback_write_end(file, mapping, pos,
2884 len, copied, page, fsdata);
2885 } else {
2886 BUG();
2887 }
2888 }
2889
2890 trace_mark(ext4_da_write_end,
2891 "dev %s ino %lu pos %llu len %u copied %u",
2892 inode->i_sb->s_id, inode->i_ino,
2893 (unsigned long long) pos, len, copied);
2894 start = pos & (PAGE_CACHE_SIZE - 1);
2895 end = start + copied - 1;
2896
2897 /*
2898 * generic_write_end() will run mark_inode_dirty() if i_size
2899 * changes. So let's piggyback the i_disksize mark_inode_dirty
2900 * into that.
2901 */
2902
2903 new_i_size = pos + copied;
2904 if (new_i_size > EXT4_I(inode)->i_disksize) {
2905 if (ext4_da_should_update_i_disksize(page, end)) {
2906 down_write(&EXT4_I(inode)->i_data_sem);
2907 if (new_i_size > EXT4_I(inode)->i_disksize) {
2908 /*
2909 * Updating i_disksize when extending file
2910 * without needing block allocation
2911 */
2912 if (ext4_should_order_data(inode))
2913 ret = ext4_jbd2_file_inode(handle,
2914 inode);
2915
2916 EXT4_I(inode)->i_disksize = new_i_size;
2917 }
2918 up_write(&EXT4_I(inode)->i_data_sem);
2919 /* We need to mark inode dirty even if
2920 * new_i_size is less that inode->i_size
2921 * bu greater than i_disksize.(hint delalloc)
2922 */
2923 ext4_mark_inode_dirty(handle, inode);
2924 }
2925 }
2926 ret2 = generic_write_end(file, mapping, pos, len, copied,
2927 page, fsdata);
2928 copied = ret2;
2929 if (ret2 < 0)
2930 ret = ret2;
2931 ret2 = ext4_journal_stop(handle);
2932 if (!ret)
2933 ret = ret2;
2934
2935 return ret ? ret : copied;
2936 }
2937
2938 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2939 {
2940 /*
2941 * Drop reserved blocks
2942 */
2943 BUG_ON(!PageLocked(page));
2944 if (!page_has_buffers(page))
2945 goto out;
2946
2947 ext4_da_page_release_reservation(page, offset);
2948
2949 out:
2950 ext4_invalidatepage(page, offset);
2951
2952 return;
2953 }
2954
2955 /*
2956 * Force all delayed allocation blocks to be allocated for a given inode.
2957 */
2958 int ext4_alloc_da_blocks(struct inode *inode)
2959 {
2960 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2961 !EXT4_I(inode)->i_reserved_meta_blocks)
2962 return 0;
2963
2964 /*
2965 * We do something simple for now. The filemap_flush() will
2966 * also start triggering a write of the data blocks, which is
2967 * not strictly speaking necessary (and for users of
2968 * laptop_mode, not even desirable). However, to do otherwise
2969 * would require replicating code paths in:
2970 *
2971 * ext4_da_writepages() ->
2972 * write_cache_pages() ---> (via passed in callback function)
2973 * __mpage_da_writepage() -->
2974 * mpage_add_bh_to_extent()
2975 * mpage_da_map_blocks()
2976 *
2977 * The problem is that write_cache_pages(), located in
2978 * mm/page-writeback.c, marks pages clean in preparation for
2979 * doing I/O, which is not desirable if we're not planning on
2980 * doing I/O at all.
2981 *
2982 * We could call write_cache_pages(), and then redirty all of
2983 * the pages by calling redirty_page_for_writeback() but that
2984 * would be ugly in the extreme. So instead we would need to
2985 * replicate parts of the code in the above functions,
2986 * simplifying them becuase we wouldn't actually intend to
2987 * write out the pages, but rather only collect contiguous
2988 * logical block extents, call the multi-block allocator, and
2989 * then update the buffer heads with the block allocations.
2990 *
2991 * For now, though, we'll cheat by calling filemap_flush(),
2992 * which will map the blocks, and start the I/O, but not
2993 * actually wait for the I/O to complete.
2994 */
2995 return filemap_flush(inode->i_mapping);
2996 }
2997
2998 /*
2999 * bmap() is special. It gets used by applications such as lilo and by
3000 * the swapper to find the on-disk block of a specific piece of data.
3001 *
3002 * Naturally, this is dangerous if the block concerned is still in the
3003 * journal. If somebody makes a swapfile on an ext4 data-journaling
3004 * filesystem and enables swap, then they may get a nasty shock when the
3005 * data getting swapped to that swapfile suddenly gets overwritten by
3006 * the original zero's written out previously to the journal and
3007 * awaiting writeback in the kernel's buffer cache.
3008 *
3009 * So, if we see any bmap calls here on a modified, data-journaled file,
3010 * take extra steps to flush any blocks which might be in the cache.
3011 */
3012 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3013 {
3014 struct inode *inode = mapping->host;
3015 journal_t *journal;
3016 int err;
3017
3018 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3019 test_opt(inode->i_sb, DELALLOC)) {
3020 /*
3021 * With delalloc we want to sync the file
3022 * so that we can make sure we allocate
3023 * blocks for file
3024 */
3025 filemap_write_and_wait(mapping);
3026 }
3027
3028 if (EXT4_JOURNAL(inode) && EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
3029 /*
3030 * This is a REALLY heavyweight approach, but the use of
3031 * bmap on dirty files is expected to be extremely rare:
3032 * only if we run lilo or swapon on a freshly made file
3033 * do we expect this to happen.
3034 *
3035 * (bmap requires CAP_SYS_RAWIO so this does not
3036 * represent an unprivileged user DOS attack --- we'd be
3037 * in trouble if mortal users could trigger this path at
3038 * will.)
3039 *
3040 * NB. EXT4_STATE_JDATA is not set on files other than
3041 * regular files. If somebody wants to bmap a directory
3042 * or symlink and gets confused because the buffer
3043 * hasn't yet been flushed to disk, they deserve
3044 * everything they get.
3045 */
3046
3047 EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
3048 journal = EXT4_JOURNAL(inode);
3049 jbd2_journal_lock_updates(journal);
3050 err = jbd2_journal_flush(journal);
3051 jbd2_journal_unlock_updates(journal);
3052
3053 if (err)
3054 return 0;
3055 }
3056
3057 return generic_block_bmap(mapping, block, ext4_get_block);
3058 }
3059
3060 static int bget_one(handle_t *handle, struct buffer_head *bh)
3061 {
3062 get_bh(bh);
3063 return 0;
3064 }
3065
3066 static int bput_one(handle_t *handle, struct buffer_head *bh)
3067 {
3068 put_bh(bh);
3069 return 0;
3070 }
3071
3072 /*
3073 * Note that we don't need to start a transaction unless we're journaling data
3074 * because we should have holes filled from ext4_page_mkwrite(). We even don't
3075 * need to file the inode to the transaction's list in ordered mode because if
3076 * we are writing back data added by write(), the inode is already there and if
3077 * we are writing back data modified via mmap(), noone guarantees in which
3078 * transaction the data will hit the disk. In case we are journaling data, we
3079 * cannot start transaction directly because transaction start ranks above page
3080 * lock so we have to do some magic.
3081 *
3082 * In all journaling modes block_write_full_page() will start the I/O.
3083 *
3084 * Problem:
3085 *
3086 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
3087 * ext4_writepage()
3088 *
3089 * Similar for:
3090 *
3091 * ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
3092 *
3093 * Same applies to ext4_get_block(). We will deadlock on various things like
3094 * lock_journal and i_data_sem
3095 *
3096 * Setting PF_MEMALLOC here doesn't work - too many internal memory
3097 * allocations fail.
3098 *
3099 * 16May01: If we're reentered then journal_current_handle() will be
3100 * non-zero. We simply *return*.
3101 *
3102 * 1 July 2001: @@@ FIXME:
3103 * In journalled data mode, a data buffer may be metadata against the
3104 * current transaction. But the same file is part of a shared mapping
3105 * and someone does a writepage() on it.
3106 *
3107 * We will move the buffer onto the async_data list, but *after* it has
3108 * been dirtied. So there's a small window where we have dirty data on
3109 * BJ_Metadata.
3110 *
3111 * Note that this only applies to the last partial page in the file. The
3112 * bit which block_write_full_page() uses prepare/commit for. (That's
3113 * broken code anyway: it's wrong for msync()).
3114 *
3115 * It's a rare case: affects the final partial page, for journalled data
3116 * where the file is subject to bith write() and writepage() in the same
3117 * transction. To fix it we'll need a custom block_write_full_page().
3118 * We'll probably need that anyway for journalling writepage() output.
3119 *
3120 * We don't honour synchronous mounts for writepage(). That would be
3121 * disastrous. Any write() or metadata operation will sync the fs for
3122 * us.
3123 *
3124 */
3125 static int __ext4_normal_writepage(struct page *page,
3126 struct writeback_control *wbc)
3127 {
3128 struct inode *inode = page->mapping->host;
3129
3130 if (test_opt(inode->i_sb, NOBH))
3131 return nobh_writepage(page, noalloc_get_block_write, wbc);
3132 else
3133 return block_write_full_page(page, noalloc_get_block_write,
3134 wbc);
3135 }
3136
3137 static int ext4_normal_writepage(struct page *page,
3138 struct writeback_control *wbc)
3139 {
3140 struct inode *inode = page->mapping->host;
3141 loff_t size = i_size_read(inode);
3142 loff_t len;
3143
3144 trace_mark(ext4_normal_writepage,
3145 "dev %s ino %lu page_index %lu",
3146 inode->i_sb->s_id, inode->i_ino, page->index);
3147 J_ASSERT(PageLocked(page));
3148 if (page->index == size >> PAGE_CACHE_SHIFT)
3149 len = size & ~PAGE_CACHE_MASK;
3150 else
3151 len = PAGE_CACHE_SIZE;
3152
3153 if (page_has_buffers(page)) {
3154 /* if page has buffers it should all be mapped
3155 * and allocated. If there are not buffers attached
3156 * to the page we know the page is dirty but it lost
3157 * buffers. That means that at some moment in time
3158 * after write_begin() / write_end() has been called
3159 * all buffers have been clean and thus they must have been
3160 * written at least once. So they are all mapped and we can
3161 * happily proceed with mapping them and writing the page.
3162 */
3163 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3164 ext4_bh_unmapped_or_delay));
3165 }
3166
3167 if (!ext4_journal_current_handle())
3168 return __ext4_normal_writepage(page, wbc);
3169
3170 redirty_page_for_writepage(wbc, page);
3171 unlock_page(page);
3172 return 0;
3173 }
3174
3175 static int __ext4_journalled_writepage(struct page *page,
3176 struct writeback_control *wbc)
3177 {
3178 struct address_space *mapping = page->mapping;
3179 struct inode *inode = mapping->host;
3180 struct buffer_head *page_bufs;
3181 handle_t *handle = NULL;
3182 int ret = 0;
3183 int err;
3184
3185 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
3186 noalloc_get_block_write);
3187 if (ret != 0)
3188 goto out_unlock;
3189
3190 page_bufs = page_buffers(page);
3191 walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE, NULL,
3192 bget_one);
3193 /* As soon as we unlock the page, it can go away, but we have
3194 * references to buffers so we are safe */
3195 unlock_page(page);
3196
3197 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
3198 if (IS_ERR(handle)) {
3199 ret = PTR_ERR(handle);
3200 goto out;
3201 }
3202
3203 ret = walk_page_buffers(handle, page_bufs, 0,
3204 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
3205
3206 err = walk_page_buffers(handle, page_bufs, 0,
3207 PAGE_CACHE_SIZE, NULL, write_end_fn);
3208 if (ret == 0)
3209 ret = err;
3210 err = ext4_journal_stop(handle);
3211 if (!ret)
3212 ret = err;
3213
3214 walk_page_buffers(handle, page_bufs, 0,
3215 PAGE_CACHE_SIZE, NULL, bput_one);
3216 EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
3217 goto out;
3218
3219 out_unlock:
3220 unlock_page(page);
3221 out:
3222 return ret;
3223 }
3224
3225 static int ext4_journalled_writepage(struct page *page,
3226 struct writeback_control *wbc)
3227 {
3228 struct inode *inode = page->mapping->host;
3229 loff_t size = i_size_read(inode);
3230 loff_t len;
3231
3232 trace_mark(ext4_journalled_writepage,
3233 "dev %s ino %lu page_index %lu",
3234 inode->i_sb->s_id, inode->i_ino, page->index);
3235 J_ASSERT(PageLocked(page));
3236 if (page->index == size >> PAGE_CACHE_SHIFT)
3237 len = size & ~PAGE_CACHE_MASK;
3238 else
3239 len = PAGE_CACHE_SIZE;
3240
3241 if (page_has_buffers(page)) {
3242 /* if page has buffers it should all be mapped
3243 * and allocated. If there are not buffers attached
3244 * to the page we know the page is dirty but it lost
3245 * buffers. That means that at some moment in time
3246 * after write_begin() / write_end() has been called
3247 * all buffers have been clean and thus they must have been
3248 * written at least once. So they are all mapped and we can
3249 * happily proceed with mapping them and writing the page.
3250 */
3251 BUG_ON(walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
3252 ext4_bh_unmapped_or_delay));
3253 }
3254
3255 if (ext4_journal_current_handle())
3256 goto no_write;
3257
3258 if (PageChecked(page)) {
3259 /*
3260 * It's mmapped pagecache. Add buffers and journal it. There
3261 * doesn't seem much point in redirtying the page here.
3262 */
3263 ClearPageChecked(page);
3264 return __ext4_journalled_writepage(page, wbc);
3265 } else {
3266 /*
3267 * It may be a page full of checkpoint-mode buffers. We don't
3268 * really know unless we go poke around in the buffer_heads.
3269 * But block_write_full_page will do the right thing.
3270 */
3271 return block_write_full_page(page, noalloc_get_block_write,
3272 wbc);
3273 }
3274 no_write:
3275 redirty_page_for_writepage(wbc, page);
3276 unlock_page(page);
3277 return 0;
3278 }
3279
3280 static int ext4_readpage(struct file *file, struct page *page)
3281 {
3282 return mpage_readpage(page, ext4_get_block);
3283 }
3284
3285 static int
3286 ext4_readpages(struct file *file, struct address_space *mapping,
3287 struct list_head *pages, unsigned nr_pages)
3288 {
3289 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3290 }
3291
3292 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3293 {
3294 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3295
3296 /*
3297 * If it's a full truncate we just forget about the pending dirtying
3298 */
3299 if (offset == 0)
3300 ClearPageChecked(page);
3301
3302 if (journal)
3303 jbd2_journal_invalidatepage(journal, page, offset);
3304 else
3305 block_invalidatepage(page, offset);
3306 }
3307
3308 static int ext4_releasepage(struct page *page, gfp_t wait)
3309 {
3310 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3311
3312 WARN_ON(PageChecked(page));
3313 if (!page_has_buffers(page))
3314 return 0;
3315 if (journal)
3316 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3317 else
3318 return try_to_free_buffers(page);
3319 }
3320
3321 /*
3322 * If the O_DIRECT write will extend the file then add this inode to the
3323 * orphan list. So recovery will truncate it back to the original size
3324 * if the machine crashes during the write.
3325 *
3326 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3327 * crashes then stale disk data _may_ be exposed inside the file. But current
3328 * VFS code falls back into buffered path in that case so we are safe.
3329 */
3330 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3331 const struct iovec *iov, loff_t offset,
3332 unsigned long nr_segs)
3333 {
3334 struct file *file = iocb->ki_filp;
3335 struct inode *inode = file->f_mapping->host;
3336 struct ext4_inode_info *ei = EXT4_I(inode);
3337 handle_t *handle;
3338 ssize_t ret;
3339 int orphan = 0;
3340 size_t count = iov_length(iov, nr_segs);
3341
3342 if (rw == WRITE) {
3343 loff_t final_size = offset + count;
3344
3345 if (final_size > inode->i_size) {
3346 /* Credits for sb + inode write */
3347 handle = ext4_journal_start(inode, 2);
3348 if (IS_ERR(handle)) {
3349 ret = PTR_ERR(handle);
3350 goto out;
3351 }
3352 ret = ext4_orphan_add(handle, inode);
3353 if (ret) {
3354 ext4_journal_stop(handle);
3355 goto out;
3356 }
3357 orphan = 1;
3358 ei->i_disksize = inode->i_size;
3359 ext4_journal_stop(handle);
3360 }
3361 }
3362
3363 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
3364 offset, nr_segs,
3365 ext4_get_block, NULL);
3366
3367 if (orphan) {
3368 int err;
3369
3370 /* Credits for sb + inode write */
3371 handle = ext4_journal_start(inode, 2);
3372 if (IS_ERR(handle)) {
3373 /* This is really bad luck. We've written the data
3374 * but cannot extend i_size. Bail out and pretend
3375 * the write failed... */
3376 ret = PTR_ERR(handle);
3377 goto out;
3378 }
3379 if (inode->i_nlink)
3380 ext4_orphan_del(handle, inode);
3381 if (ret > 0) {
3382 loff_t end = offset + ret;
3383 if (end > inode->i_size) {
3384 ei->i_disksize = end;
3385 i_size_write(inode, end);
3386 /*
3387 * We're going to return a positive `ret'
3388 * here due to non-zero-length I/O, so there's
3389 * no way of reporting error returns from
3390 * ext4_mark_inode_dirty() to userspace. So
3391 * ignore it.
3392 */
3393 ext4_mark_inode_dirty(handle, inode);
3394 }
3395 }
3396 err = ext4_journal_stop(handle);
3397 if (ret == 0)
3398 ret = err;
3399 }
3400 out:
3401 return ret;
3402 }
3403
3404 /*
3405 * Pages can be marked dirty completely asynchronously from ext4's journalling
3406 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3407 * much here because ->set_page_dirty is called under VFS locks. The page is
3408 * not necessarily locked.
3409 *
3410 * We cannot just dirty the page and leave attached buffers clean, because the
3411 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3412 * or jbddirty because all the journalling code will explode.
3413 *
3414 * So what we do is to mark the page "pending dirty" and next time writepage
3415 * is called, propagate that into the buffers appropriately.
3416 */
3417 static int ext4_journalled_set_page_dirty(struct page *page)
3418 {
3419 SetPageChecked(page);
3420 return __set_page_dirty_nobuffers(page);
3421 }
3422
3423 static const struct address_space_operations ext4_ordered_aops = {
3424 .readpage = ext4_readpage,
3425 .readpages = ext4_readpages,
3426 .writepage = ext4_normal_writepage,
3427 .sync_page = block_sync_page,
3428 .write_begin = ext4_write_begin,
3429 .write_end = ext4_ordered_write_end,
3430 .bmap = ext4_bmap,
3431 .invalidatepage = ext4_invalidatepage,
3432 .releasepage = ext4_releasepage,
3433 .direct_IO = ext4_direct_IO,
3434 .migratepage = buffer_migrate_page,
3435 .is_partially_uptodate = block_is_partially_uptodate,
3436 };
3437
3438 static const struct address_space_operations ext4_writeback_aops = {
3439 .readpage = ext4_readpage,
3440 .readpages = ext4_readpages,
3441 .writepage = ext4_normal_writepage,
3442 .sync_page = block_sync_page,
3443 .write_begin = ext4_write_begin,
3444 .write_end = ext4_writeback_write_end,
3445 .bmap = ext4_bmap,
3446 .invalidatepage = ext4_invalidatepage,
3447 .releasepage = ext4_releasepage,
3448 .direct_IO = ext4_direct_IO,
3449 .migratepage = buffer_migrate_page,
3450 .is_partially_uptodate = block_is_partially_uptodate,
3451 };
3452
3453 static const struct address_space_operations ext4_journalled_aops = {
3454 .readpage = ext4_readpage,
3455 .readpages = ext4_readpages,
3456 .writepage = ext4_journalled_writepage,
3457 .sync_page = block_sync_page,
3458 .write_begin = ext4_write_begin,
3459 .write_end = ext4_journalled_write_end,
3460 .set_page_dirty = ext4_journalled_set_page_dirty,
3461 .bmap = ext4_bmap,
3462 .invalidatepage = ext4_invalidatepage,
3463 .releasepage = ext4_releasepage,
3464 .is_partially_uptodate = block_is_partially_uptodate,
3465 };
3466
3467 static const struct address_space_operations ext4_da_aops = {
3468 .readpage = ext4_readpage,
3469 .readpages = ext4_readpages,
3470 .writepage = ext4_da_writepage,
3471 .writepages = ext4_da_writepages,
3472 .sync_page = block_sync_page,
3473 .write_begin = ext4_da_write_begin,
3474 .write_end = ext4_da_write_end,
3475 .bmap = ext4_bmap,
3476 .invalidatepage = ext4_da_invalidatepage,
3477 .releasepage = ext4_releasepage,
3478 .direct_IO = ext4_direct_IO,
3479 .migratepage = buffer_migrate_page,
3480 .is_partially_uptodate = block_is_partially_uptodate,
3481 };
3482
3483 void ext4_set_aops(struct inode *inode)
3484 {
3485 if (ext4_should_order_data(inode) &&
3486 test_opt(inode->i_sb, DELALLOC))
3487 inode->i_mapping->a_ops = &ext4_da_aops;
3488 else if (ext4_should_order_data(inode))
3489 inode->i_mapping->a_ops = &ext4_ordered_aops;
3490 else if (ext4_should_writeback_data(inode) &&
3491 test_opt(inode->i_sb, DELALLOC))
3492 inode->i_mapping->a_ops = &ext4_da_aops;
3493 else if (ext4_should_writeback_data(inode))
3494 inode->i_mapping->a_ops = &ext4_writeback_aops;
3495 else
3496 inode->i_mapping->a_ops = &ext4_journalled_aops;
3497 }
3498
3499 /*
3500 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3501 * up to the end of the block which corresponds to `from'.
3502 * This required during truncate. We need to physically zero the tail end
3503 * of that block so it doesn't yield old data if the file is later grown.
3504 */
3505 int ext4_block_truncate_page(handle_t *handle,
3506 struct address_space *mapping, loff_t from)
3507 {
3508 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3509 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3510 unsigned blocksize, length, pos;
3511 ext4_lblk_t iblock;
3512 struct inode *inode = mapping->host;
3513 struct buffer_head *bh;
3514 struct page *page;
3515 int err = 0;
3516
3517 page = grab_cache_page(mapping, from >> PAGE_CACHE_SHIFT);
3518 if (!page)
3519 return -EINVAL;
3520
3521 blocksize = inode->i_sb->s_blocksize;
3522 length = blocksize - (offset & (blocksize - 1));
3523 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3524
3525 /*
3526 * For "nobh" option, we can only work if we don't need to
3527 * read-in the page - otherwise we create buffers to do the IO.
3528 */
3529 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
3530 ext4_should_writeback_data(inode) && PageUptodate(page)) {
3531 zero_user(page, offset, length);
3532 set_page_dirty(page);
3533 goto unlock;
3534 }
3535
3536 if (!page_has_buffers(page))
3537 create_empty_buffers(page, blocksize, 0);
3538
3539 /* Find the buffer that contains "offset" */
3540 bh = page_buffers(page);
3541 pos = blocksize;
3542 while (offset >= pos) {
3543 bh = bh->b_this_page;
3544 iblock++;
3545 pos += blocksize;
3546 }
3547
3548 err = 0;
3549 if (buffer_freed(bh)) {
3550 BUFFER_TRACE(bh, "freed: skip");
3551 goto unlock;
3552 }
3553
3554 if (!buffer_mapped(bh)) {
3555 BUFFER_TRACE(bh, "unmapped");
3556 ext4_get_block(inode, iblock, bh, 0);
3557 /* unmapped? It's a hole - nothing to do */
3558 if (!buffer_mapped(bh)) {
3559 BUFFER_TRACE(bh, "still unmapped");
3560 goto unlock;
3561 }
3562 }
3563
3564 /* Ok, it's mapped. Make sure it's up-to-date */
3565 if (PageUptodate(page))
3566 set_buffer_uptodate(bh);
3567
3568 if (!buffer_uptodate(bh)) {
3569 err = -EIO;
3570 ll_rw_block(READ, 1, &bh);
3571 wait_on_buffer(bh);
3572 /* Uhhuh. Read error. Complain and punt. */
3573 if (!buffer_uptodate(bh))
3574 goto unlock;
3575 }
3576
3577 if (ext4_should_journal_data(inode)) {
3578 BUFFER_TRACE(bh, "get write access");
3579 err = ext4_journal_get_write_access(handle, bh);
3580 if (err)
3581 goto unlock;
3582 }
3583
3584 zero_user(page, offset, length);
3585
3586 BUFFER_TRACE(bh, "zeroed end of block");
3587
3588 err = 0;
3589 if (ext4_should_journal_data(inode)) {
3590 err = ext4_handle_dirty_metadata(handle, inode, bh);
3591 } else {
3592 if (ext4_should_order_data(inode))
3593 err = ext4_jbd2_file_inode(handle, inode);
3594 mark_buffer_dirty(bh);
3595 }
3596
3597 unlock:
3598 unlock_page(page);
3599 page_cache_release(page);
3600 return err;
3601 }
3602
3603 /*
3604 * Probably it should be a library function... search for first non-zero word
3605 * or memcmp with zero_page, whatever is better for particular architecture.
3606 * Linus?
3607 */
3608 static inline int all_zeroes(__le32 *p, __le32 *q)
3609 {
3610 while (p < q)
3611 if (*p++)
3612 return 0;
3613 return 1;
3614 }
3615
3616 /**
3617 * ext4_find_shared - find the indirect blocks for partial truncation.
3618 * @inode: inode in question
3619 * @depth: depth of the affected branch
3620 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
3621 * @chain: place to store the pointers to partial indirect blocks
3622 * @top: place to the (detached) top of branch
3623 *
3624 * This is a helper function used by ext4_truncate().
3625 *
3626 * When we do truncate() we may have to clean the ends of several
3627 * indirect blocks but leave the blocks themselves alive. Block is
3628 * partially truncated if some data below the new i_size is refered
3629 * from it (and it is on the path to the first completely truncated
3630 * data block, indeed). We have to free the top of that path along
3631 * with everything to the right of the path. Since no allocation
3632 * past the truncation point is possible until ext4_truncate()
3633 * finishes, we may safely do the latter, but top of branch may
3634 * require special attention - pageout below the truncation point
3635 * might try to populate it.
3636 *
3637 * We atomically detach the top of branch from the tree, store the
3638 * block number of its root in *@top, pointers to buffer_heads of
3639 * partially truncated blocks - in @chain[].bh and pointers to
3640 * their last elements that should not be removed - in
3641 * @chain[].p. Return value is the pointer to last filled element
3642 * of @chain.
3643 *
3644 * The work left to caller to do the actual freeing of subtrees:
3645 * a) free the subtree starting from *@top
3646 * b) free the subtrees whose roots are stored in
3647 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
3648 * c) free the subtrees growing from the inode past the @chain[0].
3649 * (no partially truncated stuff there). */
3650
3651 static Indirect *ext4_find_shared(struct inode *inode, int depth,
3652 ext4_lblk_t offsets[4], Indirect chain[4], __le32 *top)
3653 {
3654 Indirect *partial, *p;
3655 int k, err;
3656
3657 *top = 0;
3658 /* Make k index the deepest non-null offest + 1 */
3659 for (k = depth; k > 1 && !offsets[k-1]; k--)
3660 ;
3661 partial = ext4_get_branch(inode, k, offsets, chain, &err);
3662 /* Writer: pointers */
3663 if (!partial)
3664 partial = chain + k-1;
3665 /*
3666 * If the branch acquired continuation since we've looked at it -
3667 * fine, it should all survive and (new) top doesn't belong to us.
3668 */
3669 if (!partial->key && *partial->p)
3670 /* Writer: end */
3671 goto no_top;
3672 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
3673 ;
3674 /*
3675 * OK, we've found the last block that must survive. The rest of our
3676 * branch should be detached before unlocking. However, if that rest
3677 * of branch is all ours and does not grow immediately from the inode
3678 * it's easier to cheat and just decrement partial->p.
3679 */
3680 if (p == chain + k - 1 && p > chain) {
3681 p->p--;
3682 } else {
3683 *top = *p->p;
3684 /* Nope, don't do this in ext4. Must leave the tree intact */
3685 #if 0
3686 *p->p = 0;
3687 #endif
3688 }
3689 /* Writer: end */
3690
3691 while (partial > p) {
3692 brelse(partial->bh);
3693 partial--;
3694 }
3695 no_top:
3696 return partial;
3697 }
3698
3699 /*
3700 * Zero a number of block pointers in either an inode or an indirect block.
3701 * If we restart the transaction we must again get write access to the
3702 * indirect block for further modification.
3703 *
3704 * We release `count' blocks on disk, but (last - first) may be greater
3705 * than `count' because there can be holes in there.
3706 */
3707 static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
3708 struct buffer_head *bh, ext4_fsblk_t block_to_free,
3709 unsigned long count, __le32 *first, __le32 *last)
3710 {
3711 __le32 *p;
3712 if (try_to_extend_transaction(handle, inode)) {
3713 if (bh) {
3714 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
3715 ext4_handle_dirty_metadata(handle, inode, bh);
3716 }
3717 ext4_mark_inode_dirty(handle, inode);
3718 ext4_journal_test_restart(handle, inode);
3719 if (bh) {
3720 BUFFER_TRACE(bh, "retaking write access");
3721 ext4_journal_get_write_access(handle, bh);
3722 }
3723 }
3724
3725 /*
3726 * Any buffers which are on the journal will be in memory. We find
3727 * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
3728 * on them. We've already detached each block from the file, so
3729 * bforget() in jbd2_journal_forget() should be safe.
3730 *
3731 * AKPM: turn on bforget in jbd2_journal_forget()!!!
3732 */
3733 for (p = first; p < last; p++) {
3734 u32 nr = le32_to_cpu(*p);
3735 if (nr) {
3736 struct buffer_head *tbh;
3737
3738 *p = 0;
3739 tbh = sb_find_get_block(inode->i_sb, nr);
3740 ext4_forget(handle, 0, inode, tbh, nr);
3741 }
3742 }
3743
3744 ext4_free_blocks(handle, inode, block_to_free, count, 0);
3745 }
3746
3747 /**
3748 * ext4_free_data - free a list of data blocks
3749 * @handle: handle for this transaction
3750 * @inode: inode we are dealing with
3751 * @this_bh: indirect buffer_head which contains *@first and *@last
3752 * @first: array of block numbers
3753 * @last: points immediately past the end of array
3754 *
3755 * We are freeing all blocks refered from that array (numbers are stored as
3756 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
3757 *
3758 * We accumulate contiguous runs of blocks to free. Conveniently, if these
3759 * blocks are contiguous then releasing them at one time will only affect one
3760 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
3761 * actually use a lot of journal space.
3762 *
3763 * @this_bh will be %NULL if @first and @last point into the inode's direct
3764 * block pointers.
3765 */
3766 static void ext4_free_data(handle_t *handle, struct inode *inode,
3767 struct buffer_head *this_bh,
3768 __le32 *first, __le32 *last)
3769 {
3770 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
3771 unsigned long count = 0; /* Number of blocks in the run */
3772 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
3773 corresponding to
3774 block_to_free */
3775 ext4_fsblk_t nr; /* Current block # */
3776 __le32 *p; /* Pointer into inode/ind
3777 for current block */
3778 int err;
3779
3780 if (this_bh) { /* For indirect block */
3781 BUFFER_TRACE(this_bh, "get_write_access");
3782 err = ext4_journal_get_write_access(handle, this_bh);
3783 /* Important: if we can't update the indirect pointers
3784 * to the blocks, we can't free them. */
3785 if (err)
3786 return;
3787 }
3788
3789 for (p = first; p < last; p++) {
3790 nr = le32_to_cpu(*p);
3791 if (nr) {
3792 /* accumulate blocks to free if they're contiguous */
3793 if (count == 0) {
3794 block_to_free = nr;
3795 block_to_free_p = p;
3796 count = 1;
3797 } else if (nr == block_to_free + count) {
3798 count++;
3799 } else {
3800 ext4_clear_blocks(handle, inode, this_bh,
3801 block_to_free,
3802 count, block_to_free_p, p);
3803 block_to_free = nr;
3804 block_to_free_p = p;
3805 count = 1;
3806 }
3807 }
3808 }
3809
3810 if (count > 0)
3811 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
3812 count, block_to_free_p, p);
3813
3814 if (this_bh) {
3815 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
3816
3817 /*
3818 * The buffer head should have an attached journal head at this
3819 * point. However, if the data is corrupted and an indirect
3820 * block pointed to itself, it would have been detached when
3821 * the block was cleared. Check for this instead of OOPSing.
3822 */
3823 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
3824 ext4_handle_dirty_metadata(handle, inode, this_bh);
3825 else
3826 ext4_error(inode->i_sb, __func__,
3827 "circular indirect block detected, "
3828 "inode=%lu, block=%llu",
3829 inode->i_ino,
3830 (unsigned long long) this_bh->b_blocknr);
3831 }
3832 }
3833
3834 /**
3835 * ext4_free_branches - free an array of branches
3836 * @handle: JBD handle for this transaction
3837 * @inode: inode we are dealing with
3838 * @parent_bh: the buffer_head which contains *@first and *@last
3839 * @first: array of block numbers
3840 * @last: pointer immediately past the end of array
3841 * @depth: depth of the branches to free
3842 *
3843 * We are freeing all blocks refered from these branches (numbers are
3844 * stored as little-endian 32-bit) and updating @inode->i_blocks
3845 * appropriately.
3846 */
3847 static void ext4_free_branches(handle_t *handle, struct inode *inode,
3848 struct buffer_head *parent_bh,
3849 __le32 *first, __le32 *last, int depth)
3850 {
3851 ext4_fsblk_t nr;
3852 __le32 *p;
3853
3854 if (ext4_handle_is_aborted(handle))
3855 return;
3856
3857 if (depth--) {
3858 struct buffer_head *bh;
3859 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
3860 p = last;
3861 while (--p >= first) {
3862 nr = le32_to_cpu(*p);
3863 if (!nr)
3864 continue; /* A hole */
3865
3866 /* Go read the buffer for the next level down */
3867 bh = sb_bread(inode->i_sb, nr);
3868
3869 /*
3870 * A read failure? Report error and clear slot
3871 * (should be rare).
3872 */
3873 if (!bh) {
3874 ext4_error(inode->i_sb, "ext4_free_branches",
3875 "Read failure, inode=%lu, block=%llu",
3876 inode->i_ino, nr);
3877 continue;
3878 }
3879
3880 /* This zaps the entire block. Bottom up. */
3881 BUFFER_TRACE(bh, "free child branches");
3882 ext4_free_branches(handle, inode, bh,
3883 (__le32 *) bh->b_data,
3884 (__le32 *) bh->b_data + addr_per_block,
3885 depth);
3886
3887 /*
3888 * We've probably journalled the indirect block several
3889 * times during the truncate. But it's no longer
3890 * needed and we now drop it from the transaction via
3891 * jbd2_journal_revoke().
3892 *
3893 * That's easy if it's exclusively part of this
3894 * transaction. But if it's part of the committing
3895 * transaction then jbd2_journal_forget() will simply
3896 * brelse() it. That means that if the underlying
3897 * block is reallocated in ext4_get_block(),
3898 * unmap_underlying_metadata() will find this block
3899 * and will try to get rid of it. damn, damn.
3900 *
3901 * If this block has already been committed to the
3902 * journal, a revoke record will be written. And
3903 * revoke records must be emitted *before* clearing
3904 * this block's bit in the bitmaps.
3905 */
3906 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
3907
3908 /*
3909 * Everything below this this pointer has been
3910 * released. Now let this top-of-subtree go.
3911 *
3912 * We want the freeing of this indirect block to be
3913 * atomic in the journal with the updating of the
3914 * bitmap block which owns it. So make some room in
3915 * the journal.
3916 *
3917 * We zero the parent pointer *after* freeing its
3918 * pointee in the bitmaps, so if extend_transaction()
3919 * for some reason fails to put the bitmap changes and
3920 * the release into the same transaction, recovery
3921 * will merely complain about releasing a free block,
3922 * rather than leaking blocks.
3923 */
3924 if (ext4_handle_is_aborted(handle))
3925 return;
3926 if (try_to_extend_transaction(handle, inode)) {
3927 ext4_mark_inode_dirty(handle, inode);
3928 ext4_journal_test_restart(handle, inode);
3929 }
3930
3931 ext4_free_blocks(handle, inode, nr, 1, 1);
3932
3933 if (parent_bh) {
3934 /*
3935 * The block which we have just freed is
3936 * pointed to by an indirect block: journal it
3937 */
3938 BUFFER_TRACE(parent_bh, "get_write_access");
3939 if (!ext4_journal_get_write_access(handle,
3940 parent_bh)){
3941 *p = 0;
3942 BUFFER_TRACE(parent_bh,
3943 "call ext4_handle_dirty_metadata");
3944 ext4_handle_dirty_metadata(handle,
3945 inode,
3946 parent_bh);
3947 }
3948 }
3949 }
3950 } else {
3951 /* We have reached the bottom of the tree. */
3952 BUFFER_TRACE(parent_bh, "free data blocks");
3953 ext4_free_data(handle, inode, parent_bh, first, last);
3954 }
3955 }
3956
3957 int ext4_can_truncate(struct inode *inode)
3958 {
3959 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3960 return 0;
3961 if (S_ISREG(inode->i_mode))
3962 return 1;
3963 if (S_ISDIR(inode->i_mode))
3964 return 1;
3965 if (S_ISLNK(inode->i_mode))
3966 return !ext4_inode_is_fast_symlink(inode);
3967 return 0;
3968 }
3969
3970 /*
3971 * ext4_truncate()
3972 *
3973 * We block out ext4_get_block() block instantiations across the entire
3974 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3975 * simultaneously on behalf of the same inode.
3976 *
3977 * As we work through the truncate and commmit bits of it to the journal there
3978 * is one core, guiding principle: the file's tree must always be consistent on
3979 * disk. We must be able to restart the truncate after a crash.
3980 *
3981 * The file's tree may be transiently inconsistent in memory (although it
3982 * probably isn't), but whenever we close off and commit a journal transaction,
3983 * the contents of (the filesystem + the journal) must be consistent and
3984 * restartable. It's pretty simple, really: bottom up, right to left (although
3985 * left-to-right works OK too).
3986 *
3987 * Note that at recovery time, journal replay occurs *before* the restart of
3988 * truncate against the orphan inode list.
3989 *
3990 * The committed inode has the new, desired i_size (which is the same as
3991 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3992 * that this inode's truncate did not complete and it will again call
3993 * ext4_truncate() to have another go. So there will be instantiated blocks
3994 * to the right of the truncation point in a crashed ext4 filesystem. But
3995 * that's fine - as long as they are linked from the inode, the post-crash
3996 * ext4_truncate() run will find them and release them.
3997 */
3998 void ext4_truncate(struct inode *inode)
3999 {
4000 handle_t *handle;
4001 struct ext4_inode_info *ei = EXT4_I(inode);
4002 __le32 *i_data = ei->i_data;
4003 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4004 struct address_space *mapping = inode->i_mapping;
4005 ext4_lblk_t offsets[4];
4006 Indirect chain[4];
4007 Indirect *partial;
4008 __le32 nr = 0;
4009 int n;
4010 ext4_lblk_t last_block;
4011 unsigned blocksize = inode->i_sb->s_blocksize;
4012
4013 if (!ext4_can_truncate(inode))
4014 return;
4015
4016 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4017 ei->i_state |= EXT4_STATE_DA_ALLOC_CLOSE;
4018
4019 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4020 ext4_ext_truncate(inode);
4021 return;
4022 }
4023
4024 handle = start_transaction(inode);
4025 if (IS_ERR(handle))
4026 return; /* AKPM: return what? */
4027
4028 last_block = (inode->i_size + blocksize-1)
4029 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4030
4031 if (inode->i_size & (blocksize - 1))
4032 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4033 goto out_stop;
4034
4035 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4036 if (n == 0)
4037 goto out_stop; /* error */
4038
4039 /*
4040 * OK. This truncate is going to happen. We add the inode to the
4041 * orphan list, so that if this truncate spans multiple transactions,
4042 * and we crash, we will resume the truncate when the filesystem
4043 * recovers. It also marks the inode dirty, to catch the new size.
4044 *
4045 * Implication: the file must always be in a sane, consistent
4046 * truncatable state while each transaction commits.
4047 */
4048 if (ext4_orphan_add(handle, inode))
4049 goto out_stop;
4050
4051 /*
4052 * From here we block out all ext4_get_block() callers who want to
4053 * modify the block allocation tree.
4054 */
4055 down_write(&ei->i_data_sem);
4056
4057 ext4_discard_preallocations(inode);
4058
4059 /*
4060 * The orphan list entry will now protect us from any crash which
4061 * occurs before the truncate completes, so it is now safe to propagate
4062 * the new, shorter inode size (held for now in i_size) into the
4063 * on-disk inode. We do this via i_disksize, which is the value which
4064 * ext4 *really* writes onto the disk inode.
4065 */
4066 ei->i_disksize = inode->i_size;
4067
4068 if (n == 1) { /* direct blocks */
4069 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4070 i_data + EXT4_NDIR_BLOCKS);
4071 goto do_indirects;
4072 }
4073
4074 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4075 /* Kill the top of shared branch (not detached) */
4076 if (nr) {
4077 if (partial == chain) {
4078 /* Shared branch grows from the inode */
4079 ext4_free_branches(handle, inode, NULL,
4080 &nr, &nr+1, (chain+n-1) - partial);
4081 *partial->p = 0;
4082 /*
4083 * We mark the inode dirty prior to restart,
4084 * and prior to stop. No need for it here.
4085 */
4086 } else {
4087 /* Shared branch grows from an indirect block */
4088 BUFFER_TRACE(partial->bh, "get_write_access");
4089 ext4_free_branches(handle, inode, partial->bh,
4090 partial->p,
4091 partial->p+1, (chain+n-1) - partial);
4092 }
4093 }
4094 /* Clear the ends of indirect blocks on the shared branch */
4095 while (partial > chain) {
4096 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4097 (__le32*)partial->bh->b_data+addr_per_block,
4098 (chain+n-1) - partial);
4099 BUFFER_TRACE(partial->bh, "call brelse");
4100 brelse (partial->bh);
4101 partial--;
4102 }
4103 do_indirects:
4104 /* Kill the remaining (whole) subtrees */
4105 switch (offsets[0]) {
4106 default:
4107 nr = i_data[EXT4_IND_BLOCK];
4108 if (nr) {
4109 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4110 i_data[EXT4_IND_BLOCK] = 0;
4111 }
4112 case EXT4_IND_BLOCK:
4113 nr = i_data[EXT4_DIND_BLOCK];
4114 if (nr) {
4115 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4116 i_data[EXT4_DIND_BLOCK] = 0;
4117 }
4118 case EXT4_DIND_BLOCK:
4119 nr = i_data[EXT4_TIND_BLOCK];
4120 if (nr) {
4121 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4122 i_data[EXT4_TIND_BLOCK] = 0;
4123 }
4124 case EXT4_TIND_BLOCK:
4125 ;
4126 }
4127
4128 up_write(&ei->i_data_sem);
4129 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4130 ext4_mark_inode_dirty(handle, inode);
4131
4132 /*
4133 * In a multi-transaction truncate, we only make the final transaction
4134 * synchronous
4135 */
4136 if (IS_SYNC(inode))
4137 ext4_handle_sync(handle);
4138 out_stop:
4139 /*
4140 * If this was a simple ftruncate(), and the file will remain alive
4141 * then we need to clear up the orphan record which we created above.
4142 * However, if this was a real unlink then we were called by
4143 * ext4_delete_inode(), and we allow that function to clean up the
4144 * orphan info for us.
4145 */
4146 if (inode->i_nlink)
4147 ext4_orphan_del(handle, inode);
4148
4149 ext4_journal_stop(handle);
4150 }
4151
4152 /*
4153 * ext4_get_inode_loc returns with an extra refcount against the inode's
4154 * underlying buffer_head on success. If 'in_mem' is true, we have all
4155 * data in memory that is needed to recreate the on-disk version of this
4156 * inode.
4157 */
4158 static int __ext4_get_inode_loc(struct inode *inode,
4159 struct ext4_iloc *iloc, int in_mem)
4160 {
4161 struct ext4_group_desc *gdp;
4162 struct buffer_head *bh;
4163 struct super_block *sb = inode->i_sb;
4164 ext4_fsblk_t block;
4165 int inodes_per_block, inode_offset;
4166
4167 iloc->bh = NULL;
4168 if (!ext4_valid_inum(sb, inode->i_ino))
4169 return -EIO;
4170
4171 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4172 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4173 if (!gdp)
4174 return -EIO;
4175
4176 /*
4177 * Figure out the offset within the block group inode table
4178 */
4179 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4180 inode_offset = ((inode->i_ino - 1) %
4181 EXT4_INODES_PER_GROUP(sb));
4182 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4183 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4184
4185 bh = sb_getblk(sb, block);
4186 if (!bh) {
4187 ext4_error(sb, "ext4_get_inode_loc", "unable to read "
4188 "inode block - inode=%lu, block=%llu",
4189 inode->i_ino, block);
4190 return -EIO;
4191 }
4192 if (!buffer_uptodate(bh)) {
4193 lock_buffer(bh);
4194
4195 /*
4196 * If the buffer has the write error flag, we have failed
4197 * to write out another inode in the same block. In this
4198 * case, we don't have to read the block because we may
4199 * read the old inode data successfully.
4200 */
4201 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4202 set_buffer_uptodate(bh);
4203
4204 if (buffer_uptodate(bh)) {
4205 /* someone brought it uptodate while we waited */
4206 unlock_buffer(bh);
4207 goto has_buffer;
4208 }
4209
4210 /*
4211 * If we have all information of the inode in memory and this
4212 * is the only valid inode in the block, we need not read the
4213 * block.
4214 */
4215 if (in_mem) {
4216 struct buffer_head *bitmap_bh;
4217 int i, start;
4218
4219 start = inode_offset & ~(inodes_per_block - 1);
4220
4221 /* Is the inode bitmap in cache? */
4222 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4223 if (!bitmap_bh)
4224 goto make_io;
4225
4226 /*
4227 * If the inode bitmap isn't in cache then the
4228 * optimisation may end up performing two reads instead
4229 * of one, so skip it.
4230 */
4231 if (!buffer_uptodate(bitmap_bh)) {
4232 brelse(bitmap_bh);
4233 goto make_io;
4234 }
4235 for (i = start; i < start + inodes_per_block; i++) {
4236 if (i == inode_offset)
4237 continue;
4238 if (ext4_test_bit(i, bitmap_bh->b_data))
4239 break;
4240 }
4241 brelse(bitmap_bh);
4242 if (i == start + inodes_per_block) {
4243 /* all other inodes are free, so skip I/O */
4244 memset(bh->b_data, 0, bh->b_size);
4245 set_buffer_uptodate(bh);
4246 unlock_buffer(bh);
4247 goto has_buffer;
4248 }
4249 }
4250
4251 make_io:
4252 /*
4253 * If we need to do any I/O, try to pre-readahead extra
4254 * blocks from the inode table.
4255 */
4256 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4257 ext4_fsblk_t b, end, table;
4258 unsigned num;
4259
4260 table = ext4_inode_table(sb, gdp);
4261 /* s_inode_readahead_blks is always a power of 2 */
4262 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4263 if (table > b)
4264 b = table;
4265 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4266 num = EXT4_INODES_PER_GROUP(sb);
4267 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4268 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4269 num -= ext4_itable_unused_count(sb, gdp);
4270 table += num / inodes_per_block;
4271 if (end > table)
4272 end = table;
4273 while (b <= end)
4274 sb_breadahead(sb, b++);
4275 }
4276
4277 /*
4278 * There are other valid inodes in the buffer, this inode
4279 * has in-inode xattrs, or we don't have this inode in memory.
4280 * Read the block from disk.
4281 */
4282 get_bh(bh);
4283 bh->b_end_io = end_buffer_read_sync;
4284 submit_bh(READ_META, bh);
4285 wait_on_buffer(bh);
4286 if (!buffer_uptodate(bh)) {
4287 ext4_error(sb, __func__,
4288 "unable to read inode block - inode=%lu, "
4289 "block=%llu", inode->i_ino, block);
4290 brelse(bh);
4291 return -EIO;
4292 }
4293 }
4294 has_buffer:
4295 iloc->bh = bh;
4296 return 0;
4297 }
4298
4299 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4300 {
4301 /* We have all inode data except xattrs in memory here. */
4302 return __ext4_get_inode_loc(inode, iloc,
4303 !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
4304 }
4305
4306 void ext4_set_inode_flags(struct inode *inode)
4307 {
4308 unsigned int flags = EXT4_I(inode)->i_flags;
4309
4310 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4311 if (flags & EXT4_SYNC_FL)
4312 inode->i_flags |= S_SYNC;
4313 if (flags & EXT4_APPEND_FL)
4314 inode->i_flags |= S_APPEND;
4315 if (flags & EXT4_IMMUTABLE_FL)
4316 inode->i_flags |= S_IMMUTABLE;
4317 if (flags & EXT4_NOATIME_FL)
4318 inode->i_flags |= S_NOATIME;
4319 if (flags & EXT4_DIRSYNC_FL)
4320 inode->i_flags |= S_DIRSYNC;
4321 }
4322
4323 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4324 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4325 {
4326 unsigned int flags = ei->vfs_inode.i_flags;
4327
4328 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4329 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4330 if (flags & S_SYNC)
4331 ei->i_flags |= EXT4_SYNC_FL;
4332 if (flags & S_APPEND)
4333 ei->i_flags |= EXT4_APPEND_FL;
4334 if (flags & S_IMMUTABLE)
4335 ei->i_flags |= EXT4_IMMUTABLE_FL;
4336 if (flags & S_NOATIME)
4337 ei->i_flags |= EXT4_NOATIME_FL;
4338 if (flags & S_DIRSYNC)
4339 ei->i_flags |= EXT4_DIRSYNC_FL;
4340 }
4341 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4342 struct ext4_inode_info *ei)
4343 {
4344 blkcnt_t i_blocks ;
4345 struct inode *inode = &(ei->vfs_inode);
4346 struct super_block *sb = inode->i_sb;
4347
4348 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4349 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4350 /* we are using combined 48 bit field */
4351 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4352 le32_to_cpu(raw_inode->i_blocks_lo);
4353 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4354 /* i_blocks represent file system block size */
4355 return i_blocks << (inode->i_blkbits - 9);
4356 } else {
4357 return i_blocks;
4358 }
4359 } else {
4360 return le32_to_cpu(raw_inode->i_blocks_lo);
4361 }
4362 }
4363
4364 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4365 {
4366 struct ext4_iloc iloc;
4367 struct ext4_inode *raw_inode;
4368 struct ext4_inode_info *ei;
4369 struct buffer_head *bh;
4370 struct inode *inode;
4371 long ret;
4372 int block;
4373
4374 inode = iget_locked(sb, ino);
4375 if (!inode)
4376 return ERR_PTR(-ENOMEM);
4377 if (!(inode->i_state & I_NEW))
4378 return inode;
4379
4380 ei = EXT4_I(inode);
4381 #ifdef CONFIG_EXT4_FS_POSIX_ACL
4382 ei->i_acl = EXT4_ACL_NOT_CACHED;
4383 ei->i_default_acl = EXT4_ACL_NOT_CACHED;
4384 #endif
4385
4386 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4387 if (ret < 0)
4388 goto bad_inode;
4389 bh = iloc.bh;
4390 raw_inode = ext4_raw_inode(&iloc);
4391 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4392 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4393 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4394 if (!(test_opt(inode->i_sb, NO_UID32))) {
4395 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4396 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4397 }
4398 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4399
4400 ei->i_state = 0;
4401 ei->i_dir_start_lookup = 0;
4402 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4403 /* We now have enough fields to check if the inode was active or not.
4404 * This is needed because nfsd might try to access dead inodes
4405 * the test is that same one that e2fsck uses
4406 * NeilBrown 1999oct15
4407 */
4408 if (inode->i_nlink == 0) {
4409 if (inode->i_mode == 0 ||
4410 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
4411 /* this inode is deleted */
4412 brelse(bh);
4413 ret = -ESTALE;
4414 goto bad_inode;
4415 }
4416 /* The only unlinked inodes we let through here have
4417 * valid i_mode and are being read by the orphan
4418 * recovery code: that's fine, we're about to complete
4419 * the process of deleting those. */
4420 }
4421 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4422 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4423 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4424 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4425 ei->i_file_acl |=
4426 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4427 inode->i_size = ext4_isize(raw_inode);
4428 ei->i_disksize = inode->i_size;
4429 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4430 ei->i_block_group = iloc.block_group;
4431 ei->i_last_alloc_group = ~0;
4432 /*
4433 * NOTE! The in-memory inode i_data array is in little-endian order
4434 * even on big-endian machines: we do NOT byteswap the block numbers!
4435 */
4436 for (block = 0; block < EXT4_N_BLOCKS; block++)
4437 ei->i_data[block] = raw_inode->i_block[block];
4438 INIT_LIST_HEAD(&ei->i_orphan);
4439
4440 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4441 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4442 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4443 EXT4_INODE_SIZE(inode->i_sb)) {
4444 brelse(bh);
4445 ret = -EIO;
4446 goto bad_inode;
4447 }
4448 if (ei->i_extra_isize == 0) {
4449 /* The extra space is currently unused. Use it. */
4450 ei->i_extra_isize = sizeof(struct ext4_inode) -
4451 EXT4_GOOD_OLD_INODE_SIZE;
4452 } else {
4453 __le32 *magic = (void *)raw_inode +
4454 EXT4_GOOD_OLD_INODE_SIZE +
4455 ei->i_extra_isize;
4456 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
4457 ei->i_state |= EXT4_STATE_XATTR;
4458 }
4459 } else
4460 ei->i_extra_isize = 0;
4461
4462 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4463 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4464 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4465 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4466
4467 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4468 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4469 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4470 inode->i_version |=
4471 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4472 }
4473
4474 ret = 0;
4475 if (ei->i_file_acl &&
4476 ((ei->i_file_acl <
4477 (le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) +
4478 EXT4_SB(sb)->s_gdb_count)) ||
4479 (ei->i_file_acl >= ext4_blocks_count(EXT4_SB(sb)->s_es)))) {
4480 ext4_error(sb, __func__,
4481 "bad extended attribute block %llu in inode #%lu",
4482 ei->i_file_acl, inode->i_ino);
4483 ret = -EIO;
4484 goto bad_inode;
4485 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
4486 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4487 (S_ISLNK(inode->i_mode) &&
4488 !ext4_inode_is_fast_symlink(inode)))
4489 /* Validate extent which is part of inode */
4490 ret = ext4_ext_check_inode(inode);
4491 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4492 (S_ISLNK(inode->i_mode) &&
4493 !ext4_inode_is_fast_symlink(inode))) {
4494 /* Validate block references which are part of inode */
4495 ret = ext4_check_inode_blockref(inode);
4496 }
4497 if (ret) {
4498 brelse(bh);
4499 goto bad_inode;
4500 }
4501
4502 if (S_ISREG(inode->i_mode)) {
4503 inode->i_op = &ext4_file_inode_operations;
4504 inode->i_fop = &ext4_file_operations;
4505 ext4_set_aops(inode);
4506 } else if (S_ISDIR(inode->i_mode)) {
4507 inode->i_op = &ext4_dir_inode_operations;
4508 inode->i_fop = &ext4_dir_operations;
4509 } else if (S_ISLNK(inode->i_mode)) {
4510 if (ext4_inode_is_fast_symlink(inode)) {
4511 inode->i_op = &ext4_fast_symlink_inode_operations;
4512 nd_terminate_link(ei->i_data, inode->i_size,
4513 sizeof(ei->i_data) - 1);
4514 } else {
4515 inode->i_op = &ext4_symlink_inode_operations;
4516 ext4_set_aops(inode);
4517 }
4518 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4519 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4520 inode->i_op = &ext4_special_inode_operations;
4521 if (raw_inode->i_block[0])
4522 init_special_inode(inode, inode->i_mode,
4523 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4524 else
4525 init_special_inode(inode, inode->i_mode,
4526 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4527 } else {
4528 brelse(bh);
4529 ret = -EIO;
4530 ext4_error(inode->i_sb, __func__,
4531 "bogus i_mode (%o) for inode=%lu",
4532 inode->i_mode, inode->i_ino);
4533 goto bad_inode;
4534 }
4535 brelse(iloc.bh);
4536 ext4_set_inode_flags(inode);
4537 unlock_new_inode(inode);
4538 return inode;
4539
4540 bad_inode:
4541 iget_failed(inode);
4542 return ERR_PTR(ret);
4543 }
4544
4545 static int ext4_inode_blocks_set(handle_t *handle,
4546 struct ext4_inode *raw_inode,
4547 struct ext4_inode_info *ei)
4548 {
4549 struct inode *inode = &(ei->vfs_inode);
4550 u64 i_blocks = inode->i_blocks;
4551 struct super_block *sb = inode->i_sb;
4552
4553 if (i_blocks <= ~0U) {
4554 /*
4555 * i_blocks can be represnted in a 32 bit variable
4556 * as multiple of 512 bytes
4557 */
4558 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4559 raw_inode->i_blocks_high = 0;
4560 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4561 return 0;
4562 }
4563 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4564 return -EFBIG;
4565
4566 if (i_blocks <= 0xffffffffffffULL) {
4567 /*
4568 * i_blocks can be represented in a 48 bit variable
4569 * as multiple of 512 bytes
4570 */
4571 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4572 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4573 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
4574 } else {
4575 ei->i_flags |= EXT4_HUGE_FILE_FL;
4576 /* i_block is stored in file system block size */
4577 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4578 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4579 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4580 }
4581 return 0;
4582 }
4583
4584 /*
4585 * Post the struct inode info into an on-disk inode location in the
4586 * buffer-cache. This gobbles the caller's reference to the
4587 * buffer_head in the inode location struct.
4588 *
4589 * The caller must have write access to iloc->bh.
4590 */
4591 static int ext4_do_update_inode(handle_t *handle,
4592 struct inode *inode,
4593 struct ext4_iloc *iloc)
4594 {
4595 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4596 struct ext4_inode_info *ei = EXT4_I(inode);
4597 struct buffer_head *bh = iloc->bh;
4598 int err = 0, rc, block;
4599
4600 /* For fields not not tracking in the in-memory inode,
4601 * initialise them to zero for new inodes. */
4602 if (ei->i_state & EXT4_STATE_NEW)
4603 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4604
4605 ext4_get_inode_flags(ei);
4606 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4607 if (!(test_opt(inode->i_sb, NO_UID32))) {
4608 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
4609 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
4610 /*
4611 * Fix up interoperability with old kernels. Otherwise, old inodes get
4612 * re-used with the upper 16 bits of the uid/gid intact
4613 */
4614 if (!ei->i_dtime) {
4615 raw_inode->i_uid_high =
4616 cpu_to_le16(high_16_bits(inode->i_uid));
4617 raw_inode->i_gid_high =
4618 cpu_to_le16(high_16_bits(inode->i_gid));
4619 } else {
4620 raw_inode->i_uid_high = 0;
4621 raw_inode->i_gid_high = 0;
4622 }
4623 } else {
4624 raw_inode->i_uid_low =
4625 cpu_to_le16(fs_high2lowuid(inode->i_uid));
4626 raw_inode->i_gid_low =
4627 cpu_to_le16(fs_high2lowgid(inode->i_gid));
4628 raw_inode->i_uid_high = 0;
4629 raw_inode->i_gid_high = 0;
4630 }
4631 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4632
4633 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4634 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4635 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4636 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4637
4638 if (ext4_inode_blocks_set(handle, raw_inode, ei))
4639 goto out_brelse;
4640 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4641 /* clear the migrate flag in the raw_inode */
4642 raw_inode->i_flags = cpu_to_le32(ei->i_flags & ~EXT4_EXT_MIGRATE);
4643 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
4644 cpu_to_le32(EXT4_OS_HURD))
4645 raw_inode->i_file_acl_high =
4646 cpu_to_le16(ei->i_file_acl >> 32);
4647 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4648 ext4_isize_set(raw_inode, ei->i_disksize);
4649 if (ei->i_disksize > 0x7fffffffULL) {
4650 struct super_block *sb = inode->i_sb;
4651 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4652 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4653 EXT4_SB(sb)->s_es->s_rev_level ==
4654 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4655 /* If this is the first large file
4656 * created, add a flag to the superblock.
4657 */
4658 err = ext4_journal_get_write_access(handle,
4659 EXT4_SB(sb)->s_sbh);
4660 if (err)
4661 goto out_brelse;
4662 ext4_update_dynamic_rev(sb);
4663 EXT4_SET_RO_COMPAT_FEATURE(sb,
4664 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4665 sb->s_dirt = 1;
4666 ext4_handle_sync(handle);
4667 err = ext4_handle_dirty_metadata(handle, inode,
4668 EXT4_SB(sb)->s_sbh);
4669 }
4670 }
4671 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4672 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4673 if (old_valid_dev(inode->i_rdev)) {
4674 raw_inode->i_block[0] =
4675 cpu_to_le32(old_encode_dev(inode->i_rdev));
4676 raw_inode->i_block[1] = 0;
4677 } else {
4678 raw_inode->i_block[0] = 0;
4679 raw_inode->i_block[1] =
4680 cpu_to_le32(new_encode_dev(inode->i_rdev));
4681 raw_inode->i_block[2] = 0;
4682 }
4683 } else for (block = 0; block < EXT4_N_BLOCKS; block++)
4684 raw_inode->i_block[block] = ei->i_data[block];
4685
4686 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4687 if (ei->i_extra_isize) {
4688 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4689 raw_inode->i_version_hi =
4690 cpu_to_le32(inode->i_version >> 32);
4691 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
4692 }
4693
4694 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4695 rc = ext4_handle_dirty_metadata(handle, inode, bh);
4696 if (!err)
4697 err = rc;
4698 ei->i_state &= ~EXT4_STATE_NEW;
4699
4700 out_brelse:
4701 brelse(bh);
4702 ext4_std_error(inode->i_sb, err);
4703 return err;
4704 }
4705
4706 /*
4707 * ext4_write_inode()
4708 *
4709 * We are called from a few places:
4710 *
4711 * - Within generic_file_write() for O_SYNC files.
4712 * Here, there will be no transaction running. We wait for any running
4713 * trasnaction to commit.
4714 *
4715 * - Within sys_sync(), kupdate and such.
4716 * We wait on commit, if tol to.
4717 *
4718 * - Within prune_icache() (PF_MEMALLOC == true)
4719 * Here we simply return. We can't afford to block kswapd on the
4720 * journal commit.
4721 *
4722 * In all cases it is actually safe for us to return without doing anything,
4723 * because the inode has been copied into a raw inode buffer in
4724 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
4725 * knfsd.
4726 *
4727 * Note that we are absolutely dependent upon all inode dirtiers doing the
4728 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4729 * which we are interested.
4730 *
4731 * It would be a bug for them to not do this. The code:
4732 *
4733 * mark_inode_dirty(inode)
4734 * stuff();
4735 * inode->i_size = expr;
4736 *
4737 * is in error because a kswapd-driven write_inode() could occur while
4738 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4739 * will no longer be on the superblock's dirty inode list.
4740 */
4741 int ext4_write_inode(struct inode *inode, int wait)
4742 {
4743 if (current->flags & PF_MEMALLOC)
4744 return 0;
4745
4746 if (ext4_journal_current_handle()) {
4747 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4748 dump_stack();
4749 return -EIO;
4750 }
4751
4752 if (!wait)
4753 return 0;
4754
4755 return ext4_force_commit(inode->i_sb);
4756 }
4757
4758 int __ext4_write_dirty_metadata(struct inode *inode, struct buffer_head *bh)
4759 {
4760 int err = 0;
4761
4762 mark_buffer_dirty(bh);
4763 if (inode && inode_needs_sync(inode)) {
4764 sync_dirty_buffer(bh);
4765 if (buffer_req(bh) && !buffer_uptodate(bh)) {
4766 ext4_error(inode->i_sb, __func__,
4767 "IO error syncing inode, "
4768 "inode=%lu, block=%llu",
4769 inode->i_ino,
4770 (unsigned long long)bh->b_blocknr);
4771 err = -EIO;
4772 }
4773 }
4774 return err;
4775 }
4776
4777 /*
4778 * ext4_setattr()
4779 *
4780 * Called from notify_change.
4781 *
4782 * We want to trap VFS attempts to truncate the file as soon as
4783 * possible. In particular, we want to make sure that when the VFS
4784 * shrinks i_size, we put the inode on the orphan list and modify
4785 * i_disksize immediately, so that during the subsequent flushing of
4786 * dirty pages and freeing of disk blocks, we can guarantee that any
4787 * commit will leave the blocks being flushed in an unused state on
4788 * disk. (On recovery, the inode will get truncated and the blocks will
4789 * be freed, so we have a strong guarantee that no future commit will
4790 * leave these blocks visible to the user.)
4791 *
4792 * Another thing we have to assure is that if we are in ordered mode
4793 * and inode is still attached to the committing transaction, we must
4794 * we start writeout of all the dirty pages which are being truncated.
4795 * This way we are sure that all the data written in the previous
4796 * transaction are already on disk (truncate waits for pages under
4797 * writeback).
4798 *
4799 * Called with inode->i_mutex down.
4800 */
4801 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4802 {
4803 struct inode *inode = dentry->d_inode;
4804 int error, rc = 0;
4805 const unsigned int ia_valid = attr->ia_valid;
4806
4807 error = inode_change_ok(inode, attr);
4808 if (error)
4809 return error;
4810
4811 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4812 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4813 handle_t *handle;
4814
4815 /* (user+group)*(old+new) structure, inode write (sb,
4816 * inode block, ? - but truncate inode update has it) */
4817 handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
4818 EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
4819 if (IS_ERR(handle)) {
4820 error = PTR_ERR(handle);
4821 goto err_out;
4822 }
4823 error = vfs_dq_transfer(inode, attr) ? -EDQUOT : 0;
4824 if (error) {
4825 ext4_journal_stop(handle);
4826 return error;
4827 }
4828 /* Update corresponding info in inode so that everything is in
4829 * one transaction */
4830 if (attr->ia_valid & ATTR_UID)
4831 inode->i_uid = attr->ia_uid;
4832 if (attr->ia_valid & ATTR_GID)
4833 inode->i_gid = attr->ia_gid;
4834 error = ext4_mark_inode_dirty(handle, inode);
4835 ext4_journal_stop(handle);
4836 }
4837
4838 if (attr->ia_valid & ATTR_SIZE) {
4839 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
4840 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4841
4842 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
4843 error = -EFBIG;
4844 goto err_out;
4845 }
4846 }
4847 }
4848
4849 if (S_ISREG(inode->i_mode) &&
4850 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
4851 handle_t *handle;
4852
4853 handle = ext4_journal_start(inode, 3);
4854 if (IS_ERR(handle)) {
4855 error = PTR_ERR(handle);
4856 goto err_out;
4857 }
4858
4859 error = ext4_orphan_add(handle, inode);
4860 EXT4_I(inode)->i_disksize = attr->ia_size;
4861 rc = ext4_mark_inode_dirty(handle, inode);
4862 if (!error)
4863 error = rc;
4864 ext4_journal_stop(handle);
4865
4866 if (ext4_should_order_data(inode)) {
4867 error = ext4_begin_ordered_truncate(inode,
4868 attr->ia_size);
4869 if (error) {
4870 /* Do as much error cleanup as possible */
4871 handle = ext4_journal_start(inode, 3);
4872 if (IS_ERR(handle)) {
4873 ext4_orphan_del(NULL, inode);
4874 goto err_out;
4875 }
4876 ext4_orphan_del(handle, inode);
4877 ext4_journal_stop(handle);
4878 goto err_out;
4879 }
4880 }
4881 }
4882
4883 rc = inode_setattr(inode, attr);
4884
4885 /* If inode_setattr's call to ext4_truncate failed to get a
4886 * transaction handle at all, we need to clean up the in-core
4887 * orphan list manually. */
4888 if (inode->i_nlink)
4889 ext4_orphan_del(NULL, inode);
4890
4891 if (!rc && (ia_valid & ATTR_MODE))
4892 rc = ext4_acl_chmod(inode);
4893
4894 err_out:
4895 ext4_std_error(inode->i_sb, error);
4896 if (!error)
4897 error = rc;
4898 return error;
4899 }
4900
4901 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4902 struct kstat *stat)
4903 {
4904 struct inode *inode;
4905 unsigned long delalloc_blocks;
4906
4907 inode = dentry->d_inode;
4908 generic_fillattr(inode, stat);
4909
4910 /*
4911 * We can't update i_blocks if the block allocation is delayed
4912 * otherwise in the case of system crash before the real block
4913 * allocation is done, we will have i_blocks inconsistent with
4914 * on-disk file blocks.
4915 * We always keep i_blocks updated together with real
4916 * allocation. But to not confuse with user, stat
4917 * will return the blocks that include the delayed allocation
4918 * blocks for this file.
4919 */
4920 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
4921 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
4922 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
4923
4924 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4925 return 0;
4926 }
4927
4928 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
4929 int chunk)
4930 {
4931 int indirects;
4932
4933 /* if nrblocks are contiguous */
4934 if (chunk) {
4935 /*
4936 * With N contiguous data blocks, it need at most
4937 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
4938 * 2 dindirect blocks
4939 * 1 tindirect block
4940 */
4941 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
4942 return indirects + 3;
4943 }
4944 /*
4945 * if nrblocks are not contiguous, worse case, each block touch
4946 * a indirect block, and each indirect block touch a double indirect
4947 * block, plus a triple indirect block
4948 */
4949 indirects = nrblocks * 2 + 1;
4950 return indirects;
4951 }
4952
4953 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4954 {
4955 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
4956 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
4957 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
4958 }
4959
4960 /*
4961 * Account for index blocks, block groups bitmaps and block group
4962 * descriptor blocks if modify datablocks and index blocks
4963 * worse case, the indexs blocks spread over different block groups
4964 *
4965 * If datablocks are discontiguous, they are possible to spread over
4966 * different block groups too. If they are contiugous, with flexbg,
4967 * they could still across block group boundary.
4968 *
4969 * Also account for superblock, inode, quota and xattr blocks
4970 */
4971 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4972 {
4973 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4974 int gdpblocks;
4975 int idxblocks;
4976 int ret = 0;
4977
4978 /*
4979 * How many index blocks need to touch to modify nrblocks?
4980 * The "Chunk" flag indicating whether the nrblocks is
4981 * physically contiguous on disk
4982 *
4983 * For Direct IO and fallocate, they calls get_block to allocate
4984 * one single extent at a time, so they could set the "Chunk" flag
4985 */
4986 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4987
4988 ret = idxblocks;
4989
4990 /*
4991 * Now let's see how many group bitmaps and group descriptors need
4992 * to account
4993 */
4994 groups = idxblocks;
4995 if (chunk)
4996 groups += 1;
4997 else
4998 groups += nrblocks;
4999
5000 gdpblocks = groups;
5001 if (groups > ngroups)
5002 groups = ngroups;
5003 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5004 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5005
5006 /* bitmaps and block group descriptor blocks */
5007 ret += groups + gdpblocks;
5008
5009 /* Blocks for super block, inode, quota and xattr blocks */
5010 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5011
5012 return ret;
5013 }
5014
5015 /*
5016 * Calulate the total number of credits to reserve to fit
5017 * the modification of a single pages into a single transaction,
5018 * which may include multiple chunks of block allocations.
5019 *
5020 * This could be called via ext4_write_begin()
5021 *
5022 * We need to consider the worse case, when
5023 * one new block per extent.
5024 */
5025 int ext4_writepage_trans_blocks(struct inode *inode)
5026 {
5027 int bpp = ext4_journal_blocks_per_page(inode);
5028 int ret;
5029
5030 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5031
5032 /* Account for data blocks for journalled mode */
5033 if (ext4_should_journal_data(inode))
5034 ret += bpp;
5035 return ret;
5036 }
5037
5038 /*
5039 * Calculate the journal credits for a chunk of data modification.
5040 *
5041 * This is called from DIO, fallocate or whoever calling
5042 * ext4_get_blocks() to map/allocate a chunk of contigous disk blocks.
5043 *
5044 * journal buffers for data blocks are not included here, as DIO
5045 * and fallocate do no need to journal data buffers.
5046 */
5047 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5048 {
5049 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5050 }
5051
5052 /*
5053 * The caller must have previously called ext4_reserve_inode_write().
5054 * Give this, we know that the caller already has write access to iloc->bh.
5055 */
5056 int ext4_mark_iloc_dirty(handle_t *handle,
5057 struct inode *inode, struct ext4_iloc *iloc)
5058 {
5059 int err = 0;
5060
5061 if (test_opt(inode->i_sb, I_VERSION))
5062 inode_inc_iversion(inode);
5063
5064 /* the do_update_inode consumes one bh->b_count */
5065 get_bh(iloc->bh);
5066
5067 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5068 err = ext4_do_update_inode(handle, inode, iloc);
5069 put_bh(iloc->bh);
5070 return err;
5071 }
5072
5073 /*
5074 * On success, We end up with an outstanding reference count against
5075 * iloc->bh. This _must_ be cleaned up later.
5076 */
5077
5078 int
5079 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5080 struct ext4_iloc *iloc)
5081 {
5082 int err;
5083
5084 err = ext4_get_inode_loc(inode, iloc);
5085 if (!err) {
5086 BUFFER_TRACE(iloc->bh, "get_write_access");
5087 err = ext4_journal_get_write_access(handle, iloc->bh);
5088 if (err) {
5089 brelse(iloc->bh);
5090 iloc->bh = NULL;
5091 }
5092 }
5093 ext4_std_error(inode->i_sb, err);
5094 return err;
5095 }
5096
5097 /*
5098 * Expand an inode by new_extra_isize bytes.
5099 * Returns 0 on success or negative error number on failure.
5100 */
5101 static int ext4_expand_extra_isize(struct inode *inode,
5102 unsigned int new_extra_isize,
5103 struct ext4_iloc iloc,
5104 handle_t *handle)
5105 {
5106 struct ext4_inode *raw_inode;
5107 struct ext4_xattr_ibody_header *header;
5108 struct ext4_xattr_entry *entry;
5109
5110 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5111 return 0;
5112
5113 raw_inode = ext4_raw_inode(&iloc);
5114
5115 header = IHDR(inode, raw_inode);
5116 entry = IFIRST(header);
5117
5118 /* No extended attributes present */
5119 if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
5120 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5121 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5122 new_extra_isize);
5123 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5124 return 0;
5125 }
5126
5127 /* try to expand with EAs present */
5128 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5129 raw_inode, handle);
5130 }
5131
5132 /*
5133 * What we do here is to mark the in-core inode as clean with respect to inode
5134 * dirtiness (it may still be data-dirty).
5135 * This means that the in-core inode may be reaped by prune_icache
5136 * without having to perform any I/O. This is a very good thing,
5137 * because *any* task may call prune_icache - even ones which
5138 * have a transaction open against a different journal.
5139 *
5140 * Is this cheating? Not really. Sure, we haven't written the
5141 * inode out, but prune_icache isn't a user-visible syncing function.
5142 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5143 * we start and wait on commits.
5144 *
5145 * Is this efficient/effective? Well, we're being nice to the system
5146 * by cleaning up our inodes proactively so they can be reaped
5147 * without I/O. But we are potentially leaving up to five seconds'
5148 * worth of inodes floating about which prune_icache wants us to
5149 * write out. One way to fix that would be to get prune_icache()
5150 * to do a write_super() to free up some memory. It has the desired
5151 * effect.
5152 */
5153 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5154 {
5155 struct ext4_iloc iloc;
5156 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5157 static unsigned int mnt_count;
5158 int err, ret;
5159
5160 might_sleep();
5161 err = ext4_reserve_inode_write(handle, inode, &iloc);
5162 if (ext4_handle_valid(handle) &&
5163 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5164 !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
5165 /*
5166 * We need extra buffer credits since we may write into EA block
5167 * with this same handle. If journal_extend fails, then it will
5168 * only result in a minor loss of functionality for that inode.
5169 * If this is felt to be critical, then e2fsck should be run to
5170 * force a large enough s_min_extra_isize.
5171 */
5172 if ((jbd2_journal_extend(handle,
5173 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5174 ret = ext4_expand_extra_isize(inode,
5175 sbi->s_want_extra_isize,
5176 iloc, handle);
5177 if (ret) {
5178 EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
5179 if (mnt_count !=
5180 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5181 ext4_warning(inode->i_sb, __func__,
5182 "Unable to expand inode %lu. Delete"
5183 " some EAs or run e2fsck.",
5184 inode->i_ino);
5185 mnt_count =
5186 le16_to_cpu(sbi->s_es->s_mnt_count);
5187 }
5188 }
5189 }
5190 }
5191 if (!err)
5192 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5193 return err;
5194 }
5195
5196 /*
5197 * ext4_dirty_inode() is called from __mark_inode_dirty()
5198 *
5199 * We're really interested in the case where a file is being extended.
5200 * i_size has been changed by generic_commit_write() and we thus need
5201 * to include the updated inode in the current transaction.
5202 *
5203 * Also, vfs_dq_alloc_block() will always dirty the inode when blocks
5204 * are allocated to the file.
5205 *
5206 * If the inode is marked synchronous, we don't honour that here - doing
5207 * so would cause a commit on atime updates, which we don't bother doing.
5208 * We handle synchronous inodes at the highest possible level.
5209 */
5210 void ext4_dirty_inode(struct inode *inode)
5211 {
5212 handle_t *current_handle = ext4_journal_current_handle();
5213 handle_t *handle;
5214
5215 if (!ext4_handle_valid(current_handle)) {
5216 ext4_mark_inode_dirty(current_handle, inode);
5217 return;
5218 }
5219
5220 handle = ext4_journal_start(inode, 2);
5221 if (IS_ERR(handle))
5222 goto out;
5223 if (current_handle &&
5224 current_handle->h_transaction != handle->h_transaction) {
5225 /* This task has a transaction open against a different fs */
5226 printk(KERN_EMERG "%s: transactions do not match!\n",
5227 __func__);
5228 } else {
5229 jbd_debug(5, "marking dirty. outer handle=%p\n",
5230 current_handle);
5231 ext4_mark_inode_dirty(handle, inode);
5232 }
5233 ext4_journal_stop(handle);
5234 out:
5235 return;
5236 }
5237
5238 #if 0
5239 /*
5240 * Bind an inode's backing buffer_head into this transaction, to prevent
5241 * it from being flushed to disk early. Unlike
5242 * ext4_reserve_inode_write, this leaves behind no bh reference and
5243 * returns no iloc structure, so the caller needs to repeat the iloc
5244 * lookup to mark the inode dirty later.
5245 */
5246 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5247 {
5248 struct ext4_iloc iloc;
5249
5250 int err = 0;
5251 if (handle) {
5252 err = ext4_get_inode_loc(inode, &iloc);
5253 if (!err) {
5254 BUFFER_TRACE(iloc.bh, "get_write_access");
5255 err = jbd2_journal_get_write_access(handle, iloc.bh);
5256 if (!err)
5257 err = ext4_handle_dirty_metadata(handle,
5258 inode,
5259 iloc.bh);
5260 brelse(iloc.bh);
5261 }
5262 }
5263 ext4_std_error(inode->i_sb, err);
5264 return err;
5265 }
5266 #endif
5267
5268 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5269 {
5270 journal_t *journal;
5271 handle_t *handle;
5272 int err;
5273
5274 /*
5275 * We have to be very careful here: changing a data block's
5276 * journaling status dynamically is dangerous. If we write a
5277 * data block to the journal, change the status and then delete
5278 * that block, we risk forgetting to revoke the old log record
5279 * from the journal and so a subsequent replay can corrupt data.
5280 * So, first we make sure that the journal is empty and that
5281 * nobody is changing anything.
5282 */
5283
5284 journal = EXT4_JOURNAL(inode);
5285 if (!journal)
5286 return 0;
5287 if (is_journal_aborted(journal))
5288 return -EROFS;
5289
5290 jbd2_journal_lock_updates(journal);
5291 jbd2_journal_flush(journal);
5292
5293 /*
5294 * OK, there are no updates running now, and all cached data is
5295 * synced to disk. We are now in a completely consistent state
5296 * which doesn't have anything in the journal, and we know that
5297 * no filesystem updates are running, so it is safe to modify
5298 * the inode's in-core data-journaling state flag now.
5299 */
5300
5301 if (val)
5302 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5303 else
5304 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5305 ext4_set_aops(inode);
5306
5307 jbd2_journal_unlock_updates(journal);
5308
5309 /* Finally we can mark the inode as dirty. */
5310
5311 handle = ext4_journal_start(inode, 1);
5312 if (IS_ERR(handle))
5313 return PTR_ERR(handle);
5314
5315 err = ext4_mark_inode_dirty(handle, inode);
5316 ext4_handle_sync(handle);
5317 ext4_journal_stop(handle);
5318 ext4_std_error(inode->i_sb, err);
5319
5320 return err;
5321 }
5322
5323 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5324 {
5325 return !buffer_mapped(bh);
5326 }
5327
5328 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5329 {
5330 struct page *page = vmf->page;
5331 loff_t size;
5332 unsigned long len;
5333 int ret = -EINVAL;
5334 void *fsdata;
5335 struct file *file = vma->vm_file;
5336 struct inode *inode = file->f_path.dentry->d_inode;
5337 struct address_space *mapping = inode->i_mapping;
5338
5339 /*
5340 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5341 * get i_mutex because we are already holding mmap_sem.
5342 */
5343 down_read(&inode->i_alloc_sem);
5344 size = i_size_read(inode);
5345 if (page->mapping != mapping || size <= page_offset(page)
5346 || !PageUptodate(page)) {
5347 /* page got truncated from under us? */
5348 goto out_unlock;
5349 }
5350 ret = 0;
5351 if (PageMappedToDisk(page))
5352 goto out_unlock;
5353
5354 if (page->index == size >> PAGE_CACHE_SHIFT)
5355 len = size & ~PAGE_CACHE_MASK;
5356 else
5357 len = PAGE_CACHE_SIZE;
5358
5359 if (page_has_buffers(page)) {
5360 /* return if we have all the buffers mapped */
5361 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5362 ext4_bh_unmapped))
5363 goto out_unlock;
5364 }
5365 /*
5366 * OK, we need to fill the hole... Do write_begin write_end
5367 * to do block allocation/reservation.We are not holding
5368 * inode.i__mutex here. That allow * parallel write_begin,
5369 * write_end call. lock_page prevent this from happening
5370 * on the same page though
5371 */
5372 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5373 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5374 if (ret < 0)
5375 goto out_unlock;
5376 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5377 len, len, page, fsdata);
5378 if (ret < 0)
5379 goto out_unlock;
5380 ret = 0;
5381 out_unlock:
5382 if (ret)
5383 ret = VM_FAULT_SIGBUS;
5384 up_read(&inode->i_alloc_sem);
5385 return ret;
5386 }