ARM: at91: fix board-rm9200-dt after sys_timer conversion
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / file.c
1 /*
2 * linux/fs/ext4/file.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/file.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * ext4 fs regular file handling primitives
16 *
17 * 64-bit file support on 64-bit platforms by Jakub Jelinek
18 * (jj@sunsite.ms.mff.cuni.cz)
19 */
20
21 #include <linux/time.h>
22 #include <linux/fs.h>
23 #include <linux/jbd2.h>
24 #include <linux/mount.h>
25 #include <linux/path.h>
26 #include <linux/quotaops.h>
27 #include <linux/pagevec.h>
28 #include "ext4.h"
29 #include "ext4_jbd2.h"
30 #include "xattr.h"
31 #include "acl.h"
32
33 /*
34 * Called when an inode is released. Note that this is different
35 * from ext4_file_open: open gets called at every open, but release
36 * gets called only when /all/ the files are closed.
37 */
38 static int ext4_release_file(struct inode *inode, struct file *filp)
39 {
40 if (ext4_test_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE)) {
41 ext4_alloc_da_blocks(inode);
42 ext4_clear_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
43 }
44 /* if we are the last writer on the inode, drop the block reservation */
45 if ((filp->f_mode & FMODE_WRITE) &&
46 (atomic_read(&inode->i_writecount) == 1) &&
47 !EXT4_I(inode)->i_reserved_data_blocks)
48 {
49 down_write(&EXT4_I(inode)->i_data_sem);
50 ext4_discard_preallocations(inode);
51 up_write(&EXT4_I(inode)->i_data_sem);
52 }
53 if (is_dx(inode) && filp->private_data)
54 ext4_htree_free_dir_info(filp->private_data);
55
56 return 0;
57 }
58
59 void ext4_unwritten_wait(struct inode *inode)
60 {
61 wait_queue_head_t *wq = ext4_ioend_wq(inode);
62
63 wait_event(*wq, (atomic_read(&EXT4_I(inode)->i_unwritten) == 0));
64 }
65
66 /*
67 * This tests whether the IO in question is block-aligned or not.
68 * Ext4 utilizes unwritten extents when hole-filling during direct IO, and they
69 * are converted to written only after the IO is complete. Until they are
70 * mapped, these blocks appear as holes, so dio_zero_block() will assume that
71 * it needs to zero out portions of the start and/or end block. If 2 AIO
72 * threads are at work on the same unwritten block, they must be synchronized
73 * or one thread will zero the other's data, causing corruption.
74 */
75 static int
76 ext4_unaligned_aio(struct inode *inode, const struct iovec *iov,
77 unsigned long nr_segs, loff_t pos)
78 {
79 struct super_block *sb = inode->i_sb;
80 int blockmask = sb->s_blocksize - 1;
81 size_t count = iov_length(iov, nr_segs);
82 loff_t final_size = pos + count;
83
84 if (pos >= inode->i_size)
85 return 0;
86
87 if ((pos & blockmask) || (final_size & blockmask))
88 return 1;
89
90 return 0;
91 }
92
93 static ssize_t
94 ext4_file_dio_write(struct kiocb *iocb, const struct iovec *iov,
95 unsigned long nr_segs, loff_t pos)
96 {
97 struct file *file = iocb->ki_filp;
98 struct inode *inode = file->f_mapping->host;
99 struct blk_plug plug;
100 int unaligned_aio = 0;
101 ssize_t ret;
102 int overwrite = 0;
103 size_t length = iov_length(iov, nr_segs);
104
105 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) &&
106 !is_sync_kiocb(iocb))
107 unaligned_aio = ext4_unaligned_aio(inode, iov, nr_segs, pos);
108
109 /* Unaligned direct AIO must be serialized; see comment above */
110 if (unaligned_aio) {
111 static unsigned long unaligned_warn_time;
112
113 /* Warn about this once per day */
114 if (printk_timed_ratelimit(&unaligned_warn_time, 60*60*24*HZ))
115 ext4_msg(inode->i_sb, KERN_WARNING,
116 "Unaligned AIO/DIO on inode %ld by %s; "
117 "performance will be poor.",
118 inode->i_ino, current->comm);
119 mutex_lock(ext4_aio_mutex(inode));
120 ext4_unwritten_wait(inode);
121 }
122
123 BUG_ON(iocb->ki_pos != pos);
124
125 mutex_lock(&inode->i_mutex);
126 blk_start_plug(&plug);
127
128 iocb->private = &overwrite;
129
130 /* check whether we do a DIO overwrite or not */
131 if (ext4_should_dioread_nolock(inode) && !unaligned_aio &&
132 !file->f_mapping->nrpages && pos + length <= i_size_read(inode)) {
133 struct ext4_map_blocks map;
134 unsigned int blkbits = inode->i_blkbits;
135 int err, len;
136
137 map.m_lblk = pos >> blkbits;
138 map.m_len = (EXT4_BLOCK_ALIGN(pos + length, blkbits) >> blkbits)
139 - map.m_lblk;
140 len = map.m_len;
141
142 err = ext4_map_blocks(NULL, inode, &map, 0);
143 /*
144 * 'err==len' means that all of blocks has been preallocated no
145 * matter they are initialized or not. For excluding
146 * uninitialized extents, we need to check m_flags. There are
147 * two conditions that indicate for initialized extents.
148 * 1) If we hit extent cache, EXT4_MAP_MAPPED flag is returned;
149 * 2) If we do a real lookup, non-flags are returned.
150 * So we should check these two conditions.
151 */
152 if (err == len && (map.m_flags & EXT4_MAP_MAPPED))
153 overwrite = 1;
154 }
155
156 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
157 mutex_unlock(&inode->i_mutex);
158
159 if (ret > 0 || ret == -EIOCBQUEUED) {
160 ssize_t err;
161
162 err = generic_write_sync(file, pos, ret);
163 if (err < 0 && ret > 0)
164 ret = err;
165 }
166 blk_finish_plug(&plug);
167
168 if (unaligned_aio)
169 mutex_unlock(ext4_aio_mutex(inode));
170
171 return ret;
172 }
173
174 static ssize_t
175 ext4_file_write(struct kiocb *iocb, const struct iovec *iov,
176 unsigned long nr_segs, loff_t pos)
177 {
178 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
179 ssize_t ret;
180
181 /*
182 * If we have encountered a bitmap-format file, the size limit
183 * is smaller than s_maxbytes, which is for extent-mapped files.
184 */
185
186 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
187 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
188 size_t length = iov_length(iov, nr_segs);
189
190 if ((pos > sbi->s_bitmap_maxbytes ||
191 (pos == sbi->s_bitmap_maxbytes && length > 0)))
192 return -EFBIG;
193
194 if (pos + length > sbi->s_bitmap_maxbytes) {
195 nr_segs = iov_shorten((struct iovec *)iov, nr_segs,
196 sbi->s_bitmap_maxbytes - pos);
197 }
198 }
199
200 if (unlikely(iocb->ki_filp->f_flags & O_DIRECT))
201 ret = ext4_file_dio_write(iocb, iov, nr_segs, pos);
202 else
203 ret = generic_file_aio_write(iocb, iov, nr_segs, pos);
204
205 return ret;
206 }
207
208 static const struct vm_operations_struct ext4_file_vm_ops = {
209 .fault = filemap_fault,
210 .page_mkwrite = ext4_page_mkwrite,
211 .remap_pages = generic_file_remap_pages,
212 };
213
214 static int ext4_file_mmap(struct file *file, struct vm_area_struct *vma)
215 {
216 struct address_space *mapping = file->f_mapping;
217
218 if (!mapping->a_ops->readpage)
219 return -ENOEXEC;
220 file_accessed(file);
221 vma->vm_ops = &ext4_file_vm_ops;
222 return 0;
223 }
224
225 static int ext4_file_open(struct inode * inode, struct file * filp)
226 {
227 struct super_block *sb = inode->i_sb;
228 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
229 struct ext4_inode_info *ei = EXT4_I(inode);
230 struct vfsmount *mnt = filp->f_path.mnt;
231 struct path path;
232 char buf[64], *cp;
233
234 if (unlikely(!(sbi->s_mount_flags & EXT4_MF_MNTDIR_SAMPLED) &&
235 !(sb->s_flags & MS_RDONLY))) {
236 sbi->s_mount_flags |= EXT4_MF_MNTDIR_SAMPLED;
237 /*
238 * Sample where the filesystem has been mounted and
239 * store it in the superblock for sysadmin convenience
240 * when trying to sort through large numbers of block
241 * devices or filesystem images.
242 */
243 memset(buf, 0, sizeof(buf));
244 path.mnt = mnt;
245 path.dentry = mnt->mnt_root;
246 cp = d_path(&path, buf, sizeof(buf));
247 if (!IS_ERR(cp)) {
248 handle_t *handle;
249 int err;
250
251 handle = ext4_journal_start_sb(sb, 1);
252 if (IS_ERR(handle))
253 return PTR_ERR(handle);
254 err = ext4_journal_get_write_access(handle, sbi->s_sbh);
255 if (err) {
256 ext4_journal_stop(handle);
257 return err;
258 }
259 strlcpy(sbi->s_es->s_last_mounted, cp,
260 sizeof(sbi->s_es->s_last_mounted));
261 ext4_handle_dirty_super(handle, sb);
262 ext4_journal_stop(handle);
263 }
264 }
265 /*
266 * Set up the jbd2_inode if we are opening the inode for
267 * writing and the journal is present
268 */
269 if (sbi->s_journal && !ei->jinode && (filp->f_mode & FMODE_WRITE)) {
270 struct jbd2_inode *jinode = jbd2_alloc_inode(GFP_KERNEL);
271
272 spin_lock(&inode->i_lock);
273 if (!ei->jinode) {
274 if (!jinode) {
275 spin_unlock(&inode->i_lock);
276 return -ENOMEM;
277 }
278 ei->jinode = jinode;
279 jbd2_journal_init_jbd_inode(ei->jinode, inode);
280 jinode = NULL;
281 }
282 spin_unlock(&inode->i_lock);
283 if (unlikely(jinode != NULL))
284 jbd2_free_inode(jinode);
285 }
286 return dquot_file_open(inode, filp);
287 }
288
289 /*
290 * Here we use ext4_map_blocks() to get a block mapping for a extent-based
291 * file rather than ext4_ext_walk_space() because we can introduce
292 * SEEK_DATA/SEEK_HOLE for block-mapped and extent-mapped file at the same
293 * function. When extent status tree has been fully implemented, it will
294 * track all extent status for a file and we can directly use it to
295 * retrieve the offset for SEEK_DATA/SEEK_HOLE.
296 */
297
298 /*
299 * When we retrieve the offset for SEEK_DATA/SEEK_HOLE, we would need to
300 * lookup page cache to check whether or not there has some data between
301 * [startoff, endoff] because, if this range contains an unwritten extent,
302 * we determine this extent as a data or a hole according to whether the
303 * page cache has data or not.
304 */
305 static int ext4_find_unwritten_pgoff(struct inode *inode,
306 int whence,
307 struct ext4_map_blocks *map,
308 loff_t *offset)
309 {
310 struct pagevec pvec;
311 unsigned int blkbits;
312 pgoff_t index;
313 pgoff_t end;
314 loff_t endoff;
315 loff_t startoff;
316 loff_t lastoff;
317 int found = 0;
318
319 blkbits = inode->i_sb->s_blocksize_bits;
320 startoff = *offset;
321 lastoff = startoff;
322 endoff = (map->m_lblk + map->m_len) << blkbits;
323
324 index = startoff >> PAGE_CACHE_SHIFT;
325 end = endoff >> PAGE_CACHE_SHIFT;
326
327 pagevec_init(&pvec, 0);
328 do {
329 int i, num;
330 unsigned long nr_pages;
331
332 num = min_t(pgoff_t, end - index, PAGEVEC_SIZE);
333 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, index,
334 (pgoff_t)num);
335 if (nr_pages == 0) {
336 if (whence == SEEK_DATA)
337 break;
338
339 BUG_ON(whence != SEEK_HOLE);
340 /*
341 * If this is the first time to go into the loop and
342 * offset is not beyond the end offset, it will be a
343 * hole at this offset
344 */
345 if (lastoff == startoff || lastoff < endoff)
346 found = 1;
347 break;
348 }
349
350 /*
351 * If this is the first time to go into the loop and
352 * offset is smaller than the first page offset, it will be a
353 * hole at this offset.
354 */
355 if (lastoff == startoff && whence == SEEK_HOLE &&
356 lastoff < page_offset(pvec.pages[0])) {
357 found = 1;
358 break;
359 }
360
361 for (i = 0; i < nr_pages; i++) {
362 struct page *page = pvec.pages[i];
363 struct buffer_head *bh, *head;
364
365 /*
366 * If the current offset is not beyond the end of given
367 * range, it will be a hole.
368 */
369 if (lastoff < endoff && whence == SEEK_HOLE &&
370 page->index > end) {
371 found = 1;
372 *offset = lastoff;
373 goto out;
374 }
375
376 lock_page(page);
377
378 if (unlikely(page->mapping != inode->i_mapping)) {
379 unlock_page(page);
380 continue;
381 }
382
383 if (!page_has_buffers(page)) {
384 unlock_page(page);
385 continue;
386 }
387
388 if (page_has_buffers(page)) {
389 lastoff = page_offset(page);
390 bh = head = page_buffers(page);
391 do {
392 if (buffer_uptodate(bh) ||
393 buffer_unwritten(bh)) {
394 if (whence == SEEK_DATA)
395 found = 1;
396 } else {
397 if (whence == SEEK_HOLE)
398 found = 1;
399 }
400 if (found) {
401 *offset = max_t(loff_t,
402 startoff, lastoff);
403 unlock_page(page);
404 goto out;
405 }
406 lastoff += bh->b_size;
407 bh = bh->b_this_page;
408 } while (bh != head);
409 }
410
411 lastoff = page_offset(page) + PAGE_SIZE;
412 unlock_page(page);
413 }
414
415 /*
416 * The no. of pages is less than our desired, that would be a
417 * hole in there.
418 */
419 if (nr_pages < num && whence == SEEK_HOLE) {
420 found = 1;
421 *offset = lastoff;
422 break;
423 }
424
425 index = pvec.pages[i - 1]->index + 1;
426 pagevec_release(&pvec);
427 } while (index <= end);
428
429 out:
430 pagevec_release(&pvec);
431 return found;
432 }
433
434 /*
435 * ext4_seek_data() retrieves the offset for SEEK_DATA.
436 */
437 static loff_t ext4_seek_data(struct file *file, loff_t offset, loff_t maxsize)
438 {
439 struct inode *inode = file->f_mapping->host;
440 struct ext4_map_blocks map;
441 struct extent_status es;
442 ext4_lblk_t start, last, end;
443 loff_t dataoff, isize;
444 int blkbits;
445 int ret = 0;
446
447 mutex_lock(&inode->i_mutex);
448
449 isize = i_size_read(inode);
450 if (offset >= isize) {
451 mutex_unlock(&inode->i_mutex);
452 return -ENXIO;
453 }
454
455 blkbits = inode->i_sb->s_blocksize_bits;
456 start = offset >> blkbits;
457 last = start;
458 end = isize >> blkbits;
459 dataoff = offset;
460
461 do {
462 map.m_lblk = last;
463 map.m_len = end - last + 1;
464 ret = ext4_map_blocks(NULL, inode, &map, 0);
465 if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) {
466 if (last != start)
467 dataoff = last << blkbits;
468 break;
469 }
470
471 /*
472 * If there is a delay extent at this offset,
473 * it will be as a data.
474 */
475 es.start = last;
476 (void)ext4_es_find_extent(inode, &es);
477 if (last >= es.start &&
478 last < es.start + es.len) {
479 if (last != start)
480 dataoff = last << blkbits;
481 break;
482 }
483
484 /*
485 * If there is a unwritten extent at this offset,
486 * it will be as a data or a hole according to page
487 * cache that has data or not.
488 */
489 if (map.m_flags & EXT4_MAP_UNWRITTEN) {
490 int unwritten;
491 unwritten = ext4_find_unwritten_pgoff(inode, SEEK_DATA,
492 &map, &dataoff);
493 if (unwritten)
494 break;
495 }
496
497 last++;
498 dataoff = last << blkbits;
499 } while (last <= end);
500
501 mutex_unlock(&inode->i_mutex);
502
503 if (dataoff > isize)
504 return -ENXIO;
505
506 if (dataoff < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET))
507 return -EINVAL;
508 if (dataoff > maxsize)
509 return -EINVAL;
510
511 if (dataoff != file->f_pos) {
512 file->f_pos = dataoff;
513 file->f_version = 0;
514 }
515
516 return dataoff;
517 }
518
519 /*
520 * ext4_seek_hole() retrieves the offset for SEEK_HOLE.
521 */
522 static loff_t ext4_seek_hole(struct file *file, loff_t offset, loff_t maxsize)
523 {
524 struct inode *inode = file->f_mapping->host;
525 struct ext4_map_blocks map;
526 struct extent_status es;
527 ext4_lblk_t start, last, end;
528 loff_t holeoff, isize;
529 int blkbits;
530 int ret = 0;
531
532 mutex_lock(&inode->i_mutex);
533
534 isize = i_size_read(inode);
535 if (offset >= isize) {
536 mutex_unlock(&inode->i_mutex);
537 return -ENXIO;
538 }
539
540 blkbits = inode->i_sb->s_blocksize_bits;
541 start = offset >> blkbits;
542 last = start;
543 end = isize >> blkbits;
544 holeoff = offset;
545
546 do {
547 map.m_lblk = last;
548 map.m_len = end - last + 1;
549 ret = ext4_map_blocks(NULL, inode, &map, 0);
550 if (ret > 0 && !(map.m_flags & EXT4_MAP_UNWRITTEN)) {
551 last += ret;
552 holeoff = last << blkbits;
553 continue;
554 }
555
556 /*
557 * If there is a delay extent at this offset,
558 * we will skip this extent.
559 */
560 es.start = last;
561 (void)ext4_es_find_extent(inode, &es);
562 if (last >= es.start &&
563 last < es.start + es.len) {
564 last = es.start + es.len;
565 holeoff = last << blkbits;
566 continue;
567 }
568
569 /*
570 * If there is a unwritten extent at this offset,
571 * it will be as a data or a hole according to page
572 * cache that has data or not.
573 */
574 if (map.m_flags & EXT4_MAP_UNWRITTEN) {
575 int unwritten;
576 unwritten = ext4_find_unwritten_pgoff(inode, SEEK_HOLE,
577 &map, &holeoff);
578 if (!unwritten) {
579 last += ret;
580 holeoff = last << blkbits;
581 continue;
582 }
583 }
584
585 /* find a hole */
586 break;
587 } while (last <= end);
588
589 mutex_unlock(&inode->i_mutex);
590
591 if (holeoff > isize)
592 holeoff = isize;
593
594 if (holeoff < 0 && !(file->f_mode & FMODE_UNSIGNED_OFFSET))
595 return -EINVAL;
596 if (holeoff > maxsize)
597 return -EINVAL;
598
599 if (holeoff != file->f_pos) {
600 file->f_pos = holeoff;
601 file->f_version = 0;
602 }
603
604 return holeoff;
605 }
606
607 /*
608 * ext4_llseek() handles both block-mapped and extent-mapped maxbytes values
609 * by calling generic_file_llseek_size() with the appropriate maxbytes
610 * value for each.
611 */
612 loff_t ext4_llseek(struct file *file, loff_t offset, int whence)
613 {
614 struct inode *inode = file->f_mapping->host;
615 loff_t maxbytes;
616
617 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
618 maxbytes = EXT4_SB(inode->i_sb)->s_bitmap_maxbytes;
619 else
620 maxbytes = inode->i_sb->s_maxbytes;
621
622 switch (whence) {
623 case SEEK_SET:
624 case SEEK_CUR:
625 case SEEK_END:
626 return generic_file_llseek_size(file, offset, whence,
627 maxbytes, i_size_read(inode));
628 case SEEK_DATA:
629 return ext4_seek_data(file, offset, maxbytes);
630 case SEEK_HOLE:
631 return ext4_seek_hole(file, offset, maxbytes);
632 }
633
634 return -EINVAL;
635 }
636
637 const struct file_operations ext4_file_operations = {
638 .llseek = ext4_llseek,
639 .read = do_sync_read,
640 .write = do_sync_write,
641 .aio_read = generic_file_aio_read,
642 .aio_write = ext4_file_write,
643 .unlocked_ioctl = ext4_ioctl,
644 #ifdef CONFIG_COMPAT
645 .compat_ioctl = ext4_compat_ioctl,
646 #endif
647 .mmap = ext4_file_mmap,
648 .open = ext4_file_open,
649 .release = ext4_release_file,
650 .fsync = ext4_sync_file,
651 .splice_read = generic_file_splice_read,
652 .splice_write = generic_file_splice_write,
653 .fallocate = ext4_fallocate,
654 };
655
656 const struct inode_operations ext4_file_inode_operations = {
657 .setattr = ext4_setattr,
658 .getattr = ext4_getattr,
659 .setxattr = generic_setxattr,
660 .getxattr = generic_getxattr,
661 .listxattr = ext4_listxattr,
662 .removexattr = generic_removexattr,
663 .get_acl = ext4_get_acl,
664 .fiemap = ext4_fiemap,
665 };
666