Merge branch 'fix/misc' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / exec.c
1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/swap.h>
32 #include <linux/string.h>
33 #include <linux/init.h>
34 #include <linux/pagemap.h>
35 #include <linux/perf_event.h>
36 #include <linux/highmem.h>
37 #include <linux/spinlock.h>
38 #include <linux/key.h>
39 #include <linux/personality.h>
40 #include <linux/binfmts.h>
41 #include <linux/utsname.h>
42 #include <linux/pid_namespace.h>
43 #include <linux/module.h>
44 #include <linux/namei.h>
45 #include <linux/proc_fs.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57
58 #include <asm/uaccess.h>
59 #include <asm/mmu_context.h>
60 #include <asm/tlb.h>
61 #include "internal.h"
62
63 int core_uses_pid;
64 char core_pattern[CORENAME_MAX_SIZE] = "core";
65 unsigned int core_pipe_limit;
66 int suid_dumpable = 0;
67
68 /* The maximal length of core_pattern is also specified in sysctl.c */
69
70 static LIST_HEAD(formats);
71 static DEFINE_RWLOCK(binfmt_lock);
72
73 int __register_binfmt(struct linux_binfmt * fmt, int insert)
74 {
75 if (!fmt)
76 return -EINVAL;
77 write_lock(&binfmt_lock);
78 insert ? list_add(&fmt->lh, &formats) :
79 list_add_tail(&fmt->lh, &formats);
80 write_unlock(&binfmt_lock);
81 return 0;
82 }
83
84 EXPORT_SYMBOL(__register_binfmt);
85
86 void unregister_binfmt(struct linux_binfmt * fmt)
87 {
88 write_lock(&binfmt_lock);
89 list_del(&fmt->lh);
90 write_unlock(&binfmt_lock);
91 }
92
93 EXPORT_SYMBOL(unregister_binfmt);
94
95 static inline void put_binfmt(struct linux_binfmt * fmt)
96 {
97 module_put(fmt->module);
98 }
99
100 /*
101 * Note that a shared library must be both readable and executable due to
102 * security reasons.
103 *
104 * Also note that we take the address to load from from the file itself.
105 */
106 SYSCALL_DEFINE1(uselib, const char __user *, library)
107 {
108 struct file *file;
109 char *tmp = getname(library);
110 int error = PTR_ERR(tmp);
111
112 if (IS_ERR(tmp))
113 goto out;
114
115 file = do_filp_open(AT_FDCWD, tmp,
116 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
117 MAY_READ | MAY_EXEC | MAY_OPEN);
118 putname(tmp);
119 error = PTR_ERR(file);
120 if (IS_ERR(file))
121 goto out;
122
123 error = -EINVAL;
124 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
125 goto exit;
126
127 error = -EACCES;
128 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
129 goto exit;
130
131 fsnotify_open(file);
132
133 error = -ENOEXEC;
134 if(file->f_op) {
135 struct linux_binfmt * fmt;
136
137 read_lock(&binfmt_lock);
138 list_for_each_entry(fmt, &formats, lh) {
139 if (!fmt->load_shlib)
140 continue;
141 if (!try_module_get(fmt->module))
142 continue;
143 read_unlock(&binfmt_lock);
144 error = fmt->load_shlib(file);
145 read_lock(&binfmt_lock);
146 put_binfmt(fmt);
147 if (error != -ENOEXEC)
148 break;
149 }
150 read_unlock(&binfmt_lock);
151 }
152 exit:
153 fput(file);
154 out:
155 return error;
156 }
157
158 #ifdef CONFIG_MMU
159
160 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
161 int write)
162 {
163 struct page *page;
164 int ret;
165
166 #ifdef CONFIG_STACK_GROWSUP
167 if (write) {
168 ret = expand_stack_downwards(bprm->vma, pos);
169 if (ret < 0)
170 return NULL;
171 }
172 #endif
173 ret = get_user_pages(current, bprm->mm, pos,
174 1, write, 1, &page, NULL);
175 if (ret <= 0)
176 return NULL;
177
178 if (write) {
179 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
180 struct rlimit *rlim;
181
182 /*
183 * We've historically supported up to 32 pages (ARG_MAX)
184 * of argument strings even with small stacks
185 */
186 if (size <= ARG_MAX)
187 return page;
188
189 /*
190 * Limit to 1/4-th the stack size for the argv+env strings.
191 * This ensures that:
192 * - the remaining binfmt code will not run out of stack space,
193 * - the program will have a reasonable amount of stack left
194 * to work from.
195 */
196 rlim = current->signal->rlim;
197 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
198 put_page(page);
199 return NULL;
200 }
201 }
202
203 return page;
204 }
205
206 static void put_arg_page(struct page *page)
207 {
208 put_page(page);
209 }
210
211 static void free_arg_page(struct linux_binprm *bprm, int i)
212 {
213 }
214
215 static void free_arg_pages(struct linux_binprm *bprm)
216 {
217 }
218
219 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
220 struct page *page)
221 {
222 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
223 }
224
225 static int __bprm_mm_init(struct linux_binprm *bprm)
226 {
227 int err;
228 struct vm_area_struct *vma = NULL;
229 struct mm_struct *mm = bprm->mm;
230
231 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
232 if (!vma)
233 return -ENOMEM;
234
235 down_write(&mm->mmap_sem);
236 vma->vm_mm = mm;
237
238 /*
239 * Place the stack at the largest stack address the architecture
240 * supports. Later, we'll move this to an appropriate place. We don't
241 * use STACK_TOP because that can depend on attributes which aren't
242 * configured yet.
243 */
244 BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
245 vma->vm_end = STACK_TOP_MAX;
246 vma->vm_start = vma->vm_end - PAGE_SIZE;
247 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
248 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
249 INIT_LIST_HEAD(&vma->anon_vma_chain);
250 err = insert_vm_struct(mm, vma);
251 if (err)
252 goto err;
253
254 mm->stack_vm = mm->total_vm = 1;
255 up_write(&mm->mmap_sem);
256 bprm->p = vma->vm_end - sizeof(void *);
257 return 0;
258 err:
259 up_write(&mm->mmap_sem);
260 bprm->vma = NULL;
261 kmem_cache_free(vm_area_cachep, vma);
262 return err;
263 }
264
265 static bool valid_arg_len(struct linux_binprm *bprm, long len)
266 {
267 return len <= MAX_ARG_STRLEN;
268 }
269
270 #else
271
272 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
273 int write)
274 {
275 struct page *page;
276
277 page = bprm->page[pos / PAGE_SIZE];
278 if (!page && write) {
279 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
280 if (!page)
281 return NULL;
282 bprm->page[pos / PAGE_SIZE] = page;
283 }
284
285 return page;
286 }
287
288 static void put_arg_page(struct page *page)
289 {
290 }
291
292 static void free_arg_page(struct linux_binprm *bprm, int i)
293 {
294 if (bprm->page[i]) {
295 __free_page(bprm->page[i]);
296 bprm->page[i] = NULL;
297 }
298 }
299
300 static void free_arg_pages(struct linux_binprm *bprm)
301 {
302 int i;
303
304 for (i = 0; i < MAX_ARG_PAGES; i++)
305 free_arg_page(bprm, i);
306 }
307
308 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
309 struct page *page)
310 {
311 }
312
313 static int __bprm_mm_init(struct linux_binprm *bprm)
314 {
315 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
316 return 0;
317 }
318
319 static bool valid_arg_len(struct linux_binprm *bprm, long len)
320 {
321 return len <= bprm->p;
322 }
323
324 #endif /* CONFIG_MMU */
325
326 /*
327 * Create a new mm_struct and populate it with a temporary stack
328 * vm_area_struct. We don't have enough context at this point to set the stack
329 * flags, permissions, and offset, so we use temporary values. We'll update
330 * them later in setup_arg_pages().
331 */
332 int bprm_mm_init(struct linux_binprm *bprm)
333 {
334 int err;
335 struct mm_struct *mm = NULL;
336
337 bprm->mm = mm = mm_alloc();
338 err = -ENOMEM;
339 if (!mm)
340 goto err;
341
342 err = init_new_context(current, mm);
343 if (err)
344 goto err;
345
346 err = __bprm_mm_init(bprm);
347 if (err)
348 goto err;
349
350 return 0;
351
352 err:
353 if (mm) {
354 bprm->mm = NULL;
355 mmdrop(mm);
356 }
357
358 return err;
359 }
360
361 /*
362 * count() counts the number of strings in array ARGV.
363 */
364 static int count(const char __user * const __user * argv, int max)
365 {
366 int i = 0;
367
368 if (argv != NULL) {
369 for (;;) {
370 const char __user * p;
371
372 if (get_user(p, argv))
373 return -EFAULT;
374 if (!p)
375 break;
376 argv++;
377 if (i++ >= max)
378 return -E2BIG;
379
380 if (fatal_signal_pending(current))
381 return -ERESTARTNOHAND;
382 cond_resched();
383 }
384 }
385 return i;
386 }
387
388 /*
389 * 'copy_strings()' copies argument/environment strings from the old
390 * processes's memory to the new process's stack. The call to get_user_pages()
391 * ensures the destination page is created and not swapped out.
392 */
393 static int copy_strings(int argc, const char __user *const __user *argv,
394 struct linux_binprm *bprm)
395 {
396 struct page *kmapped_page = NULL;
397 char *kaddr = NULL;
398 unsigned long kpos = 0;
399 int ret;
400
401 while (argc-- > 0) {
402 const char __user *str;
403 int len;
404 unsigned long pos;
405
406 if (get_user(str, argv+argc) ||
407 !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
408 ret = -EFAULT;
409 goto out;
410 }
411
412 if (!valid_arg_len(bprm, len)) {
413 ret = -E2BIG;
414 goto out;
415 }
416
417 /* We're going to work our way backwords. */
418 pos = bprm->p;
419 str += len;
420 bprm->p -= len;
421
422 while (len > 0) {
423 int offset, bytes_to_copy;
424
425 if (fatal_signal_pending(current)) {
426 ret = -ERESTARTNOHAND;
427 goto out;
428 }
429 cond_resched();
430
431 offset = pos % PAGE_SIZE;
432 if (offset == 0)
433 offset = PAGE_SIZE;
434
435 bytes_to_copy = offset;
436 if (bytes_to_copy > len)
437 bytes_to_copy = len;
438
439 offset -= bytes_to_copy;
440 pos -= bytes_to_copy;
441 str -= bytes_to_copy;
442 len -= bytes_to_copy;
443
444 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
445 struct page *page;
446
447 page = get_arg_page(bprm, pos, 1);
448 if (!page) {
449 ret = -E2BIG;
450 goto out;
451 }
452
453 if (kmapped_page) {
454 flush_kernel_dcache_page(kmapped_page);
455 kunmap(kmapped_page);
456 put_arg_page(kmapped_page);
457 }
458 kmapped_page = page;
459 kaddr = kmap(kmapped_page);
460 kpos = pos & PAGE_MASK;
461 flush_arg_page(bprm, kpos, kmapped_page);
462 }
463 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
464 ret = -EFAULT;
465 goto out;
466 }
467 }
468 }
469 ret = 0;
470 out:
471 if (kmapped_page) {
472 flush_kernel_dcache_page(kmapped_page);
473 kunmap(kmapped_page);
474 put_arg_page(kmapped_page);
475 }
476 return ret;
477 }
478
479 /*
480 * Like copy_strings, but get argv and its values from kernel memory.
481 */
482 int copy_strings_kernel(int argc, const char *const *argv,
483 struct linux_binprm *bprm)
484 {
485 int r;
486 mm_segment_t oldfs = get_fs();
487 set_fs(KERNEL_DS);
488 r = copy_strings(argc, (const char __user *const __user *)argv, bprm);
489 set_fs(oldfs);
490 return r;
491 }
492 EXPORT_SYMBOL(copy_strings_kernel);
493
494 #ifdef CONFIG_MMU
495
496 /*
497 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
498 * the binfmt code determines where the new stack should reside, we shift it to
499 * its final location. The process proceeds as follows:
500 *
501 * 1) Use shift to calculate the new vma endpoints.
502 * 2) Extend vma to cover both the old and new ranges. This ensures the
503 * arguments passed to subsequent functions are consistent.
504 * 3) Move vma's page tables to the new range.
505 * 4) Free up any cleared pgd range.
506 * 5) Shrink the vma to cover only the new range.
507 */
508 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
509 {
510 struct mm_struct *mm = vma->vm_mm;
511 unsigned long old_start = vma->vm_start;
512 unsigned long old_end = vma->vm_end;
513 unsigned long length = old_end - old_start;
514 unsigned long new_start = old_start - shift;
515 unsigned long new_end = old_end - shift;
516 struct mmu_gather *tlb;
517
518 BUG_ON(new_start > new_end);
519
520 /*
521 * ensure there are no vmas between where we want to go
522 * and where we are
523 */
524 if (vma != find_vma(mm, new_start))
525 return -EFAULT;
526
527 /*
528 * cover the whole range: [new_start, old_end)
529 */
530 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
531 return -ENOMEM;
532
533 /*
534 * move the page tables downwards, on failure we rely on
535 * process cleanup to remove whatever mess we made.
536 */
537 if (length != move_page_tables(vma, old_start,
538 vma, new_start, length))
539 return -ENOMEM;
540
541 lru_add_drain();
542 tlb = tlb_gather_mmu(mm, 0);
543 if (new_end > old_start) {
544 /*
545 * when the old and new regions overlap clear from new_end.
546 */
547 free_pgd_range(tlb, new_end, old_end, new_end,
548 vma->vm_next ? vma->vm_next->vm_start : 0);
549 } else {
550 /*
551 * otherwise, clean from old_start; this is done to not touch
552 * the address space in [new_end, old_start) some architectures
553 * have constraints on va-space that make this illegal (IA64) -
554 * for the others its just a little faster.
555 */
556 free_pgd_range(tlb, old_start, old_end, new_end,
557 vma->vm_next ? vma->vm_next->vm_start : 0);
558 }
559 tlb_finish_mmu(tlb, new_end, old_end);
560
561 /*
562 * Shrink the vma to just the new range. Always succeeds.
563 */
564 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
565
566 return 0;
567 }
568
569 /*
570 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
571 * the stack is optionally relocated, and some extra space is added.
572 */
573 int setup_arg_pages(struct linux_binprm *bprm,
574 unsigned long stack_top,
575 int executable_stack)
576 {
577 unsigned long ret;
578 unsigned long stack_shift;
579 struct mm_struct *mm = current->mm;
580 struct vm_area_struct *vma = bprm->vma;
581 struct vm_area_struct *prev = NULL;
582 unsigned long vm_flags;
583 unsigned long stack_base;
584 unsigned long stack_size;
585 unsigned long stack_expand;
586 unsigned long rlim_stack;
587
588 #ifdef CONFIG_STACK_GROWSUP
589 /* Limit stack size to 1GB */
590 stack_base = rlimit_max(RLIMIT_STACK);
591 if (stack_base > (1 << 30))
592 stack_base = 1 << 30;
593
594 /* Make sure we didn't let the argument array grow too large. */
595 if (vma->vm_end - vma->vm_start > stack_base)
596 return -ENOMEM;
597
598 stack_base = PAGE_ALIGN(stack_top - stack_base);
599
600 stack_shift = vma->vm_start - stack_base;
601 mm->arg_start = bprm->p - stack_shift;
602 bprm->p = vma->vm_end - stack_shift;
603 #else
604 stack_top = arch_align_stack(stack_top);
605 stack_top = PAGE_ALIGN(stack_top);
606
607 if (unlikely(stack_top < mmap_min_addr) ||
608 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
609 return -ENOMEM;
610
611 stack_shift = vma->vm_end - stack_top;
612
613 bprm->p -= stack_shift;
614 mm->arg_start = bprm->p;
615 #endif
616
617 if (bprm->loader)
618 bprm->loader -= stack_shift;
619 bprm->exec -= stack_shift;
620
621 down_write(&mm->mmap_sem);
622 vm_flags = VM_STACK_FLAGS;
623
624 /*
625 * Adjust stack execute permissions; explicitly enable for
626 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
627 * (arch default) otherwise.
628 */
629 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
630 vm_flags |= VM_EXEC;
631 else if (executable_stack == EXSTACK_DISABLE_X)
632 vm_flags &= ~VM_EXEC;
633 vm_flags |= mm->def_flags;
634 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
635
636 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
637 vm_flags);
638 if (ret)
639 goto out_unlock;
640 BUG_ON(prev != vma);
641
642 /* Move stack pages down in memory. */
643 if (stack_shift) {
644 ret = shift_arg_pages(vma, stack_shift);
645 if (ret)
646 goto out_unlock;
647 }
648
649 /* mprotect_fixup is overkill to remove the temporary stack flags */
650 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
651
652 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
653 stack_size = vma->vm_end - vma->vm_start;
654 /*
655 * Align this down to a page boundary as expand_stack
656 * will align it up.
657 */
658 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
659 #ifdef CONFIG_STACK_GROWSUP
660 if (stack_size + stack_expand > rlim_stack)
661 stack_base = vma->vm_start + rlim_stack;
662 else
663 stack_base = vma->vm_end + stack_expand;
664 #else
665 if (stack_size + stack_expand > rlim_stack)
666 stack_base = vma->vm_end - rlim_stack;
667 else
668 stack_base = vma->vm_start - stack_expand;
669 #endif
670 current->mm->start_stack = bprm->p;
671 ret = expand_stack(vma, stack_base);
672 if (ret)
673 ret = -EFAULT;
674
675 out_unlock:
676 up_write(&mm->mmap_sem);
677 return ret;
678 }
679 EXPORT_SYMBOL(setup_arg_pages);
680
681 #endif /* CONFIG_MMU */
682
683 struct file *open_exec(const char *name)
684 {
685 struct file *file;
686 int err;
687
688 file = do_filp_open(AT_FDCWD, name,
689 O_LARGEFILE | O_RDONLY | FMODE_EXEC, 0,
690 MAY_EXEC | MAY_OPEN);
691 if (IS_ERR(file))
692 goto out;
693
694 err = -EACCES;
695 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
696 goto exit;
697
698 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
699 goto exit;
700
701 fsnotify_open(file);
702
703 err = deny_write_access(file);
704 if (err)
705 goto exit;
706
707 out:
708 return file;
709
710 exit:
711 fput(file);
712 return ERR_PTR(err);
713 }
714 EXPORT_SYMBOL(open_exec);
715
716 int kernel_read(struct file *file, loff_t offset,
717 char *addr, unsigned long count)
718 {
719 mm_segment_t old_fs;
720 loff_t pos = offset;
721 int result;
722
723 old_fs = get_fs();
724 set_fs(get_ds());
725 /* The cast to a user pointer is valid due to the set_fs() */
726 result = vfs_read(file, (void __user *)addr, count, &pos);
727 set_fs(old_fs);
728 return result;
729 }
730
731 EXPORT_SYMBOL(kernel_read);
732
733 static int exec_mmap(struct mm_struct *mm)
734 {
735 struct task_struct *tsk;
736 struct mm_struct * old_mm, *active_mm;
737
738 /* Notify parent that we're no longer interested in the old VM */
739 tsk = current;
740 old_mm = current->mm;
741 sync_mm_rss(tsk, old_mm);
742 mm_release(tsk, old_mm);
743
744 if (old_mm) {
745 /*
746 * Make sure that if there is a core dump in progress
747 * for the old mm, we get out and die instead of going
748 * through with the exec. We must hold mmap_sem around
749 * checking core_state and changing tsk->mm.
750 */
751 down_read(&old_mm->mmap_sem);
752 if (unlikely(old_mm->core_state)) {
753 up_read(&old_mm->mmap_sem);
754 return -EINTR;
755 }
756 }
757 task_lock(tsk);
758 active_mm = tsk->active_mm;
759 tsk->mm = mm;
760 tsk->active_mm = mm;
761 activate_mm(active_mm, mm);
762 task_unlock(tsk);
763 arch_pick_mmap_layout(mm);
764 if (old_mm) {
765 up_read(&old_mm->mmap_sem);
766 BUG_ON(active_mm != old_mm);
767 mm_update_next_owner(old_mm);
768 mmput(old_mm);
769 return 0;
770 }
771 mmdrop(active_mm);
772 return 0;
773 }
774
775 /*
776 * This function makes sure the current process has its own signal table,
777 * so that flush_signal_handlers can later reset the handlers without
778 * disturbing other processes. (Other processes might share the signal
779 * table via the CLONE_SIGHAND option to clone().)
780 */
781 static int de_thread(struct task_struct *tsk)
782 {
783 struct signal_struct *sig = tsk->signal;
784 struct sighand_struct *oldsighand = tsk->sighand;
785 spinlock_t *lock = &oldsighand->siglock;
786
787 if (thread_group_empty(tsk))
788 goto no_thread_group;
789
790 /*
791 * Kill all other threads in the thread group.
792 */
793 spin_lock_irq(lock);
794 if (signal_group_exit(sig)) {
795 /*
796 * Another group action in progress, just
797 * return so that the signal is processed.
798 */
799 spin_unlock_irq(lock);
800 return -EAGAIN;
801 }
802
803 sig->group_exit_task = tsk;
804 sig->notify_count = zap_other_threads(tsk);
805 if (!thread_group_leader(tsk))
806 sig->notify_count--;
807
808 while (sig->notify_count) {
809 __set_current_state(TASK_UNINTERRUPTIBLE);
810 spin_unlock_irq(lock);
811 schedule();
812 spin_lock_irq(lock);
813 }
814 spin_unlock_irq(lock);
815
816 /*
817 * At this point all other threads have exited, all we have to
818 * do is to wait for the thread group leader to become inactive,
819 * and to assume its PID:
820 */
821 if (!thread_group_leader(tsk)) {
822 struct task_struct *leader = tsk->group_leader;
823
824 sig->notify_count = -1; /* for exit_notify() */
825 for (;;) {
826 write_lock_irq(&tasklist_lock);
827 if (likely(leader->exit_state))
828 break;
829 __set_current_state(TASK_UNINTERRUPTIBLE);
830 write_unlock_irq(&tasklist_lock);
831 schedule();
832 }
833
834 /*
835 * The only record we have of the real-time age of a
836 * process, regardless of execs it's done, is start_time.
837 * All the past CPU time is accumulated in signal_struct
838 * from sister threads now dead. But in this non-leader
839 * exec, nothing survives from the original leader thread,
840 * whose birth marks the true age of this process now.
841 * When we take on its identity by switching to its PID, we
842 * also take its birthdate (always earlier than our own).
843 */
844 tsk->start_time = leader->start_time;
845
846 BUG_ON(!same_thread_group(leader, tsk));
847 BUG_ON(has_group_leader_pid(tsk));
848 /*
849 * An exec() starts a new thread group with the
850 * TGID of the previous thread group. Rehash the
851 * two threads with a switched PID, and release
852 * the former thread group leader:
853 */
854
855 /* Become a process group leader with the old leader's pid.
856 * The old leader becomes a thread of the this thread group.
857 * Note: The old leader also uses this pid until release_task
858 * is called. Odd but simple and correct.
859 */
860 detach_pid(tsk, PIDTYPE_PID);
861 tsk->pid = leader->pid;
862 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
863 transfer_pid(leader, tsk, PIDTYPE_PGID);
864 transfer_pid(leader, tsk, PIDTYPE_SID);
865
866 list_replace_rcu(&leader->tasks, &tsk->tasks);
867 list_replace_init(&leader->sibling, &tsk->sibling);
868
869 tsk->group_leader = tsk;
870 leader->group_leader = tsk;
871
872 tsk->exit_signal = SIGCHLD;
873
874 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
875 leader->exit_state = EXIT_DEAD;
876 write_unlock_irq(&tasklist_lock);
877
878 release_task(leader);
879 }
880
881 sig->group_exit_task = NULL;
882 sig->notify_count = 0;
883
884 no_thread_group:
885 if (current->mm)
886 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
887
888 exit_itimers(sig);
889 flush_itimer_signals();
890
891 if (atomic_read(&oldsighand->count) != 1) {
892 struct sighand_struct *newsighand;
893 /*
894 * This ->sighand is shared with the CLONE_SIGHAND
895 * but not CLONE_THREAD task, switch to the new one.
896 */
897 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
898 if (!newsighand)
899 return -ENOMEM;
900
901 atomic_set(&newsighand->count, 1);
902 memcpy(newsighand->action, oldsighand->action,
903 sizeof(newsighand->action));
904
905 write_lock_irq(&tasklist_lock);
906 spin_lock(&oldsighand->siglock);
907 rcu_assign_pointer(tsk->sighand, newsighand);
908 spin_unlock(&oldsighand->siglock);
909 write_unlock_irq(&tasklist_lock);
910
911 __cleanup_sighand(oldsighand);
912 }
913
914 BUG_ON(!thread_group_leader(tsk));
915 return 0;
916 }
917
918 /*
919 * These functions flushes out all traces of the currently running executable
920 * so that a new one can be started
921 */
922 static void flush_old_files(struct files_struct * files)
923 {
924 long j = -1;
925 struct fdtable *fdt;
926
927 spin_lock(&files->file_lock);
928 for (;;) {
929 unsigned long set, i;
930
931 j++;
932 i = j * __NFDBITS;
933 fdt = files_fdtable(files);
934 if (i >= fdt->max_fds)
935 break;
936 set = fdt->close_on_exec->fds_bits[j];
937 if (!set)
938 continue;
939 fdt->close_on_exec->fds_bits[j] = 0;
940 spin_unlock(&files->file_lock);
941 for ( ; set ; i++,set >>= 1) {
942 if (set & 1) {
943 sys_close(i);
944 }
945 }
946 spin_lock(&files->file_lock);
947
948 }
949 spin_unlock(&files->file_lock);
950 }
951
952 char *get_task_comm(char *buf, struct task_struct *tsk)
953 {
954 /* buf must be at least sizeof(tsk->comm) in size */
955 task_lock(tsk);
956 strncpy(buf, tsk->comm, sizeof(tsk->comm));
957 task_unlock(tsk);
958 return buf;
959 }
960
961 void set_task_comm(struct task_struct *tsk, char *buf)
962 {
963 task_lock(tsk);
964
965 /*
966 * Threads may access current->comm without holding
967 * the task lock, so write the string carefully.
968 * Readers without a lock may see incomplete new
969 * names but are safe from non-terminating string reads.
970 */
971 memset(tsk->comm, 0, TASK_COMM_LEN);
972 wmb();
973 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
974 task_unlock(tsk);
975 perf_event_comm(tsk);
976 }
977
978 int flush_old_exec(struct linux_binprm * bprm)
979 {
980 int retval;
981
982 /*
983 * Make sure we have a private signal table and that
984 * we are unassociated from the previous thread group.
985 */
986 retval = de_thread(current);
987 if (retval)
988 goto out;
989
990 set_mm_exe_file(bprm->mm, bprm->file);
991
992 /*
993 * Release all of the old mmap stuff
994 */
995 retval = exec_mmap(bprm->mm);
996 if (retval)
997 goto out;
998
999 bprm->mm = NULL; /* We're using it now */
1000
1001 current->flags &= ~PF_RANDOMIZE;
1002 flush_thread();
1003 current->personality &= ~bprm->per_clear;
1004
1005 return 0;
1006
1007 out:
1008 return retval;
1009 }
1010 EXPORT_SYMBOL(flush_old_exec);
1011
1012 void setup_new_exec(struct linux_binprm * bprm)
1013 {
1014 int i, ch;
1015 const char *name;
1016 char tcomm[sizeof(current->comm)];
1017
1018 arch_pick_mmap_layout(current->mm);
1019
1020 /* This is the point of no return */
1021 current->sas_ss_sp = current->sas_ss_size = 0;
1022
1023 if (current_euid() == current_uid() && current_egid() == current_gid())
1024 set_dumpable(current->mm, 1);
1025 else
1026 set_dumpable(current->mm, suid_dumpable);
1027
1028 name = bprm->filename;
1029
1030 /* Copies the binary name from after last slash */
1031 for (i=0; (ch = *(name++)) != '\0';) {
1032 if (ch == '/')
1033 i = 0; /* overwrite what we wrote */
1034 else
1035 if (i < (sizeof(tcomm) - 1))
1036 tcomm[i++] = ch;
1037 }
1038 tcomm[i] = '\0';
1039 set_task_comm(current, tcomm);
1040
1041 /* Set the new mm task size. We have to do that late because it may
1042 * depend on TIF_32BIT which is only updated in flush_thread() on
1043 * some architectures like powerpc
1044 */
1045 current->mm->task_size = TASK_SIZE;
1046
1047 /* install the new credentials */
1048 if (bprm->cred->uid != current_euid() ||
1049 bprm->cred->gid != current_egid()) {
1050 current->pdeath_signal = 0;
1051 } else if (file_permission(bprm->file, MAY_READ) ||
1052 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
1053 set_dumpable(current->mm, suid_dumpable);
1054 }
1055
1056 /*
1057 * Flush performance counters when crossing a
1058 * security domain:
1059 */
1060 if (!get_dumpable(current->mm))
1061 perf_event_exit_task(current);
1062
1063 /* An exec changes our domain. We are no longer part of the thread
1064 group */
1065
1066 current->self_exec_id++;
1067
1068 flush_signal_handlers(current, 0);
1069 flush_old_files(current->files);
1070 }
1071 EXPORT_SYMBOL(setup_new_exec);
1072
1073 /*
1074 * Prepare credentials and lock ->cred_guard_mutex.
1075 * install_exec_creds() commits the new creds and drops the lock.
1076 * Or, if exec fails before, free_bprm() should release ->cred and
1077 * and unlock.
1078 */
1079 int prepare_bprm_creds(struct linux_binprm *bprm)
1080 {
1081 if (mutex_lock_interruptible(&current->cred_guard_mutex))
1082 return -ERESTARTNOINTR;
1083
1084 bprm->cred = prepare_exec_creds();
1085 if (likely(bprm->cred))
1086 return 0;
1087
1088 mutex_unlock(&current->cred_guard_mutex);
1089 return -ENOMEM;
1090 }
1091
1092 void free_bprm(struct linux_binprm *bprm)
1093 {
1094 free_arg_pages(bprm);
1095 if (bprm->cred) {
1096 mutex_unlock(&current->cred_guard_mutex);
1097 abort_creds(bprm->cred);
1098 }
1099 kfree(bprm);
1100 }
1101
1102 /*
1103 * install the new credentials for this executable
1104 */
1105 void install_exec_creds(struct linux_binprm *bprm)
1106 {
1107 security_bprm_committing_creds(bprm);
1108
1109 commit_creds(bprm->cred);
1110 bprm->cred = NULL;
1111 /*
1112 * cred_guard_mutex must be held at least to this point to prevent
1113 * ptrace_attach() from altering our determination of the task's
1114 * credentials; any time after this it may be unlocked.
1115 */
1116 security_bprm_committed_creds(bprm);
1117 mutex_unlock(&current->cred_guard_mutex);
1118 }
1119 EXPORT_SYMBOL(install_exec_creds);
1120
1121 /*
1122 * determine how safe it is to execute the proposed program
1123 * - the caller must hold current->cred_guard_mutex to protect against
1124 * PTRACE_ATTACH
1125 */
1126 int check_unsafe_exec(struct linux_binprm *bprm)
1127 {
1128 struct task_struct *p = current, *t;
1129 unsigned n_fs;
1130 int res = 0;
1131
1132 bprm->unsafe = tracehook_unsafe_exec(p);
1133
1134 n_fs = 1;
1135 spin_lock(&p->fs->lock);
1136 rcu_read_lock();
1137 for (t = next_thread(p); t != p; t = next_thread(t)) {
1138 if (t->fs == p->fs)
1139 n_fs++;
1140 }
1141 rcu_read_unlock();
1142
1143 if (p->fs->users > n_fs) {
1144 bprm->unsafe |= LSM_UNSAFE_SHARE;
1145 } else {
1146 res = -EAGAIN;
1147 if (!p->fs->in_exec) {
1148 p->fs->in_exec = 1;
1149 res = 1;
1150 }
1151 }
1152 spin_unlock(&p->fs->lock);
1153
1154 return res;
1155 }
1156
1157 /*
1158 * Fill the binprm structure from the inode.
1159 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1160 *
1161 * This may be called multiple times for binary chains (scripts for example).
1162 */
1163 int prepare_binprm(struct linux_binprm *bprm)
1164 {
1165 umode_t mode;
1166 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1167 int retval;
1168
1169 mode = inode->i_mode;
1170 if (bprm->file->f_op == NULL)
1171 return -EACCES;
1172
1173 /* clear any previous set[ug]id data from a previous binary */
1174 bprm->cred->euid = current_euid();
1175 bprm->cred->egid = current_egid();
1176
1177 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1178 /* Set-uid? */
1179 if (mode & S_ISUID) {
1180 bprm->per_clear |= PER_CLEAR_ON_SETID;
1181 bprm->cred->euid = inode->i_uid;
1182 }
1183
1184 /* Set-gid? */
1185 /*
1186 * If setgid is set but no group execute bit then this
1187 * is a candidate for mandatory locking, not a setgid
1188 * executable.
1189 */
1190 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1191 bprm->per_clear |= PER_CLEAR_ON_SETID;
1192 bprm->cred->egid = inode->i_gid;
1193 }
1194 }
1195
1196 /* fill in binprm security blob */
1197 retval = security_bprm_set_creds(bprm);
1198 if (retval)
1199 return retval;
1200 bprm->cred_prepared = 1;
1201
1202 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1203 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1204 }
1205
1206 EXPORT_SYMBOL(prepare_binprm);
1207
1208 /*
1209 * Arguments are '\0' separated strings found at the location bprm->p
1210 * points to; chop off the first by relocating brpm->p to right after
1211 * the first '\0' encountered.
1212 */
1213 int remove_arg_zero(struct linux_binprm *bprm)
1214 {
1215 int ret = 0;
1216 unsigned long offset;
1217 char *kaddr;
1218 struct page *page;
1219
1220 if (!bprm->argc)
1221 return 0;
1222
1223 do {
1224 offset = bprm->p & ~PAGE_MASK;
1225 page = get_arg_page(bprm, bprm->p, 0);
1226 if (!page) {
1227 ret = -EFAULT;
1228 goto out;
1229 }
1230 kaddr = kmap_atomic(page, KM_USER0);
1231
1232 for (; offset < PAGE_SIZE && kaddr[offset];
1233 offset++, bprm->p++)
1234 ;
1235
1236 kunmap_atomic(kaddr, KM_USER0);
1237 put_arg_page(page);
1238
1239 if (offset == PAGE_SIZE)
1240 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1241 } while (offset == PAGE_SIZE);
1242
1243 bprm->p++;
1244 bprm->argc--;
1245 ret = 0;
1246
1247 out:
1248 return ret;
1249 }
1250 EXPORT_SYMBOL(remove_arg_zero);
1251
1252 /*
1253 * cycle the list of binary formats handler, until one recognizes the image
1254 */
1255 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1256 {
1257 unsigned int depth = bprm->recursion_depth;
1258 int try,retval;
1259 struct linux_binfmt *fmt;
1260
1261 retval = security_bprm_check(bprm);
1262 if (retval)
1263 return retval;
1264
1265 /* kernel module loader fixup */
1266 /* so we don't try to load run modprobe in kernel space. */
1267 set_fs(USER_DS);
1268
1269 retval = audit_bprm(bprm);
1270 if (retval)
1271 return retval;
1272
1273 retval = -ENOENT;
1274 for (try=0; try<2; try++) {
1275 read_lock(&binfmt_lock);
1276 list_for_each_entry(fmt, &formats, lh) {
1277 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1278 if (!fn)
1279 continue;
1280 if (!try_module_get(fmt->module))
1281 continue;
1282 read_unlock(&binfmt_lock);
1283 retval = fn(bprm, regs);
1284 /*
1285 * Restore the depth counter to its starting value
1286 * in this call, so we don't have to rely on every
1287 * load_binary function to restore it on return.
1288 */
1289 bprm->recursion_depth = depth;
1290 if (retval >= 0) {
1291 if (depth == 0)
1292 tracehook_report_exec(fmt, bprm, regs);
1293 put_binfmt(fmt);
1294 allow_write_access(bprm->file);
1295 if (bprm->file)
1296 fput(bprm->file);
1297 bprm->file = NULL;
1298 current->did_exec = 1;
1299 proc_exec_connector(current);
1300 return retval;
1301 }
1302 read_lock(&binfmt_lock);
1303 put_binfmt(fmt);
1304 if (retval != -ENOEXEC || bprm->mm == NULL)
1305 break;
1306 if (!bprm->file) {
1307 read_unlock(&binfmt_lock);
1308 return retval;
1309 }
1310 }
1311 read_unlock(&binfmt_lock);
1312 if (retval != -ENOEXEC || bprm->mm == NULL) {
1313 break;
1314 #ifdef CONFIG_MODULES
1315 } else {
1316 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1317 if (printable(bprm->buf[0]) &&
1318 printable(bprm->buf[1]) &&
1319 printable(bprm->buf[2]) &&
1320 printable(bprm->buf[3]))
1321 break; /* -ENOEXEC */
1322 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1323 #endif
1324 }
1325 }
1326 return retval;
1327 }
1328
1329 EXPORT_SYMBOL(search_binary_handler);
1330
1331 /*
1332 * sys_execve() executes a new program.
1333 */
1334 int do_execve(const char * filename,
1335 const char __user *const __user *argv,
1336 const char __user *const __user *envp,
1337 struct pt_regs * regs)
1338 {
1339 struct linux_binprm *bprm;
1340 struct file *file;
1341 struct files_struct *displaced;
1342 bool clear_in_exec;
1343 int retval;
1344
1345 retval = unshare_files(&displaced);
1346 if (retval)
1347 goto out_ret;
1348
1349 retval = -ENOMEM;
1350 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1351 if (!bprm)
1352 goto out_files;
1353
1354 retval = prepare_bprm_creds(bprm);
1355 if (retval)
1356 goto out_free;
1357
1358 retval = check_unsafe_exec(bprm);
1359 if (retval < 0)
1360 goto out_free;
1361 clear_in_exec = retval;
1362 current->in_execve = 1;
1363
1364 file = open_exec(filename);
1365 retval = PTR_ERR(file);
1366 if (IS_ERR(file))
1367 goto out_unmark;
1368
1369 sched_exec();
1370
1371 bprm->file = file;
1372 bprm->filename = filename;
1373 bprm->interp = filename;
1374
1375 retval = bprm_mm_init(bprm);
1376 if (retval)
1377 goto out_file;
1378
1379 bprm->argc = count(argv, MAX_ARG_STRINGS);
1380 if ((retval = bprm->argc) < 0)
1381 goto out;
1382
1383 bprm->envc = count(envp, MAX_ARG_STRINGS);
1384 if ((retval = bprm->envc) < 0)
1385 goto out;
1386
1387 retval = prepare_binprm(bprm);
1388 if (retval < 0)
1389 goto out;
1390
1391 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1392 if (retval < 0)
1393 goto out;
1394
1395 bprm->exec = bprm->p;
1396 retval = copy_strings(bprm->envc, envp, bprm);
1397 if (retval < 0)
1398 goto out;
1399
1400 retval = copy_strings(bprm->argc, argv, bprm);
1401 if (retval < 0)
1402 goto out;
1403
1404 current->flags &= ~PF_KTHREAD;
1405 retval = search_binary_handler(bprm,regs);
1406 if (retval < 0)
1407 goto out;
1408
1409 /* execve succeeded */
1410 current->fs->in_exec = 0;
1411 current->in_execve = 0;
1412 acct_update_integrals(current);
1413 free_bprm(bprm);
1414 if (displaced)
1415 put_files_struct(displaced);
1416 return retval;
1417
1418 out:
1419 if (bprm->mm)
1420 mmput (bprm->mm);
1421
1422 out_file:
1423 if (bprm->file) {
1424 allow_write_access(bprm->file);
1425 fput(bprm->file);
1426 }
1427
1428 out_unmark:
1429 if (clear_in_exec)
1430 current->fs->in_exec = 0;
1431 current->in_execve = 0;
1432
1433 out_free:
1434 free_bprm(bprm);
1435
1436 out_files:
1437 if (displaced)
1438 reset_files_struct(displaced);
1439 out_ret:
1440 return retval;
1441 }
1442
1443 void set_binfmt(struct linux_binfmt *new)
1444 {
1445 struct mm_struct *mm = current->mm;
1446
1447 if (mm->binfmt)
1448 module_put(mm->binfmt->module);
1449
1450 mm->binfmt = new;
1451 if (new)
1452 __module_get(new->module);
1453 }
1454
1455 EXPORT_SYMBOL(set_binfmt);
1456
1457 /* format_corename will inspect the pattern parameter, and output a
1458 * name into corename, which must have space for at least
1459 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1460 */
1461 static int format_corename(char *corename, long signr)
1462 {
1463 const struct cred *cred = current_cred();
1464 const char *pat_ptr = core_pattern;
1465 int ispipe = (*pat_ptr == '|');
1466 char *out_ptr = corename;
1467 char *const out_end = corename + CORENAME_MAX_SIZE;
1468 int rc;
1469 int pid_in_pattern = 0;
1470
1471 /* Repeat as long as we have more pattern to process and more output
1472 space */
1473 while (*pat_ptr) {
1474 if (*pat_ptr != '%') {
1475 if (out_ptr == out_end)
1476 goto out;
1477 *out_ptr++ = *pat_ptr++;
1478 } else {
1479 switch (*++pat_ptr) {
1480 case 0:
1481 goto out;
1482 /* Double percent, output one percent */
1483 case '%':
1484 if (out_ptr == out_end)
1485 goto out;
1486 *out_ptr++ = '%';
1487 break;
1488 /* pid */
1489 case 'p':
1490 pid_in_pattern = 1;
1491 rc = snprintf(out_ptr, out_end - out_ptr,
1492 "%d", task_tgid_vnr(current));
1493 if (rc > out_end - out_ptr)
1494 goto out;
1495 out_ptr += rc;
1496 break;
1497 /* uid */
1498 case 'u':
1499 rc = snprintf(out_ptr, out_end - out_ptr,
1500 "%d", cred->uid);
1501 if (rc > out_end - out_ptr)
1502 goto out;
1503 out_ptr += rc;
1504 break;
1505 /* gid */
1506 case 'g':
1507 rc = snprintf(out_ptr, out_end - out_ptr,
1508 "%d", cred->gid);
1509 if (rc > out_end - out_ptr)
1510 goto out;
1511 out_ptr += rc;
1512 break;
1513 /* signal that caused the coredump */
1514 case 's':
1515 rc = snprintf(out_ptr, out_end - out_ptr,
1516 "%ld", signr);
1517 if (rc > out_end - out_ptr)
1518 goto out;
1519 out_ptr += rc;
1520 break;
1521 /* UNIX time of coredump */
1522 case 't': {
1523 struct timeval tv;
1524 do_gettimeofday(&tv);
1525 rc = snprintf(out_ptr, out_end - out_ptr,
1526 "%lu", tv.tv_sec);
1527 if (rc > out_end - out_ptr)
1528 goto out;
1529 out_ptr += rc;
1530 break;
1531 }
1532 /* hostname */
1533 case 'h':
1534 down_read(&uts_sem);
1535 rc = snprintf(out_ptr, out_end - out_ptr,
1536 "%s", utsname()->nodename);
1537 up_read(&uts_sem);
1538 if (rc > out_end - out_ptr)
1539 goto out;
1540 out_ptr += rc;
1541 break;
1542 /* executable */
1543 case 'e':
1544 rc = snprintf(out_ptr, out_end - out_ptr,
1545 "%s", current->comm);
1546 if (rc > out_end - out_ptr)
1547 goto out;
1548 out_ptr += rc;
1549 break;
1550 /* core limit size */
1551 case 'c':
1552 rc = snprintf(out_ptr, out_end - out_ptr,
1553 "%lu", rlimit(RLIMIT_CORE));
1554 if (rc > out_end - out_ptr)
1555 goto out;
1556 out_ptr += rc;
1557 break;
1558 default:
1559 break;
1560 }
1561 ++pat_ptr;
1562 }
1563 }
1564 /* Backward compatibility with core_uses_pid:
1565 *
1566 * If core_pattern does not include a %p (as is the default)
1567 * and core_uses_pid is set, then .%pid will be appended to
1568 * the filename. Do not do this for piped commands. */
1569 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1570 rc = snprintf(out_ptr, out_end - out_ptr,
1571 ".%d", task_tgid_vnr(current));
1572 if (rc > out_end - out_ptr)
1573 goto out;
1574 out_ptr += rc;
1575 }
1576 out:
1577 *out_ptr = 0;
1578 return ispipe;
1579 }
1580
1581 static int zap_process(struct task_struct *start, int exit_code)
1582 {
1583 struct task_struct *t;
1584 int nr = 0;
1585
1586 start->signal->flags = SIGNAL_GROUP_EXIT;
1587 start->signal->group_exit_code = exit_code;
1588 start->signal->group_stop_count = 0;
1589
1590 t = start;
1591 do {
1592 if (t != current && t->mm) {
1593 sigaddset(&t->pending.signal, SIGKILL);
1594 signal_wake_up(t, 1);
1595 nr++;
1596 }
1597 } while_each_thread(start, t);
1598
1599 return nr;
1600 }
1601
1602 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1603 struct core_state *core_state, int exit_code)
1604 {
1605 struct task_struct *g, *p;
1606 unsigned long flags;
1607 int nr = -EAGAIN;
1608
1609 spin_lock_irq(&tsk->sighand->siglock);
1610 if (!signal_group_exit(tsk->signal)) {
1611 mm->core_state = core_state;
1612 nr = zap_process(tsk, exit_code);
1613 }
1614 spin_unlock_irq(&tsk->sighand->siglock);
1615 if (unlikely(nr < 0))
1616 return nr;
1617
1618 if (atomic_read(&mm->mm_users) == nr + 1)
1619 goto done;
1620 /*
1621 * We should find and kill all tasks which use this mm, and we should
1622 * count them correctly into ->nr_threads. We don't take tasklist
1623 * lock, but this is safe wrt:
1624 *
1625 * fork:
1626 * None of sub-threads can fork after zap_process(leader). All
1627 * processes which were created before this point should be
1628 * visible to zap_threads() because copy_process() adds the new
1629 * process to the tail of init_task.tasks list, and lock/unlock
1630 * of ->siglock provides a memory barrier.
1631 *
1632 * do_exit:
1633 * The caller holds mm->mmap_sem. This means that the task which
1634 * uses this mm can't pass exit_mm(), so it can't exit or clear
1635 * its ->mm.
1636 *
1637 * de_thread:
1638 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1639 * we must see either old or new leader, this does not matter.
1640 * However, it can change p->sighand, so lock_task_sighand(p)
1641 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1642 * it can't fail.
1643 *
1644 * Note also that "g" can be the old leader with ->mm == NULL
1645 * and already unhashed and thus removed from ->thread_group.
1646 * This is OK, __unhash_process()->list_del_rcu() does not
1647 * clear the ->next pointer, we will find the new leader via
1648 * next_thread().
1649 */
1650 rcu_read_lock();
1651 for_each_process(g) {
1652 if (g == tsk->group_leader)
1653 continue;
1654 if (g->flags & PF_KTHREAD)
1655 continue;
1656 p = g;
1657 do {
1658 if (p->mm) {
1659 if (unlikely(p->mm == mm)) {
1660 lock_task_sighand(p, &flags);
1661 nr += zap_process(p, exit_code);
1662 unlock_task_sighand(p, &flags);
1663 }
1664 break;
1665 }
1666 } while_each_thread(g, p);
1667 }
1668 rcu_read_unlock();
1669 done:
1670 atomic_set(&core_state->nr_threads, nr);
1671 return nr;
1672 }
1673
1674 static int coredump_wait(int exit_code, struct core_state *core_state)
1675 {
1676 struct task_struct *tsk = current;
1677 struct mm_struct *mm = tsk->mm;
1678 struct completion *vfork_done;
1679 int core_waiters = -EBUSY;
1680
1681 init_completion(&core_state->startup);
1682 core_state->dumper.task = tsk;
1683 core_state->dumper.next = NULL;
1684
1685 down_write(&mm->mmap_sem);
1686 if (!mm->core_state)
1687 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
1688 up_write(&mm->mmap_sem);
1689
1690 if (unlikely(core_waiters < 0))
1691 goto fail;
1692
1693 /*
1694 * Make sure nobody is waiting for us to release the VM,
1695 * otherwise we can deadlock when we wait on each other
1696 */
1697 vfork_done = tsk->vfork_done;
1698 if (vfork_done) {
1699 tsk->vfork_done = NULL;
1700 complete(vfork_done);
1701 }
1702
1703 if (core_waiters)
1704 wait_for_completion(&core_state->startup);
1705 fail:
1706 return core_waiters;
1707 }
1708
1709 static void coredump_finish(struct mm_struct *mm)
1710 {
1711 struct core_thread *curr, *next;
1712 struct task_struct *task;
1713
1714 next = mm->core_state->dumper.next;
1715 while ((curr = next) != NULL) {
1716 next = curr->next;
1717 task = curr->task;
1718 /*
1719 * see exit_mm(), curr->task must not see
1720 * ->task == NULL before we read ->next.
1721 */
1722 smp_mb();
1723 curr->task = NULL;
1724 wake_up_process(task);
1725 }
1726
1727 mm->core_state = NULL;
1728 }
1729
1730 /*
1731 * set_dumpable converts traditional three-value dumpable to two flags and
1732 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1733 * these bits are not changed atomically. So get_dumpable can observe the
1734 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1735 * return either old dumpable or new one by paying attention to the order of
1736 * modifying the bits.
1737 *
1738 * dumpable | mm->flags (binary)
1739 * old new | initial interim final
1740 * ---------+-----------------------
1741 * 0 1 | 00 01 01
1742 * 0 2 | 00 10(*) 11
1743 * 1 0 | 01 00 00
1744 * 1 2 | 01 11 11
1745 * 2 0 | 11 10(*) 00
1746 * 2 1 | 11 11 01
1747 *
1748 * (*) get_dumpable regards interim value of 10 as 11.
1749 */
1750 void set_dumpable(struct mm_struct *mm, int value)
1751 {
1752 switch (value) {
1753 case 0:
1754 clear_bit(MMF_DUMPABLE, &mm->flags);
1755 smp_wmb();
1756 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1757 break;
1758 case 1:
1759 set_bit(MMF_DUMPABLE, &mm->flags);
1760 smp_wmb();
1761 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1762 break;
1763 case 2:
1764 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1765 smp_wmb();
1766 set_bit(MMF_DUMPABLE, &mm->flags);
1767 break;
1768 }
1769 }
1770
1771 static int __get_dumpable(unsigned long mm_flags)
1772 {
1773 int ret;
1774
1775 ret = mm_flags & MMF_DUMPABLE_MASK;
1776 return (ret >= 2) ? 2 : ret;
1777 }
1778
1779 int get_dumpable(struct mm_struct *mm)
1780 {
1781 return __get_dumpable(mm->flags);
1782 }
1783
1784 static void wait_for_dump_helpers(struct file *file)
1785 {
1786 struct pipe_inode_info *pipe;
1787
1788 pipe = file->f_path.dentry->d_inode->i_pipe;
1789
1790 pipe_lock(pipe);
1791 pipe->readers++;
1792 pipe->writers--;
1793
1794 while ((pipe->readers > 1) && (!signal_pending(current))) {
1795 wake_up_interruptible_sync(&pipe->wait);
1796 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1797 pipe_wait(pipe);
1798 }
1799
1800 pipe->readers--;
1801 pipe->writers++;
1802 pipe_unlock(pipe);
1803
1804 }
1805
1806
1807 /*
1808 * uhm_pipe_setup
1809 * helper function to customize the process used
1810 * to collect the core in userspace. Specifically
1811 * it sets up a pipe and installs it as fd 0 (stdin)
1812 * for the process. Returns 0 on success, or
1813 * PTR_ERR on failure.
1814 * Note that it also sets the core limit to 1. This
1815 * is a special value that we use to trap recursive
1816 * core dumps
1817 */
1818 static int umh_pipe_setup(struct subprocess_info *info)
1819 {
1820 struct file *rp, *wp;
1821 struct fdtable *fdt;
1822 struct coredump_params *cp = (struct coredump_params *)info->data;
1823 struct files_struct *cf = current->files;
1824
1825 wp = create_write_pipe(0);
1826 if (IS_ERR(wp))
1827 return PTR_ERR(wp);
1828
1829 rp = create_read_pipe(wp, 0);
1830 if (IS_ERR(rp)) {
1831 free_write_pipe(wp);
1832 return PTR_ERR(rp);
1833 }
1834
1835 cp->file = wp;
1836
1837 sys_close(0);
1838 fd_install(0, rp);
1839 spin_lock(&cf->file_lock);
1840 fdt = files_fdtable(cf);
1841 FD_SET(0, fdt->open_fds);
1842 FD_CLR(0, fdt->close_on_exec);
1843 spin_unlock(&cf->file_lock);
1844
1845 /* and disallow core files too */
1846 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
1847
1848 return 0;
1849 }
1850
1851 void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1852 {
1853 struct core_state core_state;
1854 char corename[CORENAME_MAX_SIZE + 1];
1855 struct mm_struct *mm = current->mm;
1856 struct linux_binfmt * binfmt;
1857 const struct cred *old_cred;
1858 struct cred *cred;
1859 int retval = 0;
1860 int flag = 0;
1861 int ispipe;
1862 static atomic_t core_dump_count = ATOMIC_INIT(0);
1863 struct coredump_params cprm = {
1864 .signr = signr,
1865 .regs = regs,
1866 .limit = rlimit(RLIMIT_CORE),
1867 /*
1868 * We must use the same mm->flags while dumping core to avoid
1869 * inconsistency of bit flags, since this flag is not protected
1870 * by any locks.
1871 */
1872 .mm_flags = mm->flags,
1873 };
1874
1875 audit_core_dumps(signr);
1876
1877 binfmt = mm->binfmt;
1878 if (!binfmt || !binfmt->core_dump)
1879 goto fail;
1880 if (!__get_dumpable(cprm.mm_flags))
1881 goto fail;
1882
1883 cred = prepare_creds();
1884 if (!cred)
1885 goto fail;
1886 /*
1887 * We cannot trust fsuid as being the "true" uid of the
1888 * process nor do we know its entire history. We only know it
1889 * was tainted so we dump it as root in mode 2.
1890 */
1891 if (__get_dumpable(cprm.mm_flags) == 2) {
1892 /* Setuid core dump mode */
1893 flag = O_EXCL; /* Stop rewrite attacks */
1894 cred->fsuid = 0; /* Dump root private */
1895 }
1896
1897 retval = coredump_wait(exit_code, &core_state);
1898 if (retval < 0)
1899 goto fail_creds;
1900
1901 old_cred = override_creds(cred);
1902
1903 /*
1904 * Clear any false indication of pending signals that might
1905 * be seen by the filesystem code called to write the core file.
1906 */
1907 clear_thread_flag(TIF_SIGPENDING);
1908
1909 ispipe = format_corename(corename, signr);
1910
1911 if (ispipe) {
1912 int dump_count;
1913 char **helper_argv;
1914
1915 if (cprm.limit == 1) {
1916 /*
1917 * Normally core limits are irrelevant to pipes, since
1918 * we're not writing to the file system, but we use
1919 * cprm.limit of 1 here as a speacial value. Any
1920 * non-1 limit gets set to RLIM_INFINITY below, but
1921 * a limit of 0 skips the dump. This is a consistent
1922 * way to catch recursive crashes. We can still crash
1923 * if the core_pattern binary sets RLIM_CORE = !1
1924 * but it runs as root, and can do lots of stupid things
1925 * Note that we use task_tgid_vnr here to grab the pid
1926 * of the process group leader. That way we get the
1927 * right pid if a thread in a multi-threaded
1928 * core_pattern process dies.
1929 */
1930 printk(KERN_WARNING
1931 "Process %d(%s) has RLIMIT_CORE set to 1\n",
1932 task_tgid_vnr(current), current->comm);
1933 printk(KERN_WARNING "Aborting core\n");
1934 goto fail_unlock;
1935 }
1936 cprm.limit = RLIM_INFINITY;
1937
1938 dump_count = atomic_inc_return(&core_dump_count);
1939 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
1940 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
1941 task_tgid_vnr(current), current->comm);
1942 printk(KERN_WARNING "Skipping core dump\n");
1943 goto fail_dropcount;
1944 }
1945
1946 helper_argv = argv_split(GFP_KERNEL, corename+1, NULL);
1947 if (!helper_argv) {
1948 printk(KERN_WARNING "%s failed to allocate memory\n",
1949 __func__);
1950 goto fail_dropcount;
1951 }
1952
1953 retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
1954 NULL, UMH_WAIT_EXEC, umh_pipe_setup,
1955 NULL, &cprm);
1956 argv_free(helper_argv);
1957 if (retval) {
1958 printk(KERN_INFO "Core dump to %s pipe failed\n",
1959 corename);
1960 goto close_fail;
1961 }
1962 } else {
1963 struct inode *inode;
1964
1965 if (cprm.limit < binfmt->min_coredump)
1966 goto fail_unlock;
1967
1968 cprm.file = filp_open(corename,
1969 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1970 0600);
1971 if (IS_ERR(cprm.file))
1972 goto fail_unlock;
1973
1974 inode = cprm.file->f_path.dentry->d_inode;
1975 if (inode->i_nlink > 1)
1976 goto close_fail;
1977 if (d_unhashed(cprm.file->f_path.dentry))
1978 goto close_fail;
1979 /*
1980 * AK: actually i see no reason to not allow this for named
1981 * pipes etc, but keep the previous behaviour for now.
1982 */
1983 if (!S_ISREG(inode->i_mode))
1984 goto close_fail;
1985 /*
1986 * Dont allow local users get cute and trick others to coredump
1987 * into their pre-created files.
1988 */
1989 if (inode->i_uid != current_fsuid())
1990 goto close_fail;
1991 if (!cprm.file->f_op || !cprm.file->f_op->write)
1992 goto close_fail;
1993 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
1994 goto close_fail;
1995 }
1996
1997 retval = binfmt->core_dump(&cprm);
1998 if (retval)
1999 current->signal->group_exit_code |= 0x80;
2000
2001 if (ispipe && core_pipe_limit)
2002 wait_for_dump_helpers(cprm.file);
2003 close_fail:
2004 if (cprm.file)
2005 filp_close(cprm.file, NULL);
2006 fail_dropcount:
2007 if (ispipe)
2008 atomic_dec(&core_dump_count);
2009 fail_unlock:
2010 coredump_finish(mm);
2011 revert_creds(old_cred);
2012 fail_creds:
2013 put_cred(cred);
2014 fail:
2015 return;
2016 }