Merge 4.4.92 into android-4.4
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/user_namespace.h>
60
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
64
65 #include <trace/events/task.h>
66 #include "internal.h"
67
68 #include <trace/events/sched.h>
69
70 int suid_dumpable = 0;
71
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
74
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
76 {
77 BUG_ON(!fmt);
78 if (WARN_ON(!fmt->load_binary))
79 return;
80 write_lock(&binfmt_lock);
81 insert ? list_add(&fmt->lh, &formats) :
82 list_add_tail(&fmt->lh, &formats);
83 write_unlock(&binfmt_lock);
84 }
85
86 EXPORT_SYMBOL(__register_binfmt);
87
88 void unregister_binfmt(struct linux_binfmt * fmt)
89 {
90 write_lock(&binfmt_lock);
91 list_del(&fmt->lh);
92 write_unlock(&binfmt_lock);
93 }
94
95 EXPORT_SYMBOL(unregister_binfmt);
96
97 static inline void put_binfmt(struct linux_binfmt * fmt)
98 {
99 module_put(fmt->module);
100 }
101
102 bool path_noexec(const struct path *path)
103 {
104 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
106 }
107
108 #ifdef CONFIG_USELIB
109 /*
110 * Note that a shared library must be both readable and executable due to
111 * security reasons.
112 *
113 * Also note that we take the address to load from from the file itself.
114 */
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
116 {
117 struct linux_binfmt *fmt;
118 struct file *file;
119 struct filename *tmp = getname(library);
120 int error = PTR_ERR(tmp);
121 static const struct open_flags uselib_flags = {
122 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
124 .intent = LOOKUP_OPEN,
125 .lookup_flags = LOOKUP_FOLLOW,
126 };
127
128 if (IS_ERR(tmp))
129 goto out;
130
131 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132 putname(tmp);
133 error = PTR_ERR(file);
134 if (IS_ERR(file))
135 goto out;
136
137 error = -EINVAL;
138 if (!S_ISREG(file_inode(file)->i_mode))
139 goto exit;
140
141 error = -EACCES;
142 if (path_noexec(&file->f_path))
143 goto exit;
144
145 fsnotify_open(file);
146
147 error = -ENOEXEC;
148
149 read_lock(&binfmt_lock);
150 list_for_each_entry(fmt, &formats, lh) {
151 if (!fmt->load_shlib)
152 continue;
153 if (!try_module_get(fmt->module))
154 continue;
155 read_unlock(&binfmt_lock);
156 error = fmt->load_shlib(file);
157 read_lock(&binfmt_lock);
158 put_binfmt(fmt);
159 if (error != -ENOEXEC)
160 break;
161 }
162 read_unlock(&binfmt_lock);
163 exit:
164 fput(file);
165 out:
166 return error;
167 }
168 #endif /* #ifdef CONFIG_USELIB */
169
170 #ifdef CONFIG_MMU
171 /*
172 * The nascent bprm->mm is not visible until exec_mmap() but it can
173 * use a lot of memory, account these pages in current->mm temporary
174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175 * change the counter back via acct_arg_size(0).
176 */
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
178 {
179 struct mm_struct *mm = current->mm;
180 long diff = (long)(pages - bprm->vma_pages);
181
182 if (!mm || !diff)
183 return;
184
185 bprm->vma_pages = pages;
186 add_mm_counter(mm, MM_ANONPAGES, diff);
187 }
188
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 int write)
191 {
192 struct page *page;
193 int ret;
194
195 #ifdef CONFIG_STACK_GROWSUP
196 if (write) {
197 ret = expand_downwards(bprm->vma, pos);
198 if (ret < 0)
199 return NULL;
200 }
201 #endif
202 ret = get_user_pages(current, bprm->mm, pos,
203 1, write, 1, &page, NULL);
204 if (ret <= 0)
205 return NULL;
206
207 if (write) {
208 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
209 unsigned long ptr_size, limit;
210
211 /*
212 * Since the stack will hold pointers to the strings, we
213 * must account for them as well.
214 *
215 * The size calculation is the entire vma while each arg page is
216 * built, so each time we get here it's calculating how far it
217 * is currently (rather than each call being just the newly
218 * added size from the arg page). As a result, we need to
219 * always add the entire size of the pointers, so that on the
220 * last call to get_arg_page() we'll actually have the entire
221 * correct size.
222 */
223 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
224 if (ptr_size > ULONG_MAX - size)
225 goto fail;
226 size += ptr_size;
227
228 acct_arg_size(bprm, size / PAGE_SIZE);
229
230 /*
231 * We've historically supported up to 32 pages (ARG_MAX)
232 * of argument strings even with small stacks
233 */
234 if (size <= ARG_MAX)
235 return page;
236
237 /*
238 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
239 * (whichever is smaller) for the argv+env strings.
240 * This ensures that:
241 * - the remaining binfmt code will not run out of stack space,
242 * - the program will have a reasonable amount of stack left
243 * to work from.
244 */
245 limit = _STK_LIM / 4 * 3;
246 limit = min(limit, rlimit(RLIMIT_STACK) / 4);
247 if (size > limit)
248 goto fail;
249 }
250
251 return page;
252
253 fail:
254 put_page(page);
255 return NULL;
256 }
257
258 static void put_arg_page(struct page *page)
259 {
260 put_page(page);
261 }
262
263 static void free_arg_page(struct linux_binprm *bprm, int i)
264 {
265 }
266
267 static void free_arg_pages(struct linux_binprm *bprm)
268 {
269 }
270
271 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
272 struct page *page)
273 {
274 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
275 }
276
277 static int __bprm_mm_init(struct linux_binprm *bprm)
278 {
279 int err;
280 struct vm_area_struct *vma = NULL;
281 struct mm_struct *mm = bprm->mm;
282
283 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
284 if (!vma)
285 return -ENOMEM;
286
287 down_write(&mm->mmap_sem);
288 vma->vm_mm = mm;
289
290 /*
291 * Place the stack at the largest stack address the architecture
292 * supports. Later, we'll move this to an appropriate place. We don't
293 * use STACK_TOP because that can depend on attributes which aren't
294 * configured yet.
295 */
296 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
297 vma->vm_end = STACK_TOP_MAX;
298 vma->vm_start = vma->vm_end - PAGE_SIZE;
299 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
300 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
301 INIT_LIST_HEAD(&vma->anon_vma_chain);
302
303 err = insert_vm_struct(mm, vma);
304 if (err)
305 goto err;
306
307 mm->stack_vm = mm->total_vm = 1;
308 arch_bprm_mm_init(mm, vma);
309 up_write(&mm->mmap_sem);
310 bprm->p = vma->vm_end - sizeof(void *);
311 return 0;
312 err:
313 up_write(&mm->mmap_sem);
314 bprm->vma = NULL;
315 kmem_cache_free(vm_area_cachep, vma);
316 return err;
317 }
318
319 static bool valid_arg_len(struct linux_binprm *bprm, long len)
320 {
321 return len <= MAX_ARG_STRLEN;
322 }
323
324 #else
325
326 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
327 {
328 }
329
330 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
331 int write)
332 {
333 struct page *page;
334
335 page = bprm->page[pos / PAGE_SIZE];
336 if (!page && write) {
337 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
338 if (!page)
339 return NULL;
340 bprm->page[pos / PAGE_SIZE] = page;
341 }
342
343 return page;
344 }
345
346 static void put_arg_page(struct page *page)
347 {
348 }
349
350 static void free_arg_page(struct linux_binprm *bprm, int i)
351 {
352 if (bprm->page[i]) {
353 __free_page(bprm->page[i]);
354 bprm->page[i] = NULL;
355 }
356 }
357
358 static void free_arg_pages(struct linux_binprm *bprm)
359 {
360 int i;
361
362 for (i = 0; i < MAX_ARG_PAGES; i++)
363 free_arg_page(bprm, i);
364 }
365
366 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
367 struct page *page)
368 {
369 }
370
371 static int __bprm_mm_init(struct linux_binprm *bprm)
372 {
373 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
374 return 0;
375 }
376
377 static bool valid_arg_len(struct linux_binprm *bprm, long len)
378 {
379 return len <= bprm->p;
380 }
381
382 #endif /* CONFIG_MMU */
383
384 /*
385 * Create a new mm_struct and populate it with a temporary stack
386 * vm_area_struct. We don't have enough context at this point to set the stack
387 * flags, permissions, and offset, so we use temporary values. We'll update
388 * them later in setup_arg_pages().
389 */
390 static int bprm_mm_init(struct linux_binprm *bprm)
391 {
392 int err;
393 struct mm_struct *mm = NULL;
394
395 bprm->mm = mm = mm_alloc();
396 err = -ENOMEM;
397 if (!mm)
398 goto err;
399
400 err = __bprm_mm_init(bprm);
401 if (err)
402 goto err;
403
404 return 0;
405
406 err:
407 if (mm) {
408 bprm->mm = NULL;
409 mmdrop(mm);
410 }
411
412 return err;
413 }
414
415 struct user_arg_ptr {
416 #ifdef CONFIG_COMPAT
417 bool is_compat;
418 #endif
419 union {
420 const char __user *const __user *native;
421 #ifdef CONFIG_COMPAT
422 const compat_uptr_t __user *compat;
423 #endif
424 } ptr;
425 };
426
427 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
428 {
429 const char __user *native;
430
431 #ifdef CONFIG_COMPAT
432 if (unlikely(argv.is_compat)) {
433 compat_uptr_t compat;
434
435 if (get_user(compat, argv.ptr.compat + nr))
436 return ERR_PTR(-EFAULT);
437
438 return compat_ptr(compat);
439 }
440 #endif
441
442 if (get_user(native, argv.ptr.native + nr))
443 return ERR_PTR(-EFAULT);
444
445 return native;
446 }
447
448 /*
449 * count() counts the number of strings in array ARGV.
450 */
451 static int count(struct user_arg_ptr argv, int max)
452 {
453 int i = 0;
454
455 if (argv.ptr.native != NULL) {
456 for (;;) {
457 const char __user *p = get_user_arg_ptr(argv, i);
458
459 if (!p)
460 break;
461
462 if (IS_ERR(p))
463 return -EFAULT;
464
465 if (i >= max)
466 return -E2BIG;
467 ++i;
468
469 if (fatal_signal_pending(current))
470 return -ERESTARTNOHAND;
471 cond_resched();
472 }
473 }
474 return i;
475 }
476
477 /*
478 * 'copy_strings()' copies argument/environment strings from the old
479 * processes's memory to the new process's stack. The call to get_user_pages()
480 * ensures the destination page is created and not swapped out.
481 */
482 static int copy_strings(int argc, struct user_arg_ptr argv,
483 struct linux_binprm *bprm)
484 {
485 struct page *kmapped_page = NULL;
486 char *kaddr = NULL;
487 unsigned long kpos = 0;
488 int ret;
489
490 while (argc-- > 0) {
491 const char __user *str;
492 int len;
493 unsigned long pos;
494
495 ret = -EFAULT;
496 str = get_user_arg_ptr(argv, argc);
497 if (IS_ERR(str))
498 goto out;
499
500 len = strnlen_user(str, MAX_ARG_STRLEN);
501 if (!len)
502 goto out;
503
504 ret = -E2BIG;
505 if (!valid_arg_len(bprm, len))
506 goto out;
507
508 /* We're going to work our way backwords. */
509 pos = bprm->p;
510 str += len;
511 bprm->p -= len;
512
513 while (len > 0) {
514 int offset, bytes_to_copy;
515
516 if (fatal_signal_pending(current)) {
517 ret = -ERESTARTNOHAND;
518 goto out;
519 }
520 cond_resched();
521
522 offset = pos % PAGE_SIZE;
523 if (offset == 0)
524 offset = PAGE_SIZE;
525
526 bytes_to_copy = offset;
527 if (bytes_to_copy > len)
528 bytes_to_copy = len;
529
530 offset -= bytes_to_copy;
531 pos -= bytes_to_copy;
532 str -= bytes_to_copy;
533 len -= bytes_to_copy;
534
535 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
536 struct page *page;
537
538 page = get_arg_page(bprm, pos, 1);
539 if (!page) {
540 ret = -E2BIG;
541 goto out;
542 }
543
544 if (kmapped_page) {
545 flush_kernel_dcache_page(kmapped_page);
546 kunmap(kmapped_page);
547 put_arg_page(kmapped_page);
548 }
549 kmapped_page = page;
550 kaddr = kmap(kmapped_page);
551 kpos = pos & PAGE_MASK;
552 flush_arg_page(bprm, kpos, kmapped_page);
553 }
554 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
555 ret = -EFAULT;
556 goto out;
557 }
558 }
559 }
560 ret = 0;
561 out:
562 if (kmapped_page) {
563 flush_kernel_dcache_page(kmapped_page);
564 kunmap(kmapped_page);
565 put_arg_page(kmapped_page);
566 }
567 return ret;
568 }
569
570 /*
571 * Like copy_strings, but get argv and its values from kernel memory.
572 */
573 int copy_strings_kernel(int argc, const char *const *__argv,
574 struct linux_binprm *bprm)
575 {
576 int r;
577 mm_segment_t oldfs = get_fs();
578 struct user_arg_ptr argv = {
579 .ptr.native = (const char __user *const __user *)__argv,
580 };
581
582 set_fs(KERNEL_DS);
583 r = copy_strings(argc, argv, bprm);
584 set_fs(oldfs);
585
586 return r;
587 }
588 EXPORT_SYMBOL(copy_strings_kernel);
589
590 #ifdef CONFIG_MMU
591
592 /*
593 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
594 * the binfmt code determines where the new stack should reside, we shift it to
595 * its final location. The process proceeds as follows:
596 *
597 * 1) Use shift to calculate the new vma endpoints.
598 * 2) Extend vma to cover both the old and new ranges. This ensures the
599 * arguments passed to subsequent functions are consistent.
600 * 3) Move vma's page tables to the new range.
601 * 4) Free up any cleared pgd range.
602 * 5) Shrink the vma to cover only the new range.
603 */
604 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
605 {
606 struct mm_struct *mm = vma->vm_mm;
607 unsigned long old_start = vma->vm_start;
608 unsigned long old_end = vma->vm_end;
609 unsigned long length = old_end - old_start;
610 unsigned long new_start = old_start - shift;
611 unsigned long new_end = old_end - shift;
612 struct mmu_gather tlb;
613
614 BUG_ON(new_start > new_end);
615
616 /*
617 * ensure there are no vmas between where we want to go
618 * and where we are
619 */
620 if (vma != find_vma(mm, new_start))
621 return -EFAULT;
622
623 /*
624 * cover the whole range: [new_start, old_end)
625 */
626 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
627 return -ENOMEM;
628
629 /*
630 * move the page tables downwards, on failure we rely on
631 * process cleanup to remove whatever mess we made.
632 */
633 if (length != move_page_tables(vma, old_start,
634 vma, new_start, length, false))
635 return -ENOMEM;
636
637 lru_add_drain();
638 tlb_gather_mmu(&tlb, mm, old_start, old_end);
639 if (new_end > old_start) {
640 /*
641 * when the old and new regions overlap clear from new_end.
642 */
643 free_pgd_range(&tlb, new_end, old_end, new_end,
644 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
645 } else {
646 /*
647 * otherwise, clean from old_start; this is done to not touch
648 * the address space in [new_end, old_start) some architectures
649 * have constraints on va-space that make this illegal (IA64) -
650 * for the others its just a little faster.
651 */
652 free_pgd_range(&tlb, old_start, old_end, new_end,
653 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
654 }
655 tlb_finish_mmu(&tlb, old_start, old_end);
656
657 /*
658 * Shrink the vma to just the new range. Always succeeds.
659 */
660 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
661
662 return 0;
663 }
664
665 /*
666 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
667 * the stack is optionally relocated, and some extra space is added.
668 */
669 int setup_arg_pages(struct linux_binprm *bprm,
670 unsigned long stack_top,
671 int executable_stack)
672 {
673 unsigned long ret;
674 unsigned long stack_shift;
675 struct mm_struct *mm = current->mm;
676 struct vm_area_struct *vma = bprm->vma;
677 struct vm_area_struct *prev = NULL;
678 unsigned long vm_flags;
679 unsigned long stack_base;
680 unsigned long stack_size;
681 unsigned long stack_expand;
682 unsigned long rlim_stack;
683
684 #ifdef CONFIG_STACK_GROWSUP
685 /* Limit stack size */
686 stack_base = rlimit_max(RLIMIT_STACK);
687 if (stack_base > STACK_SIZE_MAX)
688 stack_base = STACK_SIZE_MAX;
689
690 /* Add space for stack randomization. */
691 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
692
693 /* Make sure we didn't let the argument array grow too large. */
694 if (vma->vm_end - vma->vm_start > stack_base)
695 return -ENOMEM;
696
697 stack_base = PAGE_ALIGN(stack_top - stack_base);
698
699 stack_shift = vma->vm_start - stack_base;
700 mm->arg_start = bprm->p - stack_shift;
701 bprm->p = vma->vm_end - stack_shift;
702 #else
703 stack_top = arch_align_stack(stack_top);
704 stack_top = PAGE_ALIGN(stack_top);
705
706 if (unlikely(stack_top < mmap_min_addr) ||
707 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
708 return -ENOMEM;
709
710 stack_shift = vma->vm_end - stack_top;
711
712 bprm->p -= stack_shift;
713 mm->arg_start = bprm->p;
714 #endif
715
716 if (bprm->loader)
717 bprm->loader -= stack_shift;
718 bprm->exec -= stack_shift;
719
720 down_write(&mm->mmap_sem);
721 vm_flags = VM_STACK_FLAGS;
722
723 /*
724 * Adjust stack execute permissions; explicitly enable for
725 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
726 * (arch default) otherwise.
727 */
728 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
729 vm_flags |= VM_EXEC;
730 else if (executable_stack == EXSTACK_DISABLE_X)
731 vm_flags &= ~VM_EXEC;
732 vm_flags |= mm->def_flags;
733 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
734
735 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
736 vm_flags);
737 if (ret)
738 goto out_unlock;
739 BUG_ON(prev != vma);
740
741 /* Move stack pages down in memory. */
742 if (stack_shift) {
743 ret = shift_arg_pages(vma, stack_shift);
744 if (ret)
745 goto out_unlock;
746 }
747
748 /* mprotect_fixup is overkill to remove the temporary stack flags */
749 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
750
751 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
752 stack_size = vma->vm_end - vma->vm_start;
753 /*
754 * Align this down to a page boundary as expand_stack
755 * will align it up.
756 */
757 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
758 #ifdef CONFIG_STACK_GROWSUP
759 if (stack_size + stack_expand > rlim_stack)
760 stack_base = vma->vm_start + rlim_stack;
761 else
762 stack_base = vma->vm_end + stack_expand;
763 #else
764 if (stack_size + stack_expand > rlim_stack)
765 stack_base = vma->vm_end - rlim_stack;
766 else
767 stack_base = vma->vm_start - stack_expand;
768 #endif
769 current->mm->start_stack = bprm->p;
770 ret = expand_stack(vma, stack_base);
771 if (ret)
772 ret = -EFAULT;
773
774 out_unlock:
775 up_write(&mm->mmap_sem);
776 return ret;
777 }
778 EXPORT_SYMBOL(setup_arg_pages);
779
780 #endif /* CONFIG_MMU */
781
782 static struct file *do_open_execat(int fd, struct filename *name, int flags)
783 {
784 struct file *file;
785 int err;
786 struct open_flags open_exec_flags = {
787 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
788 .acc_mode = MAY_EXEC | MAY_OPEN,
789 .intent = LOOKUP_OPEN,
790 .lookup_flags = LOOKUP_FOLLOW,
791 };
792
793 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
794 return ERR_PTR(-EINVAL);
795 if (flags & AT_SYMLINK_NOFOLLOW)
796 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
797 if (flags & AT_EMPTY_PATH)
798 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
799
800 file = do_filp_open(fd, name, &open_exec_flags);
801 if (IS_ERR(file))
802 goto out;
803
804 err = -EACCES;
805 if (!S_ISREG(file_inode(file)->i_mode))
806 goto exit;
807
808 if (path_noexec(&file->f_path))
809 goto exit;
810
811 err = deny_write_access(file);
812 if (err)
813 goto exit;
814
815 if (name->name[0] != '\0')
816 fsnotify_open(file);
817
818 out:
819 return file;
820
821 exit:
822 fput(file);
823 return ERR_PTR(err);
824 }
825
826 struct file *open_exec(const char *name)
827 {
828 struct filename *filename = getname_kernel(name);
829 struct file *f = ERR_CAST(filename);
830
831 if (!IS_ERR(filename)) {
832 f = do_open_execat(AT_FDCWD, filename, 0);
833 putname(filename);
834 }
835 return f;
836 }
837 EXPORT_SYMBOL(open_exec);
838
839 int kernel_read(struct file *file, loff_t offset,
840 char *addr, unsigned long count)
841 {
842 mm_segment_t old_fs;
843 loff_t pos = offset;
844 int result;
845
846 old_fs = get_fs();
847 set_fs(get_ds());
848 /* The cast to a user pointer is valid due to the set_fs() */
849 result = vfs_read(file, (void __user *)addr, count, &pos);
850 set_fs(old_fs);
851 return result;
852 }
853
854 EXPORT_SYMBOL(kernel_read);
855
856 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
857 {
858 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
859 if (res > 0)
860 flush_icache_range(addr, addr + len);
861 return res;
862 }
863 EXPORT_SYMBOL(read_code);
864
865 static int exec_mmap(struct mm_struct *mm)
866 {
867 struct task_struct *tsk;
868 struct mm_struct *old_mm, *active_mm;
869
870 /* Notify parent that we're no longer interested in the old VM */
871 tsk = current;
872 old_mm = current->mm;
873 mm_release(tsk, old_mm);
874
875 if (old_mm) {
876 sync_mm_rss(old_mm);
877 /*
878 * Make sure that if there is a core dump in progress
879 * for the old mm, we get out and die instead of going
880 * through with the exec. We must hold mmap_sem around
881 * checking core_state and changing tsk->mm.
882 */
883 down_read(&old_mm->mmap_sem);
884 if (unlikely(old_mm->core_state)) {
885 up_read(&old_mm->mmap_sem);
886 return -EINTR;
887 }
888 }
889 task_lock(tsk);
890 active_mm = tsk->active_mm;
891 tsk->mm = mm;
892 tsk->active_mm = mm;
893 activate_mm(active_mm, mm);
894 tsk->mm->vmacache_seqnum = 0;
895 vmacache_flush(tsk);
896 task_unlock(tsk);
897 if (old_mm) {
898 up_read(&old_mm->mmap_sem);
899 BUG_ON(active_mm != old_mm);
900 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
901 mm_update_next_owner(old_mm);
902 mmput(old_mm);
903 return 0;
904 }
905 mmdrop(active_mm);
906 return 0;
907 }
908
909 /*
910 * This function makes sure the current process has its own signal table,
911 * so that flush_signal_handlers can later reset the handlers without
912 * disturbing other processes. (Other processes might share the signal
913 * table via the CLONE_SIGHAND option to clone().)
914 */
915 static int de_thread(struct task_struct *tsk)
916 {
917 struct signal_struct *sig = tsk->signal;
918 struct sighand_struct *oldsighand = tsk->sighand;
919 spinlock_t *lock = &oldsighand->siglock;
920
921 if (thread_group_empty(tsk))
922 goto no_thread_group;
923
924 /*
925 * Kill all other threads in the thread group.
926 */
927 spin_lock_irq(lock);
928 if (signal_group_exit(sig)) {
929 /*
930 * Another group action in progress, just
931 * return so that the signal is processed.
932 */
933 spin_unlock_irq(lock);
934 return -EAGAIN;
935 }
936
937 sig->group_exit_task = tsk;
938 sig->notify_count = zap_other_threads(tsk);
939 if (!thread_group_leader(tsk))
940 sig->notify_count--;
941
942 while (sig->notify_count) {
943 __set_current_state(TASK_KILLABLE);
944 spin_unlock_irq(lock);
945 schedule();
946 if (unlikely(__fatal_signal_pending(tsk)))
947 goto killed;
948 spin_lock_irq(lock);
949 }
950 spin_unlock_irq(lock);
951
952 /*
953 * At this point all other threads have exited, all we have to
954 * do is to wait for the thread group leader to become inactive,
955 * and to assume its PID:
956 */
957 if (!thread_group_leader(tsk)) {
958 struct task_struct *leader = tsk->group_leader;
959
960 for (;;) {
961 threadgroup_change_begin(tsk);
962 write_lock_irq(&tasklist_lock);
963 /*
964 * Do this under tasklist_lock to ensure that
965 * exit_notify() can't miss ->group_exit_task
966 */
967 sig->notify_count = -1;
968 if (likely(leader->exit_state))
969 break;
970 __set_current_state(TASK_KILLABLE);
971 write_unlock_irq(&tasklist_lock);
972 threadgroup_change_end(tsk);
973 schedule();
974 if (unlikely(__fatal_signal_pending(tsk)))
975 goto killed;
976 }
977
978 /*
979 * The only record we have of the real-time age of a
980 * process, regardless of execs it's done, is start_time.
981 * All the past CPU time is accumulated in signal_struct
982 * from sister threads now dead. But in this non-leader
983 * exec, nothing survives from the original leader thread,
984 * whose birth marks the true age of this process now.
985 * When we take on its identity by switching to its PID, we
986 * also take its birthdate (always earlier than our own).
987 */
988 tsk->start_time = leader->start_time;
989 tsk->real_start_time = leader->real_start_time;
990
991 BUG_ON(!same_thread_group(leader, tsk));
992 BUG_ON(has_group_leader_pid(tsk));
993 /*
994 * An exec() starts a new thread group with the
995 * TGID of the previous thread group. Rehash the
996 * two threads with a switched PID, and release
997 * the former thread group leader:
998 */
999
1000 /* Become a process group leader with the old leader's pid.
1001 * The old leader becomes a thread of the this thread group.
1002 * Note: The old leader also uses this pid until release_task
1003 * is called. Odd but simple and correct.
1004 */
1005 tsk->pid = leader->pid;
1006 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1007 transfer_pid(leader, tsk, PIDTYPE_PGID);
1008 transfer_pid(leader, tsk, PIDTYPE_SID);
1009
1010 list_replace_rcu(&leader->tasks, &tsk->tasks);
1011 list_replace_init(&leader->sibling, &tsk->sibling);
1012
1013 tsk->group_leader = tsk;
1014 leader->group_leader = tsk;
1015
1016 tsk->exit_signal = SIGCHLD;
1017 leader->exit_signal = -1;
1018
1019 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1020 leader->exit_state = EXIT_DEAD;
1021
1022 /*
1023 * We are going to release_task()->ptrace_unlink() silently,
1024 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1025 * the tracer wont't block again waiting for this thread.
1026 */
1027 if (unlikely(leader->ptrace))
1028 __wake_up_parent(leader, leader->parent);
1029 write_unlock_irq(&tasklist_lock);
1030 threadgroup_change_end(tsk);
1031
1032 release_task(leader);
1033 }
1034
1035 sig->group_exit_task = NULL;
1036 sig->notify_count = 0;
1037
1038 no_thread_group:
1039 /* we have changed execution domain */
1040 tsk->exit_signal = SIGCHLD;
1041
1042 exit_itimers(sig);
1043 flush_itimer_signals();
1044
1045 if (atomic_read(&oldsighand->count) != 1) {
1046 struct sighand_struct *newsighand;
1047 /*
1048 * This ->sighand is shared with the CLONE_SIGHAND
1049 * but not CLONE_THREAD task, switch to the new one.
1050 */
1051 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1052 if (!newsighand)
1053 return -ENOMEM;
1054
1055 atomic_set(&newsighand->count, 1);
1056 memcpy(newsighand->action, oldsighand->action,
1057 sizeof(newsighand->action));
1058
1059 write_lock_irq(&tasklist_lock);
1060 spin_lock(&oldsighand->siglock);
1061 rcu_assign_pointer(tsk->sighand, newsighand);
1062 spin_unlock(&oldsighand->siglock);
1063 write_unlock_irq(&tasklist_lock);
1064
1065 __cleanup_sighand(oldsighand);
1066 }
1067
1068 BUG_ON(!thread_group_leader(tsk));
1069 return 0;
1070
1071 killed:
1072 /* protects against exit_notify() and __exit_signal() */
1073 read_lock(&tasklist_lock);
1074 sig->group_exit_task = NULL;
1075 sig->notify_count = 0;
1076 read_unlock(&tasklist_lock);
1077 return -EAGAIN;
1078 }
1079
1080 char *get_task_comm(char *buf, struct task_struct *tsk)
1081 {
1082 /* buf must be at least sizeof(tsk->comm) in size */
1083 task_lock(tsk);
1084 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1085 task_unlock(tsk);
1086 return buf;
1087 }
1088 EXPORT_SYMBOL_GPL(get_task_comm);
1089
1090 /*
1091 * These functions flushes out all traces of the currently running executable
1092 * so that a new one can be started
1093 */
1094
1095 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1096 {
1097 task_lock(tsk);
1098 trace_task_rename(tsk, buf);
1099 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1100 task_unlock(tsk);
1101 perf_event_comm(tsk, exec);
1102 }
1103
1104 int flush_old_exec(struct linux_binprm * bprm)
1105 {
1106 int retval;
1107
1108 /*
1109 * Make sure we have a private signal table and that
1110 * we are unassociated from the previous thread group.
1111 */
1112 retval = de_thread(current);
1113 if (retval)
1114 goto out;
1115
1116 /*
1117 * Must be called _before_ exec_mmap() as bprm->mm is
1118 * not visibile until then. This also enables the update
1119 * to be lockless.
1120 */
1121 set_mm_exe_file(bprm->mm, bprm->file);
1122
1123 /*
1124 * Release all of the old mmap stuff
1125 */
1126 acct_arg_size(bprm, 0);
1127 retval = exec_mmap(bprm->mm);
1128 if (retval)
1129 goto out;
1130
1131 bprm->mm = NULL; /* We're using it now */
1132
1133 set_fs(USER_DS);
1134 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1135 PF_NOFREEZE | PF_NO_SETAFFINITY);
1136 flush_thread();
1137 current->personality &= ~bprm->per_clear;
1138
1139 /*
1140 * We have to apply CLOEXEC before we change whether the process is
1141 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1142 * trying to access the should-be-closed file descriptors of a process
1143 * undergoing exec(2).
1144 */
1145 do_close_on_exec(current->files);
1146 return 0;
1147
1148 out:
1149 return retval;
1150 }
1151 EXPORT_SYMBOL(flush_old_exec);
1152
1153 void would_dump(struct linux_binprm *bprm, struct file *file)
1154 {
1155 struct inode *inode = file_inode(file);
1156
1157 if (inode_permission2(file->f_path.mnt, inode, MAY_READ) < 0) {
1158 struct user_namespace *old, *user_ns;
1159
1160 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1161
1162 /* Ensure mm->user_ns contains the executable */
1163 user_ns = old = bprm->mm->user_ns;
1164 while ((user_ns != &init_user_ns) &&
1165 !privileged_wrt_inode_uidgid(user_ns, inode))
1166 user_ns = user_ns->parent;
1167
1168 if (old != user_ns) {
1169 bprm->mm->user_ns = get_user_ns(user_ns);
1170 put_user_ns(old);
1171 }
1172 }
1173 }
1174 EXPORT_SYMBOL(would_dump);
1175
1176 void setup_new_exec(struct linux_binprm * bprm)
1177 {
1178 arch_pick_mmap_layout(current->mm);
1179
1180 /* This is the point of no return */
1181 current->sas_ss_sp = current->sas_ss_size = 0;
1182
1183 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1184 set_dumpable(current->mm, SUID_DUMP_USER);
1185 else
1186 set_dumpable(current->mm, suid_dumpable);
1187
1188 perf_event_exec();
1189 __set_task_comm(current, kbasename(bprm->filename), true);
1190
1191 /* Set the new mm task size. We have to do that late because it may
1192 * depend on TIF_32BIT which is only updated in flush_thread() on
1193 * some architectures like powerpc
1194 */
1195 current->mm->task_size = TASK_SIZE;
1196
1197 /* install the new credentials */
1198 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1199 !gid_eq(bprm->cred->gid, current_egid())) {
1200 current->pdeath_signal = 0;
1201 } else {
1202 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1203 set_dumpable(current->mm, suid_dumpable);
1204 }
1205
1206 /* An exec changes our domain. We are no longer part of the thread
1207 group */
1208 current->self_exec_id++;
1209 flush_signal_handlers(current, 0);
1210 }
1211 EXPORT_SYMBOL(setup_new_exec);
1212
1213 /*
1214 * Prepare credentials and lock ->cred_guard_mutex.
1215 * install_exec_creds() commits the new creds and drops the lock.
1216 * Or, if exec fails before, free_bprm() should release ->cred and
1217 * and unlock.
1218 */
1219 int prepare_bprm_creds(struct linux_binprm *bprm)
1220 {
1221 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1222 return -ERESTARTNOINTR;
1223
1224 bprm->cred = prepare_exec_creds();
1225 if (likely(bprm->cred))
1226 return 0;
1227
1228 mutex_unlock(&current->signal->cred_guard_mutex);
1229 return -ENOMEM;
1230 }
1231
1232 static void free_bprm(struct linux_binprm *bprm)
1233 {
1234 free_arg_pages(bprm);
1235 if (bprm->cred) {
1236 mutex_unlock(&current->signal->cred_guard_mutex);
1237 abort_creds(bprm->cred);
1238 }
1239 if (bprm->file) {
1240 allow_write_access(bprm->file);
1241 fput(bprm->file);
1242 }
1243 /* If a binfmt changed the interp, free it. */
1244 if (bprm->interp != bprm->filename)
1245 kfree(bprm->interp);
1246 kfree(bprm);
1247 }
1248
1249 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1250 {
1251 /* If a binfmt changed the interp, free it first. */
1252 if (bprm->interp != bprm->filename)
1253 kfree(bprm->interp);
1254 bprm->interp = kstrdup(interp, GFP_KERNEL);
1255 if (!bprm->interp)
1256 return -ENOMEM;
1257 return 0;
1258 }
1259 EXPORT_SYMBOL(bprm_change_interp);
1260
1261 /*
1262 * install the new credentials for this executable
1263 */
1264 void install_exec_creds(struct linux_binprm *bprm)
1265 {
1266 security_bprm_committing_creds(bprm);
1267
1268 commit_creds(bprm->cred);
1269 bprm->cred = NULL;
1270
1271 /*
1272 * Disable monitoring for regular users
1273 * when executing setuid binaries. Must
1274 * wait until new credentials are committed
1275 * by commit_creds() above
1276 */
1277 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1278 perf_event_exit_task(current);
1279 /*
1280 * cred_guard_mutex must be held at least to this point to prevent
1281 * ptrace_attach() from altering our determination of the task's
1282 * credentials; any time after this it may be unlocked.
1283 */
1284 security_bprm_committed_creds(bprm);
1285 mutex_unlock(&current->signal->cred_guard_mutex);
1286 }
1287 EXPORT_SYMBOL(install_exec_creds);
1288
1289 /*
1290 * determine how safe it is to execute the proposed program
1291 * - the caller must hold ->cred_guard_mutex to protect against
1292 * PTRACE_ATTACH or seccomp thread-sync
1293 */
1294 static void check_unsafe_exec(struct linux_binprm *bprm)
1295 {
1296 struct task_struct *p = current, *t;
1297 unsigned n_fs;
1298
1299 if (p->ptrace) {
1300 if (ptracer_capable(p, current_user_ns()))
1301 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1302 else
1303 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1304 }
1305
1306 /*
1307 * This isn't strictly necessary, but it makes it harder for LSMs to
1308 * mess up.
1309 */
1310 if (task_no_new_privs(current))
1311 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1312
1313 t = p;
1314 n_fs = 1;
1315 spin_lock(&p->fs->lock);
1316 rcu_read_lock();
1317 while_each_thread(p, t) {
1318 if (t->fs == p->fs)
1319 n_fs++;
1320 }
1321 rcu_read_unlock();
1322
1323 if (p->fs->users > n_fs)
1324 bprm->unsafe |= LSM_UNSAFE_SHARE;
1325 else
1326 p->fs->in_exec = 1;
1327 spin_unlock(&p->fs->lock);
1328 }
1329
1330 static void bprm_fill_uid(struct linux_binprm *bprm)
1331 {
1332 struct inode *inode;
1333 unsigned int mode;
1334 kuid_t uid;
1335 kgid_t gid;
1336
1337 /* clear any previous set[ug]id data from a previous binary */
1338 bprm->cred->euid = current_euid();
1339 bprm->cred->egid = current_egid();
1340
1341 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
1342 return;
1343
1344 if (task_no_new_privs(current))
1345 return;
1346
1347 inode = file_inode(bprm->file);
1348 mode = READ_ONCE(inode->i_mode);
1349 if (!(mode & (S_ISUID|S_ISGID)))
1350 return;
1351
1352 /* Be careful if suid/sgid is set */
1353 mutex_lock(&inode->i_mutex);
1354
1355 /* reload atomically mode/uid/gid now that lock held */
1356 mode = inode->i_mode;
1357 uid = inode->i_uid;
1358 gid = inode->i_gid;
1359 mutex_unlock(&inode->i_mutex);
1360
1361 /* We ignore suid/sgid if there are no mappings for them in the ns */
1362 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1363 !kgid_has_mapping(bprm->cred->user_ns, gid))
1364 return;
1365
1366 if (mode & S_ISUID) {
1367 bprm->per_clear |= PER_CLEAR_ON_SETID;
1368 bprm->cred->euid = uid;
1369 }
1370
1371 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1372 bprm->per_clear |= PER_CLEAR_ON_SETID;
1373 bprm->cred->egid = gid;
1374 }
1375 }
1376
1377 /*
1378 * Fill the binprm structure from the inode.
1379 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1380 *
1381 * This may be called multiple times for binary chains (scripts for example).
1382 */
1383 int prepare_binprm(struct linux_binprm *bprm)
1384 {
1385 int retval;
1386
1387 bprm_fill_uid(bprm);
1388
1389 /* fill in binprm security blob */
1390 retval = security_bprm_set_creds(bprm);
1391 if (retval)
1392 return retval;
1393 bprm->cred_prepared = 1;
1394
1395 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1396 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1397 }
1398
1399 EXPORT_SYMBOL(prepare_binprm);
1400
1401 /*
1402 * Arguments are '\0' separated strings found at the location bprm->p
1403 * points to; chop off the first by relocating brpm->p to right after
1404 * the first '\0' encountered.
1405 */
1406 int remove_arg_zero(struct linux_binprm *bprm)
1407 {
1408 int ret = 0;
1409 unsigned long offset;
1410 char *kaddr;
1411 struct page *page;
1412
1413 if (!bprm->argc)
1414 return 0;
1415
1416 do {
1417 offset = bprm->p & ~PAGE_MASK;
1418 page = get_arg_page(bprm, bprm->p, 0);
1419 if (!page) {
1420 ret = -EFAULT;
1421 goto out;
1422 }
1423 kaddr = kmap_atomic(page);
1424
1425 for (; offset < PAGE_SIZE && kaddr[offset];
1426 offset++, bprm->p++)
1427 ;
1428
1429 kunmap_atomic(kaddr);
1430 put_arg_page(page);
1431
1432 if (offset == PAGE_SIZE)
1433 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1434 } while (offset == PAGE_SIZE);
1435
1436 bprm->p++;
1437 bprm->argc--;
1438 ret = 0;
1439
1440 out:
1441 return ret;
1442 }
1443 EXPORT_SYMBOL(remove_arg_zero);
1444
1445 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1446 /*
1447 * cycle the list of binary formats handler, until one recognizes the image
1448 */
1449 int search_binary_handler(struct linux_binprm *bprm)
1450 {
1451 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1452 struct linux_binfmt *fmt;
1453 int retval;
1454
1455 /* This allows 4 levels of binfmt rewrites before failing hard. */
1456 if (bprm->recursion_depth > 5)
1457 return -ELOOP;
1458
1459 retval = security_bprm_check(bprm);
1460 if (retval)
1461 return retval;
1462
1463 retval = -ENOENT;
1464 retry:
1465 read_lock(&binfmt_lock);
1466 list_for_each_entry(fmt, &formats, lh) {
1467 if (!try_module_get(fmt->module))
1468 continue;
1469 read_unlock(&binfmt_lock);
1470 bprm->recursion_depth++;
1471 retval = fmt->load_binary(bprm);
1472 read_lock(&binfmt_lock);
1473 put_binfmt(fmt);
1474 bprm->recursion_depth--;
1475 if (retval < 0 && !bprm->mm) {
1476 /* we got to flush_old_exec() and failed after it */
1477 read_unlock(&binfmt_lock);
1478 force_sigsegv(SIGSEGV, current);
1479 return retval;
1480 }
1481 if (retval != -ENOEXEC || !bprm->file) {
1482 read_unlock(&binfmt_lock);
1483 return retval;
1484 }
1485 }
1486 read_unlock(&binfmt_lock);
1487
1488 if (need_retry) {
1489 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1490 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1491 return retval;
1492 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1493 return retval;
1494 need_retry = false;
1495 goto retry;
1496 }
1497
1498 return retval;
1499 }
1500 EXPORT_SYMBOL(search_binary_handler);
1501
1502 static int exec_binprm(struct linux_binprm *bprm)
1503 {
1504 pid_t old_pid, old_vpid;
1505 int ret;
1506
1507 /* Need to fetch pid before load_binary changes it */
1508 old_pid = current->pid;
1509 rcu_read_lock();
1510 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1511 rcu_read_unlock();
1512
1513 ret = search_binary_handler(bprm);
1514 if (ret >= 0) {
1515 audit_bprm(bprm);
1516 trace_sched_process_exec(current, old_pid, bprm);
1517 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1518 proc_exec_connector(current);
1519 }
1520
1521 return ret;
1522 }
1523
1524 /*
1525 * sys_execve() executes a new program.
1526 */
1527 static int do_execveat_common(int fd, struct filename *filename,
1528 struct user_arg_ptr argv,
1529 struct user_arg_ptr envp,
1530 int flags)
1531 {
1532 char *pathbuf = NULL;
1533 struct linux_binprm *bprm;
1534 struct file *file;
1535 struct files_struct *displaced;
1536 int retval;
1537
1538 if (IS_ERR(filename))
1539 return PTR_ERR(filename);
1540
1541 /*
1542 * We move the actual failure in case of RLIMIT_NPROC excess from
1543 * set*uid() to execve() because too many poorly written programs
1544 * don't check setuid() return code. Here we additionally recheck
1545 * whether NPROC limit is still exceeded.
1546 */
1547 if ((current->flags & PF_NPROC_EXCEEDED) &&
1548 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1549 retval = -EAGAIN;
1550 goto out_ret;
1551 }
1552
1553 /* We're below the limit (still or again), so we don't want to make
1554 * further execve() calls fail. */
1555 current->flags &= ~PF_NPROC_EXCEEDED;
1556
1557 retval = unshare_files(&displaced);
1558 if (retval)
1559 goto out_ret;
1560
1561 retval = -ENOMEM;
1562 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1563 if (!bprm)
1564 goto out_files;
1565
1566 retval = prepare_bprm_creds(bprm);
1567 if (retval)
1568 goto out_free;
1569
1570 check_unsafe_exec(bprm);
1571 current->in_execve = 1;
1572
1573 file = do_open_execat(fd, filename, flags);
1574 retval = PTR_ERR(file);
1575 if (IS_ERR(file))
1576 goto out_unmark;
1577
1578 sched_exec();
1579
1580 bprm->file = file;
1581 if (fd == AT_FDCWD || filename->name[0] == '/') {
1582 bprm->filename = filename->name;
1583 } else {
1584 if (filename->name[0] == '\0')
1585 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1586 else
1587 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1588 fd, filename->name);
1589 if (!pathbuf) {
1590 retval = -ENOMEM;
1591 goto out_unmark;
1592 }
1593 /*
1594 * Record that a name derived from an O_CLOEXEC fd will be
1595 * inaccessible after exec. Relies on having exclusive access to
1596 * current->files (due to unshare_files above).
1597 */
1598 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1599 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1600 bprm->filename = pathbuf;
1601 }
1602 bprm->interp = bprm->filename;
1603
1604 retval = bprm_mm_init(bprm);
1605 if (retval)
1606 goto out_unmark;
1607
1608 bprm->argc = count(argv, MAX_ARG_STRINGS);
1609 if ((retval = bprm->argc) < 0)
1610 goto out;
1611
1612 bprm->envc = count(envp, MAX_ARG_STRINGS);
1613 if ((retval = bprm->envc) < 0)
1614 goto out;
1615
1616 retval = prepare_binprm(bprm);
1617 if (retval < 0)
1618 goto out;
1619
1620 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1621 if (retval < 0)
1622 goto out;
1623
1624 bprm->exec = bprm->p;
1625 retval = copy_strings(bprm->envc, envp, bprm);
1626 if (retval < 0)
1627 goto out;
1628
1629 retval = copy_strings(bprm->argc, argv, bprm);
1630 if (retval < 0)
1631 goto out;
1632
1633 would_dump(bprm, bprm->file);
1634
1635 retval = exec_binprm(bprm);
1636 if (retval < 0)
1637 goto out;
1638
1639 /* execve succeeded */
1640 current->fs->in_exec = 0;
1641 current->in_execve = 0;
1642 acct_update_integrals(current);
1643 task_numa_free(current);
1644 free_bprm(bprm);
1645 kfree(pathbuf);
1646 putname(filename);
1647 if (displaced)
1648 put_files_struct(displaced);
1649 return retval;
1650
1651 out:
1652 if (bprm->mm) {
1653 acct_arg_size(bprm, 0);
1654 mmput(bprm->mm);
1655 }
1656
1657 out_unmark:
1658 current->fs->in_exec = 0;
1659 current->in_execve = 0;
1660
1661 out_free:
1662 free_bprm(bprm);
1663 kfree(pathbuf);
1664
1665 out_files:
1666 if (displaced)
1667 reset_files_struct(displaced);
1668 out_ret:
1669 putname(filename);
1670 return retval;
1671 }
1672
1673 int do_execve(struct filename *filename,
1674 const char __user *const __user *__argv,
1675 const char __user *const __user *__envp)
1676 {
1677 struct user_arg_ptr argv = { .ptr.native = __argv };
1678 struct user_arg_ptr envp = { .ptr.native = __envp };
1679 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1680 }
1681
1682 int do_execveat(int fd, struct filename *filename,
1683 const char __user *const __user *__argv,
1684 const char __user *const __user *__envp,
1685 int flags)
1686 {
1687 struct user_arg_ptr argv = { .ptr.native = __argv };
1688 struct user_arg_ptr envp = { .ptr.native = __envp };
1689
1690 return do_execveat_common(fd, filename, argv, envp, flags);
1691 }
1692
1693 #ifdef CONFIG_COMPAT
1694 static int compat_do_execve(struct filename *filename,
1695 const compat_uptr_t __user *__argv,
1696 const compat_uptr_t __user *__envp)
1697 {
1698 struct user_arg_ptr argv = {
1699 .is_compat = true,
1700 .ptr.compat = __argv,
1701 };
1702 struct user_arg_ptr envp = {
1703 .is_compat = true,
1704 .ptr.compat = __envp,
1705 };
1706 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1707 }
1708
1709 static int compat_do_execveat(int fd, struct filename *filename,
1710 const compat_uptr_t __user *__argv,
1711 const compat_uptr_t __user *__envp,
1712 int flags)
1713 {
1714 struct user_arg_ptr argv = {
1715 .is_compat = true,
1716 .ptr.compat = __argv,
1717 };
1718 struct user_arg_ptr envp = {
1719 .is_compat = true,
1720 .ptr.compat = __envp,
1721 };
1722 return do_execveat_common(fd, filename, argv, envp, flags);
1723 }
1724 #endif
1725
1726 void set_binfmt(struct linux_binfmt *new)
1727 {
1728 struct mm_struct *mm = current->mm;
1729
1730 if (mm->binfmt)
1731 module_put(mm->binfmt->module);
1732
1733 mm->binfmt = new;
1734 if (new)
1735 __module_get(new->module);
1736 }
1737 EXPORT_SYMBOL(set_binfmt);
1738
1739 /*
1740 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1741 */
1742 void set_dumpable(struct mm_struct *mm, int value)
1743 {
1744 unsigned long old, new;
1745
1746 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1747 return;
1748
1749 do {
1750 old = ACCESS_ONCE(mm->flags);
1751 new = (old & ~MMF_DUMPABLE_MASK) | value;
1752 } while (cmpxchg(&mm->flags, old, new) != old);
1753 }
1754
1755 SYSCALL_DEFINE3(execve,
1756 const char __user *, filename,
1757 const char __user *const __user *, argv,
1758 const char __user *const __user *, envp)
1759 {
1760 return do_execve(getname(filename), argv, envp);
1761 }
1762
1763 SYSCALL_DEFINE5(execveat,
1764 int, fd, const char __user *, filename,
1765 const char __user *const __user *, argv,
1766 const char __user *const __user *, envp,
1767 int, flags)
1768 {
1769 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1770
1771 return do_execveat(fd,
1772 getname_flags(filename, lookup_flags, NULL),
1773 argv, envp, flags);
1774 }
1775
1776 #ifdef CONFIG_COMPAT
1777 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1778 const compat_uptr_t __user *, argv,
1779 const compat_uptr_t __user *, envp)
1780 {
1781 return compat_do_execve(getname(filename), argv, envp);
1782 }
1783
1784 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1785 const char __user *, filename,
1786 const compat_uptr_t __user *, argv,
1787 const compat_uptr_t __user *, envp,
1788 int, flags)
1789 {
1790 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1791
1792 return compat_do_execveat(fd,
1793 getname_flags(filename, lookup_flags, NULL),
1794 argv, envp, flags);
1795 }
1796 #endif