Merge branch 'iommu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/ima.h>
49 #include <linux/syscalls.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
53 #include <linux/tracehook.h>
54 #include <linux/kmod.h>
55 #include <linux/fsnotify.h>
56
57 #include <asm/uaccess.h>
58 #include <asm/mmu_context.h>
59 #include <asm/tlb.h>
60 #include "internal.h"
61
62 int core_uses_pid;
63 char core_pattern[CORENAME_MAX_SIZE] = "core";
64 int suid_dumpable = 0;
65
66 /* The maximal length of core_pattern is also specified in sysctl.c */
67
68 static LIST_HEAD(formats);
69 static DEFINE_RWLOCK(binfmt_lock);
70
71 int register_binfmt(struct linux_binfmt * fmt)
72 {
73 if (!fmt)
74 return -EINVAL;
75 write_lock(&binfmt_lock);
76 list_add(&fmt->lh, &formats);
77 write_unlock(&binfmt_lock);
78 return 0;
79 }
80
81 EXPORT_SYMBOL(register_binfmt);
82
83 void unregister_binfmt(struct linux_binfmt * fmt)
84 {
85 write_lock(&binfmt_lock);
86 list_del(&fmt->lh);
87 write_unlock(&binfmt_lock);
88 }
89
90 EXPORT_SYMBOL(unregister_binfmt);
91
92 static inline void put_binfmt(struct linux_binfmt * fmt)
93 {
94 module_put(fmt->module);
95 }
96
97 /*
98 * Note that a shared library must be both readable and executable due to
99 * security reasons.
100 *
101 * Also note that we take the address to load from from the file itself.
102 */
103 SYSCALL_DEFINE1(uselib, const char __user *, library)
104 {
105 struct file *file;
106 struct nameidata nd;
107 char *tmp = getname(library);
108 int error = PTR_ERR(tmp);
109
110 if (!IS_ERR(tmp)) {
111 error = path_lookup_open(AT_FDCWD, tmp,
112 LOOKUP_FOLLOW, &nd,
113 FMODE_READ|FMODE_EXEC);
114 putname(tmp);
115 }
116 if (error)
117 goto out;
118
119 error = -EINVAL;
120 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
121 goto exit;
122
123 error = -EACCES;
124 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
125 goto exit;
126
127 error = inode_permission(nd.path.dentry->d_inode,
128 MAY_READ | MAY_EXEC | MAY_OPEN);
129 if (error)
130 goto exit;
131 error = ima_path_check(&nd.path, MAY_READ | MAY_EXEC | MAY_OPEN);
132 if (error)
133 goto exit;
134
135 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
136 error = PTR_ERR(file);
137 if (IS_ERR(file))
138 goto out;
139
140 fsnotify_open(file->f_path.dentry);
141
142 error = -ENOEXEC;
143 if(file->f_op) {
144 struct linux_binfmt * fmt;
145
146 read_lock(&binfmt_lock);
147 list_for_each_entry(fmt, &formats, lh) {
148 if (!fmt->load_shlib)
149 continue;
150 if (!try_module_get(fmt->module))
151 continue;
152 read_unlock(&binfmt_lock);
153 error = fmt->load_shlib(file);
154 read_lock(&binfmt_lock);
155 put_binfmt(fmt);
156 if (error != -ENOEXEC)
157 break;
158 }
159 read_unlock(&binfmt_lock);
160 }
161 fput(file);
162 out:
163 return error;
164 exit:
165 release_open_intent(&nd);
166 path_put(&nd.path);
167 goto out;
168 }
169
170 #ifdef CONFIG_MMU
171
172 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
173 int write)
174 {
175 struct page *page;
176 int ret;
177
178 #ifdef CONFIG_STACK_GROWSUP
179 if (write) {
180 ret = expand_stack_downwards(bprm->vma, pos);
181 if (ret < 0)
182 return NULL;
183 }
184 #endif
185 ret = get_user_pages(current, bprm->mm, pos,
186 1, write, 1, &page, NULL);
187 if (ret <= 0)
188 return NULL;
189
190 if (write) {
191 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
192 struct rlimit *rlim;
193
194 /*
195 * We've historically supported up to 32 pages (ARG_MAX)
196 * of argument strings even with small stacks
197 */
198 if (size <= ARG_MAX)
199 return page;
200
201 /*
202 * Limit to 1/4-th the stack size for the argv+env strings.
203 * This ensures that:
204 * - the remaining binfmt code will not run out of stack space,
205 * - the program will have a reasonable amount of stack left
206 * to work from.
207 */
208 rlim = current->signal->rlim;
209 if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
210 put_page(page);
211 return NULL;
212 }
213 }
214
215 return page;
216 }
217
218 static void put_arg_page(struct page *page)
219 {
220 put_page(page);
221 }
222
223 static void free_arg_page(struct linux_binprm *bprm, int i)
224 {
225 }
226
227 static void free_arg_pages(struct linux_binprm *bprm)
228 {
229 }
230
231 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
232 struct page *page)
233 {
234 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
235 }
236
237 static int __bprm_mm_init(struct linux_binprm *bprm)
238 {
239 int err;
240 struct vm_area_struct *vma = NULL;
241 struct mm_struct *mm = bprm->mm;
242
243 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
244 if (!vma)
245 return -ENOMEM;
246
247 down_write(&mm->mmap_sem);
248 vma->vm_mm = mm;
249
250 /*
251 * Place the stack at the largest stack address the architecture
252 * supports. Later, we'll move this to an appropriate place. We don't
253 * use STACK_TOP because that can depend on attributes which aren't
254 * configured yet.
255 */
256 vma->vm_end = STACK_TOP_MAX;
257 vma->vm_start = vma->vm_end - PAGE_SIZE;
258 vma->vm_flags = VM_STACK_FLAGS;
259 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
260 err = insert_vm_struct(mm, vma);
261 if (err)
262 goto err;
263
264 mm->stack_vm = mm->total_vm = 1;
265 up_write(&mm->mmap_sem);
266 bprm->p = vma->vm_end - sizeof(void *);
267 return 0;
268 err:
269 up_write(&mm->mmap_sem);
270 bprm->vma = NULL;
271 kmem_cache_free(vm_area_cachep, vma);
272 return err;
273 }
274
275 static bool valid_arg_len(struct linux_binprm *bprm, long len)
276 {
277 return len <= MAX_ARG_STRLEN;
278 }
279
280 #else
281
282 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
283 int write)
284 {
285 struct page *page;
286
287 page = bprm->page[pos / PAGE_SIZE];
288 if (!page && write) {
289 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
290 if (!page)
291 return NULL;
292 bprm->page[pos / PAGE_SIZE] = page;
293 }
294
295 return page;
296 }
297
298 static void put_arg_page(struct page *page)
299 {
300 }
301
302 static void free_arg_page(struct linux_binprm *bprm, int i)
303 {
304 if (bprm->page[i]) {
305 __free_page(bprm->page[i]);
306 bprm->page[i] = NULL;
307 }
308 }
309
310 static void free_arg_pages(struct linux_binprm *bprm)
311 {
312 int i;
313
314 for (i = 0; i < MAX_ARG_PAGES; i++)
315 free_arg_page(bprm, i);
316 }
317
318 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
319 struct page *page)
320 {
321 }
322
323 static int __bprm_mm_init(struct linux_binprm *bprm)
324 {
325 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
326 return 0;
327 }
328
329 static bool valid_arg_len(struct linux_binprm *bprm, long len)
330 {
331 return len <= bprm->p;
332 }
333
334 #endif /* CONFIG_MMU */
335
336 /*
337 * Create a new mm_struct and populate it with a temporary stack
338 * vm_area_struct. We don't have enough context at this point to set the stack
339 * flags, permissions, and offset, so we use temporary values. We'll update
340 * them later in setup_arg_pages().
341 */
342 int bprm_mm_init(struct linux_binprm *bprm)
343 {
344 int err;
345 struct mm_struct *mm = NULL;
346
347 bprm->mm = mm = mm_alloc();
348 err = -ENOMEM;
349 if (!mm)
350 goto err;
351
352 err = init_new_context(current, mm);
353 if (err)
354 goto err;
355
356 err = __bprm_mm_init(bprm);
357 if (err)
358 goto err;
359
360 return 0;
361
362 err:
363 if (mm) {
364 bprm->mm = NULL;
365 mmdrop(mm);
366 }
367
368 return err;
369 }
370
371 /*
372 * count() counts the number of strings in array ARGV.
373 */
374 static int count(char __user * __user * argv, int max)
375 {
376 int i = 0;
377
378 if (argv != NULL) {
379 for (;;) {
380 char __user * p;
381
382 if (get_user(p, argv))
383 return -EFAULT;
384 if (!p)
385 break;
386 argv++;
387 if (i++ >= max)
388 return -E2BIG;
389 cond_resched();
390 }
391 }
392 return i;
393 }
394
395 /*
396 * 'copy_strings()' copies argument/environment strings from the old
397 * processes's memory to the new process's stack. The call to get_user_pages()
398 * ensures the destination page is created and not swapped out.
399 */
400 static int copy_strings(int argc, char __user * __user * argv,
401 struct linux_binprm *bprm)
402 {
403 struct page *kmapped_page = NULL;
404 char *kaddr = NULL;
405 unsigned long kpos = 0;
406 int ret;
407
408 while (argc-- > 0) {
409 char __user *str;
410 int len;
411 unsigned long pos;
412
413 if (get_user(str, argv+argc) ||
414 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
415 ret = -EFAULT;
416 goto out;
417 }
418
419 if (!valid_arg_len(bprm, len)) {
420 ret = -E2BIG;
421 goto out;
422 }
423
424 /* We're going to work our way backwords. */
425 pos = bprm->p;
426 str += len;
427 bprm->p -= len;
428
429 while (len > 0) {
430 int offset, bytes_to_copy;
431
432 offset = pos % PAGE_SIZE;
433 if (offset == 0)
434 offset = PAGE_SIZE;
435
436 bytes_to_copy = offset;
437 if (bytes_to_copy > len)
438 bytes_to_copy = len;
439
440 offset -= bytes_to_copy;
441 pos -= bytes_to_copy;
442 str -= bytes_to_copy;
443 len -= bytes_to_copy;
444
445 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
446 struct page *page;
447
448 page = get_arg_page(bprm, pos, 1);
449 if (!page) {
450 ret = -E2BIG;
451 goto out;
452 }
453
454 if (kmapped_page) {
455 flush_kernel_dcache_page(kmapped_page);
456 kunmap(kmapped_page);
457 put_arg_page(kmapped_page);
458 }
459 kmapped_page = page;
460 kaddr = kmap(kmapped_page);
461 kpos = pos & PAGE_MASK;
462 flush_arg_page(bprm, kpos, kmapped_page);
463 }
464 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
465 ret = -EFAULT;
466 goto out;
467 }
468 }
469 }
470 ret = 0;
471 out:
472 if (kmapped_page) {
473 flush_kernel_dcache_page(kmapped_page);
474 kunmap(kmapped_page);
475 put_arg_page(kmapped_page);
476 }
477 return ret;
478 }
479
480 /*
481 * Like copy_strings, but get argv and its values from kernel memory.
482 */
483 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
484 {
485 int r;
486 mm_segment_t oldfs = get_fs();
487 set_fs(KERNEL_DS);
488 r = copy_strings(argc, (char __user * __user *)argv, bprm);
489 set_fs(oldfs);
490 return r;
491 }
492 EXPORT_SYMBOL(copy_strings_kernel);
493
494 #ifdef CONFIG_MMU
495
496 /*
497 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
498 * the binfmt code determines where the new stack should reside, we shift it to
499 * its final location. The process proceeds as follows:
500 *
501 * 1) Use shift to calculate the new vma endpoints.
502 * 2) Extend vma to cover both the old and new ranges. This ensures the
503 * arguments passed to subsequent functions are consistent.
504 * 3) Move vma's page tables to the new range.
505 * 4) Free up any cleared pgd range.
506 * 5) Shrink the vma to cover only the new range.
507 */
508 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
509 {
510 struct mm_struct *mm = vma->vm_mm;
511 unsigned long old_start = vma->vm_start;
512 unsigned long old_end = vma->vm_end;
513 unsigned long length = old_end - old_start;
514 unsigned long new_start = old_start - shift;
515 unsigned long new_end = old_end - shift;
516 struct mmu_gather *tlb;
517
518 BUG_ON(new_start > new_end);
519
520 /*
521 * ensure there are no vmas between where we want to go
522 * and where we are
523 */
524 if (vma != find_vma(mm, new_start))
525 return -EFAULT;
526
527 /*
528 * cover the whole range: [new_start, old_end)
529 */
530 vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
531
532 /*
533 * move the page tables downwards, on failure we rely on
534 * process cleanup to remove whatever mess we made.
535 */
536 if (length != move_page_tables(vma, old_start,
537 vma, new_start, length))
538 return -ENOMEM;
539
540 lru_add_drain();
541 tlb = tlb_gather_mmu(mm, 0);
542 if (new_end > old_start) {
543 /*
544 * when the old and new regions overlap clear from new_end.
545 */
546 free_pgd_range(tlb, new_end, old_end, new_end,
547 vma->vm_next ? vma->vm_next->vm_start : 0);
548 } else {
549 /*
550 * otherwise, clean from old_start; this is done to not touch
551 * the address space in [new_end, old_start) some architectures
552 * have constraints on va-space that make this illegal (IA64) -
553 * for the others its just a little faster.
554 */
555 free_pgd_range(tlb, old_start, old_end, new_end,
556 vma->vm_next ? vma->vm_next->vm_start : 0);
557 }
558 tlb_finish_mmu(tlb, new_end, old_end);
559
560 /*
561 * shrink the vma to just the new range.
562 */
563 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
564
565 return 0;
566 }
567
568 #define EXTRA_STACK_VM_PAGES 20 /* random */
569
570 /*
571 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
572 * the stack is optionally relocated, and some extra space is added.
573 */
574 int setup_arg_pages(struct linux_binprm *bprm,
575 unsigned long stack_top,
576 int executable_stack)
577 {
578 unsigned long ret;
579 unsigned long stack_shift;
580 struct mm_struct *mm = current->mm;
581 struct vm_area_struct *vma = bprm->vma;
582 struct vm_area_struct *prev = NULL;
583 unsigned long vm_flags;
584 unsigned long stack_base;
585
586 #ifdef CONFIG_STACK_GROWSUP
587 /* Limit stack size to 1GB */
588 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
589 if (stack_base > (1 << 30))
590 stack_base = 1 << 30;
591
592 /* Make sure we didn't let the argument array grow too large. */
593 if (vma->vm_end - vma->vm_start > stack_base)
594 return -ENOMEM;
595
596 stack_base = PAGE_ALIGN(stack_top - stack_base);
597
598 stack_shift = vma->vm_start - stack_base;
599 mm->arg_start = bprm->p - stack_shift;
600 bprm->p = vma->vm_end - stack_shift;
601 #else
602 stack_top = arch_align_stack(stack_top);
603 stack_top = PAGE_ALIGN(stack_top);
604 stack_shift = vma->vm_end - stack_top;
605
606 bprm->p -= stack_shift;
607 mm->arg_start = bprm->p;
608 #endif
609
610 if (bprm->loader)
611 bprm->loader -= stack_shift;
612 bprm->exec -= stack_shift;
613
614 down_write(&mm->mmap_sem);
615 vm_flags = VM_STACK_FLAGS;
616
617 /*
618 * Adjust stack execute permissions; explicitly enable for
619 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
620 * (arch default) otherwise.
621 */
622 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
623 vm_flags |= VM_EXEC;
624 else if (executable_stack == EXSTACK_DISABLE_X)
625 vm_flags &= ~VM_EXEC;
626 vm_flags |= mm->def_flags;
627
628 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
629 vm_flags);
630 if (ret)
631 goto out_unlock;
632 BUG_ON(prev != vma);
633
634 /* Move stack pages down in memory. */
635 if (stack_shift) {
636 ret = shift_arg_pages(vma, stack_shift);
637 if (ret) {
638 up_write(&mm->mmap_sem);
639 return ret;
640 }
641 }
642
643 #ifdef CONFIG_STACK_GROWSUP
644 stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
645 #else
646 stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
647 #endif
648 ret = expand_stack(vma, stack_base);
649 if (ret)
650 ret = -EFAULT;
651
652 out_unlock:
653 up_write(&mm->mmap_sem);
654 return 0;
655 }
656 EXPORT_SYMBOL(setup_arg_pages);
657
658 #endif /* CONFIG_MMU */
659
660 struct file *open_exec(const char *name)
661 {
662 struct nameidata nd;
663 struct file *file;
664 int err;
665
666 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd,
667 FMODE_READ|FMODE_EXEC);
668 if (err)
669 goto out;
670
671 err = -EACCES;
672 if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
673 goto out_path_put;
674
675 if (nd.path.mnt->mnt_flags & MNT_NOEXEC)
676 goto out_path_put;
677
678 err = inode_permission(nd.path.dentry->d_inode, MAY_EXEC | MAY_OPEN);
679 if (err)
680 goto out_path_put;
681 err = ima_path_check(&nd.path, MAY_EXEC | MAY_OPEN);
682 if (err)
683 goto out_path_put;
684
685 file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
686 if (IS_ERR(file))
687 return file;
688
689 fsnotify_open(file->f_path.dentry);
690
691 err = deny_write_access(file);
692 if (err) {
693 fput(file);
694 goto out;
695 }
696
697 return file;
698
699 out_path_put:
700 release_open_intent(&nd);
701 path_put(&nd.path);
702 out:
703 return ERR_PTR(err);
704 }
705 EXPORT_SYMBOL(open_exec);
706
707 int kernel_read(struct file *file, unsigned long offset,
708 char *addr, unsigned long count)
709 {
710 mm_segment_t old_fs;
711 loff_t pos = offset;
712 int result;
713
714 old_fs = get_fs();
715 set_fs(get_ds());
716 /* The cast to a user pointer is valid due to the set_fs() */
717 result = vfs_read(file, (void __user *)addr, count, &pos);
718 set_fs(old_fs);
719 return result;
720 }
721
722 EXPORT_SYMBOL(kernel_read);
723
724 static int exec_mmap(struct mm_struct *mm)
725 {
726 struct task_struct *tsk;
727 struct mm_struct * old_mm, *active_mm;
728
729 /* Notify parent that we're no longer interested in the old VM */
730 tsk = current;
731 old_mm = current->mm;
732 mm_release(tsk, old_mm);
733
734 if (old_mm) {
735 /*
736 * Make sure that if there is a core dump in progress
737 * for the old mm, we get out and die instead of going
738 * through with the exec. We must hold mmap_sem around
739 * checking core_state and changing tsk->mm.
740 */
741 down_read(&old_mm->mmap_sem);
742 if (unlikely(old_mm->core_state)) {
743 up_read(&old_mm->mmap_sem);
744 return -EINTR;
745 }
746 }
747 task_lock(tsk);
748 active_mm = tsk->active_mm;
749 tsk->mm = mm;
750 tsk->active_mm = mm;
751 activate_mm(active_mm, mm);
752 task_unlock(tsk);
753 arch_pick_mmap_layout(mm);
754 if (old_mm) {
755 up_read(&old_mm->mmap_sem);
756 BUG_ON(active_mm != old_mm);
757 mm_update_next_owner(old_mm);
758 mmput(old_mm);
759 return 0;
760 }
761 mmdrop(active_mm);
762 return 0;
763 }
764
765 /*
766 * This function makes sure the current process has its own signal table,
767 * so that flush_signal_handlers can later reset the handlers without
768 * disturbing other processes. (Other processes might share the signal
769 * table via the CLONE_SIGHAND option to clone().)
770 */
771 static int de_thread(struct task_struct *tsk)
772 {
773 struct signal_struct *sig = tsk->signal;
774 struct sighand_struct *oldsighand = tsk->sighand;
775 spinlock_t *lock = &oldsighand->siglock;
776 int count;
777
778 if (thread_group_empty(tsk))
779 goto no_thread_group;
780
781 /*
782 * Kill all other threads in the thread group.
783 */
784 spin_lock_irq(lock);
785 if (signal_group_exit(sig)) {
786 /*
787 * Another group action in progress, just
788 * return so that the signal is processed.
789 */
790 spin_unlock_irq(lock);
791 return -EAGAIN;
792 }
793 sig->group_exit_task = tsk;
794 zap_other_threads(tsk);
795
796 /* Account for the thread group leader hanging around: */
797 count = thread_group_leader(tsk) ? 1 : 2;
798 sig->notify_count = count;
799 while (atomic_read(&sig->count) > count) {
800 __set_current_state(TASK_UNINTERRUPTIBLE);
801 spin_unlock_irq(lock);
802 schedule();
803 spin_lock_irq(lock);
804 }
805 spin_unlock_irq(lock);
806
807 /*
808 * At this point all other threads have exited, all we have to
809 * do is to wait for the thread group leader to become inactive,
810 * and to assume its PID:
811 */
812 if (!thread_group_leader(tsk)) {
813 struct task_struct *leader = tsk->group_leader;
814
815 sig->notify_count = -1; /* for exit_notify() */
816 for (;;) {
817 write_lock_irq(&tasklist_lock);
818 if (likely(leader->exit_state))
819 break;
820 __set_current_state(TASK_UNINTERRUPTIBLE);
821 write_unlock_irq(&tasklist_lock);
822 schedule();
823 }
824
825 /*
826 * The only record we have of the real-time age of a
827 * process, regardless of execs it's done, is start_time.
828 * All the past CPU time is accumulated in signal_struct
829 * from sister threads now dead. But in this non-leader
830 * exec, nothing survives from the original leader thread,
831 * whose birth marks the true age of this process now.
832 * When we take on its identity by switching to its PID, we
833 * also take its birthdate (always earlier than our own).
834 */
835 tsk->start_time = leader->start_time;
836
837 BUG_ON(!same_thread_group(leader, tsk));
838 BUG_ON(has_group_leader_pid(tsk));
839 /*
840 * An exec() starts a new thread group with the
841 * TGID of the previous thread group. Rehash the
842 * two threads with a switched PID, and release
843 * the former thread group leader:
844 */
845
846 /* Become a process group leader with the old leader's pid.
847 * The old leader becomes a thread of the this thread group.
848 * Note: The old leader also uses this pid until release_task
849 * is called. Odd but simple and correct.
850 */
851 detach_pid(tsk, PIDTYPE_PID);
852 tsk->pid = leader->pid;
853 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
854 transfer_pid(leader, tsk, PIDTYPE_PGID);
855 transfer_pid(leader, tsk, PIDTYPE_SID);
856 list_replace_rcu(&leader->tasks, &tsk->tasks);
857
858 tsk->group_leader = tsk;
859 leader->group_leader = tsk;
860
861 tsk->exit_signal = SIGCHLD;
862
863 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
864 leader->exit_state = EXIT_DEAD;
865 write_unlock_irq(&tasklist_lock);
866
867 release_task(leader);
868 }
869
870 sig->group_exit_task = NULL;
871 sig->notify_count = 0;
872
873 no_thread_group:
874 exit_itimers(sig);
875 flush_itimer_signals();
876
877 if (atomic_read(&oldsighand->count) != 1) {
878 struct sighand_struct *newsighand;
879 /*
880 * This ->sighand is shared with the CLONE_SIGHAND
881 * but not CLONE_THREAD task, switch to the new one.
882 */
883 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
884 if (!newsighand)
885 return -ENOMEM;
886
887 atomic_set(&newsighand->count, 1);
888 memcpy(newsighand->action, oldsighand->action,
889 sizeof(newsighand->action));
890
891 write_lock_irq(&tasklist_lock);
892 spin_lock(&oldsighand->siglock);
893 rcu_assign_pointer(tsk->sighand, newsighand);
894 spin_unlock(&oldsighand->siglock);
895 write_unlock_irq(&tasklist_lock);
896
897 __cleanup_sighand(oldsighand);
898 }
899
900 BUG_ON(!thread_group_leader(tsk));
901 return 0;
902 }
903
904 /*
905 * These functions flushes out all traces of the currently running executable
906 * so that a new one can be started
907 */
908 static void flush_old_files(struct files_struct * files)
909 {
910 long j = -1;
911 struct fdtable *fdt;
912
913 spin_lock(&files->file_lock);
914 for (;;) {
915 unsigned long set, i;
916
917 j++;
918 i = j * __NFDBITS;
919 fdt = files_fdtable(files);
920 if (i >= fdt->max_fds)
921 break;
922 set = fdt->close_on_exec->fds_bits[j];
923 if (!set)
924 continue;
925 fdt->close_on_exec->fds_bits[j] = 0;
926 spin_unlock(&files->file_lock);
927 for ( ; set ; i++,set >>= 1) {
928 if (set & 1) {
929 sys_close(i);
930 }
931 }
932 spin_lock(&files->file_lock);
933
934 }
935 spin_unlock(&files->file_lock);
936 }
937
938 char *get_task_comm(char *buf, struct task_struct *tsk)
939 {
940 /* buf must be at least sizeof(tsk->comm) in size */
941 task_lock(tsk);
942 strncpy(buf, tsk->comm, sizeof(tsk->comm));
943 task_unlock(tsk);
944 return buf;
945 }
946
947 void set_task_comm(struct task_struct *tsk, char *buf)
948 {
949 task_lock(tsk);
950 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
951 task_unlock(tsk);
952 }
953
954 int flush_old_exec(struct linux_binprm * bprm)
955 {
956 char * name;
957 int i, ch, retval;
958 char tcomm[sizeof(current->comm)];
959
960 /*
961 * Make sure we have a private signal table and that
962 * we are unassociated from the previous thread group.
963 */
964 retval = de_thread(current);
965 if (retval)
966 goto out;
967
968 set_mm_exe_file(bprm->mm, bprm->file);
969
970 /*
971 * Release all of the old mmap stuff
972 */
973 retval = exec_mmap(bprm->mm);
974 if (retval)
975 goto out;
976
977 bprm->mm = NULL; /* We're using it now */
978
979 /* This is the point of no return */
980 current->sas_ss_sp = current->sas_ss_size = 0;
981
982 if (current_euid() == current_uid() && current_egid() == current_gid())
983 set_dumpable(current->mm, 1);
984 else
985 set_dumpable(current->mm, suid_dumpable);
986
987 name = bprm->filename;
988
989 /* Copies the binary name from after last slash */
990 for (i=0; (ch = *(name++)) != '\0';) {
991 if (ch == '/')
992 i = 0; /* overwrite what we wrote */
993 else
994 if (i < (sizeof(tcomm) - 1))
995 tcomm[i++] = ch;
996 }
997 tcomm[i] = '\0';
998 set_task_comm(current, tcomm);
999
1000 current->flags &= ~PF_RANDOMIZE;
1001 flush_thread();
1002
1003 /* Set the new mm task size. We have to do that late because it may
1004 * depend on TIF_32BIT which is only updated in flush_thread() on
1005 * some architectures like powerpc
1006 */
1007 current->mm->task_size = TASK_SIZE;
1008
1009 /* install the new credentials */
1010 if (bprm->cred->uid != current_euid() ||
1011 bprm->cred->gid != current_egid()) {
1012 current->pdeath_signal = 0;
1013 } else if (file_permission(bprm->file, MAY_READ) ||
1014 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1015 set_dumpable(current->mm, suid_dumpable);
1016 }
1017
1018 current->personality &= ~bprm->per_clear;
1019
1020 /* An exec changes our domain. We are no longer part of the thread
1021 group */
1022
1023 current->self_exec_id++;
1024
1025 flush_signal_handlers(current, 0);
1026 flush_old_files(current->files);
1027
1028 return 0;
1029
1030 out:
1031 return retval;
1032 }
1033
1034 EXPORT_SYMBOL(flush_old_exec);
1035
1036 /*
1037 * install the new credentials for this executable
1038 */
1039 void install_exec_creds(struct linux_binprm *bprm)
1040 {
1041 security_bprm_committing_creds(bprm);
1042
1043 commit_creds(bprm->cred);
1044 bprm->cred = NULL;
1045
1046 /* cred_exec_mutex must be held at least to this point to prevent
1047 * ptrace_attach() from altering our determination of the task's
1048 * credentials; any time after this it may be unlocked */
1049
1050 security_bprm_committed_creds(bprm);
1051 }
1052 EXPORT_SYMBOL(install_exec_creds);
1053
1054 /*
1055 * determine how safe it is to execute the proposed program
1056 * - the caller must hold current->cred_exec_mutex to protect against
1057 * PTRACE_ATTACH
1058 */
1059 void check_unsafe_exec(struct linux_binprm *bprm)
1060 {
1061 struct task_struct *p = current, *t;
1062 unsigned long flags;
1063 unsigned n_fs, n_sighand;
1064
1065 bprm->unsafe = tracehook_unsafe_exec(p);
1066
1067 n_fs = 1;
1068 n_sighand = 1;
1069 lock_task_sighand(p, &flags);
1070 for (t = next_thread(p); t != p; t = next_thread(t)) {
1071 if (t->fs == p->fs)
1072 n_fs++;
1073 n_sighand++;
1074 }
1075
1076 if (atomic_read(&p->fs->count) > n_fs ||
1077 atomic_read(&p->sighand->count) > n_sighand)
1078 bprm->unsafe |= LSM_UNSAFE_SHARE;
1079
1080 unlock_task_sighand(p, &flags);
1081 }
1082
1083 /*
1084 * Fill the binprm structure from the inode.
1085 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1086 *
1087 * This may be called multiple times for binary chains (scripts for example).
1088 */
1089 int prepare_binprm(struct linux_binprm *bprm)
1090 {
1091 umode_t mode;
1092 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1093 int retval;
1094
1095 mode = inode->i_mode;
1096 if (bprm->file->f_op == NULL)
1097 return -EACCES;
1098
1099 /* clear any previous set[ug]id data from a previous binary */
1100 bprm->cred->euid = current_euid();
1101 bprm->cred->egid = current_egid();
1102
1103 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1104 /* Set-uid? */
1105 if (mode & S_ISUID) {
1106 bprm->per_clear |= PER_CLEAR_ON_SETID;
1107 bprm->cred->euid = inode->i_uid;
1108 }
1109
1110 /* Set-gid? */
1111 /*
1112 * If setgid is set but no group execute bit then this
1113 * is a candidate for mandatory locking, not a setgid
1114 * executable.
1115 */
1116 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1117 bprm->per_clear |= PER_CLEAR_ON_SETID;
1118 bprm->cred->egid = inode->i_gid;
1119 }
1120 }
1121
1122 /* fill in binprm security blob */
1123 retval = security_bprm_set_creds(bprm);
1124 if (retval)
1125 return retval;
1126 bprm->cred_prepared = 1;
1127
1128 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1129 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1130 }
1131
1132 EXPORT_SYMBOL(prepare_binprm);
1133
1134 /*
1135 * Arguments are '\0' separated strings found at the location bprm->p
1136 * points to; chop off the first by relocating brpm->p to right after
1137 * the first '\0' encountered.
1138 */
1139 int remove_arg_zero(struct linux_binprm *bprm)
1140 {
1141 int ret = 0;
1142 unsigned long offset;
1143 char *kaddr;
1144 struct page *page;
1145
1146 if (!bprm->argc)
1147 return 0;
1148
1149 do {
1150 offset = bprm->p & ~PAGE_MASK;
1151 page = get_arg_page(bprm, bprm->p, 0);
1152 if (!page) {
1153 ret = -EFAULT;
1154 goto out;
1155 }
1156 kaddr = kmap_atomic(page, KM_USER0);
1157
1158 for (; offset < PAGE_SIZE && kaddr[offset];
1159 offset++, bprm->p++)
1160 ;
1161
1162 kunmap_atomic(kaddr, KM_USER0);
1163 put_arg_page(page);
1164
1165 if (offset == PAGE_SIZE)
1166 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1167 } while (offset == PAGE_SIZE);
1168
1169 bprm->p++;
1170 bprm->argc--;
1171 ret = 0;
1172
1173 out:
1174 return ret;
1175 }
1176 EXPORT_SYMBOL(remove_arg_zero);
1177
1178 /*
1179 * cycle the list of binary formats handler, until one recognizes the image
1180 */
1181 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1182 {
1183 unsigned int depth = bprm->recursion_depth;
1184 int try,retval;
1185 struct linux_binfmt *fmt;
1186
1187 retval = security_bprm_check(bprm);
1188 if (retval)
1189 return retval;
1190 retval = ima_bprm_check(bprm);
1191 if (retval)
1192 return retval;
1193
1194 /* kernel module loader fixup */
1195 /* so we don't try to load run modprobe in kernel space. */
1196 set_fs(USER_DS);
1197
1198 retval = audit_bprm(bprm);
1199 if (retval)
1200 return retval;
1201
1202 retval = -ENOENT;
1203 for (try=0; try<2; try++) {
1204 read_lock(&binfmt_lock);
1205 list_for_each_entry(fmt, &formats, lh) {
1206 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1207 if (!fn)
1208 continue;
1209 if (!try_module_get(fmt->module))
1210 continue;
1211 read_unlock(&binfmt_lock);
1212 retval = fn(bprm, regs);
1213 /*
1214 * Restore the depth counter to its starting value
1215 * in this call, so we don't have to rely on every
1216 * load_binary function to restore it on return.
1217 */
1218 bprm->recursion_depth = depth;
1219 if (retval >= 0) {
1220 if (depth == 0)
1221 tracehook_report_exec(fmt, bprm, regs);
1222 put_binfmt(fmt);
1223 allow_write_access(bprm->file);
1224 if (bprm->file)
1225 fput(bprm->file);
1226 bprm->file = NULL;
1227 current->did_exec = 1;
1228 proc_exec_connector(current);
1229 return retval;
1230 }
1231 read_lock(&binfmt_lock);
1232 put_binfmt(fmt);
1233 if (retval != -ENOEXEC || bprm->mm == NULL)
1234 break;
1235 if (!bprm->file) {
1236 read_unlock(&binfmt_lock);
1237 return retval;
1238 }
1239 }
1240 read_unlock(&binfmt_lock);
1241 if (retval != -ENOEXEC || bprm->mm == NULL) {
1242 break;
1243 #ifdef CONFIG_MODULES
1244 } else {
1245 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1246 if (printable(bprm->buf[0]) &&
1247 printable(bprm->buf[1]) &&
1248 printable(bprm->buf[2]) &&
1249 printable(bprm->buf[3]))
1250 break; /* -ENOEXEC */
1251 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1252 #endif
1253 }
1254 }
1255 return retval;
1256 }
1257
1258 EXPORT_SYMBOL(search_binary_handler);
1259
1260 void free_bprm(struct linux_binprm *bprm)
1261 {
1262 free_arg_pages(bprm);
1263 if (bprm->cred)
1264 abort_creds(bprm->cred);
1265 kfree(bprm);
1266 }
1267
1268 /*
1269 * sys_execve() executes a new program.
1270 */
1271 int do_execve(char * filename,
1272 char __user *__user *argv,
1273 char __user *__user *envp,
1274 struct pt_regs * regs)
1275 {
1276 struct linux_binprm *bprm;
1277 struct file *file;
1278 struct files_struct *displaced;
1279 int retval;
1280
1281 retval = unshare_files(&displaced);
1282 if (retval)
1283 goto out_ret;
1284
1285 retval = -ENOMEM;
1286 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1287 if (!bprm)
1288 goto out_files;
1289
1290 retval = mutex_lock_interruptible(&current->cred_exec_mutex);
1291 if (retval < 0)
1292 goto out_free;
1293 current->in_execve = 1;
1294
1295 retval = -ENOMEM;
1296 bprm->cred = prepare_exec_creds();
1297 if (!bprm->cred)
1298 goto out_unlock;
1299 check_unsafe_exec(bprm);
1300
1301 file = open_exec(filename);
1302 retval = PTR_ERR(file);
1303 if (IS_ERR(file))
1304 goto out_unlock;
1305
1306 sched_exec();
1307
1308 bprm->file = file;
1309 bprm->filename = filename;
1310 bprm->interp = filename;
1311
1312 retval = bprm_mm_init(bprm);
1313 if (retval)
1314 goto out_file;
1315
1316 bprm->argc = count(argv, MAX_ARG_STRINGS);
1317 if ((retval = bprm->argc) < 0)
1318 goto out;
1319
1320 bprm->envc = count(envp, MAX_ARG_STRINGS);
1321 if ((retval = bprm->envc) < 0)
1322 goto out;
1323
1324 retval = prepare_binprm(bprm);
1325 if (retval < 0)
1326 goto out;
1327
1328 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1329 if (retval < 0)
1330 goto out;
1331
1332 bprm->exec = bprm->p;
1333 retval = copy_strings(bprm->envc, envp, bprm);
1334 if (retval < 0)
1335 goto out;
1336
1337 retval = copy_strings(bprm->argc, argv, bprm);
1338 if (retval < 0)
1339 goto out;
1340
1341 current->flags &= ~PF_KTHREAD;
1342 retval = search_binary_handler(bprm,regs);
1343 if (retval < 0)
1344 goto out;
1345
1346 /* execve succeeded */
1347 current->in_execve = 0;
1348 mutex_unlock(&current->cred_exec_mutex);
1349 acct_update_integrals(current);
1350 free_bprm(bprm);
1351 if (displaced)
1352 put_files_struct(displaced);
1353 return retval;
1354
1355 out:
1356 if (bprm->mm)
1357 mmput (bprm->mm);
1358
1359 out_file:
1360 if (bprm->file) {
1361 allow_write_access(bprm->file);
1362 fput(bprm->file);
1363 }
1364
1365 out_unlock:
1366 current->in_execve = 0;
1367 mutex_unlock(&current->cred_exec_mutex);
1368
1369 out_free:
1370 free_bprm(bprm);
1371
1372 out_files:
1373 if (displaced)
1374 reset_files_struct(displaced);
1375 out_ret:
1376 return retval;
1377 }
1378
1379 int set_binfmt(struct linux_binfmt *new)
1380 {
1381 struct linux_binfmt *old = current->binfmt;
1382
1383 if (new) {
1384 if (!try_module_get(new->module))
1385 return -1;
1386 }
1387 current->binfmt = new;
1388 if (old)
1389 module_put(old->module);
1390 return 0;
1391 }
1392
1393 EXPORT_SYMBOL(set_binfmt);
1394
1395 /* format_corename will inspect the pattern parameter, and output a
1396 * name into corename, which must have space for at least
1397 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1398 */
1399 static int format_corename(char *corename, long signr)
1400 {
1401 const struct cred *cred = current_cred();
1402 const char *pat_ptr = core_pattern;
1403 int ispipe = (*pat_ptr == '|');
1404 char *out_ptr = corename;
1405 char *const out_end = corename + CORENAME_MAX_SIZE;
1406 int rc;
1407 int pid_in_pattern = 0;
1408
1409 /* Repeat as long as we have more pattern to process and more output
1410 space */
1411 while (*pat_ptr) {
1412 if (*pat_ptr != '%') {
1413 if (out_ptr == out_end)
1414 goto out;
1415 *out_ptr++ = *pat_ptr++;
1416 } else {
1417 switch (*++pat_ptr) {
1418 case 0:
1419 goto out;
1420 /* Double percent, output one percent */
1421 case '%':
1422 if (out_ptr == out_end)
1423 goto out;
1424 *out_ptr++ = '%';
1425 break;
1426 /* pid */
1427 case 'p':
1428 pid_in_pattern = 1;
1429 rc = snprintf(out_ptr, out_end - out_ptr,
1430 "%d", task_tgid_vnr(current));
1431 if (rc > out_end - out_ptr)
1432 goto out;
1433 out_ptr += rc;
1434 break;
1435 /* uid */
1436 case 'u':
1437 rc = snprintf(out_ptr, out_end - out_ptr,
1438 "%d", cred->uid);
1439 if (rc > out_end - out_ptr)
1440 goto out;
1441 out_ptr += rc;
1442 break;
1443 /* gid */
1444 case 'g':
1445 rc = snprintf(out_ptr, out_end - out_ptr,
1446 "%d", cred->gid);
1447 if (rc > out_end - out_ptr)
1448 goto out;
1449 out_ptr += rc;
1450 break;
1451 /* signal that caused the coredump */
1452 case 's':
1453 rc = snprintf(out_ptr, out_end - out_ptr,
1454 "%ld", signr);
1455 if (rc > out_end - out_ptr)
1456 goto out;
1457 out_ptr += rc;
1458 break;
1459 /* UNIX time of coredump */
1460 case 't': {
1461 struct timeval tv;
1462 do_gettimeofday(&tv);
1463 rc = snprintf(out_ptr, out_end - out_ptr,
1464 "%lu", tv.tv_sec);
1465 if (rc > out_end - out_ptr)
1466 goto out;
1467 out_ptr += rc;
1468 break;
1469 }
1470 /* hostname */
1471 case 'h':
1472 down_read(&uts_sem);
1473 rc = snprintf(out_ptr, out_end - out_ptr,
1474 "%s", utsname()->nodename);
1475 up_read(&uts_sem);
1476 if (rc > out_end - out_ptr)
1477 goto out;
1478 out_ptr += rc;
1479 break;
1480 /* executable */
1481 case 'e':
1482 rc = snprintf(out_ptr, out_end - out_ptr,
1483 "%s", current->comm);
1484 if (rc > out_end - out_ptr)
1485 goto out;
1486 out_ptr += rc;
1487 break;
1488 /* core limit size */
1489 case 'c':
1490 rc = snprintf(out_ptr, out_end - out_ptr,
1491 "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
1492 if (rc > out_end - out_ptr)
1493 goto out;
1494 out_ptr += rc;
1495 break;
1496 default:
1497 break;
1498 }
1499 ++pat_ptr;
1500 }
1501 }
1502 /* Backward compatibility with core_uses_pid:
1503 *
1504 * If core_pattern does not include a %p (as is the default)
1505 * and core_uses_pid is set, then .%pid will be appended to
1506 * the filename. Do not do this for piped commands. */
1507 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1508 rc = snprintf(out_ptr, out_end - out_ptr,
1509 ".%d", task_tgid_vnr(current));
1510 if (rc > out_end - out_ptr)
1511 goto out;
1512 out_ptr += rc;
1513 }
1514 out:
1515 *out_ptr = 0;
1516 return ispipe;
1517 }
1518
1519 static int zap_process(struct task_struct *start)
1520 {
1521 struct task_struct *t;
1522 int nr = 0;
1523
1524 start->signal->flags = SIGNAL_GROUP_EXIT;
1525 start->signal->group_stop_count = 0;
1526
1527 t = start;
1528 do {
1529 if (t != current && t->mm) {
1530 sigaddset(&t->pending.signal, SIGKILL);
1531 signal_wake_up(t, 1);
1532 nr++;
1533 }
1534 } while_each_thread(start, t);
1535
1536 return nr;
1537 }
1538
1539 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1540 struct core_state *core_state, int exit_code)
1541 {
1542 struct task_struct *g, *p;
1543 unsigned long flags;
1544 int nr = -EAGAIN;
1545
1546 spin_lock_irq(&tsk->sighand->siglock);
1547 if (!signal_group_exit(tsk->signal)) {
1548 mm->core_state = core_state;
1549 tsk->signal->group_exit_code = exit_code;
1550 nr = zap_process(tsk);
1551 }
1552 spin_unlock_irq(&tsk->sighand->siglock);
1553 if (unlikely(nr < 0))
1554 return nr;
1555
1556 if (atomic_read(&mm->mm_users) == nr + 1)
1557 goto done;
1558 /*
1559 * We should find and kill all tasks which use this mm, and we should
1560 * count them correctly into ->nr_threads. We don't take tasklist
1561 * lock, but this is safe wrt:
1562 *
1563 * fork:
1564 * None of sub-threads can fork after zap_process(leader). All
1565 * processes which were created before this point should be
1566 * visible to zap_threads() because copy_process() adds the new
1567 * process to the tail of init_task.tasks list, and lock/unlock
1568 * of ->siglock provides a memory barrier.
1569 *
1570 * do_exit:
1571 * The caller holds mm->mmap_sem. This means that the task which
1572 * uses this mm can't pass exit_mm(), so it can't exit or clear
1573 * its ->mm.
1574 *
1575 * de_thread:
1576 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1577 * we must see either old or new leader, this does not matter.
1578 * However, it can change p->sighand, so lock_task_sighand(p)
1579 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1580 * it can't fail.
1581 *
1582 * Note also that "g" can be the old leader with ->mm == NULL
1583 * and already unhashed and thus removed from ->thread_group.
1584 * This is OK, __unhash_process()->list_del_rcu() does not
1585 * clear the ->next pointer, we will find the new leader via
1586 * next_thread().
1587 */
1588 rcu_read_lock();
1589 for_each_process(g) {
1590 if (g == tsk->group_leader)
1591 continue;
1592 if (g->flags & PF_KTHREAD)
1593 continue;
1594 p = g;
1595 do {
1596 if (p->mm) {
1597 if (unlikely(p->mm == mm)) {
1598 lock_task_sighand(p, &flags);
1599 nr += zap_process(p);
1600 unlock_task_sighand(p, &flags);
1601 }
1602 break;
1603 }
1604 } while_each_thread(g, p);
1605 }
1606 rcu_read_unlock();
1607 done:
1608 atomic_set(&core_state->nr_threads, nr);
1609 return nr;
1610 }
1611
1612 static int coredump_wait(int exit_code, struct core_state *core_state)
1613 {
1614 struct task_struct *tsk = current;
1615 struct mm_struct *mm = tsk->mm;
1616 struct completion *vfork_done;
1617 int core_waiters;
1618
1619 init_completion(&core_state->startup);
1620 core_state->dumper.task = tsk;
1621 core_state->dumper.next = NULL;
1622 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1623 up_write(&mm->mmap_sem);
1624
1625 if (unlikely(core_waiters < 0))
1626 goto fail;
1627
1628 /*
1629 * Make sure nobody is waiting for us to release the VM,
1630 * otherwise we can deadlock when we wait on each other
1631 */
1632 vfork_done = tsk->vfork_done;
1633 if (vfork_done) {
1634 tsk->vfork_done = NULL;
1635 complete(vfork_done);
1636 }
1637
1638 if (core_waiters)
1639 wait_for_completion(&core_state->startup);
1640 fail:
1641 return core_waiters;
1642 }
1643
1644 static void coredump_finish(struct mm_struct *mm)
1645 {
1646 struct core_thread *curr, *next;
1647 struct task_struct *task;
1648
1649 next = mm->core_state->dumper.next;
1650 while ((curr = next) != NULL) {
1651 next = curr->next;
1652 task = curr->task;
1653 /*
1654 * see exit_mm(), curr->task must not see
1655 * ->task == NULL before we read ->next.
1656 */
1657 smp_mb();
1658 curr->task = NULL;
1659 wake_up_process(task);
1660 }
1661
1662 mm->core_state = NULL;
1663 }
1664
1665 /*
1666 * set_dumpable converts traditional three-value dumpable to two flags and
1667 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1668 * these bits are not changed atomically. So get_dumpable can observe the
1669 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1670 * return either old dumpable or new one by paying attention to the order of
1671 * modifying the bits.
1672 *
1673 * dumpable | mm->flags (binary)
1674 * old new | initial interim final
1675 * ---------+-----------------------
1676 * 0 1 | 00 01 01
1677 * 0 2 | 00 10(*) 11
1678 * 1 0 | 01 00 00
1679 * 1 2 | 01 11 11
1680 * 2 0 | 11 10(*) 00
1681 * 2 1 | 11 11 01
1682 *
1683 * (*) get_dumpable regards interim value of 10 as 11.
1684 */
1685 void set_dumpable(struct mm_struct *mm, int value)
1686 {
1687 switch (value) {
1688 case 0:
1689 clear_bit(MMF_DUMPABLE, &mm->flags);
1690 smp_wmb();
1691 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1692 break;
1693 case 1:
1694 set_bit(MMF_DUMPABLE, &mm->flags);
1695 smp_wmb();
1696 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1697 break;
1698 case 2:
1699 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1700 smp_wmb();
1701 set_bit(MMF_DUMPABLE, &mm->flags);
1702 break;
1703 }
1704 }
1705
1706 int get_dumpable(struct mm_struct *mm)
1707 {
1708 int ret;
1709
1710 ret = mm->flags & 0x3;
1711 return (ret >= 2) ? 2 : ret;
1712 }
1713
1714 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1715 {
1716 struct core_state core_state;
1717 char corename[CORENAME_MAX_SIZE + 1];
1718 struct mm_struct *mm = current->mm;
1719 struct linux_binfmt * binfmt;
1720 struct inode * inode;
1721 struct file * file;
1722 const struct cred *old_cred;
1723 struct cred *cred;
1724 int retval = 0;
1725 int flag = 0;
1726 int ispipe = 0;
1727 unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
1728 char **helper_argv = NULL;
1729 int helper_argc = 0;
1730 char *delimit;
1731
1732 audit_core_dumps(signr);
1733
1734 binfmt = current->binfmt;
1735 if (!binfmt || !binfmt->core_dump)
1736 goto fail;
1737
1738 cred = prepare_creds();
1739 if (!cred) {
1740 retval = -ENOMEM;
1741 goto fail;
1742 }
1743
1744 down_write(&mm->mmap_sem);
1745 /*
1746 * If another thread got here first, or we are not dumpable, bail out.
1747 */
1748 if (mm->core_state || !get_dumpable(mm)) {
1749 up_write(&mm->mmap_sem);
1750 put_cred(cred);
1751 goto fail;
1752 }
1753
1754 /*
1755 * We cannot trust fsuid as being the "true" uid of the
1756 * process nor do we know its entire history. We only know it
1757 * was tainted so we dump it as root in mode 2.
1758 */
1759 if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
1760 flag = O_EXCL; /* Stop rewrite attacks */
1761 cred->fsuid = 0; /* Dump root private */
1762 }
1763
1764 retval = coredump_wait(exit_code, &core_state);
1765 if (retval < 0) {
1766 put_cred(cred);
1767 goto fail;
1768 }
1769
1770 old_cred = override_creds(cred);
1771
1772 /*
1773 * Clear any false indication of pending signals that might
1774 * be seen by the filesystem code called to write the core file.
1775 */
1776 clear_thread_flag(TIF_SIGPENDING);
1777
1778 /*
1779 * lock_kernel() because format_corename() is controlled by sysctl, which
1780 * uses lock_kernel()
1781 */
1782 lock_kernel();
1783 ispipe = format_corename(corename, signr);
1784 unlock_kernel();
1785 /*
1786 * Don't bother to check the RLIMIT_CORE value if core_pattern points
1787 * to a pipe. Since we're not writing directly to the filesystem
1788 * RLIMIT_CORE doesn't really apply, as no actual core file will be
1789 * created unless the pipe reader choses to write out the core file
1790 * at which point file size limits and permissions will be imposed
1791 * as it does with any other process
1792 */
1793 if ((!ispipe) && (core_limit < binfmt->min_coredump))
1794 goto fail_unlock;
1795
1796 if (ispipe) {
1797 helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
1798 if (!helper_argv) {
1799 printk(KERN_WARNING "%s failed to allocate memory\n",
1800 __func__);
1801 goto fail_unlock;
1802 }
1803 /* Terminate the string before the first option */
1804 delimit = strchr(corename, ' ');
1805 if (delimit)
1806 *delimit = '\0';
1807 delimit = strrchr(helper_argv[0], '/');
1808 if (delimit)
1809 delimit++;
1810 else
1811 delimit = helper_argv[0];
1812 if (!strcmp(delimit, current->comm)) {
1813 printk(KERN_NOTICE "Recursive core dump detected, "
1814 "aborting\n");
1815 goto fail_unlock;
1816 }
1817
1818 core_limit = RLIM_INFINITY;
1819
1820 /* SIGPIPE can happen, but it's just never processed */
1821 if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
1822 &file)) {
1823 printk(KERN_INFO "Core dump to %s pipe failed\n",
1824 corename);
1825 goto fail_unlock;
1826 }
1827 } else
1828 file = filp_open(corename,
1829 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1830 0600);
1831 if (IS_ERR(file))
1832 goto fail_unlock;
1833 inode = file->f_path.dentry->d_inode;
1834 if (inode->i_nlink > 1)
1835 goto close_fail; /* multiple links - don't dump */
1836 if (!ispipe && d_unhashed(file->f_path.dentry))
1837 goto close_fail;
1838
1839 /* AK: actually i see no reason to not allow this for named pipes etc.,
1840 but keep the previous behaviour for now. */
1841 if (!ispipe && !S_ISREG(inode->i_mode))
1842 goto close_fail;
1843 /*
1844 * Dont allow local users get cute and trick others to coredump
1845 * into their pre-created files:
1846 */
1847 if (inode->i_uid != current_fsuid())
1848 goto close_fail;
1849 if (!file->f_op)
1850 goto close_fail;
1851 if (!file->f_op->write)
1852 goto close_fail;
1853 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1854 goto close_fail;
1855
1856 retval = binfmt->core_dump(signr, regs, file, core_limit);
1857
1858 if (retval)
1859 current->signal->group_exit_code |= 0x80;
1860 close_fail:
1861 filp_close(file, NULL);
1862 fail_unlock:
1863 if (helper_argv)
1864 argv_free(helper_argv);
1865
1866 revert_creds(old_cred);
1867 put_cred(cred);
1868 coredump_finish(mm);
1869 fail:
1870 return;
1871 }