Merge tag 'vfio-v3.10-rc5' of git://github.com/awilliam/linux-vfio
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / fs / ext4 / indirect.c
1 /*
2 * linux/fs/ext4/indirect.c
3 *
4 * from
5 *
6 * linux/fs/ext4/inode.c
7 *
8 * Copyright (C) 1992, 1993, 1994, 1995
9 * Remy Card (card@masi.ibp.fr)
10 * Laboratoire MASI - Institut Blaise Pascal
11 * Universite Pierre et Marie Curie (Paris VI)
12 *
13 * from
14 *
15 * linux/fs/minix/inode.c
16 *
17 * Copyright (C) 1991, 1992 Linus Torvalds
18 *
19 * Goal-directed block allocation by Stephen Tweedie
20 * (sct@redhat.com), 1993, 1998
21 */
22
23 #include <linux/aio.h>
24 #include "ext4_jbd2.h"
25 #include "truncate.h"
26 #include "ext4_extents.h" /* Needed for EXT_MAX_BLOCKS */
27
28 #include <trace/events/ext4.h>
29
30 typedef struct {
31 __le32 *p;
32 __le32 key;
33 struct buffer_head *bh;
34 } Indirect;
35
36 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
37 {
38 p->key = *(p->p = v);
39 p->bh = bh;
40 }
41
42 /**
43 * ext4_block_to_path - parse the block number into array of offsets
44 * @inode: inode in question (we are only interested in its superblock)
45 * @i_block: block number to be parsed
46 * @offsets: array to store the offsets in
47 * @boundary: set this non-zero if the referred-to block is likely to be
48 * followed (on disk) by an indirect block.
49 *
50 * To store the locations of file's data ext4 uses a data structure common
51 * for UNIX filesystems - tree of pointers anchored in the inode, with
52 * data blocks at leaves and indirect blocks in intermediate nodes.
53 * This function translates the block number into path in that tree -
54 * return value is the path length and @offsets[n] is the offset of
55 * pointer to (n+1)th node in the nth one. If @block is out of range
56 * (negative or too large) warning is printed and zero returned.
57 *
58 * Note: function doesn't find node addresses, so no IO is needed. All
59 * we need to know is the capacity of indirect blocks (taken from the
60 * inode->i_sb).
61 */
62
63 /*
64 * Portability note: the last comparison (check that we fit into triple
65 * indirect block) is spelled differently, because otherwise on an
66 * architecture with 32-bit longs and 8Kb pages we might get into trouble
67 * if our filesystem had 8Kb blocks. We might use long long, but that would
68 * kill us on x86. Oh, well, at least the sign propagation does not matter -
69 * i_block would have to be negative in the very beginning, so we would not
70 * get there at all.
71 */
72
73 static int ext4_block_to_path(struct inode *inode,
74 ext4_lblk_t i_block,
75 ext4_lblk_t offsets[4], int *boundary)
76 {
77 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
78 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
79 const long direct_blocks = EXT4_NDIR_BLOCKS,
80 indirect_blocks = ptrs,
81 double_blocks = (1 << (ptrs_bits * 2));
82 int n = 0;
83 int final = 0;
84
85 if (i_block < direct_blocks) {
86 offsets[n++] = i_block;
87 final = direct_blocks;
88 } else if ((i_block -= direct_blocks) < indirect_blocks) {
89 offsets[n++] = EXT4_IND_BLOCK;
90 offsets[n++] = i_block;
91 final = ptrs;
92 } else if ((i_block -= indirect_blocks) < double_blocks) {
93 offsets[n++] = EXT4_DIND_BLOCK;
94 offsets[n++] = i_block >> ptrs_bits;
95 offsets[n++] = i_block & (ptrs - 1);
96 final = ptrs;
97 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
98 offsets[n++] = EXT4_TIND_BLOCK;
99 offsets[n++] = i_block >> (ptrs_bits * 2);
100 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
101 offsets[n++] = i_block & (ptrs - 1);
102 final = ptrs;
103 } else {
104 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
105 i_block + direct_blocks +
106 indirect_blocks + double_blocks, inode->i_ino);
107 }
108 if (boundary)
109 *boundary = final - 1 - (i_block & (ptrs - 1));
110 return n;
111 }
112
113 /**
114 * ext4_get_branch - read the chain of indirect blocks leading to data
115 * @inode: inode in question
116 * @depth: depth of the chain (1 - direct pointer, etc.)
117 * @offsets: offsets of pointers in inode/indirect blocks
118 * @chain: place to store the result
119 * @err: here we store the error value
120 *
121 * Function fills the array of triples <key, p, bh> and returns %NULL
122 * if everything went OK or the pointer to the last filled triple
123 * (incomplete one) otherwise. Upon the return chain[i].key contains
124 * the number of (i+1)-th block in the chain (as it is stored in memory,
125 * i.e. little-endian 32-bit), chain[i].p contains the address of that
126 * number (it points into struct inode for i==0 and into the bh->b_data
127 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
128 * block for i>0 and NULL for i==0. In other words, it holds the block
129 * numbers of the chain, addresses they were taken from (and where we can
130 * verify that chain did not change) and buffer_heads hosting these
131 * numbers.
132 *
133 * Function stops when it stumbles upon zero pointer (absent block)
134 * (pointer to last triple returned, *@err == 0)
135 * or when it gets an IO error reading an indirect block
136 * (ditto, *@err == -EIO)
137 * or when it reads all @depth-1 indirect blocks successfully and finds
138 * the whole chain, all way to the data (returns %NULL, *err == 0).
139 *
140 * Need to be called with
141 * down_read(&EXT4_I(inode)->i_data_sem)
142 */
143 static Indirect *ext4_get_branch(struct inode *inode, int depth,
144 ext4_lblk_t *offsets,
145 Indirect chain[4], int *err)
146 {
147 struct super_block *sb = inode->i_sb;
148 Indirect *p = chain;
149 struct buffer_head *bh;
150 int ret = -EIO;
151
152 *err = 0;
153 /* i_data is not going away, no lock needed */
154 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
155 if (!p->key)
156 goto no_block;
157 while (--depth) {
158 bh = sb_getblk(sb, le32_to_cpu(p->key));
159 if (unlikely(!bh)) {
160 ret = -ENOMEM;
161 goto failure;
162 }
163
164 if (!bh_uptodate_or_lock(bh)) {
165 if (bh_submit_read(bh) < 0) {
166 put_bh(bh);
167 goto failure;
168 }
169 /* validate block references */
170 if (ext4_check_indirect_blockref(inode, bh)) {
171 put_bh(bh);
172 goto failure;
173 }
174 }
175
176 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
177 /* Reader: end */
178 if (!p->key)
179 goto no_block;
180 }
181 return NULL;
182
183 failure:
184 *err = ret;
185 no_block:
186 return p;
187 }
188
189 /**
190 * ext4_find_near - find a place for allocation with sufficient locality
191 * @inode: owner
192 * @ind: descriptor of indirect block.
193 *
194 * This function returns the preferred place for block allocation.
195 * It is used when heuristic for sequential allocation fails.
196 * Rules are:
197 * + if there is a block to the left of our position - allocate near it.
198 * + if pointer will live in indirect block - allocate near that block.
199 * + if pointer will live in inode - allocate in the same
200 * cylinder group.
201 *
202 * In the latter case we colour the starting block by the callers PID to
203 * prevent it from clashing with concurrent allocations for a different inode
204 * in the same block group. The PID is used here so that functionally related
205 * files will be close-by on-disk.
206 *
207 * Caller must make sure that @ind is valid and will stay that way.
208 */
209 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
210 {
211 struct ext4_inode_info *ei = EXT4_I(inode);
212 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
213 __le32 *p;
214
215 /* Try to find previous block */
216 for (p = ind->p - 1; p >= start; p--) {
217 if (*p)
218 return le32_to_cpu(*p);
219 }
220
221 /* No such thing, so let's try location of indirect block */
222 if (ind->bh)
223 return ind->bh->b_blocknr;
224
225 /*
226 * It is going to be referred to from the inode itself? OK, just put it
227 * into the same cylinder group then.
228 */
229 return ext4_inode_to_goal_block(inode);
230 }
231
232 /**
233 * ext4_find_goal - find a preferred place for allocation.
234 * @inode: owner
235 * @block: block we want
236 * @partial: pointer to the last triple within a chain
237 *
238 * Normally this function find the preferred place for block allocation,
239 * returns it.
240 * Because this is only used for non-extent files, we limit the block nr
241 * to 32 bits.
242 */
243 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
244 Indirect *partial)
245 {
246 ext4_fsblk_t goal;
247
248 /*
249 * XXX need to get goal block from mballoc's data structures
250 */
251
252 goal = ext4_find_near(inode, partial);
253 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
254 return goal;
255 }
256
257 /**
258 * ext4_blks_to_allocate - Look up the block map and count the number
259 * of direct blocks need to be allocated for the given branch.
260 *
261 * @branch: chain of indirect blocks
262 * @k: number of blocks need for indirect blocks
263 * @blks: number of data blocks to be mapped.
264 * @blocks_to_boundary: the offset in the indirect block
265 *
266 * return the total number of blocks to be allocate, including the
267 * direct and indirect blocks.
268 */
269 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
270 int blocks_to_boundary)
271 {
272 unsigned int count = 0;
273
274 /*
275 * Simple case, [t,d]Indirect block(s) has not allocated yet
276 * then it's clear blocks on that path have not allocated
277 */
278 if (k > 0) {
279 /* right now we don't handle cross boundary allocation */
280 if (blks < blocks_to_boundary + 1)
281 count += blks;
282 else
283 count += blocks_to_boundary + 1;
284 return count;
285 }
286
287 count++;
288 while (count < blks && count <= blocks_to_boundary &&
289 le32_to_cpu(*(branch[0].p + count)) == 0) {
290 count++;
291 }
292 return count;
293 }
294
295 /**
296 * ext4_alloc_branch - allocate and set up a chain of blocks.
297 * @handle: handle for this transaction
298 * @inode: owner
299 * @indirect_blks: number of allocated indirect blocks
300 * @blks: number of allocated direct blocks
301 * @goal: preferred place for allocation
302 * @offsets: offsets (in the blocks) to store the pointers to next.
303 * @branch: place to store the chain in.
304 *
305 * This function allocates blocks, zeroes out all but the last one,
306 * links them into chain and (if we are synchronous) writes them to disk.
307 * In other words, it prepares a branch that can be spliced onto the
308 * inode. It stores the information about that chain in the branch[], in
309 * the same format as ext4_get_branch() would do. We are calling it after
310 * we had read the existing part of chain and partial points to the last
311 * triple of that (one with zero ->key). Upon the exit we have the same
312 * picture as after the successful ext4_get_block(), except that in one
313 * place chain is disconnected - *branch->p is still zero (we did not
314 * set the last link), but branch->key contains the number that should
315 * be placed into *branch->p to fill that gap.
316 *
317 * If allocation fails we free all blocks we've allocated (and forget
318 * their buffer_heads) and return the error value the from failed
319 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
320 * as described above and return 0.
321 */
322 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
323 ext4_lblk_t iblock, int indirect_blks,
324 int *blks, ext4_fsblk_t goal,
325 ext4_lblk_t *offsets, Indirect *branch)
326 {
327 struct ext4_allocation_request ar;
328 struct buffer_head * bh;
329 ext4_fsblk_t b, new_blocks[4];
330 __le32 *p;
331 int i, j, err, len = 1;
332
333 /*
334 * Set up for the direct block allocation
335 */
336 memset(&ar, 0, sizeof(ar));
337 ar.inode = inode;
338 ar.len = *blks;
339 ar.logical = iblock;
340 if (S_ISREG(inode->i_mode))
341 ar.flags = EXT4_MB_HINT_DATA;
342
343 for (i = 0; i <= indirect_blks; i++) {
344 if (i == indirect_blks) {
345 ar.goal = goal;
346 new_blocks[i] = ext4_mb_new_blocks(handle, &ar, &err);
347 } else
348 goal = new_blocks[i] = ext4_new_meta_blocks(handle, inode,
349 goal, 0, NULL, &err);
350 if (err) {
351 i--;
352 goto failed;
353 }
354 branch[i].key = cpu_to_le32(new_blocks[i]);
355 if (i == 0)
356 continue;
357
358 bh = branch[i].bh = sb_getblk(inode->i_sb, new_blocks[i-1]);
359 if (unlikely(!bh)) {
360 err = -ENOMEM;
361 goto failed;
362 }
363 lock_buffer(bh);
364 BUFFER_TRACE(bh, "call get_create_access");
365 err = ext4_journal_get_create_access(handle, bh);
366 if (err) {
367 unlock_buffer(bh);
368 goto failed;
369 }
370
371 memset(bh->b_data, 0, bh->b_size);
372 p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
373 b = new_blocks[i];
374
375 if (i == indirect_blks)
376 len = ar.len;
377 for (j = 0; j < len; j++)
378 *p++ = cpu_to_le32(b++);
379
380 BUFFER_TRACE(bh, "marking uptodate");
381 set_buffer_uptodate(bh);
382 unlock_buffer(bh);
383
384 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
385 err = ext4_handle_dirty_metadata(handle, inode, bh);
386 if (err)
387 goto failed;
388 }
389 *blks = ar.len;
390 return 0;
391 failed:
392 for (; i >= 0; i--) {
393 if (i != indirect_blks && branch[i].bh)
394 ext4_forget(handle, 1, inode, branch[i].bh,
395 branch[i].bh->b_blocknr);
396 ext4_free_blocks(handle, inode, NULL, new_blocks[i],
397 (i == indirect_blks) ? ar.len : 1, 0);
398 }
399 return err;
400 }
401
402 /**
403 * ext4_splice_branch - splice the allocated branch onto inode.
404 * @handle: handle for this transaction
405 * @inode: owner
406 * @block: (logical) number of block we are adding
407 * @chain: chain of indirect blocks (with a missing link - see
408 * ext4_alloc_branch)
409 * @where: location of missing link
410 * @num: number of indirect blocks we are adding
411 * @blks: number of direct blocks we are adding
412 *
413 * This function fills the missing link and does all housekeeping needed in
414 * inode (->i_blocks, etc.). In case of success we end up with the full
415 * chain to new block and return 0.
416 */
417 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
418 ext4_lblk_t block, Indirect *where, int num,
419 int blks)
420 {
421 int i;
422 int err = 0;
423 ext4_fsblk_t current_block;
424
425 /*
426 * If we're splicing into a [td]indirect block (as opposed to the
427 * inode) then we need to get write access to the [td]indirect block
428 * before the splice.
429 */
430 if (where->bh) {
431 BUFFER_TRACE(where->bh, "get_write_access");
432 err = ext4_journal_get_write_access(handle, where->bh);
433 if (err)
434 goto err_out;
435 }
436 /* That's it */
437
438 *where->p = where->key;
439
440 /*
441 * Update the host buffer_head or inode to point to more just allocated
442 * direct blocks blocks
443 */
444 if (num == 0 && blks > 1) {
445 current_block = le32_to_cpu(where->key) + 1;
446 for (i = 1; i < blks; i++)
447 *(where->p + i) = cpu_to_le32(current_block++);
448 }
449
450 /* We are done with atomic stuff, now do the rest of housekeeping */
451 /* had we spliced it onto indirect block? */
452 if (where->bh) {
453 /*
454 * If we spliced it onto an indirect block, we haven't
455 * altered the inode. Note however that if it is being spliced
456 * onto an indirect block at the very end of the file (the
457 * file is growing) then we *will* alter the inode to reflect
458 * the new i_size. But that is not done here - it is done in
459 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
460 */
461 jbd_debug(5, "splicing indirect only\n");
462 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
463 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
464 if (err)
465 goto err_out;
466 } else {
467 /*
468 * OK, we spliced it into the inode itself on a direct block.
469 */
470 ext4_mark_inode_dirty(handle, inode);
471 jbd_debug(5, "splicing direct\n");
472 }
473 return err;
474
475 err_out:
476 for (i = 1; i <= num; i++) {
477 /*
478 * branch[i].bh is newly allocated, so there is no
479 * need to revoke the block, which is why we don't
480 * need to set EXT4_FREE_BLOCKS_METADATA.
481 */
482 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
483 EXT4_FREE_BLOCKS_FORGET);
484 }
485 ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key),
486 blks, 0);
487
488 return err;
489 }
490
491 /*
492 * The ext4_ind_map_blocks() function handles non-extents inodes
493 * (i.e., using the traditional indirect/double-indirect i_blocks
494 * scheme) for ext4_map_blocks().
495 *
496 * Allocation strategy is simple: if we have to allocate something, we will
497 * have to go the whole way to leaf. So let's do it before attaching anything
498 * to tree, set linkage between the newborn blocks, write them if sync is
499 * required, recheck the path, free and repeat if check fails, otherwise
500 * set the last missing link (that will protect us from any truncate-generated
501 * removals - all blocks on the path are immune now) and possibly force the
502 * write on the parent block.
503 * That has a nice additional property: no special recovery from the failed
504 * allocations is needed - we simply release blocks and do not touch anything
505 * reachable from inode.
506 *
507 * `handle' can be NULL if create == 0.
508 *
509 * return > 0, # of blocks mapped or allocated.
510 * return = 0, if plain lookup failed.
511 * return < 0, error case.
512 *
513 * The ext4_ind_get_blocks() function should be called with
514 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
515 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
516 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
517 * blocks.
518 */
519 int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
520 struct ext4_map_blocks *map,
521 int flags)
522 {
523 int err = -EIO;
524 ext4_lblk_t offsets[4];
525 Indirect chain[4];
526 Indirect *partial;
527 ext4_fsblk_t goal;
528 int indirect_blks;
529 int blocks_to_boundary = 0;
530 int depth;
531 int count = 0;
532 ext4_fsblk_t first_block = 0;
533
534 trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
535 J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
536 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
537 depth = ext4_block_to_path(inode, map->m_lblk, offsets,
538 &blocks_to_boundary);
539
540 if (depth == 0)
541 goto out;
542
543 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
544
545 /* Simplest case - block found, no allocation needed */
546 if (!partial) {
547 first_block = le32_to_cpu(chain[depth - 1].key);
548 count++;
549 /*map more blocks*/
550 while (count < map->m_len && count <= blocks_to_boundary) {
551 ext4_fsblk_t blk;
552
553 blk = le32_to_cpu(*(chain[depth-1].p + count));
554
555 if (blk == first_block + count)
556 count++;
557 else
558 break;
559 }
560 goto got_it;
561 }
562
563 /* Next simple case - plain lookup or failed read of indirect block */
564 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
565 goto cleanup;
566
567 /*
568 * Okay, we need to do block allocation.
569 */
570 if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
571 EXT4_FEATURE_RO_COMPAT_BIGALLOC)) {
572 EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
573 "non-extent mapped inodes with bigalloc");
574 return -ENOSPC;
575 }
576
577 goal = ext4_find_goal(inode, map->m_lblk, partial);
578
579 /* the number of blocks need to allocate for [d,t]indirect blocks */
580 indirect_blks = (chain + depth) - partial - 1;
581
582 /*
583 * Next look up the indirect map to count the totoal number of
584 * direct blocks to allocate for this branch.
585 */
586 count = ext4_blks_to_allocate(partial, indirect_blks,
587 map->m_len, blocks_to_boundary);
588 /*
589 * Block out ext4_truncate while we alter the tree
590 */
591 err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks,
592 &count, goal,
593 offsets + (partial - chain), partial);
594
595 /*
596 * The ext4_splice_branch call will free and forget any buffers
597 * on the new chain if there is a failure, but that risks using
598 * up transaction credits, especially for bitmaps where the
599 * credits cannot be returned. Can we handle this somehow? We
600 * may need to return -EAGAIN upwards in the worst case. --sct
601 */
602 if (!err)
603 err = ext4_splice_branch(handle, inode, map->m_lblk,
604 partial, indirect_blks, count);
605 if (err)
606 goto cleanup;
607
608 map->m_flags |= EXT4_MAP_NEW;
609
610 ext4_update_inode_fsync_trans(handle, inode, 1);
611 got_it:
612 map->m_flags |= EXT4_MAP_MAPPED;
613 map->m_pblk = le32_to_cpu(chain[depth-1].key);
614 map->m_len = count;
615 if (count > blocks_to_boundary)
616 map->m_flags |= EXT4_MAP_BOUNDARY;
617 err = count;
618 /* Clean up and exit */
619 partial = chain + depth - 1; /* the whole chain */
620 cleanup:
621 while (partial > chain) {
622 BUFFER_TRACE(partial->bh, "call brelse");
623 brelse(partial->bh);
624 partial--;
625 }
626 out:
627 trace_ext4_ind_map_blocks_exit(inode, map, err);
628 return err;
629 }
630
631 /*
632 * O_DIRECT for ext3 (or indirect map) based files
633 *
634 * If the O_DIRECT write will extend the file then add this inode to the
635 * orphan list. So recovery will truncate it back to the original size
636 * if the machine crashes during the write.
637 *
638 * If the O_DIRECT write is intantiating holes inside i_size and the machine
639 * crashes then stale disk data _may_ be exposed inside the file. But current
640 * VFS code falls back into buffered path in that case so we are safe.
641 */
642 ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
643 const struct iovec *iov, loff_t offset,
644 unsigned long nr_segs)
645 {
646 struct file *file = iocb->ki_filp;
647 struct inode *inode = file->f_mapping->host;
648 struct ext4_inode_info *ei = EXT4_I(inode);
649 handle_t *handle;
650 ssize_t ret;
651 int orphan = 0;
652 size_t count = iov_length(iov, nr_segs);
653 int retries = 0;
654
655 if (rw == WRITE) {
656 loff_t final_size = offset + count;
657
658 if (final_size > inode->i_size) {
659 /* Credits for sb + inode write */
660 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
661 if (IS_ERR(handle)) {
662 ret = PTR_ERR(handle);
663 goto out;
664 }
665 ret = ext4_orphan_add(handle, inode);
666 if (ret) {
667 ext4_journal_stop(handle);
668 goto out;
669 }
670 orphan = 1;
671 ei->i_disksize = inode->i_size;
672 ext4_journal_stop(handle);
673 }
674 }
675
676 retry:
677 if (rw == READ && ext4_should_dioread_nolock(inode)) {
678 if (unlikely(atomic_read(&EXT4_I(inode)->i_unwritten))) {
679 mutex_lock(&inode->i_mutex);
680 ext4_flush_unwritten_io(inode);
681 mutex_unlock(&inode->i_mutex);
682 }
683 /*
684 * Nolock dioread optimization may be dynamically disabled
685 * via ext4_inode_block_unlocked_dio(). Check inode's state
686 * while holding extra i_dio_count ref.
687 */
688 atomic_inc(&inode->i_dio_count);
689 smp_mb();
690 if (unlikely(ext4_test_inode_state(inode,
691 EXT4_STATE_DIOREAD_LOCK))) {
692 inode_dio_done(inode);
693 goto locked;
694 }
695 ret = __blockdev_direct_IO(rw, iocb, inode,
696 inode->i_sb->s_bdev, iov,
697 offset, nr_segs,
698 ext4_get_block, NULL, NULL, 0);
699 inode_dio_done(inode);
700 } else {
701 locked:
702 ret = blockdev_direct_IO(rw, iocb, inode, iov,
703 offset, nr_segs, ext4_get_block);
704
705 if (unlikely((rw & WRITE) && ret < 0)) {
706 loff_t isize = i_size_read(inode);
707 loff_t end = offset + iov_length(iov, nr_segs);
708
709 if (end > isize)
710 ext4_truncate_failed_write(inode);
711 }
712 }
713 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
714 goto retry;
715
716 if (orphan) {
717 int err;
718
719 /* Credits for sb + inode write */
720 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
721 if (IS_ERR(handle)) {
722 /* This is really bad luck. We've written the data
723 * but cannot extend i_size. Bail out and pretend
724 * the write failed... */
725 ret = PTR_ERR(handle);
726 if (inode->i_nlink)
727 ext4_orphan_del(NULL, inode);
728
729 goto out;
730 }
731 if (inode->i_nlink)
732 ext4_orphan_del(handle, inode);
733 if (ret > 0) {
734 loff_t end = offset + ret;
735 if (end > inode->i_size) {
736 ei->i_disksize = end;
737 i_size_write(inode, end);
738 /*
739 * We're going to return a positive `ret'
740 * here due to non-zero-length I/O, so there's
741 * no way of reporting error returns from
742 * ext4_mark_inode_dirty() to userspace. So
743 * ignore it.
744 */
745 ext4_mark_inode_dirty(handle, inode);
746 }
747 }
748 err = ext4_journal_stop(handle);
749 if (ret == 0)
750 ret = err;
751 }
752 out:
753 return ret;
754 }
755
756 /*
757 * Calculate the number of metadata blocks need to reserve
758 * to allocate a new block at @lblocks for non extent file based file
759 */
760 int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
761 {
762 struct ext4_inode_info *ei = EXT4_I(inode);
763 sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
764 int blk_bits;
765
766 if (lblock < EXT4_NDIR_BLOCKS)
767 return 0;
768
769 lblock -= EXT4_NDIR_BLOCKS;
770
771 if (ei->i_da_metadata_calc_len &&
772 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
773 ei->i_da_metadata_calc_len++;
774 return 0;
775 }
776 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
777 ei->i_da_metadata_calc_len = 1;
778 blk_bits = order_base_2(lblock);
779 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
780 }
781
782 int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk)
783 {
784 int indirects;
785
786 /* if nrblocks are contiguous */
787 if (chunk) {
788 /*
789 * With N contiguous data blocks, we need at most
790 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
791 * 2 dindirect blocks, and 1 tindirect block
792 */
793 return DIV_ROUND_UP(nrblocks,
794 EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
795 }
796 /*
797 * if nrblocks are not contiguous, worse case, each block touch
798 * a indirect block, and each indirect block touch a double indirect
799 * block, plus a triple indirect block
800 */
801 indirects = nrblocks * 2 + 1;
802 return indirects;
803 }
804
805 /*
806 * Truncate transactions can be complex and absolutely huge. So we need to
807 * be able to restart the transaction at a conventient checkpoint to make
808 * sure we don't overflow the journal.
809 *
810 * Try to extend this transaction for the purposes of truncation. If
811 * extend fails, we need to propagate the failure up and restart the
812 * transaction in the top-level truncate loop. --sct
813 *
814 * Returns 0 if we managed to create more room. If we can't create more
815 * room, and the transaction must be restarted we return 1.
816 */
817 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
818 {
819 if (!ext4_handle_valid(handle))
820 return 0;
821 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
822 return 0;
823 if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
824 return 0;
825 return 1;
826 }
827
828 /*
829 * Probably it should be a library function... search for first non-zero word
830 * or memcmp with zero_page, whatever is better for particular architecture.
831 * Linus?
832 */
833 static inline int all_zeroes(__le32 *p, __le32 *q)
834 {
835 while (p < q)
836 if (*p++)
837 return 0;
838 return 1;
839 }
840
841 /**
842 * ext4_find_shared - find the indirect blocks for partial truncation.
843 * @inode: inode in question
844 * @depth: depth of the affected branch
845 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
846 * @chain: place to store the pointers to partial indirect blocks
847 * @top: place to the (detached) top of branch
848 *
849 * This is a helper function used by ext4_truncate().
850 *
851 * When we do truncate() we may have to clean the ends of several
852 * indirect blocks but leave the blocks themselves alive. Block is
853 * partially truncated if some data below the new i_size is referred
854 * from it (and it is on the path to the first completely truncated
855 * data block, indeed). We have to free the top of that path along
856 * with everything to the right of the path. Since no allocation
857 * past the truncation point is possible until ext4_truncate()
858 * finishes, we may safely do the latter, but top of branch may
859 * require special attention - pageout below the truncation point
860 * might try to populate it.
861 *
862 * We atomically detach the top of branch from the tree, store the
863 * block number of its root in *@top, pointers to buffer_heads of
864 * partially truncated blocks - in @chain[].bh and pointers to
865 * their last elements that should not be removed - in
866 * @chain[].p. Return value is the pointer to last filled element
867 * of @chain.
868 *
869 * The work left to caller to do the actual freeing of subtrees:
870 * a) free the subtree starting from *@top
871 * b) free the subtrees whose roots are stored in
872 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
873 * c) free the subtrees growing from the inode past the @chain[0].
874 * (no partially truncated stuff there). */
875
876 static Indirect *ext4_find_shared(struct inode *inode, int depth,
877 ext4_lblk_t offsets[4], Indirect chain[4],
878 __le32 *top)
879 {
880 Indirect *partial, *p;
881 int k, err;
882
883 *top = 0;
884 /* Make k index the deepest non-null offset + 1 */
885 for (k = depth; k > 1 && !offsets[k-1]; k--)
886 ;
887 partial = ext4_get_branch(inode, k, offsets, chain, &err);
888 /* Writer: pointers */
889 if (!partial)
890 partial = chain + k-1;
891 /*
892 * If the branch acquired continuation since we've looked at it -
893 * fine, it should all survive and (new) top doesn't belong to us.
894 */
895 if (!partial->key && *partial->p)
896 /* Writer: end */
897 goto no_top;
898 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
899 ;
900 /*
901 * OK, we've found the last block that must survive. The rest of our
902 * branch should be detached before unlocking. However, if that rest
903 * of branch is all ours and does not grow immediately from the inode
904 * it's easier to cheat and just decrement partial->p.
905 */
906 if (p == chain + k - 1 && p > chain) {
907 p->p--;
908 } else {
909 *top = *p->p;
910 /* Nope, don't do this in ext4. Must leave the tree intact */
911 #if 0
912 *p->p = 0;
913 #endif
914 }
915 /* Writer: end */
916
917 while (partial > p) {
918 brelse(partial->bh);
919 partial--;
920 }
921 no_top:
922 return partial;
923 }
924
925 /*
926 * Zero a number of block pointers in either an inode or an indirect block.
927 * If we restart the transaction we must again get write access to the
928 * indirect block for further modification.
929 *
930 * We release `count' blocks on disk, but (last - first) may be greater
931 * than `count' because there can be holes in there.
932 *
933 * Return 0 on success, 1 on invalid block range
934 * and < 0 on fatal error.
935 */
936 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
937 struct buffer_head *bh,
938 ext4_fsblk_t block_to_free,
939 unsigned long count, __le32 *first,
940 __le32 *last)
941 {
942 __le32 *p;
943 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
944 int err;
945
946 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
947 flags |= EXT4_FREE_BLOCKS_METADATA;
948
949 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
950 count)) {
951 EXT4_ERROR_INODE(inode, "attempt to clear invalid "
952 "blocks %llu len %lu",
953 (unsigned long long) block_to_free, count);
954 return 1;
955 }
956
957 if (try_to_extend_transaction(handle, inode)) {
958 if (bh) {
959 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
960 err = ext4_handle_dirty_metadata(handle, inode, bh);
961 if (unlikely(err))
962 goto out_err;
963 }
964 err = ext4_mark_inode_dirty(handle, inode);
965 if (unlikely(err))
966 goto out_err;
967 err = ext4_truncate_restart_trans(handle, inode,
968 ext4_blocks_for_truncate(inode));
969 if (unlikely(err))
970 goto out_err;
971 if (bh) {
972 BUFFER_TRACE(bh, "retaking write access");
973 err = ext4_journal_get_write_access(handle, bh);
974 if (unlikely(err))
975 goto out_err;
976 }
977 }
978
979 for (p = first; p < last; p++)
980 *p = 0;
981
982 ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
983 return 0;
984 out_err:
985 ext4_std_error(inode->i_sb, err);
986 return err;
987 }
988
989 /**
990 * ext4_free_data - free a list of data blocks
991 * @handle: handle for this transaction
992 * @inode: inode we are dealing with
993 * @this_bh: indirect buffer_head which contains *@first and *@last
994 * @first: array of block numbers
995 * @last: points immediately past the end of array
996 *
997 * We are freeing all blocks referred from that array (numbers are stored as
998 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
999 *
1000 * We accumulate contiguous runs of blocks to free. Conveniently, if these
1001 * blocks are contiguous then releasing them at one time will only affect one
1002 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
1003 * actually use a lot of journal space.
1004 *
1005 * @this_bh will be %NULL if @first and @last point into the inode's direct
1006 * block pointers.
1007 */
1008 static void ext4_free_data(handle_t *handle, struct inode *inode,
1009 struct buffer_head *this_bh,
1010 __le32 *first, __le32 *last)
1011 {
1012 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
1013 unsigned long count = 0; /* Number of blocks in the run */
1014 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
1015 corresponding to
1016 block_to_free */
1017 ext4_fsblk_t nr; /* Current block # */
1018 __le32 *p; /* Pointer into inode/ind
1019 for current block */
1020 int err = 0;
1021
1022 if (this_bh) { /* For indirect block */
1023 BUFFER_TRACE(this_bh, "get_write_access");
1024 err = ext4_journal_get_write_access(handle, this_bh);
1025 /* Important: if we can't update the indirect pointers
1026 * to the blocks, we can't free them. */
1027 if (err)
1028 return;
1029 }
1030
1031 for (p = first; p < last; p++) {
1032 nr = le32_to_cpu(*p);
1033 if (nr) {
1034 /* accumulate blocks to free if they're contiguous */
1035 if (count == 0) {
1036 block_to_free = nr;
1037 block_to_free_p = p;
1038 count = 1;
1039 } else if (nr == block_to_free + count) {
1040 count++;
1041 } else {
1042 err = ext4_clear_blocks(handle, inode, this_bh,
1043 block_to_free, count,
1044 block_to_free_p, p);
1045 if (err)
1046 break;
1047 block_to_free = nr;
1048 block_to_free_p = p;
1049 count = 1;
1050 }
1051 }
1052 }
1053
1054 if (!err && count > 0)
1055 err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
1056 count, block_to_free_p, p);
1057 if (err < 0)
1058 /* fatal error */
1059 return;
1060
1061 if (this_bh) {
1062 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
1063
1064 /*
1065 * The buffer head should have an attached journal head at this
1066 * point. However, if the data is corrupted and an indirect
1067 * block pointed to itself, it would have been detached when
1068 * the block was cleared. Check for this instead of OOPSing.
1069 */
1070 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
1071 ext4_handle_dirty_metadata(handle, inode, this_bh);
1072 else
1073 EXT4_ERROR_INODE(inode,
1074 "circular indirect block detected at "
1075 "block %llu",
1076 (unsigned long long) this_bh->b_blocknr);
1077 }
1078 }
1079
1080 /**
1081 * ext4_free_branches - free an array of branches
1082 * @handle: JBD handle for this transaction
1083 * @inode: inode we are dealing with
1084 * @parent_bh: the buffer_head which contains *@first and *@last
1085 * @first: array of block numbers
1086 * @last: pointer immediately past the end of array
1087 * @depth: depth of the branches to free
1088 *
1089 * We are freeing all blocks referred from these branches (numbers are
1090 * stored as little-endian 32-bit) and updating @inode->i_blocks
1091 * appropriately.
1092 */
1093 static void ext4_free_branches(handle_t *handle, struct inode *inode,
1094 struct buffer_head *parent_bh,
1095 __le32 *first, __le32 *last, int depth)
1096 {
1097 ext4_fsblk_t nr;
1098 __le32 *p;
1099
1100 if (ext4_handle_is_aborted(handle))
1101 return;
1102
1103 if (depth--) {
1104 struct buffer_head *bh;
1105 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1106 p = last;
1107 while (--p >= first) {
1108 nr = le32_to_cpu(*p);
1109 if (!nr)
1110 continue; /* A hole */
1111
1112 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1113 nr, 1)) {
1114 EXT4_ERROR_INODE(inode,
1115 "invalid indirect mapped "
1116 "block %lu (level %d)",
1117 (unsigned long) nr, depth);
1118 break;
1119 }
1120
1121 /* Go read the buffer for the next level down */
1122 bh = sb_bread(inode->i_sb, nr);
1123
1124 /*
1125 * A read failure? Report error and clear slot
1126 * (should be rare).
1127 */
1128 if (!bh) {
1129 EXT4_ERROR_INODE_BLOCK(inode, nr,
1130 "Read failure");
1131 continue;
1132 }
1133
1134 /* This zaps the entire block. Bottom up. */
1135 BUFFER_TRACE(bh, "free child branches");
1136 ext4_free_branches(handle, inode, bh,
1137 (__le32 *) bh->b_data,
1138 (__le32 *) bh->b_data + addr_per_block,
1139 depth);
1140 brelse(bh);
1141
1142 /*
1143 * Everything below this this pointer has been
1144 * released. Now let this top-of-subtree go.
1145 *
1146 * We want the freeing of this indirect block to be
1147 * atomic in the journal with the updating of the
1148 * bitmap block which owns it. So make some room in
1149 * the journal.
1150 *
1151 * We zero the parent pointer *after* freeing its
1152 * pointee in the bitmaps, so if extend_transaction()
1153 * for some reason fails to put the bitmap changes and
1154 * the release into the same transaction, recovery
1155 * will merely complain about releasing a free block,
1156 * rather than leaking blocks.
1157 */
1158 if (ext4_handle_is_aborted(handle))
1159 return;
1160 if (try_to_extend_transaction(handle, inode)) {
1161 ext4_mark_inode_dirty(handle, inode);
1162 ext4_truncate_restart_trans(handle, inode,
1163 ext4_blocks_for_truncate(inode));
1164 }
1165
1166 /*
1167 * The forget flag here is critical because if
1168 * we are journaling (and not doing data
1169 * journaling), we have to make sure a revoke
1170 * record is written to prevent the journal
1171 * replay from overwriting the (former)
1172 * indirect block if it gets reallocated as a
1173 * data block. This must happen in the same
1174 * transaction where the data blocks are
1175 * actually freed.
1176 */
1177 ext4_free_blocks(handle, inode, NULL, nr, 1,
1178 EXT4_FREE_BLOCKS_METADATA|
1179 EXT4_FREE_BLOCKS_FORGET);
1180
1181 if (parent_bh) {
1182 /*
1183 * The block which we have just freed is
1184 * pointed to by an indirect block: journal it
1185 */
1186 BUFFER_TRACE(parent_bh, "get_write_access");
1187 if (!ext4_journal_get_write_access(handle,
1188 parent_bh)){
1189 *p = 0;
1190 BUFFER_TRACE(parent_bh,
1191 "call ext4_handle_dirty_metadata");
1192 ext4_handle_dirty_metadata(handle,
1193 inode,
1194 parent_bh);
1195 }
1196 }
1197 }
1198 } else {
1199 /* We have reached the bottom of the tree. */
1200 BUFFER_TRACE(parent_bh, "free data blocks");
1201 ext4_free_data(handle, inode, parent_bh, first, last);
1202 }
1203 }
1204
1205 void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1206 {
1207 struct ext4_inode_info *ei = EXT4_I(inode);
1208 __le32 *i_data = ei->i_data;
1209 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1210 ext4_lblk_t offsets[4];
1211 Indirect chain[4];
1212 Indirect *partial;
1213 __le32 nr = 0;
1214 int n = 0;
1215 ext4_lblk_t last_block, max_block;
1216 unsigned blocksize = inode->i_sb->s_blocksize;
1217
1218 last_block = (inode->i_size + blocksize-1)
1219 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1220 max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1221 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1222
1223 if (last_block != max_block) {
1224 n = ext4_block_to_path(inode, last_block, offsets, NULL);
1225 if (n == 0)
1226 return;
1227 }
1228
1229 ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1230
1231 /*
1232 * The orphan list entry will now protect us from any crash which
1233 * occurs before the truncate completes, so it is now safe to propagate
1234 * the new, shorter inode size (held for now in i_size) into the
1235 * on-disk inode. We do this via i_disksize, which is the value which
1236 * ext4 *really* writes onto the disk inode.
1237 */
1238 ei->i_disksize = inode->i_size;
1239
1240 if (last_block == max_block) {
1241 /*
1242 * It is unnecessary to free any data blocks if last_block is
1243 * equal to the indirect block limit.
1244 */
1245 return;
1246 } else if (n == 1) { /* direct blocks */
1247 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1248 i_data + EXT4_NDIR_BLOCKS);
1249 goto do_indirects;
1250 }
1251
1252 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1253 /* Kill the top of shared branch (not detached) */
1254 if (nr) {
1255 if (partial == chain) {
1256 /* Shared branch grows from the inode */
1257 ext4_free_branches(handle, inode, NULL,
1258 &nr, &nr+1, (chain+n-1) - partial);
1259 *partial->p = 0;
1260 /*
1261 * We mark the inode dirty prior to restart,
1262 * and prior to stop. No need for it here.
1263 */
1264 } else {
1265 /* Shared branch grows from an indirect block */
1266 BUFFER_TRACE(partial->bh, "get_write_access");
1267 ext4_free_branches(handle, inode, partial->bh,
1268 partial->p,
1269 partial->p+1, (chain+n-1) - partial);
1270 }
1271 }
1272 /* Clear the ends of indirect blocks on the shared branch */
1273 while (partial > chain) {
1274 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1275 (__le32*)partial->bh->b_data+addr_per_block,
1276 (chain+n-1) - partial);
1277 BUFFER_TRACE(partial->bh, "call brelse");
1278 brelse(partial->bh);
1279 partial--;
1280 }
1281 do_indirects:
1282 /* Kill the remaining (whole) subtrees */
1283 switch (offsets[0]) {
1284 default:
1285 nr = i_data[EXT4_IND_BLOCK];
1286 if (nr) {
1287 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1288 i_data[EXT4_IND_BLOCK] = 0;
1289 }
1290 case EXT4_IND_BLOCK:
1291 nr = i_data[EXT4_DIND_BLOCK];
1292 if (nr) {
1293 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1294 i_data[EXT4_DIND_BLOCK] = 0;
1295 }
1296 case EXT4_DIND_BLOCK:
1297 nr = i_data[EXT4_TIND_BLOCK];
1298 if (nr) {
1299 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1300 i_data[EXT4_TIND_BLOCK] = 0;
1301 }
1302 case EXT4_TIND_BLOCK:
1303 ;
1304 }
1305 }
1306
1307 static int free_hole_blocks(handle_t *handle, struct inode *inode,
1308 struct buffer_head *parent_bh, __le32 *i_data,
1309 int level, ext4_lblk_t first,
1310 ext4_lblk_t count, int max)
1311 {
1312 struct buffer_head *bh = NULL;
1313 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1314 int ret = 0;
1315 int i, inc;
1316 ext4_lblk_t offset;
1317 __le32 blk;
1318
1319 inc = 1 << ((EXT4_BLOCK_SIZE_BITS(inode->i_sb) - 2) * level);
1320 for (i = 0, offset = 0; i < max; i++, i_data++, offset += inc) {
1321 if (offset >= count + first)
1322 break;
1323 if (*i_data == 0 || (offset + inc) <= first)
1324 continue;
1325 blk = *i_data;
1326 if (level > 0) {
1327 ext4_lblk_t first2;
1328 bh = sb_bread(inode->i_sb, le32_to_cpu(blk));
1329 if (!bh) {
1330 EXT4_ERROR_INODE_BLOCK(inode, le32_to_cpu(blk),
1331 "Read failure");
1332 return -EIO;
1333 }
1334 first2 = (first > offset) ? first - offset : 0;
1335 ret = free_hole_blocks(handle, inode, bh,
1336 (__le32 *)bh->b_data, level - 1,
1337 first2, count - offset,
1338 inode->i_sb->s_blocksize >> 2);
1339 if (ret) {
1340 brelse(bh);
1341 goto err;
1342 }
1343 }
1344 if (level == 0 ||
1345 (bh && all_zeroes((__le32 *)bh->b_data,
1346 (__le32 *)bh->b_data + addr_per_block))) {
1347 ext4_free_data(handle, inode, parent_bh, &blk, &blk+1);
1348 *i_data = 0;
1349 }
1350 brelse(bh);
1351 bh = NULL;
1352 }
1353
1354 err:
1355 return ret;
1356 }
1357
1358 int ext4_free_hole_blocks(handle_t *handle, struct inode *inode,
1359 ext4_lblk_t first, ext4_lblk_t stop)
1360 {
1361 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1362 int level, ret = 0;
1363 int num = EXT4_NDIR_BLOCKS;
1364 ext4_lblk_t count, max = EXT4_NDIR_BLOCKS;
1365 __le32 *i_data = EXT4_I(inode)->i_data;
1366
1367 count = stop - first;
1368 for (level = 0; level < 4; level++, max *= addr_per_block) {
1369 if (first < max) {
1370 ret = free_hole_blocks(handle, inode, NULL, i_data,
1371 level, first, count, num);
1372 if (ret)
1373 goto err;
1374 if (count > max - first)
1375 count -= max - first;
1376 else
1377 break;
1378 first = 0;
1379 } else {
1380 first -= max;
1381 }
1382 i_data += num;
1383 if (level == 0) {
1384 num = 1;
1385 max = 1;
1386 }
1387 }
1388
1389 err:
1390 return ret;
1391 }
1392