2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * Davide Libenzi <davidel@xmailserver.org>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/signal.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/freezer.h>
38 #include <linux/uaccess.h>
41 #include <linux/atomic.h>
42 #include <linux/proc_fs.h>
43 #include <linux/seq_file.h>
44 #include <linux/compat.h>
45 #include <linux/rculist.h>
46 #include <net/busy_poll.h>
50 * There are three level of locking required by epoll :
54 * 3) ep->lock (spinlock)
56 * The acquire order is the one listed above, from 1 to 3.
57 * We need a spinlock (ep->lock) because we manipulate objects
58 * from inside the poll callback, that might be triggered from
59 * a wake_up() that in turn might be called from IRQ context.
60 * So we can't sleep inside the poll callback and hence we need
61 * a spinlock. During the event transfer loop (from kernel to
62 * user space) we could end up sleeping due a copy_to_user(), so
63 * we need a lock that will allow us to sleep. This lock is a
64 * mutex (ep->mtx). It is acquired during the event transfer loop,
65 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
66 * Then we also need a global mutex to serialize eventpoll_release_file()
68 * This mutex is acquired by ep_free() during the epoll file
69 * cleanup path and it is also acquired by eventpoll_release_file()
70 * if a file has been pushed inside an epoll set and it is then
71 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
72 * It is also acquired when inserting an epoll fd onto another epoll
73 * fd. We do this so that we walk the epoll tree and ensure that this
74 * insertion does not create a cycle of epoll file descriptors, which
75 * could lead to deadlock. We need a global mutex to prevent two
76 * simultaneous inserts (A into B and B into A) from racing and
77 * constructing a cycle without either insert observing that it is
79 * It is necessary to acquire multiple "ep->mtx"es at once in the
80 * case when one epoll fd is added to another. In this case, we
81 * always acquire the locks in the order of nesting (i.e. after
82 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
83 * before e2->mtx). Since we disallow cycles of epoll file
84 * descriptors, this ensures that the mutexes are well-ordered. In
85 * order to communicate this nesting to lockdep, when walking a tree
86 * of epoll file descriptors, we use the current recursion depth as
88 * It is possible to drop the "ep->mtx" and to use the global
89 * mutex "epmutex" (together with "ep->lock") to have it working,
90 * but having "ep->mtx" will make the interface more scalable.
91 * Events that require holding "epmutex" are very rare, while for
92 * normal operations the epoll private "ep->mtx" will guarantee
93 * a better scalability.
96 /* Epoll private bits inside the event mask */
97 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
99 #define EPOLLINOUT_BITS (POLLIN | POLLOUT)
101 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \
102 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
104 /* Maximum number of nesting allowed inside epoll sets */
105 #define EP_MAX_NESTS 4
107 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
109 #define EP_UNACTIVE_PTR ((void *) -1L)
111 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
113 struct epoll_filefd
{
119 * Structure used to track possible nested calls, for too deep recursions
122 struct nested_call_node
{
123 struct list_head llink
;
129 * This structure is used as collector for nested calls, to check for
130 * maximum recursion dept and loop cycles.
132 struct nested_calls
{
133 struct list_head tasks_call_list
;
138 * Each file descriptor added to the eventpoll interface will
139 * have an entry of this type linked to the "rbr" RB tree.
140 * Avoid increasing the size of this struct, there can be many thousands
141 * of these on a server and we do not want this to take another cache line.
145 /* RB tree node links this structure to the eventpoll RB tree */
147 /* Used to free the struct epitem */
151 /* List header used to link this structure to the eventpoll ready list */
152 struct list_head rdllink
;
155 * Works together "struct eventpoll"->ovflist in keeping the
156 * single linked chain of items.
160 /* The file descriptor information this item refers to */
161 struct epoll_filefd ffd
;
163 /* Number of active wait queue attached to poll operations */
166 /* List containing poll wait queues */
167 struct list_head pwqlist
;
169 /* The "container" of this item */
170 struct eventpoll
*ep
;
172 /* List header used to link this item to the "struct file" items list */
173 struct list_head fllink
;
175 /* wakeup_source used when EPOLLWAKEUP is set */
176 struct wakeup_source __rcu
*ws
;
178 /* The structure that describe the interested events and the source fd */
179 struct epoll_event event
;
183 * This structure is stored inside the "private_data" member of the file
184 * structure and represents the main data structure for the eventpoll
188 /* Protect the access to this structure */
192 * This mutex is used to ensure that files are not removed
193 * while epoll is using them. This is held during the event
194 * collection loop, the file cleanup path, the epoll file exit
195 * code and the ctl operations.
199 /* Wait queue used by sys_epoll_wait() */
200 wait_queue_head_t wq
;
202 /* Wait queue used by file->poll() */
203 wait_queue_head_t poll_wait
;
205 /* List of ready file descriptors */
206 struct list_head rdllist
;
208 /* RB tree root used to store monitored fd structs */
209 struct rb_root_cached rbr
;
212 * This is a single linked list that chains all the "struct epitem" that
213 * happened while transferring ready events to userspace w/out
216 struct epitem
*ovflist
;
218 /* wakeup_source used when ep_scan_ready_list is running */
219 struct wakeup_source
*ws
;
221 /* The user that created the eventpoll descriptor */
222 struct user_struct
*user
;
226 /* used to optimize loop detection check */
228 struct list_head visited_list_link
;
230 #ifdef CONFIG_NET_RX_BUSY_POLL
231 /* used to track busy poll napi_id */
232 unsigned int napi_id
;
236 /* Wait structure used by the poll hooks */
237 struct eppoll_entry
{
238 /* List header used to link this structure to the "struct epitem" */
239 struct list_head llink
;
241 /* The "base" pointer is set to the container "struct epitem" */
245 * Wait queue item that will be linked to the target file wait
248 wait_queue_entry_t wait
;
250 /* The wait queue head that linked the "wait" wait queue item */
251 wait_queue_head_t
*whead
;
254 /* Wrapper struct used by poll queueing */
260 /* Used by the ep_send_events() function as callback private data */
261 struct ep_send_events_data
{
263 struct epoll_event __user
*events
;
267 * Configuration options available inside /proc/sys/fs/epoll/
269 /* Maximum number of epoll watched descriptors, per user */
270 static long max_user_watches __read_mostly
;
273 * This mutex is used to serialize ep_free() and eventpoll_release_file().
275 static DEFINE_MUTEX(epmutex
);
277 /* Used to check for epoll file descriptor inclusion loops */
278 static struct nested_calls poll_loop_ncalls
;
280 /* Used for safe wake up implementation */
281 static struct nested_calls poll_safewake_ncalls
;
283 /* Used to call file's f_op->poll() under the nested calls boundaries */
284 static struct nested_calls poll_readywalk_ncalls
;
286 /* Slab cache used to allocate "struct epitem" */
287 static struct kmem_cache
*epi_cache __read_mostly
;
289 /* Slab cache used to allocate "struct eppoll_entry" */
290 static struct kmem_cache
*pwq_cache __read_mostly
;
292 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
293 static LIST_HEAD(visited_list
);
296 * List of files with newly added links, where we may need to limit the number
297 * of emanating paths. Protected by the epmutex.
299 static LIST_HEAD(tfile_check_list
);
303 #include <linux/sysctl.h>
306 static long long_max
= LONG_MAX
;
308 struct ctl_table epoll_table
[] = {
310 .procname
= "max_user_watches",
311 .data
= &max_user_watches
,
312 .maxlen
= sizeof(max_user_watches
),
314 .proc_handler
= proc_doulongvec_minmax
,
320 #endif /* CONFIG_SYSCTL */
322 static const struct file_operations eventpoll_fops
;
324 static inline int is_file_epoll(struct file
*f
)
326 return f
->f_op
== &eventpoll_fops
;
329 /* Setup the structure that is used as key for the RB tree */
330 static inline void ep_set_ffd(struct epoll_filefd
*ffd
,
331 struct file
*file
, int fd
)
337 /* Compare RB tree keys */
338 static inline int ep_cmp_ffd(struct epoll_filefd
*p1
,
339 struct epoll_filefd
*p2
)
341 return (p1
->file
> p2
->file
? +1:
342 (p1
->file
< p2
->file
? -1 : p1
->fd
- p2
->fd
));
345 /* Tells us if the item is currently linked */
346 static inline int ep_is_linked(struct list_head
*p
)
348 return !list_empty(p
);
351 static inline struct eppoll_entry
*ep_pwq_from_wait(wait_queue_entry_t
*p
)
353 return container_of(p
, struct eppoll_entry
, wait
);
356 /* Get the "struct epitem" from a wait queue pointer */
357 static inline struct epitem
*ep_item_from_wait(wait_queue_entry_t
*p
)
359 return container_of(p
, struct eppoll_entry
, wait
)->base
;
362 /* Get the "struct epitem" from an epoll queue wrapper */
363 static inline struct epitem
*ep_item_from_epqueue(poll_table
*p
)
365 return container_of(p
, struct ep_pqueue
, pt
)->epi
;
368 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
369 static inline int ep_op_has_event(int op
)
371 return op
!= EPOLL_CTL_DEL
;
374 /* Initialize the poll safe wake up structure */
375 static void ep_nested_calls_init(struct nested_calls
*ncalls
)
377 INIT_LIST_HEAD(&ncalls
->tasks_call_list
);
378 spin_lock_init(&ncalls
->lock
);
382 * ep_events_available - Checks if ready events might be available.
384 * @ep: Pointer to the eventpoll context.
386 * Returns: Returns a value different than zero if ready events are available,
389 static inline int ep_events_available(struct eventpoll
*ep
)
391 return !list_empty(&ep
->rdllist
) || ep
->ovflist
!= EP_UNACTIVE_PTR
;
394 #ifdef CONFIG_NET_RX_BUSY_POLL
395 static bool ep_busy_loop_end(void *p
, unsigned long start_time
)
397 struct eventpoll
*ep
= p
;
399 return ep_events_available(ep
) || busy_loop_timeout(start_time
);
401 #endif /* CONFIG_NET_RX_BUSY_POLL */
404 * Busy poll if globally on and supporting sockets found && no events,
405 * busy loop will return if need_resched or ep_events_available.
407 * we must do our busy polling with irqs enabled
409 static void ep_busy_loop(struct eventpoll
*ep
, int nonblock
)
411 #ifdef CONFIG_NET_RX_BUSY_POLL
412 unsigned int napi_id
= READ_ONCE(ep
->napi_id
);
414 if ((napi_id
>= MIN_NAPI_ID
) && net_busy_loop_on())
415 napi_busy_loop(napi_id
, nonblock
? NULL
: ep_busy_loop_end
, ep
);
419 static inline void ep_reset_busy_poll_napi_id(struct eventpoll
*ep
)
421 #ifdef CONFIG_NET_RX_BUSY_POLL
428 * Set epoll busy poll NAPI ID from sk.
430 static inline void ep_set_busy_poll_napi_id(struct epitem
*epi
)
432 #ifdef CONFIG_NET_RX_BUSY_POLL
433 struct eventpoll
*ep
;
434 unsigned int napi_id
;
439 if (!net_busy_loop_on())
442 sock
= sock_from_file(epi
->ffd
.file
, &err
);
450 napi_id
= READ_ONCE(sk
->sk_napi_id
);
453 /* Non-NAPI IDs can be rejected
455 * Nothing to do if we already have this ID
457 if (napi_id
< MIN_NAPI_ID
|| napi_id
== ep
->napi_id
)
460 /* record NAPI ID for use in next busy poll */
461 ep
->napi_id
= napi_id
;
466 * ep_call_nested - Perform a bound (possibly) nested call, by checking
467 * that the recursion limit is not exceeded, and that
468 * the same nested call (by the meaning of same cookie) is
471 * @ncalls: Pointer to the nested_calls structure to be used for this call.
472 * @max_nests: Maximum number of allowed nesting calls.
473 * @nproc: Nested call core function pointer.
474 * @priv: Opaque data to be passed to the @nproc callback.
475 * @cookie: Cookie to be used to identify this nested call.
476 * @ctx: This instance context.
478 * Returns: Returns the code returned by the @nproc callback, or -1 if
479 * the maximum recursion limit has been exceeded.
481 static int ep_call_nested(struct nested_calls
*ncalls
, int max_nests
,
482 int (*nproc
)(void *, void *, int), void *priv
,
483 void *cookie
, void *ctx
)
485 int error
, call_nests
= 0;
487 struct list_head
*lsthead
= &ncalls
->tasks_call_list
;
488 struct nested_call_node
*tncur
;
489 struct nested_call_node tnode
;
491 spin_lock_irqsave(&ncalls
->lock
, flags
);
494 * Try to see if the current task is already inside this wakeup call.
495 * We use a list here, since the population inside this set is always
498 list_for_each_entry(tncur
, lsthead
, llink
) {
499 if (tncur
->ctx
== ctx
&&
500 (tncur
->cookie
== cookie
|| ++call_nests
> max_nests
)) {
502 * Ops ... loop detected or maximum nest level reached.
503 * We abort this wake by breaking the cycle itself.
510 /* Add the current task and cookie to the list */
512 tnode
.cookie
= cookie
;
513 list_add(&tnode
.llink
, lsthead
);
515 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
517 /* Call the nested function */
518 error
= (*nproc
)(priv
, cookie
, call_nests
);
520 /* Remove the current task from the list */
521 spin_lock_irqsave(&ncalls
->lock
, flags
);
522 list_del(&tnode
.llink
);
524 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
530 * As described in commit 0ccf831cb lockdep: annotate epoll
531 * the use of wait queues used by epoll is done in a very controlled
532 * manner. Wake ups can nest inside each other, but are never done
533 * with the same locking. For example:
536 * efd1 = epoll_create();
537 * efd2 = epoll_create();
538 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
539 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
541 * When a packet arrives to the device underneath "dfd", the net code will
542 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
543 * callback wakeup entry on that queue, and the wake_up() performed by the
544 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
545 * (efd1) notices that it may have some event ready, so it needs to wake up
546 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
547 * that ends up in another wake_up(), after having checked about the
548 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
549 * avoid stack blasting.
551 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
552 * this special case of epoll.
554 #ifdef CONFIG_DEBUG_LOCK_ALLOC
555 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
556 unsigned long events
, int subclass
)
560 spin_lock_irqsave_nested(&wqueue
->lock
, flags
, subclass
);
561 wake_up_locked_poll(wqueue
, events
);
562 spin_unlock_irqrestore(&wqueue
->lock
, flags
);
565 static inline void ep_wake_up_nested(wait_queue_head_t
*wqueue
,
566 unsigned long events
, int subclass
)
568 wake_up_poll(wqueue
, events
);
572 static int ep_poll_wakeup_proc(void *priv
, void *cookie
, int call_nests
)
574 ep_wake_up_nested((wait_queue_head_t
*) cookie
, POLLIN
,
580 * Perform a safe wake up of the poll wait list. The problem is that
581 * with the new callback'd wake up system, it is possible that the
582 * poll callback is reentered from inside the call to wake_up() done
583 * on the poll wait queue head. The rule is that we cannot reenter the
584 * wake up code from the same task more than EP_MAX_NESTS times,
585 * and we cannot reenter the same wait queue head at all. This will
586 * enable to have a hierarchy of epoll file descriptor of no more than
589 static void ep_poll_safewake(wait_queue_head_t
*wq
)
591 int this_cpu
= get_cpu();
593 ep_call_nested(&poll_safewake_ncalls
, EP_MAX_NESTS
,
594 ep_poll_wakeup_proc
, NULL
, wq
, (void *) (long) this_cpu
);
599 static void ep_remove_wait_queue(struct eppoll_entry
*pwq
)
601 wait_queue_head_t
*whead
;
605 * If it is cleared by POLLFREE, it should be rcu-safe.
606 * If we read NULL we need a barrier paired with
607 * smp_store_release() in ep_poll_callback(), otherwise
608 * we rely on whead->lock.
610 whead
= smp_load_acquire(&pwq
->whead
);
612 remove_wait_queue(whead
, &pwq
->wait
);
617 * This function unregisters poll callbacks from the associated file
618 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
621 static void ep_unregister_pollwait(struct eventpoll
*ep
, struct epitem
*epi
)
623 struct list_head
*lsthead
= &epi
->pwqlist
;
624 struct eppoll_entry
*pwq
;
626 while (!list_empty(lsthead
)) {
627 pwq
= list_first_entry(lsthead
, struct eppoll_entry
, llink
);
629 list_del(&pwq
->llink
);
630 ep_remove_wait_queue(pwq
);
631 kmem_cache_free(pwq_cache
, pwq
);
635 /* call only when ep->mtx is held */
636 static inline struct wakeup_source
*ep_wakeup_source(struct epitem
*epi
)
638 return rcu_dereference_check(epi
->ws
, lockdep_is_held(&epi
->ep
->mtx
));
641 /* call only when ep->mtx is held */
642 static inline void ep_pm_stay_awake(struct epitem
*epi
)
644 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
650 static inline bool ep_has_wakeup_source(struct epitem
*epi
)
652 return rcu_access_pointer(epi
->ws
) ? true : false;
655 /* call when ep->mtx cannot be held (ep_poll_callback) */
656 static inline void ep_pm_stay_awake_rcu(struct epitem
*epi
)
658 struct wakeup_source
*ws
;
661 ws
= rcu_dereference(epi
->ws
);
668 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
669 * the scan code, to call f_op->poll(). Also allows for
670 * O(NumReady) performance.
672 * @ep: Pointer to the epoll private data structure.
673 * @sproc: Pointer to the scan callback.
674 * @priv: Private opaque data passed to the @sproc callback.
675 * @depth: The current depth of recursive f_op->poll calls.
676 * @ep_locked: caller already holds ep->mtx
678 * Returns: The same integer error code returned by the @sproc callback.
680 static int ep_scan_ready_list(struct eventpoll
*ep
,
681 int (*sproc
)(struct eventpoll
*,
682 struct list_head
*, void *),
683 void *priv
, int depth
, bool ep_locked
)
685 int error
, pwake
= 0;
687 struct epitem
*epi
, *nepi
;
691 * We need to lock this because we could be hit by
692 * eventpoll_release_file() and epoll_ctl().
696 mutex_lock_nested(&ep
->mtx
, depth
);
699 * Steal the ready list, and re-init the original one to the
700 * empty list. Also, set ep->ovflist to NULL so that events
701 * happening while looping w/out locks, are not lost. We cannot
702 * have the poll callback to queue directly on ep->rdllist,
703 * because we want the "sproc" callback to be able to do it
706 spin_lock_irqsave(&ep
->lock
, flags
);
707 list_splice_init(&ep
->rdllist
, &txlist
);
709 spin_unlock_irqrestore(&ep
->lock
, flags
);
712 * Now call the callback function.
714 error
= (*sproc
)(ep
, &txlist
, priv
);
716 spin_lock_irqsave(&ep
->lock
, flags
);
718 * During the time we spent inside the "sproc" callback, some
719 * other events might have been queued by the poll callback.
720 * We re-insert them inside the main ready-list here.
722 for (nepi
= ep
->ovflist
; (epi
= nepi
) != NULL
;
723 nepi
= epi
->next
, epi
->next
= EP_UNACTIVE_PTR
) {
725 * We need to check if the item is already in the list.
726 * During the "sproc" callback execution time, items are
727 * queued into ->ovflist but the "txlist" might already
728 * contain them, and the list_splice() below takes care of them.
730 if (!ep_is_linked(&epi
->rdllink
)) {
731 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
732 ep_pm_stay_awake(epi
);
736 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
737 * releasing the lock, events will be queued in the normal way inside
740 ep
->ovflist
= EP_UNACTIVE_PTR
;
743 * Quickly re-inject items left on "txlist".
745 list_splice(&txlist
, &ep
->rdllist
);
748 if (!list_empty(&ep
->rdllist
)) {
750 * Wake up (if active) both the eventpoll wait list and
751 * the ->poll() wait list (delayed after we release the lock).
753 if (waitqueue_active(&ep
->wq
))
754 wake_up_locked(&ep
->wq
);
755 if (waitqueue_active(&ep
->poll_wait
))
758 spin_unlock_irqrestore(&ep
->lock
, flags
);
761 mutex_unlock(&ep
->mtx
);
763 /* We have to call this outside the lock */
765 ep_poll_safewake(&ep
->poll_wait
);
770 static void epi_rcu_free(struct rcu_head
*head
)
772 struct epitem
*epi
= container_of(head
, struct epitem
, rcu
);
773 kmem_cache_free(epi_cache
, epi
);
777 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
778 * all the associated resources. Must be called with "mtx" held.
780 static int ep_remove(struct eventpoll
*ep
, struct epitem
*epi
)
783 struct file
*file
= epi
->ffd
.file
;
786 * Removes poll wait queue hooks. We _have_ to do this without holding
787 * the "ep->lock" otherwise a deadlock might occur. This because of the
788 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
789 * queue head lock when unregistering the wait queue. The wakeup callback
790 * will run by holding the wait queue head lock and will call our callback
791 * that will try to get "ep->lock".
793 ep_unregister_pollwait(ep
, epi
);
795 /* Remove the current item from the list of epoll hooks */
796 spin_lock(&file
->f_lock
);
797 list_del_rcu(&epi
->fllink
);
798 spin_unlock(&file
->f_lock
);
800 rb_erase_cached(&epi
->rbn
, &ep
->rbr
);
802 spin_lock_irqsave(&ep
->lock
, flags
);
803 if (ep_is_linked(&epi
->rdllink
))
804 list_del_init(&epi
->rdllink
);
805 spin_unlock_irqrestore(&ep
->lock
, flags
);
807 wakeup_source_unregister(ep_wakeup_source(epi
));
809 * At this point it is safe to free the eventpoll item. Use the union
810 * field epi->rcu, since we are trying to minimize the size of
811 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
812 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
813 * use of the rbn field.
815 call_rcu(&epi
->rcu
, epi_rcu_free
);
817 atomic_long_dec(&ep
->user
->epoll_watches
);
822 static void ep_free(struct eventpoll
*ep
)
827 /* We need to release all tasks waiting for these file */
828 if (waitqueue_active(&ep
->poll_wait
))
829 ep_poll_safewake(&ep
->poll_wait
);
832 * We need to lock this because we could be hit by
833 * eventpoll_release_file() while we're freeing the "struct eventpoll".
834 * We do not need to hold "ep->mtx" here because the epoll file
835 * is on the way to be removed and no one has references to it
836 * anymore. The only hit might come from eventpoll_release_file() but
837 * holding "epmutex" is sufficient here.
839 mutex_lock(&epmutex
);
842 * Walks through the whole tree by unregistering poll callbacks.
844 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
845 epi
= rb_entry(rbp
, struct epitem
, rbn
);
847 ep_unregister_pollwait(ep
, epi
);
852 * Walks through the whole tree by freeing each "struct epitem". At this
853 * point we are sure no poll callbacks will be lingering around, and also by
854 * holding "epmutex" we can be sure that no file cleanup code will hit
855 * us during this operation. So we can avoid the lock on "ep->lock".
856 * We do not need to lock ep->mtx, either, we only do it to prevent
859 mutex_lock(&ep
->mtx
);
860 while ((rbp
= rb_first_cached(&ep
->rbr
)) != NULL
) {
861 epi
= rb_entry(rbp
, struct epitem
, rbn
);
865 mutex_unlock(&ep
->mtx
);
867 mutex_unlock(&epmutex
);
868 mutex_destroy(&ep
->mtx
);
870 wakeup_source_unregister(ep
->ws
);
874 static int ep_eventpoll_release(struct inode
*inode
, struct file
*file
)
876 struct eventpoll
*ep
= file
->private_data
;
884 static inline unsigned int ep_item_poll(struct epitem
*epi
, poll_table
*pt
)
886 pt
->_key
= epi
->event
.events
;
888 return epi
->ffd
.file
->f_op
->poll(epi
->ffd
.file
, pt
) & epi
->event
.events
;
891 static int ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
894 struct epitem
*epi
, *tmp
;
897 init_poll_funcptr(&pt
, NULL
);
899 list_for_each_entry_safe(epi
, tmp
, head
, rdllink
) {
900 if (ep_item_poll(epi
, &pt
))
901 return POLLIN
| POLLRDNORM
;
904 * Item has been dropped into the ready list by the poll
905 * callback, but it's not actually ready, as far as
906 * caller requested events goes. We can remove it here.
908 __pm_relax(ep_wakeup_source(epi
));
909 list_del_init(&epi
->rdllink
);
916 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
919 struct readyevents_arg
{
920 struct eventpoll
*ep
;
924 static int ep_poll_readyevents_proc(void *priv
, void *cookie
, int call_nests
)
926 struct readyevents_arg
*arg
= priv
;
928 return ep_scan_ready_list(arg
->ep
, ep_read_events_proc
, NULL
,
929 call_nests
+ 1, arg
->locked
);
932 static unsigned int ep_eventpoll_poll(struct file
*file
, poll_table
*wait
)
935 struct eventpoll
*ep
= file
->private_data
;
936 struct readyevents_arg arg
;
939 * During ep_insert() we already hold the ep->mtx for the tfile.
940 * Prevent re-aquisition.
942 arg
.locked
= wait
&& (wait
->_qproc
== ep_ptable_queue_proc
);
945 /* Insert inside our poll wait queue */
946 poll_wait(file
, &ep
->poll_wait
, wait
);
949 * Proceed to find out if wanted events are really available inside
950 * the ready list. This need to be done under ep_call_nested()
951 * supervision, since the call to f_op->poll() done on listed files
952 * could re-enter here.
954 pollflags
= ep_call_nested(&poll_readywalk_ncalls
, EP_MAX_NESTS
,
955 ep_poll_readyevents_proc
, &arg
, ep
, current
);
957 return pollflags
!= -1 ? pollflags
: 0;
960 #ifdef CONFIG_PROC_FS
961 static void ep_show_fdinfo(struct seq_file
*m
, struct file
*f
)
963 struct eventpoll
*ep
= f
->private_data
;
966 mutex_lock(&ep
->mtx
);
967 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
968 struct epitem
*epi
= rb_entry(rbp
, struct epitem
, rbn
);
969 struct inode
*inode
= file_inode(epi
->ffd
.file
);
971 seq_printf(m
, "tfd: %8d events: %8x data: %16llx "
972 " pos:%lli ino:%lx sdev:%x\n",
973 epi
->ffd
.fd
, epi
->event
.events
,
974 (long long)epi
->event
.data
,
975 (long long)epi
->ffd
.file
->f_pos
,
976 inode
->i_ino
, inode
->i_sb
->s_dev
);
977 if (seq_has_overflowed(m
))
980 mutex_unlock(&ep
->mtx
);
984 /* File callbacks that implement the eventpoll file behaviour */
985 static const struct file_operations eventpoll_fops
= {
986 #ifdef CONFIG_PROC_FS
987 .show_fdinfo
= ep_show_fdinfo
,
989 .release
= ep_eventpoll_release
,
990 .poll
= ep_eventpoll_poll
,
991 .llseek
= noop_llseek
,
995 * This is called from eventpoll_release() to unlink files from the eventpoll
996 * interface. We need to have this facility to cleanup correctly files that are
997 * closed without being removed from the eventpoll interface.
999 void eventpoll_release_file(struct file
*file
)
1001 struct eventpoll
*ep
;
1002 struct epitem
*epi
, *next
;
1005 * We don't want to get "file->f_lock" because it is not
1006 * necessary. It is not necessary because we're in the "struct file"
1007 * cleanup path, and this means that no one is using this file anymore.
1008 * So, for example, epoll_ctl() cannot hit here since if we reach this
1009 * point, the file counter already went to zero and fget() would fail.
1010 * The only hit might come from ep_free() but by holding the mutex
1011 * will correctly serialize the operation. We do need to acquire
1012 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
1013 * from anywhere but ep_free().
1015 * Besides, ep_remove() acquires the lock, so we can't hold it here.
1017 mutex_lock(&epmutex
);
1018 list_for_each_entry_safe(epi
, next
, &file
->f_ep_links
, fllink
) {
1020 mutex_lock_nested(&ep
->mtx
, 0);
1022 mutex_unlock(&ep
->mtx
);
1024 mutex_unlock(&epmutex
);
1027 static int ep_alloc(struct eventpoll
**pep
)
1030 struct user_struct
*user
;
1031 struct eventpoll
*ep
;
1033 user
= get_current_user();
1035 ep
= kzalloc(sizeof(*ep
), GFP_KERNEL
);
1039 spin_lock_init(&ep
->lock
);
1040 mutex_init(&ep
->mtx
);
1041 init_waitqueue_head(&ep
->wq
);
1042 init_waitqueue_head(&ep
->poll_wait
);
1043 INIT_LIST_HEAD(&ep
->rdllist
);
1044 ep
->rbr
= RB_ROOT_CACHED
;
1045 ep
->ovflist
= EP_UNACTIVE_PTR
;
1058 * Search the file inside the eventpoll tree. The RB tree operations
1059 * are protected by the "mtx" mutex, and ep_find() must be called with
1062 static struct epitem
*ep_find(struct eventpoll
*ep
, struct file
*file
, int fd
)
1065 struct rb_node
*rbp
;
1066 struct epitem
*epi
, *epir
= NULL
;
1067 struct epoll_filefd ffd
;
1069 ep_set_ffd(&ffd
, file
, fd
);
1070 for (rbp
= ep
->rbr
.rb_root
.rb_node
; rbp
; ) {
1071 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1072 kcmp
= ep_cmp_ffd(&ffd
, &epi
->ffd
);
1074 rbp
= rbp
->rb_right
;
1086 #ifdef CONFIG_CHECKPOINT_RESTORE
1087 static struct epitem
*ep_find_tfd(struct eventpoll
*ep
, int tfd
, unsigned long toff
)
1089 struct rb_node
*rbp
;
1092 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1093 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1094 if (epi
->ffd
.fd
== tfd
) {
1106 struct file
*get_epoll_tfile_raw_ptr(struct file
*file
, int tfd
,
1109 struct file
*file_raw
;
1110 struct eventpoll
*ep
;
1113 if (!is_file_epoll(file
))
1114 return ERR_PTR(-EINVAL
);
1116 ep
= file
->private_data
;
1118 mutex_lock(&ep
->mtx
);
1119 epi
= ep_find_tfd(ep
, tfd
, toff
);
1121 file_raw
= epi
->ffd
.file
;
1123 file_raw
= ERR_PTR(-ENOENT
);
1124 mutex_unlock(&ep
->mtx
);
1128 #endif /* CONFIG_CHECKPOINT_RESTORE */
1131 * This is the callback that is passed to the wait queue wakeup
1132 * mechanism. It is called by the stored file descriptors when they
1133 * have events to report.
1135 static int ep_poll_callback(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1138 unsigned long flags
;
1139 struct epitem
*epi
= ep_item_from_wait(wait
);
1140 struct eventpoll
*ep
= epi
->ep
;
1143 spin_lock_irqsave(&ep
->lock
, flags
);
1145 ep_set_busy_poll_napi_id(epi
);
1148 * If the event mask does not contain any poll(2) event, we consider the
1149 * descriptor to be disabled. This condition is likely the effect of the
1150 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1151 * until the next EPOLL_CTL_MOD will be issued.
1153 if (!(epi
->event
.events
& ~EP_PRIVATE_BITS
))
1157 * Check the events coming with the callback. At this stage, not
1158 * every device reports the events in the "key" parameter of the
1159 * callback. We need to be able to handle both cases here, hence the
1160 * test for "key" != NULL before the event match test.
1162 if (key
&& !((unsigned long) key
& epi
->event
.events
))
1166 * If we are transferring events to userspace, we can hold no locks
1167 * (because we're accessing user memory, and because of linux f_op->poll()
1168 * semantics). All the events that happen during that period of time are
1169 * chained in ep->ovflist and requeued later on.
1171 if (unlikely(ep
->ovflist
!= EP_UNACTIVE_PTR
)) {
1172 if (epi
->next
== EP_UNACTIVE_PTR
) {
1173 epi
->next
= ep
->ovflist
;
1177 * Activate ep->ws since epi->ws may get
1178 * deactivated at any time.
1180 __pm_stay_awake(ep
->ws
);
1187 /* If this file is already in the ready list we exit soon */
1188 if (!ep_is_linked(&epi
->rdllink
)) {
1189 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1190 ep_pm_stay_awake_rcu(epi
);
1194 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1197 if (waitqueue_active(&ep
->wq
)) {
1198 if ((epi
->event
.events
& EPOLLEXCLUSIVE
) &&
1199 !((unsigned long)key
& POLLFREE
)) {
1200 switch ((unsigned long)key
& EPOLLINOUT_BITS
) {
1202 if (epi
->event
.events
& POLLIN
)
1206 if (epi
->event
.events
& POLLOUT
)
1214 wake_up_locked(&ep
->wq
);
1216 if (waitqueue_active(&ep
->poll_wait
))
1220 spin_unlock_irqrestore(&ep
->lock
, flags
);
1222 /* We have to call this outside the lock */
1224 ep_poll_safewake(&ep
->poll_wait
);
1226 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
))
1229 if ((unsigned long)key
& POLLFREE
) {
1231 * If we race with ep_remove_wait_queue() it can miss
1232 * ->whead = NULL and do another remove_wait_queue() after
1233 * us, so we can't use __remove_wait_queue().
1235 list_del_init(&wait
->entry
);
1237 * ->whead != NULL protects us from the race with ep_free()
1238 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1239 * held by the caller. Once we nullify it, nothing protects
1240 * ep/epi or even wait.
1242 smp_store_release(&ep_pwq_from_wait(wait
)->whead
, NULL
);
1249 * This is the callback that is used to add our wait queue to the
1250 * target file wakeup lists.
1252 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
1255 struct epitem
*epi
= ep_item_from_epqueue(pt
);
1256 struct eppoll_entry
*pwq
;
1258 if (epi
->nwait
>= 0 && (pwq
= kmem_cache_alloc(pwq_cache
, GFP_KERNEL
))) {
1259 init_waitqueue_func_entry(&pwq
->wait
, ep_poll_callback
);
1262 if (epi
->event
.events
& EPOLLEXCLUSIVE
)
1263 add_wait_queue_exclusive(whead
, &pwq
->wait
);
1265 add_wait_queue(whead
, &pwq
->wait
);
1266 list_add_tail(&pwq
->llink
, &epi
->pwqlist
);
1269 /* We have to signal that an error occurred */
1274 static void ep_rbtree_insert(struct eventpoll
*ep
, struct epitem
*epi
)
1277 struct rb_node
**p
= &ep
->rbr
.rb_root
.rb_node
, *parent
= NULL
;
1278 struct epitem
*epic
;
1279 bool leftmost
= true;
1283 epic
= rb_entry(parent
, struct epitem
, rbn
);
1284 kcmp
= ep_cmp_ffd(&epi
->ffd
, &epic
->ffd
);
1286 p
= &parent
->rb_right
;
1289 p
= &parent
->rb_left
;
1291 rb_link_node(&epi
->rbn
, parent
, p
);
1292 rb_insert_color_cached(&epi
->rbn
, &ep
->rbr
, leftmost
);
1297 #define PATH_ARR_SIZE 5
1299 * These are the number paths of length 1 to 5, that we are allowing to emanate
1300 * from a single file of interest. For example, we allow 1000 paths of length
1301 * 1, to emanate from each file of interest. This essentially represents the
1302 * potential wakeup paths, which need to be limited in order to avoid massive
1303 * uncontrolled wakeup storms. The common use case should be a single ep which
1304 * is connected to n file sources. In this case each file source has 1 path
1305 * of length 1. Thus, the numbers below should be more than sufficient. These
1306 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1307 * and delete can't add additional paths. Protected by the epmutex.
1309 static const int path_limits
[PATH_ARR_SIZE
] = { 1000, 500, 100, 50, 10 };
1310 static int path_count
[PATH_ARR_SIZE
];
1312 static int path_count_inc(int nests
)
1314 /* Allow an arbitrary number of depth 1 paths */
1318 if (++path_count
[nests
] > path_limits
[nests
])
1323 static void path_count_init(void)
1327 for (i
= 0; i
< PATH_ARR_SIZE
; i
++)
1331 static int reverse_path_check_proc(void *priv
, void *cookie
, int call_nests
)
1334 struct file
*file
= priv
;
1335 struct file
*child_file
;
1338 /* CTL_DEL can remove links here, but that can't increase our count */
1340 list_for_each_entry_rcu(epi
, &file
->f_ep_links
, fllink
) {
1341 child_file
= epi
->ep
->file
;
1342 if (is_file_epoll(child_file
)) {
1343 if (list_empty(&child_file
->f_ep_links
)) {
1344 if (path_count_inc(call_nests
)) {
1349 error
= ep_call_nested(&poll_loop_ncalls
,
1351 reverse_path_check_proc
,
1352 child_file
, child_file
,
1358 printk(KERN_ERR
"reverse_path_check_proc: "
1359 "file is not an ep!\n");
1367 * reverse_path_check - The tfile_check_list is list of file *, which have
1368 * links that are proposed to be newly added. We need to
1369 * make sure that those added links don't add too many
1370 * paths such that we will spend all our time waking up
1371 * eventpoll objects.
1373 * Returns: Returns zero if the proposed links don't create too many paths,
1376 static int reverse_path_check(void)
1379 struct file
*current_file
;
1381 /* let's call this for all tfiles */
1382 list_for_each_entry(current_file
, &tfile_check_list
, f_tfile_llink
) {
1384 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1385 reverse_path_check_proc
, current_file
,
1386 current_file
, current
);
1393 static int ep_create_wakeup_source(struct epitem
*epi
)
1396 struct wakeup_source
*ws
;
1399 epi
->ep
->ws
= wakeup_source_register("eventpoll");
1404 name
= epi
->ffd
.file
->f_path
.dentry
->d_name
.name
;
1405 ws
= wakeup_source_register(name
);
1409 rcu_assign_pointer(epi
->ws
, ws
);
1414 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1415 static noinline
void ep_destroy_wakeup_source(struct epitem
*epi
)
1417 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
1419 RCU_INIT_POINTER(epi
->ws
, NULL
);
1422 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1423 * used internally by wakeup_source_remove, too (called by
1424 * wakeup_source_unregister), so we cannot use call_rcu
1427 wakeup_source_unregister(ws
);
1431 * Must be called with "mtx" held.
1433 static int ep_insert(struct eventpoll
*ep
, struct epoll_event
*event
,
1434 struct file
*tfile
, int fd
, int full_check
)
1436 int error
, revents
, pwake
= 0;
1437 unsigned long flags
;
1440 struct ep_pqueue epq
;
1442 user_watches
= atomic_long_read(&ep
->user
->epoll_watches
);
1443 if (unlikely(user_watches
>= max_user_watches
))
1445 if (!(epi
= kmem_cache_alloc(epi_cache
, GFP_KERNEL
)))
1448 /* Item initialization follow here ... */
1449 INIT_LIST_HEAD(&epi
->rdllink
);
1450 INIT_LIST_HEAD(&epi
->fllink
);
1451 INIT_LIST_HEAD(&epi
->pwqlist
);
1453 ep_set_ffd(&epi
->ffd
, tfile
, fd
);
1454 epi
->event
= *event
;
1456 epi
->next
= EP_UNACTIVE_PTR
;
1457 if (epi
->event
.events
& EPOLLWAKEUP
) {
1458 error
= ep_create_wakeup_source(epi
);
1460 goto error_create_wakeup_source
;
1462 RCU_INIT_POINTER(epi
->ws
, NULL
);
1465 /* Initialize the poll table using the queue callback */
1467 init_poll_funcptr(&epq
.pt
, ep_ptable_queue_proc
);
1470 * Attach the item to the poll hooks and get current event bits.
1471 * We can safely use the file* here because its usage count has
1472 * been increased by the caller of this function. Note that after
1473 * this operation completes, the poll callback can start hitting
1476 revents
= ep_item_poll(epi
, &epq
.pt
);
1479 * We have to check if something went wrong during the poll wait queue
1480 * install process. Namely an allocation for a wait queue failed due
1481 * high memory pressure.
1485 goto error_unregister
;
1487 /* Add the current item to the list of active epoll hook for this file */
1488 spin_lock(&tfile
->f_lock
);
1489 list_add_tail_rcu(&epi
->fllink
, &tfile
->f_ep_links
);
1490 spin_unlock(&tfile
->f_lock
);
1493 * Add the current item to the RB tree. All RB tree operations are
1494 * protected by "mtx", and ep_insert() is called with "mtx" held.
1496 ep_rbtree_insert(ep
, epi
);
1498 /* now check if we've created too many backpaths */
1500 if (full_check
&& reverse_path_check())
1501 goto error_remove_epi
;
1503 /* We have to drop the new item inside our item list to keep track of it */
1504 spin_lock_irqsave(&ep
->lock
, flags
);
1506 /* record NAPI ID of new item if present */
1507 ep_set_busy_poll_napi_id(epi
);
1509 /* If the file is already "ready" we drop it inside the ready list */
1510 if ((revents
& event
->events
) && !ep_is_linked(&epi
->rdllink
)) {
1511 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1512 ep_pm_stay_awake(epi
);
1514 /* Notify waiting tasks that events are available */
1515 if (waitqueue_active(&ep
->wq
))
1516 wake_up_locked(&ep
->wq
);
1517 if (waitqueue_active(&ep
->poll_wait
))
1521 spin_unlock_irqrestore(&ep
->lock
, flags
);
1523 atomic_long_inc(&ep
->user
->epoll_watches
);
1525 /* We have to call this outside the lock */
1527 ep_poll_safewake(&ep
->poll_wait
);
1532 spin_lock(&tfile
->f_lock
);
1533 list_del_rcu(&epi
->fllink
);
1534 spin_unlock(&tfile
->f_lock
);
1536 rb_erase_cached(&epi
->rbn
, &ep
->rbr
);
1539 ep_unregister_pollwait(ep
, epi
);
1542 * We need to do this because an event could have been arrived on some
1543 * allocated wait queue. Note that we don't care about the ep->ovflist
1544 * list, since that is used/cleaned only inside a section bound by "mtx".
1545 * And ep_insert() is called with "mtx" held.
1547 spin_lock_irqsave(&ep
->lock
, flags
);
1548 if (ep_is_linked(&epi
->rdllink
))
1549 list_del_init(&epi
->rdllink
);
1550 spin_unlock_irqrestore(&ep
->lock
, flags
);
1552 wakeup_source_unregister(ep_wakeup_source(epi
));
1554 error_create_wakeup_source
:
1555 kmem_cache_free(epi_cache
, epi
);
1561 * Modify the interest event mask by dropping an event if the new mask
1562 * has a match in the current file status. Must be called with "mtx" held.
1564 static int ep_modify(struct eventpoll
*ep
, struct epitem
*epi
, struct epoll_event
*event
)
1567 unsigned int revents
;
1570 init_poll_funcptr(&pt
, NULL
);
1573 * Set the new event interest mask before calling f_op->poll();
1574 * otherwise we might miss an event that happens between the
1575 * f_op->poll() call and the new event set registering.
1577 epi
->event
.events
= event
->events
; /* need barrier below */
1578 epi
->event
.data
= event
->data
; /* protected by mtx */
1579 if (epi
->event
.events
& EPOLLWAKEUP
) {
1580 if (!ep_has_wakeup_source(epi
))
1581 ep_create_wakeup_source(epi
);
1582 } else if (ep_has_wakeup_source(epi
)) {
1583 ep_destroy_wakeup_source(epi
);
1587 * The following barrier has two effects:
1589 * 1) Flush epi changes above to other CPUs. This ensures
1590 * we do not miss events from ep_poll_callback if an
1591 * event occurs immediately after we call f_op->poll().
1592 * We need this because we did not take ep->lock while
1593 * changing epi above (but ep_poll_callback does take
1596 * 2) We also need to ensure we do not miss _past_ events
1597 * when calling f_op->poll(). This barrier also
1598 * pairs with the barrier in wq_has_sleeper (see
1599 * comments for wq_has_sleeper).
1601 * This barrier will now guarantee ep_poll_callback or f_op->poll
1602 * (or both) will notice the readiness of an item.
1607 * Get current event bits. We can safely use the file* here because
1608 * its usage count has been increased by the caller of this function.
1610 revents
= ep_item_poll(epi
, &pt
);
1613 * If the item is "hot" and it is not registered inside the ready
1614 * list, push it inside.
1616 if (revents
& event
->events
) {
1617 spin_lock_irq(&ep
->lock
);
1618 if (!ep_is_linked(&epi
->rdllink
)) {
1619 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1620 ep_pm_stay_awake(epi
);
1622 /* Notify waiting tasks that events are available */
1623 if (waitqueue_active(&ep
->wq
))
1624 wake_up_locked(&ep
->wq
);
1625 if (waitqueue_active(&ep
->poll_wait
))
1628 spin_unlock_irq(&ep
->lock
);
1631 /* We have to call this outside the lock */
1633 ep_poll_safewake(&ep
->poll_wait
);
1638 static int ep_send_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
1641 struct ep_send_events_data
*esed
= priv
;
1643 unsigned int revents
;
1645 struct epoll_event __user
*uevent
;
1646 struct wakeup_source
*ws
;
1649 init_poll_funcptr(&pt
, NULL
);
1652 * We can loop without lock because we are passed a task private list.
1653 * Items cannot vanish during the loop because ep_scan_ready_list() is
1654 * holding "mtx" during this call.
1656 for (eventcnt
= 0, uevent
= esed
->events
;
1657 !list_empty(head
) && eventcnt
< esed
->maxevents
;) {
1658 epi
= list_first_entry(head
, struct epitem
, rdllink
);
1661 * Activate ep->ws before deactivating epi->ws to prevent
1662 * triggering auto-suspend here (in case we reactive epi->ws
1665 * This could be rearranged to delay the deactivation of epi->ws
1666 * instead, but then epi->ws would temporarily be out of sync
1667 * with ep_is_linked().
1669 ws
= ep_wakeup_source(epi
);
1672 __pm_stay_awake(ep
->ws
);
1676 list_del_init(&epi
->rdllink
);
1678 revents
= ep_item_poll(epi
, &pt
);
1681 * If the event mask intersect the caller-requested one,
1682 * deliver the event to userspace. Again, ep_scan_ready_list()
1683 * is holding "mtx", so no operations coming from userspace
1684 * can change the item.
1687 if (__put_user(revents
, &uevent
->events
) ||
1688 __put_user(epi
->event
.data
, &uevent
->data
)) {
1689 list_add(&epi
->rdllink
, head
);
1690 ep_pm_stay_awake(epi
);
1691 return eventcnt
? eventcnt
: -EFAULT
;
1695 if (epi
->event
.events
& EPOLLONESHOT
)
1696 epi
->event
.events
&= EP_PRIVATE_BITS
;
1697 else if (!(epi
->event
.events
& EPOLLET
)) {
1699 * If this file has been added with Level
1700 * Trigger mode, we need to insert back inside
1701 * the ready list, so that the next call to
1702 * epoll_wait() will check again the events
1703 * availability. At this point, no one can insert
1704 * into ep->rdllist besides us. The epoll_ctl()
1705 * callers are locked out by
1706 * ep_scan_ready_list() holding "mtx" and the
1707 * poll callback will queue them in ep->ovflist.
1709 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1710 ep_pm_stay_awake(epi
);
1718 static int ep_send_events(struct eventpoll
*ep
,
1719 struct epoll_event __user
*events
, int maxevents
)
1721 struct ep_send_events_data esed
;
1723 esed
.maxevents
= maxevents
;
1724 esed
.events
= events
;
1726 return ep_scan_ready_list(ep
, ep_send_events_proc
, &esed
, 0, false);
1729 static inline struct timespec64
ep_set_mstimeout(long ms
)
1731 struct timespec64 now
, ts
= {
1732 .tv_sec
= ms
/ MSEC_PER_SEC
,
1733 .tv_nsec
= NSEC_PER_MSEC
* (ms
% MSEC_PER_SEC
),
1736 ktime_get_ts64(&now
);
1737 return timespec64_add_safe(now
, ts
);
1741 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1744 * @ep: Pointer to the eventpoll context.
1745 * @events: Pointer to the userspace buffer where the ready events should be
1747 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1748 * @timeout: Maximum timeout for the ready events fetch operation, in
1749 * milliseconds. If the @timeout is zero, the function will not block,
1750 * while if the @timeout is less than zero, the function will block
1751 * until at least one event has been retrieved (or an error
1754 * Returns: Returns the number of ready events which have been fetched, or an
1755 * error code, in case of error.
1757 static int ep_poll(struct eventpoll
*ep
, struct epoll_event __user
*events
,
1758 int maxevents
, long timeout
)
1760 int res
= 0, eavail
, timed_out
= 0;
1761 unsigned long flags
;
1763 wait_queue_entry_t wait
;
1764 ktime_t expires
, *to
= NULL
;
1767 struct timespec64 end_time
= ep_set_mstimeout(timeout
);
1769 slack
= select_estimate_accuracy(&end_time
);
1771 *to
= timespec64_to_ktime(end_time
);
1772 } else if (timeout
== 0) {
1774 * Avoid the unnecessary trip to the wait queue loop, if the
1775 * caller specified a non blocking operation.
1778 spin_lock_irqsave(&ep
->lock
, flags
);
1784 if (!ep_events_available(ep
))
1785 ep_busy_loop(ep
, timed_out
);
1787 spin_lock_irqsave(&ep
->lock
, flags
);
1789 if (!ep_events_available(ep
)) {
1791 * Busy poll timed out. Drop NAPI ID for now, we can add
1792 * it back in when we have moved a socket with a valid NAPI
1793 * ID onto the ready list.
1795 ep_reset_busy_poll_napi_id(ep
);
1798 * We don't have any available event to return to the caller.
1799 * We need to sleep here, and we will be wake up by
1800 * ep_poll_callback() when events will become available.
1802 init_waitqueue_entry(&wait
, current
);
1803 __add_wait_queue_exclusive(&ep
->wq
, &wait
);
1807 * We don't want to sleep if the ep_poll_callback() sends us
1808 * a wakeup in between. That's why we set the task state
1809 * to TASK_INTERRUPTIBLE before doing the checks.
1811 set_current_state(TASK_INTERRUPTIBLE
);
1813 * Always short-circuit for fatal signals to allow
1814 * threads to make a timely exit without the chance of
1815 * finding more events available and fetching
1818 if (fatal_signal_pending(current
)) {
1822 if (ep_events_available(ep
) || timed_out
)
1824 if (signal_pending(current
)) {
1829 spin_unlock_irqrestore(&ep
->lock
, flags
);
1830 if (!freezable_schedule_hrtimeout_range(to
, slack
,
1834 spin_lock_irqsave(&ep
->lock
, flags
);
1837 __remove_wait_queue(&ep
->wq
, &wait
);
1838 __set_current_state(TASK_RUNNING
);
1841 /* Is it worth to try to dig for events ? */
1842 eavail
= ep_events_available(ep
);
1844 spin_unlock_irqrestore(&ep
->lock
, flags
);
1847 * Try to transfer events to user space. In case we get 0 events and
1848 * there's still timeout left over, we go trying again in search of
1851 if (!res
&& eavail
&&
1852 !(res
= ep_send_events(ep
, events
, maxevents
)) && !timed_out
)
1859 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1860 * API, to verify that adding an epoll file inside another
1861 * epoll structure, does not violate the constraints, in
1862 * terms of closed loops, or too deep chains (which can
1863 * result in excessive stack usage).
1865 * @priv: Pointer to the epoll file to be currently checked.
1866 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1867 * data structure pointer.
1868 * @call_nests: Current dept of the @ep_call_nested() call stack.
1870 * Returns: Returns zero if adding the epoll @file inside current epoll
1871 * structure @ep does not violate the constraints, or -1 otherwise.
1873 static int ep_loop_check_proc(void *priv
, void *cookie
, int call_nests
)
1876 struct file
*file
= priv
;
1877 struct eventpoll
*ep
= file
->private_data
;
1878 struct eventpoll
*ep_tovisit
;
1879 struct rb_node
*rbp
;
1882 mutex_lock_nested(&ep
->mtx
, call_nests
+ 1);
1884 list_add(&ep
->visited_list_link
, &visited_list
);
1885 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1886 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1887 if (unlikely(is_file_epoll(epi
->ffd
.file
))) {
1888 ep_tovisit
= epi
->ffd
.file
->private_data
;
1889 if (ep_tovisit
->visited
)
1891 error
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1892 ep_loop_check_proc
, epi
->ffd
.file
,
1893 ep_tovisit
, current
);
1898 * If we've reached a file that is not associated with
1899 * an ep, then we need to check if the newly added
1900 * links are going to add too many wakeup paths. We do
1901 * this by adding it to the tfile_check_list, if it's
1902 * not already there, and calling reverse_path_check()
1903 * during ep_insert().
1905 if (list_empty(&epi
->ffd
.file
->f_tfile_llink
))
1906 list_add(&epi
->ffd
.file
->f_tfile_llink
,
1910 mutex_unlock(&ep
->mtx
);
1916 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1917 * another epoll file (represented by @ep) does not create
1918 * closed loops or too deep chains.
1920 * @ep: Pointer to the epoll private data structure.
1921 * @file: Pointer to the epoll file to be checked.
1923 * Returns: Returns zero if adding the epoll @file inside current epoll
1924 * structure @ep does not violate the constraints, or -1 otherwise.
1926 static int ep_loop_check(struct eventpoll
*ep
, struct file
*file
)
1929 struct eventpoll
*ep_cur
, *ep_next
;
1931 ret
= ep_call_nested(&poll_loop_ncalls
, EP_MAX_NESTS
,
1932 ep_loop_check_proc
, file
, ep
, current
);
1933 /* clear visited list */
1934 list_for_each_entry_safe(ep_cur
, ep_next
, &visited_list
,
1935 visited_list_link
) {
1936 ep_cur
->visited
= 0;
1937 list_del(&ep_cur
->visited_list_link
);
1942 static void clear_tfile_check_list(void)
1946 /* first clear the tfile_check_list */
1947 while (!list_empty(&tfile_check_list
)) {
1948 file
= list_first_entry(&tfile_check_list
, struct file
,
1950 list_del_init(&file
->f_tfile_llink
);
1952 INIT_LIST_HEAD(&tfile_check_list
);
1956 * Open an eventpoll file descriptor.
1958 SYSCALL_DEFINE1(epoll_create1
, int, flags
)
1961 struct eventpoll
*ep
= NULL
;
1964 /* Check the EPOLL_* constant for consistency. */
1965 BUILD_BUG_ON(EPOLL_CLOEXEC
!= O_CLOEXEC
);
1967 if (flags
& ~EPOLL_CLOEXEC
)
1970 * Create the internal data structure ("struct eventpoll").
1972 error
= ep_alloc(&ep
);
1976 * Creates all the items needed to setup an eventpoll file. That is,
1977 * a file structure and a free file descriptor.
1979 fd
= get_unused_fd_flags(O_RDWR
| (flags
& O_CLOEXEC
));
1984 file
= anon_inode_getfile("[eventpoll]", &eventpoll_fops
, ep
,
1985 O_RDWR
| (flags
& O_CLOEXEC
));
1987 error
= PTR_ERR(file
);
1991 fd_install(fd
, file
);
2001 SYSCALL_DEFINE1(epoll_create
, int, size
)
2006 return sys_epoll_create1(0);
2010 * The following function implements the controller interface for
2011 * the eventpoll file that enables the insertion/removal/change of
2012 * file descriptors inside the interest set.
2014 SYSCALL_DEFINE4(epoll_ctl
, int, epfd
, int, op
, int, fd
,
2015 struct epoll_event __user
*, event
)
2020 struct eventpoll
*ep
;
2022 struct epoll_event epds
;
2023 struct eventpoll
*tep
= NULL
;
2026 if (ep_op_has_event(op
) &&
2027 copy_from_user(&epds
, event
, sizeof(struct epoll_event
)))
2035 /* Get the "struct file *" for the target file */
2040 /* The target file descriptor must support poll */
2042 if (!tf
.file
->f_op
->poll
)
2043 goto error_tgt_fput
;
2045 /* Check if EPOLLWAKEUP is allowed */
2046 if (ep_op_has_event(op
))
2047 ep_take_care_of_epollwakeup(&epds
);
2050 * We have to check that the file structure underneath the file descriptor
2051 * the user passed to us _is_ an eventpoll file. And also we do not permit
2052 * adding an epoll file descriptor inside itself.
2055 if (f
.file
== tf
.file
|| !is_file_epoll(f
.file
))
2056 goto error_tgt_fput
;
2059 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2060 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2061 * Also, we do not currently supported nested exclusive wakeups.
2063 if (ep_op_has_event(op
) && (epds
.events
& EPOLLEXCLUSIVE
)) {
2064 if (op
== EPOLL_CTL_MOD
)
2065 goto error_tgt_fput
;
2066 if (op
== EPOLL_CTL_ADD
&& (is_file_epoll(tf
.file
) ||
2067 (epds
.events
& ~EPOLLEXCLUSIVE_OK_BITS
)))
2068 goto error_tgt_fput
;
2072 * At this point it is safe to assume that the "private_data" contains
2073 * our own data structure.
2075 ep
= f
.file
->private_data
;
2078 * When we insert an epoll file descriptor, inside another epoll file
2079 * descriptor, there is the change of creating closed loops, which are
2080 * better be handled here, than in more critical paths. While we are
2081 * checking for loops we also determine the list of files reachable
2082 * and hang them on the tfile_check_list, so we can check that we
2083 * haven't created too many possible wakeup paths.
2085 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2086 * the epoll file descriptor is attaching directly to a wakeup source,
2087 * unless the epoll file descriptor is nested. The purpose of taking the
2088 * 'epmutex' on add is to prevent complex toplogies such as loops and
2089 * deep wakeup paths from forming in parallel through multiple
2090 * EPOLL_CTL_ADD operations.
2092 mutex_lock_nested(&ep
->mtx
, 0);
2093 if (op
== EPOLL_CTL_ADD
) {
2094 if (!list_empty(&f
.file
->f_ep_links
) ||
2095 is_file_epoll(tf
.file
)) {
2097 mutex_unlock(&ep
->mtx
);
2098 mutex_lock(&epmutex
);
2099 if (is_file_epoll(tf
.file
)) {
2101 if (ep_loop_check(ep
, tf
.file
) != 0) {
2102 clear_tfile_check_list();
2103 goto error_tgt_fput
;
2106 list_add(&tf
.file
->f_tfile_llink
,
2108 mutex_lock_nested(&ep
->mtx
, 0);
2109 if (is_file_epoll(tf
.file
)) {
2110 tep
= tf
.file
->private_data
;
2111 mutex_lock_nested(&tep
->mtx
, 1);
2117 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2118 * above, we can be sure to be able to use the item looked up by
2119 * ep_find() till we release the mutex.
2121 epi
= ep_find(ep
, tf
.file
, fd
);
2127 epds
.events
|= POLLERR
| POLLHUP
;
2128 error
= ep_insert(ep
, &epds
, tf
.file
, fd
, full_check
);
2132 clear_tfile_check_list();
2136 error
= ep_remove(ep
, epi
);
2142 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
)) {
2143 epds
.events
|= POLLERR
| POLLHUP
;
2144 error
= ep_modify(ep
, epi
, &epds
);
2151 mutex_unlock(&tep
->mtx
);
2152 mutex_unlock(&ep
->mtx
);
2156 mutex_unlock(&epmutex
);
2167 * Implement the event wait interface for the eventpoll file. It is the kernel
2168 * part of the user space epoll_wait(2).
2170 SYSCALL_DEFINE4(epoll_wait
, int, epfd
, struct epoll_event __user
*, events
,
2171 int, maxevents
, int, timeout
)
2175 struct eventpoll
*ep
;
2177 /* The maximum number of event must be greater than zero */
2178 if (maxevents
<= 0 || maxevents
> EP_MAX_EVENTS
)
2181 /* Verify that the area passed by the user is writeable */
2182 if (!access_ok(VERIFY_WRITE
, events
, maxevents
* sizeof(struct epoll_event
)))
2185 /* Get the "struct file *" for the eventpoll file */
2191 * We have to check that the file structure underneath the fd
2192 * the user passed to us _is_ an eventpoll file.
2195 if (!is_file_epoll(f
.file
))
2199 * At this point it is safe to assume that the "private_data" contains
2200 * our own data structure.
2202 ep
= f
.file
->private_data
;
2204 /* Time to fish for events ... */
2205 error
= ep_poll(ep
, events
, maxevents
, timeout
);
2213 * Implement the event wait interface for the eventpoll file. It is the kernel
2214 * part of the user space epoll_pwait(2).
2216 SYSCALL_DEFINE6(epoll_pwait
, int, epfd
, struct epoll_event __user
*, events
,
2217 int, maxevents
, int, timeout
, const sigset_t __user
*, sigmask
,
2221 sigset_t ksigmask
, sigsaved
;
2224 * If the caller wants a certain signal mask to be set during the wait,
2228 if (sigsetsize
!= sizeof(sigset_t
))
2230 if (copy_from_user(&ksigmask
, sigmask
, sizeof(ksigmask
)))
2232 sigsaved
= current
->blocked
;
2233 set_current_blocked(&ksigmask
);
2236 error
= sys_epoll_wait(epfd
, events
, maxevents
, timeout
);
2239 * If we changed the signal mask, we need to restore the original one.
2240 * In case we've got a signal while waiting, we do not restore the
2241 * signal mask yet, and we allow do_signal() to deliver the signal on
2242 * the way back to userspace, before the signal mask is restored.
2245 if (error
== -EINTR
) {
2246 memcpy(¤t
->saved_sigmask
, &sigsaved
,
2248 set_restore_sigmask();
2250 set_current_blocked(&sigsaved
);
2256 #ifdef CONFIG_COMPAT
2257 COMPAT_SYSCALL_DEFINE6(epoll_pwait
, int, epfd
,
2258 struct epoll_event __user
*, events
,
2259 int, maxevents
, int, timeout
,
2260 const compat_sigset_t __user
*, sigmask
,
2261 compat_size_t
, sigsetsize
)
2264 compat_sigset_t csigmask
;
2265 sigset_t ksigmask
, sigsaved
;
2268 * If the caller wants a certain signal mask to be set during the wait,
2272 if (sigsetsize
!= sizeof(compat_sigset_t
))
2274 if (copy_from_user(&csigmask
, sigmask
, sizeof(csigmask
)))
2276 sigset_from_compat(&ksigmask
, &csigmask
);
2277 sigsaved
= current
->blocked
;
2278 set_current_blocked(&ksigmask
);
2281 err
= sys_epoll_wait(epfd
, events
, maxevents
, timeout
);
2284 * If we changed the signal mask, we need to restore the original one.
2285 * In case we've got a signal while waiting, we do not restore the
2286 * signal mask yet, and we allow do_signal() to deliver the signal on
2287 * the way back to userspace, before the signal mask is restored.
2290 if (err
== -EINTR
) {
2291 memcpy(¤t
->saved_sigmask
, &sigsaved
,
2293 set_restore_sigmask();
2295 set_current_blocked(&sigsaved
);
2302 static int __init
eventpoll_init(void)
2308 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2310 max_user_watches
= (((si
.totalram
- si
.totalhigh
) / 25) << PAGE_SHIFT
) /
2312 BUG_ON(max_user_watches
< 0);
2315 * Initialize the structure used to perform epoll file descriptor
2316 * inclusion loops checks.
2318 ep_nested_calls_init(&poll_loop_ncalls
);
2320 /* Initialize the structure used to perform safe poll wait head wake ups */
2321 ep_nested_calls_init(&poll_safewake_ncalls
);
2323 /* Initialize the structure used to perform file's f_op->poll() calls */
2324 ep_nested_calls_init(&poll_readywalk_ncalls
);
2327 * We can have many thousands of epitems, so prevent this from
2328 * using an extra cache line on 64-bit (and smaller) CPUs
2330 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem
) > 128);
2332 /* Allocates slab cache used to allocate "struct epitem" items */
2333 epi_cache
= kmem_cache_create("eventpoll_epi", sizeof(struct epitem
),
2334 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
2336 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2337 pwq_cache
= kmem_cache_create("eventpoll_pwq",
2338 sizeof(struct eppoll_entry
), 0, SLAB_PANIC
, NULL
);
2342 fs_initcall(eventpoll_init
);