ARM: at91: fix board-rm9200-dt after sys_timer conversion
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / fsync.c
1 /*
2 * linux/fs/ext4/fsync.c
3 *
4 * Copyright (C) 1993 Stephen Tweedie (sct@redhat.com)
5 * from
6 * Copyright (C) 1992 Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 * from
10 * linux/fs/minix/truncate.c Copyright (C) 1991, 1992 Linus Torvalds
11 *
12 * ext4fs fsync primitive
13 *
14 * Big-endian to little-endian byte-swapping/bitmaps by
15 * David S. Miller (davem@caip.rutgers.edu), 1995
16 *
17 * Removed unnecessary code duplication for little endian machines
18 * and excessive __inline__s.
19 * Andi Kleen, 1997
20 *
21 * Major simplications and cleanup - we only need to do the metadata, because
22 * we can depend on generic_block_fdatasync() to sync the data blocks.
23 */
24
25 #include <linux/time.h>
26 #include <linux/fs.h>
27 #include <linux/sched.h>
28 #include <linux/writeback.h>
29 #include <linux/jbd2.h>
30 #include <linux/blkdev.h>
31
32 #include "ext4.h"
33 #include "ext4_jbd2.h"
34
35 #include <trace/events/ext4.h>
36
37 /*
38 * If we're not journaling and this is a just-created file, we have to
39 * sync our parent directory (if it was freshly created) since
40 * otherwise it will only be written by writeback, leaving a huge
41 * window during which a crash may lose the file. This may apply for
42 * the parent directory's parent as well, and so on recursively, if
43 * they are also freshly created.
44 */
45 static int ext4_sync_parent(struct inode *inode)
46 {
47 struct dentry *dentry = NULL;
48 struct inode *next;
49 int ret = 0;
50
51 if (!ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY))
52 return 0;
53 inode = igrab(inode);
54 while (ext4_test_inode_state(inode, EXT4_STATE_NEWENTRY)) {
55 ext4_clear_inode_state(inode, EXT4_STATE_NEWENTRY);
56 dentry = d_find_any_alias(inode);
57 if (!dentry)
58 break;
59 next = igrab(dentry->d_parent->d_inode);
60 dput(dentry);
61 if (!next)
62 break;
63 iput(inode);
64 inode = next;
65 ret = sync_mapping_buffers(inode->i_mapping);
66 if (ret)
67 break;
68 ret = sync_inode_metadata(inode, 1);
69 if (ret)
70 break;
71 }
72 iput(inode);
73 return ret;
74 }
75
76 /**
77 * __sync_file - generic_file_fsync without the locking and filemap_write
78 * @inode: inode to sync
79 * @datasync: only sync essential metadata if true
80 *
81 * This is just generic_file_fsync without the locking. This is needed for
82 * nojournal mode to make sure this inodes data/metadata makes it to disk
83 * properly. The i_mutex should be held already.
84 */
85 static int __sync_inode(struct inode *inode, int datasync)
86 {
87 int err;
88 int ret;
89
90 ret = sync_mapping_buffers(inode->i_mapping);
91 if (!(inode->i_state & I_DIRTY))
92 return ret;
93 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
94 return ret;
95
96 err = sync_inode_metadata(inode, 1);
97 if (ret == 0)
98 ret = err;
99 return ret;
100 }
101
102 /*
103 * akpm: A new design for ext4_sync_file().
104 *
105 * This is only called from sys_fsync(), sys_fdatasync() and sys_msync().
106 * There cannot be a transaction open by this task.
107 * Another task could have dirtied this inode. Its data can be in any
108 * state in the journalling system.
109 *
110 * What we do is just kick off a commit and wait on it. This will snapshot the
111 * inode to disk.
112 *
113 * i_mutex lock is held when entering and exiting this function
114 */
115
116 int ext4_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
117 {
118 struct inode *inode = file->f_mapping->host;
119 struct ext4_inode_info *ei = EXT4_I(inode);
120 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
121 int ret, err;
122 tid_t commit_tid;
123 bool needs_barrier = false;
124
125 J_ASSERT(ext4_journal_current_handle() == NULL);
126
127 trace_ext4_sync_file_enter(file, datasync);
128
129 ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
130 if (ret)
131 return ret;
132 mutex_lock(&inode->i_mutex);
133
134 if (inode->i_sb->s_flags & MS_RDONLY)
135 goto out;
136
137 ret = ext4_flush_unwritten_io(inode);
138 if (ret < 0)
139 goto out;
140
141 if (!journal) {
142 ret = __sync_inode(inode, datasync);
143 if (!ret && !hlist_empty(&inode->i_dentry))
144 ret = ext4_sync_parent(inode);
145 goto out;
146 }
147
148 /*
149 * data=writeback,ordered:
150 * The caller's filemap_fdatawrite()/wait will sync the data.
151 * Metadata is in the journal, we wait for proper transaction to
152 * commit here.
153 *
154 * data=journal:
155 * filemap_fdatawrite won't do anything (the buffers are clean).
156 * ext4_force_commit will write the file data into the journal and
157 * will wait on that.
158 * filemap_fdatawait() will encounter a ton of newly-dirtied pages
159 * (they were dirtied by commit). But that's OK - the blocks are
160 * safe in-journal, which is all fsync() needs to ensure.
161 */
162 if (ext4_should_journal_data(inode)) {
163 ret = ext4_force_commit(inode->i_sb);
164 goto out;
165 }
166
167 commit_tid = datasync ? ei->i_datasync_tid : ei->i_sync_tid;
168 if (journal->j_flags & JBD2_BARRIER &&
169 !jbd2_trans_will_send_data_barrier(journal, commit_tid))
170 needs_barrier = true;
171 jbd2_log_start_commit(journal, commit_tid);
172 ret = jbd2_log_wait_commit(journal, commit_tid);
173 if (needs_barrier) {
174 err = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
175 if (!ret)
176 ret = err;
177 }
178 out:
179 mutex_unlock(&inode->i_mutex);
180 trace_ext4_sync_file_exit(inode, ret);
181 return ret;
182 }