Merge 4.14.65 into android-4.14-p
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / fs / eventpoll.c
1 /*
2 * fs/eventpoll.c (Efficient event retrieval implementation)
3 * Copyright (C) 2001,...,2009 Davide Libenzi
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * Davide Libenzi <davidel@xmailserver.org>
11 *
12 */
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/signal.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/freezer.h>
38 #include <linux/uaccess.h>
39 #include <asm/io.h>
40 #include <asm/mman.h>
41 #include <linux/atomic.h>
42 #include <linux/proc_fs.h>
43 #include <linux/seq_file.h>
44 #include <linux/compat.h>
45 #include <linux/rculist.h>
46 #include <net/busy_poll.h>
47
48 /*
49 * LOCKING:
50 * There are three level of locking required by epoll :
51 *
52 * 1) epmutex (mutex)
53 * 2) ep->mtx (mutex)
54 * 3) ep->lock (spinlock)
55 *
56 * The acquire order is the one listed above, from 1 to 3.
57 * We need a spinlock (ep->lock) because we manipulate objects
58 * from inside the poll callback, that might be triggered from
59 * a wake_up() that in turn might be called from IRQ context.
60 * So we can't sleep inside the poll callback and hence we need
61 * a spinlock. During the event transfer loop (from kernel to
62 * user space) we could end up sleeping due a copy_to_user(), so
63 * we need a lock that will allow us to sleep. This lock is a
64 * mutex (ep->mtx). It is acquired during the event transfer loop,
65 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
66 * Then we also need a global mutex to serialize eventpoll_release_file()
67 * and ep_free().
68 * This mutex is acquired by ep_free() during the epoll file
69 * cleanup path and it is also acquired by eventpoll_release_file()
70 * if a file has been pushed inside an epoll set and it is then
71 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
72 * It is also acquired when inserting an epoll fd onto another epoll
73 * fd. We do this so that we walk the epoll tree and ensure that this
74 * insertion does not create a cycle of epoll file descriptors, which
75 * could lead to deadlock. We need a global mutex to prevent two
76 * simultaneous inserts (A into B and B into A) from racing and
77 * constructing a cycle without either insert observing that it is
78 * going to.
79 * It is necessary to acquire multiple "ep->mtx"es at once in the
80 * case when one epoll fd is added to another. In this case, we
81 * always acquire the locks in the order of nesting (i.e. after
82 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
83 * before e2->mtx). Since we disallow cycles of epoll file
84 * descriptors, this ensures that the mutexes are well-ordered. In
85 * order to communicate this nesting to lockdep, when walking a tree
86 * of epoll file descriptors, we use the current recursion depth as
87 * the lockdep subkey.
88 * It is possible to drop the "ep->mtx" and to use the global
89 * mutex "epmutex" (together with "ep->lock") to have it working,
90 * but having "ep->mtx" will make the interface more scalable.
91 * Events that require holding "epmutex" are very rare, while for
92 * normal operations the epoll private "ep->mtx" will guarantee
93 * a better scalability.
94 */
95
96 /* Epoll private bits inside the event mask */
97 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
98
99 #define EPOLLINOUT_BITS (POLLIN | POLLOUT)
100
101 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | POLLERR | POLLHUP | \
102 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
103
104 /* Maximum number of nesting allowed inside epoll sets */
105 #define EP_MAX_NESTS 4
106
107 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
108
109 #define EP_UNACTIVE_PTR ((void *) -1L)
110
111 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
112
113 struct epoll_filefd {
114 struct file *file;
115 int fd;
116 } __packed;
117
118 /*
119 * Structure used to track possible nested calls, for too deep recursions
120 * and loop cycles.
121 */
122 struct nested_call_node {
123 struct list_head llink;
124 void *cookie;
125 void *ctx;
126 };
127
128 /*
129 * This structure is used as collector for nested calls, to check for
130 * maximum recursion dept and loop cycles.
131 */
132 struct nested_calls {
133 struct list_head tasks_call_list;
134 spinlock_t lock;
135 };
136
137 /*
138 * Each file descriptor added to the eventpoll interface will
139 * have an entry of this type linked to the "rbr" RB tree.
140 * Avoid increasing the size of this struct, there can be many thousands
141 * of these on a server and we do not want this to take another cache line.
142 */
143 struct epitem {
144 union {
145 /* RB tree node links this structure to the eventpoll RB tree */
146 struct rb_node rbn;
147 /* Used to free the struct epitem */
148 struct rcu_head rcu;
149 };
150
151 /* List header used to link this structure to the eventpoll ready list */
152 struct list_head rdllink;
153
154 /*
155 * Works together "struct eventpoll"->ovflist in keeping the
156 * single linked chain of items.
157 */
158 struct epitem *next;
159
160 /* The file descriptor information this item refers to */
161 struct epoll_filefd ffd;
162
163 /* Number of active wait queue attached to poll operations */
164 int nwait;
165
166 /* List containing poll wait queues */
167 struct list_head pwqlist;
168
169 /* The "container" of this item */
170 struct eventpoll *ep;
171
172 /* List header used to link this item to the "struct file" items list */
173 struct list_head fllink;
174
175 /* wakeup_source used when EPOLLWAKEUP is set */
176 struct wakeup_source __rcu *ws;
177
178 /* The structure that describe the interested events and the source fd */
179 struct epoll_event event;
180 };
181
182 /*
183 * This structure is stored inside the "private_data" member of the file
184 * structure and represents the main data structure for the eventpoll
185 * interface.
186 */
187 struct eventpoll {
188 /* Protect the access to this structure */
189 spinlock_t lock;
190
191 /*
192 * This mutex is used to ensure that files are not removed
193 * while epoll is using them. This is held during the event
194 * collection loop, the file cleanup path, the epoll file exit
195 * code and the ctl operations.
196 */
197 struct mutex mtx;
198
199 /* Wait queue used by sys_epoll_wait() */
200 wait_queue_head_t wq;
201
202 /* Wait queue used by file->poll() */
203 wait_queue_head_t poll_wait;
204
205 /* List of ready file descriptors */
206 struct list_head rdllist;
207
208 /* RB tree root used to store monitored fd structs */
209 struct rb_root_cached rbr;
210
211 /*
212 * This is a single linked list that chains all the "struct epitem" that
213 * happened while transferring ready events to userspace w/out
214 * holding ->lock.
215 */
216 struct epitem *ovflist;
217
218 /* wakeup_source used when ep_scan_ready_list is running */
219 struct wakeup_source *ws;
220
221 /* The user that created the eventpoll descriptor */
222 struct user_struct *user;
223
224 struct file *file;
225
226 /* used to optimize loop detection check */
227 int visited;
228 struct list_head visited_list_link;
229
230 #ifdef CONFIG_NET_RX_BUSY_POLL
231 /* used to track busy poll napi_id */
232 unsigned int napi_id;
233 #endif
234 };
235
236 /* Wait structure used by the poll hooks */
237 struct eppoll_entry {
238 /* List header used to link this structure to the "struct epitem" */
239 struct list_head llink;
240
241 /* The "base" pointer is set to the container "struct epitem" */
242 struct epitem *base;
243
244 /*
245 * Wait queue item that will be linked to the target file wait
246 * queue head.
247 */
248 wait_queue_entry_t wait;
249
250 /* The wait queue head that linked the "wait" wait queue item */
251 wait_queue_head_t *whead;
252 };
253
254 /* Wrapper struct used by poll queueing */
255 struct ep_pqueue {
256 poll_table pt;
257 struct epitem *epi;
258 };
259
260 /* Used by the ep_send_events() function as callback private data */
261 struct ep_send_events_data {
262 int maxevents;
263 struct epoll_event __user *events;
264 };
265
266 /*
267 * Configuration options available inside /proc/sys/fs/epoll/
268 */
269 /* Maximum number of epoll watched descriptors, per user */
270 static long max_user_watches __read_mostly;
271
272 /*
273 * This mutex is used to serialize ep_free() and eventpoll_release_file().
274 */
275 static DEFINE_MUTEX(epmutex);
276
277 /* Used to check for epoll file descriptor inclusion loops */
278 static struct nested_calls poll_loop_ncalls;
279
280 /* Used for safe wake up implementation */
281 static struct nested_calls poll_safewake_ncalls;
282
283 /* Used to call file's f_op->poll() under the nested calls boundaries */
284 static struct nested_calls poll_readywalk_ncalls;
285
286 /* Slab cache used to allocate "struct epitem" */
287 static struct kmem_cache *epi_cache __read_mostly;
288
289 /* Slab cache used to allocate "struct eppoll_entry" */
290 static struct kmem_cache *pwq_cache __read_mostly;
291
292 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
293 static LIST_HEAD(visited_list);
294
295 /*
296 * List of files with newly added links, where we may need to limit the number
297 * of emanating paths. Protected by the epmutex.
298 */
299 static LIST_HEAD(tfile_check_list);
300
301 #ifdef CONFIG_SYSCTL
302
303 #include <linux/sysctl.h>
304
305 static long zero;
306 static long long_max = LONG_MAX;
307
308 struct ctl_table epoll_table[] = {
309 {
310 .procname = "max_user_watches",
311 .data = &max_user_watches,
312 .maxlen = sizeof(max_user_watches),
313 .mode = 0644,
314 .proc_handler = proc_doulongvec_minmax,
315 .extra1 = &zero,
316 .extra2 = &long_max,
317 },
318 { }
319 };
320 #endif /* CONFIG_SYSCTL */
321
322 static const struct file_operations eventpoll_fops;
323
324 static inline int is_file_epoll(struct file *f)
325 {
326 return f->f_op == &eventpoll_fops;
327 }
328
329 /* Setup the structure that is used as key for the RB tree */
330 static inline void ep_set_ffd(struct epoll_filefd *ffd,
331 struct file *file, int fd)
332 {
333 ffd->file = file;
334 ffd->fd = fd;
335 }
336
337 /* Compare RB tree keys */
338 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
339 struct epoll_filefd *p2)
340 {
341 return (p1->file > p2->file ? +1:
342 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
343 }
344
345 /* Tells us if the item is currently linked */
346 static inline int ep_is_linked(struct list_head *p)
347 {
348 return !list_empty(p);
349 }
350
351 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
352 {
353 return container_of(p, struct eppoll_entry, wait);
354 }
355
356 /* Get the "struct epitem" from a wait queue pointer */
357 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
358 {
359 return container_of(p, struct eppoll_entry, wait)->base;
360 }
361
362 /* Get the "struct epitem" from an epoll queue wrapper */
363 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
364 {
365 return container_of(p, struct ep_pqueue, pt)->epi;
366 }
367
368 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
369 static inline int ep_op_has_event(int op)
370 {
371 return op != EPOLL_CTL_DEL;
372 }
373
374 /* Initialize the poll safe wake up structure */
375 static void ep_nested_calls_init(struct nested_calls *ncalls)
376 {
377 INIT_LIST_HEAD(&ncalls->tasks_call_list);
378 spin_lock_init(&ncalls->lock);
379 }
380
381 /**
382 * ep_events_available - Checks if ready events might be available.
383 *
384 * @ep: Pointer to the eventpoll context.
385 *
386 * Returns: Returns a value different than zero if ready events are available,
387 * or zero otherwise.
388 */
389 static inline int ep_events_available(struct eventpoll *ep)
390 {
391 return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
392 }
393
394 #ifdef CONFIG_NET_RX_BUSY_POLL
395 static bool ep_busy_loop_end(void *p, unsigned long start_time)
396 {
397 struct eventpoll *ep = p;
398
399 return ep_events_available(ep) || busy_loop_timeout(start_time);
400 }
401 #endif /* CONFIG_NET_RX_BUSY_POLL */
402
403 /*
404 * Busy poll if globally on and supporting sockets found && no events,
405 * busy loop will return if need_resched or ep_events_available.
406 *
407 * we must do our busy polling with irqs enabled
408 */
409 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
410 {
411 #ifdef CONFIG_NET_RX_BUSY_POLL
412 unsigned int napi_id = READ_ONCE(ep->napi_id);
413
414 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
415 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
416 #endif
417 }
418
419 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
420 {
421 #ifdef CONFIG_NET_RX_BUSY_POLL
422 if (ep->napi_id)
423 ep->napi_id = 0;
424 #endif
425 }
426
427 /*
428 * Set epoll busy poll NAPI ID from sk.
429 */
430 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
431 {
432 #ifdef CONFIG_NET_RX_BUSY_POLL
433 struct eventpoll *ep;
434 unsigned int napi_id;
435 struct socket *sock;
436 struct sock *sk;
437 int err;
438
439 if (!net_busy_loop_on())
440 return;
441
442 sock = sock_from_file(epi->ffd.file, &err);
443 if (!sock)
444 return;
445
446 sk = sock->sk;
447 if (!sk)
448 return;
449
450 napi_id = READ_ONCE(sk->sk_napi_id);
451 ep = epi->ep;
452
453 /* Non-NAPI IDs can be rejected
454 * or
455 * Nothing to do if we already have this ID
456 */
457 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
458 return;
459
460 /* record NAPI ID for use in next busy poll */
461 ep->napi_id = napi_id;
462 #endif
463 }
464
465 /**
466 * ep_call_nested - Perform a bound (possibly) nested call, by checking
467 * that the recursion limit is not exceeded, and that
468 * the same nested call (by the meaning of same cookie) is
469 * no re-entered.
470 *
471 * @ncalls: Pointer to the nested_calls structure to be used for this call.
472 * @max_nests: Maximum number of allowed nesting calls.
473 * @nproc: Nested call core function pointer.
474 * @priv: Opaque data to be passed to the @nproc callback.
475 * @cookie: Cookie to be used to identify this nested call.
476 * @ctx: This instance context.
477 *
478 * Returns: Returns the code returned by the @nproc callback, or -1 if
479 * the maximum recursion limit has been exceeded.
480 */
481 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
482 int (*nproc)(void *, void *, int), void *priv,
483 void *cookie, void *ctx)
484 {
485 int error, call_nests = 0;
486 unsigned long flags;
487 struct list_head *lsthead = &ncalls->tasks_call_list;
488 struct nested_call_node *tncur;
489 struct nested_call_node tnode;
490
491 spin_lock_irqsave(&ncalls->lock, flags);
492
493 /*
494 * Try to see if the current task is already inside this wakeup call.
495 * We use a list here, since the population inside this set is always
496 * very much limited.
497 */
498 list_for_each_entry(tncur, lsthead, llink) {
499 if (tncur->ctx == ctx &&
500 (tncur->cookie == cookie || ++call_nests > max_nests)) {
501 /*
502 * Ops ... loop detected or maximum nest level reached.
503 * We abort this wake by breaking the cycle itself.
504 */
505 error = -1;
506 goto out_unlock;
507 }
508 }
509
510 /* Add the current task and cookie to the list */
511 tnode.ctx = ctx;
512 tnode.cookie = cookie;
513 list_add(&tnode.llink, lsthead);
514
515 spin_unlock_irqrestore(&ncalls->lock, flags);
516
517 /* Call the nested function */
518 error = (*nproc)(priv, cookie, call_nests);
519
520 /* Remove the current task from the list */
521 spin_lock_irqsave(&ncalls->lock, flags);
522 list_del(&tnode.llink);
523 out_unlock:
524 spin_unlock_irqrestore(&ncalls->lock, flags);
525
526 return error;
527 }
528
529 /*
530 * As described in commit 0ccf831cb lockdep: annotate epoll
531 * the use of wait queues used by epoll is done in a very controlled
532 * manner. Wake ups can nest inside each other, but are never done
533 * with the same locking. For example:
534 *
535 * dfd = socket(...);
536 * efd1 = epoll_create();
537 * efd2 = epoll_create();
538 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
539 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
540 *
541 * When a packet arrives to the device underneath "dfd", the net code will
542 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
543 * callback wakeup entry on that queue, and the wake_up() performed by the
544 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
545 * (efd1) notices that it may have some event ready, so it needs to wake up
546 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
547 * that ends up in another wake_up(), after having checked about the
548 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
549 * avoid stack blasting.
550 *
551 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
552 * this special case of epoll.
553 */
554 #ifdef CONFIG_DEBUG_LOCK_ALLOC
555 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
556 unsigned long events, int subclass)
557 {
558 unsigned long flags;
559
560 spin_lock_irqsave_nested(&wqueue->lock, flags, subclass);
561 wake_up_locked_poll(wqueue, events);
562 spin_unlock_irqrestore(&wqueue->lock, flags);
563 }
564 #else
565 static inline void ep_wake_up_nested(wait_queue_head_t *wqueue,
566 unsigned long events, int subclass)
567 {
568 wake_up_poll(wqueue, events);
569 }
570 #endif
571
572 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
573 {
574 ep_wake_up_nested((wait_queue_head_t *) cookie, POLLIN,
575 1 + call_nests);
576 return 0;
577 }
578
579 /*
580 * Perform a safe wake up of the poll wait list. The problem is that
581 * with the new callback'd wake up system, it is possible that the
582 * poll callback is reentered from inside the call to wake_up() done
583 * on the poll wait queue head. The rule is that we cannot reenter the
584 * wake up code from the same task more than EP_MAX_NESTS times,
585 * and we cannot reenter the same wait queue head at all. This will
586 * enable to have a hierarchy of epoll file descriptor of no more than
587 * EP_MAX_NESTS deep.
588 */
589 static void ep_poll_safewake(wait_queue_head_t *wq)
590 {
591 int this_cpu = get_cpu();
592
593 ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
594 ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
595
596 put_cpu();
597 }
598
599 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
600 {
601 wait_queue_head_t *whead;
602
603 rcu_read_lock();
604 /*
605 * If it is cleared by POLLFREE, it should be rcu-safe.
606 * If we read NULL we need a barrier paired with
607 * smp_store_release() in ep_poll_callback(), otherwise
608 * we rely on whead->lock.
609 */
610 whead = smp_load_acquire(&pwq->whead);
611 if (whead)
612 remove_wait_queue(whead, &pwq->wait);
613 rcu_read_unlock();
614 }
615
616 /*
617 * This function unregisters poll callbacks from the associated file
618 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
619 * ep_free).
620 */
621 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
622 {
623 struct list_head *lsthead = &epi->pwqlist;
624 struct eppoll_entry *pwq;
625
626 while (!list_empty(lsthead)) {
627 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
628
629 list_del(&pwq->llink);
630 ep_remove_wait_queue(pwq);
631 kmem_cache_free(pwq_cache, pwq);
632 }
633 }
634
635 /* call only when ep->mtx is held */
636 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
637 {
638 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
639 }
640
641 /* call only when ep->mtx is held */
642 static inline void ep_pm_stay_awake(struct epitem *epi)
643 {
644 struct wakeup_source *ws = ep_wakeup_source(epi);
645
646 if (ws)
647 __pm_stay_awake(ws);
648 }
649
650 static inline bool ep_has_wakeup_source(struct epitem *epi)
651 {
652 return rcu_access_pointer(epi->ws) ? true : false;
653 }
654
655 /* call when ep->mtx cannot be held (ep_poll_callback) */
656 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
657 {
658 struct wakeup_source *ws;
659
660 rcu_read_lock();
661 ws = rcu_dereference(epi->ws);
662 if (ws)
663 __pm_stay_awake(ws);
664 rcu_read_unlock();
665 }
666
667 /**
668 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
669 * the scan code, to call f_op->poll(). Also allows for
670 * O(NumReady) performance.
671 *
672 * @ep: Pointer to the epoll private data structure.
673 * @sproc: Pointer to the scan callback.
674 * @priv: Private opaque data passed to the @sproc callback.
675 * @depth: The current depth of recursive f_op->poll calls.
676 * @ep_locked: caller already holds ep->mtx
677 *
678 * Returns: The same integer error code returned by the @sproc callback.
679 */
680 static int ep_scan_ready_list(struct eventpoll *ep,
681 int (*sproc)(struct eventpoll *,
682 struct list_head *, void *),
683 void *priv, int depth, bool ep_locked)
684 {
685 int error, pwake = 0;
686 unsigned long flags;
687 struct epitem *epi, *nepi;
688 LIST_HEAD(txlist);
689
690 /*
691 * We need to lock this because we could be hit by
692 * eventpoll_release_file() and epoll_ctl().
693 */
694
695 if (!ep_locked)
696 mutex_lock_nested(&ep->mtx, depth);
697
698 /*
699 * Steal the ready list, and re-init the original one to the
700 * empty list. Also, set ep->ovflist to NULL so that events
701 * happening while looping w/out locks, are not lost. We cannot
702 * have the poll callback to queue directly on ep->rdllist,
703 * because we want the "sproc" callback to be able to do it
704 * in a lockless way.
705 */
706 spin_lock_irqsave(&ep->lock, flags);
707 list_splice_init(&ep->rdllist, &txlist);
708 ep->ovflist = NULL;
709 spin_unlock_irqrestore(&ep->lock, flags);
710
711 /*
712 * Now call the callback function.
713 */
714 error = (*sproc)(ep, &txlist, priv);
715
716 spin_lock_irqsave(&ep->lock, flags);
717 /*
718 * During the time we spent inside the "sproc" callback, some
719 * other events might have been queued by the poll callback.
720 * We re-insert them inside the main ready-list here.
721 */
722 for (nepi = ep->ovflist; (epi = nepi) != NULL;
723 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
724 /*
725 * We need to check if the item is already in the list.
726 * During the "sproc" callback execution time, items are
727 * queued into ->ovflist but the "txlist" might already
728 * contain them, and the list_splice() below takes care of them.
729 */
730 if (!ep_is_linked(&epi->rdllink)) {
731 list_add_tail(&epi->rdllink, &ep->rdllist);
732 ep_pm_stay_awake(epi);
733 }
734 }
735 /*
736 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
737 * releasing the lock, events will be queued in the normal way inside
738 * ep->rdllist.
739 */
740 ep->ovflist = EP_UNACTIVE_PTR;
741
742 /*
743 * Quickly re-inject items left on "txlist".
744 */
745 list_splice(&txlist, &ep->rdllist);
746 __pm_relax(ep->ws);
747
748 if (!list_empty(&ep->rdllist)) {
749 /*
750 * Wake up (if active) both the eventpoll wait list and
751 * the ->poll() wait list (delayed after we release the lock).
752 */
753 if (waitqueue_active(&ep->wq))
754 wake_up_locked(&ep->wq);
755 if (waitqueue_active(&ep->poll_wait))
756 pwake++;
757 }
758 spin_unlock_irqrestore(&ep->lock, flags);
759
760 if (!ep_locked)
761 mutex_unlock(&ep->mtx);
762
763 /* We have to call this outside the lock */
764 if (pwake)
765 ep_poll_safewake(&ep->poll_wait);
766
767 return error;
768 }
769
770 static void epi_rcu_free(struct rcu_head *head)
771 {
772 struct epitem *epi = container_of(head, struct epitem, rcu);
773 kmem_cache_free(epi_cache, epi);
774 }
775
776 /*
777 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
778 * all the associated resources. Must be called with "mtx" held.
779 */
780 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
781 {
782 unsigned long flags;
783 struct file *file = epi->ffd.file;
784
785 /*
786 * Removes poll wait queue hooks. We _have_ to do this without holding
787 * the "ep->lock" otherwise a deadlock might occur. This because of the
788 * sequence of the lock acquisition. Here we do "ep->lock" then the wait
789 * queue head lock when unregistering the wait queue. The wakeup callback
790 * will run by holding the wait queue head lock and will call our callback
791 * that will try to get "ep->lock".
792 */
793 ep_unregister_pollwait(ep, epi);
794
795 /* Remove the current item from the list of epoll hooks */
796 spin_lock(&file->f_lock);
797 list_del_rcu(&epi->fllink);
798 spin_unlock(&file->f_lock);
799
800 rb_erase_cached(&epi->rbn, &ep->rbr);
801
802 spin_lock_irqsave(&ep->lock, flags);
803 if (ep_is_linked(&epi->rdllink))
804 list_del_init(&epi->rdllink);
805 spin_unlock_irqrestore(&ep->lock, flags);
806
807 wakeup_source_unregister(ep_wakeup_source(epi));
808 /*
809 * At this point it is safe to free the eventpoll item. Use the union
810 * field epi->rcu, since we are trying to minimize the size of
811 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
812 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
813 * use of the rbn field.
814 */
815 call_rcu(&epi->rcu, epi_rcu_free);
816
817 atomic_long_dec(&ep->user->epoll_watches);
818
819 return 0;
820 }
821
822 static void ep_free(struct eventpoll *ep)
823 {
824 struct rb_node *rbp;
825 struct epitem *epi;
826
827 /* We need to release all tasks waiting for these file */
828 if (waitqueue_active(&ep->poll_wait))
829 ep_poll_safewake(&ep->poll_wait);
830
831 /*
832 * We need to lock this because we could be hit by
833 * eventpoll_release_file() while we're freeing the "struct eventpoll".
834 * We do not need to hold "ep->mtx" here because the epoll file
835 * is on the way to be removed and no one has references to it
836 * anymore. The only hit might come from eventpoll_release_file() but
837 * holding "epmutex" is sufficient here.
838 */
839 mutex_lock(&epmutex);
840
841 /*
842 * Walks through the whole tree by unregistering poll callbacks.
843 */
844 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
845 epi = rb_entry(rbp, struct epitem, rbn);
846
847 ep_unregister_pollwait(ep, epi);
848 cond_resched();
849 }
850
851 /*
852 * Walks through the whole tree by freeing each "struct epitem". At this
853 * point we are sure no poll callbacks will be lingering around, and also by
854 * holding "epmutex" we can be sure that no file cleanup code will hit
855 * us during this operation. So we can avoid the lock on "ep->lock".
856 * We do not need to lock ep->mtx, either, we only do it to prevent
857 * a lockdep warning.
858 */
859 mutex_lock(&ep->mtx);
860 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
861 epi = rb_entry(rbp, struct epitem, rbn);
862 ep_remove(ep, epi);
863 cond_resched();
864 }
865 mutex_unlock(&ep->mtx);
866
867 mutex_unlock(&epmutex);
868 mutex_destroy(&ep->mtx);
869 free_uid(ep->user);
870 wakeup_source_unregister(ep->ws);
871 kfree(ep);
872 }
873
874 static int ep_eventpoll_release(struct inode *inode, struct file *file)
875 {
876 struct eventpoll *ep = file->private_data;
877
878 if (ep)
879 ep_free(ep);
880
881 return 0;
882 }
883
884 static inline unsigned int ep_item_poll(struct epitem *epi, poll_table *pt)
885 {
886 pt->_key = epi->event.events;
887
888 return epi->ffd.file->f_op->poll(epi->ffd.file, pt) & epi->event.events;
889 }
890
891 static int ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
892 void *priv)
893 {
894 struct epitem *epi, *tmp;
895 poll_table pt;
896
897 init_poll_funcptr(&pt, NULL);
898
899 list_for_each_entry_safe(epi, tmp, head, rdllink) {
900 if (ep_item_poll(epi, &pt))
901 return POLLIN | POLLRDNORM;
902 else {
903 /*
904 * Item has been dropped into the ready list by the poll
905 * callback, but it's not actually ready, as far as
906 * caller requested events goes. We can remove it here.
907 */
908 __pm_relax(ep_wakeup_source(epi));
909 list_del_init(&epi->rdllink);
910 }
911 }
912
913 return 0;
914 }
915
916 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
917 poll_table *pt);
918
919 struct readyevents_arg {
920 struct eventpoll *ep;
921 bool locked;
922 };
923
924 static int ep_poll_readyevents_proc(void *priv, void *cookie, int call_nests)
925 {
926 struct readyevents_arg *arg = priv;
927
928 return ep_scan_ready_list(arg->ep, ep_read_events_proc, NULL,
929 call_nests + 1, arg->locked);
930 }
931
932 static unsigned int ep_eventpoll_poll(struct file *file, poll_table *wait)
933 {
934 int pollflags;
935 struct eventpoll *ep = file->private_data;
936 struct readyevents_arg arg;
937
938 /*
939 * During ep_insert() we already hold the ep->mtx for the tfile.
940 * Prevent re-aquisition.
941 */
942 arg.locked = wait && (wait->_qproc == ep_ptable_queue_proc);
943 arg.ep = ep;
944
945 /* Insert inside our poll wait queue */
946 poll_wait(file, &ep->poll_wait, wait);
947
948 /*
949 * Proceed to find out if wanted events are really available inside
950 * the ready list. This need to be done under ep_call_nested()
951 * supervision, since the call to f_op->poll() done on listed files
952 * could re-enter here.
953 */
954 pollflags = ep_call_nested(&poll_readywalk_ncalls, EP_MAX_NESTS,
955 ep_poll_readyevents_proc, &arg, ep, current);
956
957 return pollflags != -1 ? pollflags : 0;
958 }
959
960 #ifdef CONFIG_PROC_FS
961 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
962 {
963 struct eventpoll *ep = f->private_data;
964 struct rb_node *rbp;
965
966 mutex_lock(&ep->mtx);
967 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
968 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
969 struct inode *inode = file_inode(epi->ffd.file);
970
971 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
972 " pos:%lli ino:%lx sdev:%x\n",
973 epi->ffd.fd, epi->event.events,
974 (long long)epi->event.data,
975 (long long)epi->ffd.file->f_pos,
976 inode->i_ino, inode->i_sb->s_dev);
977 if (seq_has_overflowed(m))
978 break;
979 }
980 mutex_unlock(&ep->mtx);
981 }
982 #endif
983
984 /* File callbacks that implement the eventpoll file behaviour */
985 static const struct file_operations eventpoll_fops = {
986 #ifdef CONFIG_PROC_FS
987 .show_fdinfo = ep_show_fdinfo,
988 #endif
989 .release = ep_eventpoll_release,
990 .poll = ep_eventpoll_poll,
991 .llseek = noop_llseek,
992 };
993
994 /*
995 * This is called from eventpoll_release() to unlink files from the eventpoll
996 * interface. We need to have this facility to cleanup correctly files that are
997 * closed without being removed from the eventpoll interface.
998 */
999 void eventpoll_release_file(struct file *file)
1000 {
1001 struct eventpoll *ep;
1002 struct epitem *epi, *next;
1003
1004 /*
1005 * We don't want to get "file->f_lock" because it is not
1006 * necessary. It is not necessary because we're in the "struct file"
1007 * cleanup path, and this means that no one is using this file anymore.
1008 * So, for example, epoll_ctl() cannot hit here since if we reach this
1009 * point, the file counter already went to zero and fget() would fail.
1010 * The only hit might come from ep_free() but by holding the mutex
1011 * will correctly serialize the operation. We do need to acquire
1012 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
1013 * from anywhere but ep_free().
1014 *
1015 * Besides, ep_remove() acquires the lock, so we can't hold it here.
1016 */
1017 mutex_lock(&epmutex);
1018 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1019 ep = epi->ep;
1020 mutex_lock_nested(&ep->mtx, 0);
1021 ep_remove(ep, epi);
1022 mutex_unlock(&ep->mtx);
1023 }
1024 mutex_unlock(&epmutex);
1025 }
1026
1027 static int ep_alloc(struct eventpoll **pep)
1028 {
1029 int error;
1030 struct user_struct *user;
1031 struct eventpoll *ep;
1032
1033 user = get_current_user();
1034 error = -ENOMEM;
1035 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1036 if (unlikely(!ep))
1037 goto free_uid;
1038
1039 spin_lock_init(&ep->lock);
1040 mutex_init(&ep->mtx);
1041 init_waitqueue_head(&ep->wq);
1042 init_waitqueue_head(&ep->poll_wait);
1043 INIT_LIST_HEAD(&ep->rdllist);
1044 ep->rbr = RB_ROOT_CACHED;
1045 ep->ovflist = EP_UNACTIVE_PTR;
1046 ep->user = user;
1047
1048 *pep = ep;
1049
1050 return 0;
1051
1052 free_uid:
1053 free_uid(user);
1054 return error;
1055 }
1056
1057 /*
1058 * Search the file inside the eventpoll tree. The RB tree operations
1059 * are protected by the "mtx" mutex, and ep_find() must be called with
1060 * "mtx" held.
1061 */
1062 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1063 {
1064 int kcmp;
1065 struct rb_node *rbp;
1066 struct epitem *epi, *epir = NULL;
1067 struct epoll_filefd ffd;
1068
1069 ep_set_ffd(&ffd, file, fd);
1070 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1071 epi = rb_entry(rbp, struct epitem, rbn);
1072 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1073 if (kcmp > 0)
1074 rbp = rbp->rb_right;
1075 else if (kcmp < 0)
1076 rbp = rbp->rb_left;
1077 else {
1078 epir = epi;
1079 break;
1080 }
1081 }
1082
1083 return epir;
1084 }
1085
1086 #ifdef CONFIG_CHECKPOINT_RESTORE
1087 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1088 {
1089 struct rb_node *rbp;
1090 struct epitem *epi;
1091
1092 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1093 epi = rb_entry(rbp, struct epitem, rbn);
1094 if (epi->ffd.fd == tfd) {
1095 if (toff == 0)
1096 return epi;
1097 else
1098 toff--;
1099 }
1100 cond_resched();
1101 }
1102
1103 return NULL;
1104 }
1105
1106 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1107 unsigned long toff)
1108 {
1109 struct file *file_raw;
1110 struct eventpoll *ep;
1111 struct epitem *epi;
1112
1113 if (!is_file_epoll(file))
1114 return ERR_PTR(-EINVAL);
1115
1116 ep = file->private_data;
1117
1118 mutex_lock(&ep->mtx);
1119 epi = ep_find_tfd(ep, tfd, toff);
1120 if (epi)
1121 file_raw = epi->ffd.file;
1122 else
1123 file_raw = ERR_PTR(-ENOENT);
1124 mutex_unlock(&ep->mtx);
1125
1126 return file_raw;
1127 }
1128 #endif /* CONFIG_CHECKPOINT_RESTORE */
1129
1130 /*
1131 * This is the callback that is passed to the wait queue wakeup
1132 * mechanism. It is called by the stored file descriptors when they
1133 * have events to report.
1134 */
1135 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1136 {
1137 int pwake = 0;
1138 unsigned long flags;
1139 struct epitem *epi = ep_item_from_wait(wait);
1140 struct eventpoll *ep = epi->ep;
1141 int ewake = 0;
1142
1143 spin_lock_irqsave(&ep->lock, flags);
1144
1145 ep_set_busy_poll_napi_id(epi);
1146
1147 /*
1148 * If the event mask does not contain any poll(2) event, we consider the
1149 * descriptor to be disabled. This condition is likely the effect of the
1150 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1151 * until the next EPOLL_CTL_MOD will be issued.
1152 */
1153 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1154 goto out_unlock;
1155
1156 /*
1157 * Check the events coming with the callback. At this stage, not
1158 * every device reports the events in the "key" parameter of the
1159 * callback. We need to be able to handle both cases here, hence the
1160 * test for "key" != NULL before the event match test.
1161 */
1162 if (key && !((unsigned long) key & epi->event.events))
1163 goto out_unlock;
1164
1165 /*
1166 * If we are transferring events to userspace, we can hold no locks
1167 * (because we're accessing user memory, and because of linux f_op->poll()
1168 * semantics). All the events that happen during that period of time are
1169 * chained in ep->ovflist and requeued later on.
1170 */
1171 if (unlikely(ep->ovflist != EP_UNACTIVE_PTR)) {
1172 if (epi->next == EP_UNACTIVE_PTR) {
1173 epi->next = ep->ovflist;
1174 ep->ovflist = epi;
1175 if (epi->ws) {
1176 /*
1177 * Activate ep->ws since epi->ws may get
1178 * deactivated at any time.
1179 */
1180 __pm_stay_awake(ep->ws);
1181 }
1182
1183 }
1184 goto out_unlock;
1185 }
1186
1187 /* If this file is already in the ready list we exit soon */
1188 if (!ep_is_linked(&epi->rdllink)) {
1189 list_add_tail(&epi->rdllink, &ep->rdllist);
1190 ep_pm_stay_awake_rcu(epi);
1191 }
1192
1193 /*
1194 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1195 * wait list.
1196 */
1197 if (waitqueue_active(&ep->wq)) {
1198 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1199 !((unsigned long)key & POLLFREE)) {
1200 switch ((unsigned long)key & EPOLLINOUT_BITS) {
1201 case POLLIN:
1202 if (epi->event.events & POLLIN)
1203 ewake = 1;
1204 break;
1205 case POLLOUT:
1206 if (epi->event.events & POLLOUT)
1207 ewake = 1;
1208 break;
1209 case 0:
1210 ewake = 1;
1211 break;
1212 }
1213 }
1214 wake_up_locked(&ep->wq);
1215 }
1216 if (waitqueue_active(&ep->poll_wait))
1217 pwake++;
1218
1219 out_unlock:
1220 spin_unlock_irqrestore(&ep->lock, flags);
1221
1222 /* We have to call this outside the lock */
1223 if (pwake)
1224 ep_poll_safewake(&ep->poll_wait);
1225
1226 if (!(epi->event.events & EPOLLEXCLUSIVE))
1227 ewake = 1;
1228
1229 if ((unsigned long)key & POLLFREE) {
1230 /*
1231 * If we race with ep_remove_wait_queue() it can miss
1232 * ->whead = NULL and do another remove_wait_queue() after
1233 * us, so we can't use __remove_wait_queue().
1234 */
1235 list_del_init(&wait->entry);
1236 /*
1237 * ->whead != NULL protects us from the race with ep_free()
1238 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1239 * held by the caller. Once we nullify it, nothing protects
1240 * ep/epi or even wait.
1241 */
1242 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1243 }
1244
1245 return ewake;
1246 }
1247
1248 /*
1249 * This is the callback that is used to add our wait queue to the
1250 * target file wakeup lists.
1251 */
1252 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1253 poll_table *pt)
1254 {
1255 struct epitem *epi = ep_item_from_epqueue(pt);
1256 struct eppoll_entry *pwq;
1257
1258 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1259 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1260 pwq->whead = whead;
1261 pwq->base = epi;
1262 if (epi->event.events & EPOLLEXCLUSIVE)
1263 add_wait_queue_exclusive(whead, &pwq->wait);
1264 else
1265 add_wait_queue(whead, &pwq->wait);
1266 list_add_tail(&pwq->llink, &epi->pwqlist);
1267 epi->nwait++;
1268 } else {
1269 /* We have to signal that an error occurred */
1270 epi->nwait = -1;
1271 }
1272 }
1273
1274 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1275 {
1276 int kcmp;
1277 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1278 struct epitem *epic;
1279 bool leftmost = true;
1280
1281 while (*p) {
1282 parent = *p;
1283 epic = rb_entry(parent, struct epitem, rbn);
1284 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1285 if (kcmp > 0) {
1286 p = &parent->rb_right;
1287 leftmost = false;
1288 } else
1289 p = &parent->rb_left;
1290 }
1291 rb_link_node(&epi->rbn, parent, p);
1292 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1293 }
1294
1295
1296
1297 #define PATH_ARR_SIZE 5
1298 /*
1299 * These are the number paths of length 1 to 5, that we are allowing to emanate
1300 * from a single file of interest. For example, we allow 1000 paths of length
1301 * 1, to emanate from each file of interest. This essentially represents the
1302 * potential wakeup paths, which need to be limited in order to avoid massive
1303 * uncontrolled wakeup storms. The common use case should be a single ep which
1304 * is connected to n file sources. In this case each file source has 1 path
1305 * of length 1. Thus, the numbers below should be more than sufficient. These
1306 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1307 * and delete can't add additional paths. Protected by the epmutex.
1308 */
1309 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1310 static int path_count[PATH_ARR_SIZE];
1311
1312 static int path_count_inc(int nests)
1313 {
1314 /* Allow an arbitrary number of depth 1 paths */
1315 if (nests == 0)
1316 return 0;
1317
1318 if (++path_count[nests] > path_limits[nests])
1319 return -1;
1320 return 0;
1321 }
1322
1323 static void path_count_init(void)
1324 {
1325 int i;
1326
1327 for (i = 0; i < PATH_ARR_SIZE; i++)
1328 path_count[i] = 0;
1329 }
1330
1331 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1332 {
1333 int error = 0;
1334 struct file *file = priv;
1335 struct file *child_file;
1336 struct epitem *epi;
1337
1338 /* CTL_DEL can remove links here, but that can't increase our count */
1339 rcu_read_lock();
1340 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1341 child_file = epi->ep->file;
1342 if (is_file_epoll(child_file)) {
1343 if (list_empty(&child_file->f_ep_links)) {
1344 if (path_count_inc(call_nests)) {
1345 error = -1;
1346 break;
1347 }
1348 } else {
1349 error = ep_call_nested(&poll_loop_ncalls,
1350 EP_MAX_NESTS,
1351 reverse_path_check_proc,
1352 child_file, child_file,
1353 current);
1354 }
1355 if (error != 0)
1356 break;
1357 } else {
1358 printk(KERN_ERR "reverse_path_check_proc: "
1359 "file is not an ep!\n");
1360 }
1361 }
1362 rcu_read_unlock();
1363 return error;
1364 }
1365
1366 /**
1367 * reverse_path_check - The tfile_check_list is list of file *, which have
1368 * links that are proposed to be newly added. We need to
1369 * make sure that those added links don't add too many
1370 * paths such that we will spend all our time waking up
1371 * eventpoll objects.
1372 *
1373 * Returns: Returns zero if the proposed links don't create too many paths,
1374 * -1 otherwise.
1375 */
1376 static int reverse_path_check(void)
1377 {
1378 int error = 0;
1379 struct file *current_file;
1380
1381 /* let's call this for all tfiles */
1382 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1383 path_count_init();
1384 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1385 reverse_path_check_proc, current_file,
1386 current_file, current);
1387 if (error)
1388 break;
1389 }
1390 return error;
1391 }
1392
1393 static int ep_create_wakeup_source(struct epitem *epi)
1394 {
1395 const char *name;
1396 struct wakeup_source *ws;
1397
1398 if (!epi->ep->ws) {
1399 epi->ep->ws = wakeup_source_register("eventpoll");
1400 if (!epi->ep->ws)
1401 return -ENOMEM;
1402 }
1403
1404 name = epi->ffd.file->f_path.dentry->d_name.name;
1405 ws = wakeup_source_register(name);
1406
1407 if (!ws)
1408 return -ENOMEM;
1409 rcu_assign_pointer(epi->ws, ws);
1410
1411 return 0;
1412 }
1413
1414 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1415 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1416 {
1417 struct wakeup_source *ws = ep_wakeup_source(epi);
1418
1419 RCU_INIT_POINTER(epi->ws, NULL);
1420
1421 /*
1422 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1423 * used internally by wakeup_source_remove, too (called by
1424 * wakeup_source_unregister), so we cannot use call_rcu
1425 */
1426 synchronize_rcu();
1427 wakeup_source_unregister(ws);
1428 }
1429
1430 /*
1431 * Must be called with "mtx" held.
1432 */
1433 static int ep_insert(struct eventpoll *ep, struct epoll_event *event,
1434 struct file *tfile, int fd, int full_check)
1435 {
1436 int error, revents, pwake = 0;
1437 unsigned long flags;
1438 long user_watches;
1439 struct epitem *epi;
1440 struct ep_pqueue epq;
1441
1442 user_watches = atomic_long_read(&ep->user->epoll_watches);
1443 if (unlikely(user_watches >= max_user_watches))
1444 return -ENOSPC;
1445 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1446 return -ENOMEM;
1447
1448 /* Item initialization follow here ... */
1449 INIT_LIST_HEAD(&epi->rdllink);
1450 INIT_LIST_HEAD(&epi->fllink);
1451 INIT_LIST_HEAD(&epi->pwqlist);
1452 epi->ep = ep;
1453 ep_set_ffd(&epi->ffd, tfile, fd);
1454 epi->event = *event;
1455 epi->nwait = 0;
1456 epi->next = EP_UNACTIVE_PTR;
1457 if (epi->event.events & EPOLLWAKEUP) {
1458 error = ep_create_wakeup_source(epi);
1459 if (error)
1460 goto error_create_wakeup_source;
1461 } else {
1462 RCU_INIT_POINTER(epi->ws, NULL);
1463 }
1464
1465 /* Initialize the poll table using the queue callback */
1466 epq.epi = epi;
1467 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1468
1469 /*
1470 * Attach the item to the poll hooks and get current event bits.
1471 * We can safely use the file* here because its usage count has
1472 * been increased by the caller of this function. Note that after
1473 * this operation completes, the poll callback can start hitting
1474 * the new item.
1475 */
1476 revents = ep_item_poll(epi, &epq.pt);
1477
1478 /*
1479 * We have to check if something went wrong during the poll wait queue
1480 * install process. Namely an allocation for a wait queue failed due
1481 * high memory pressure.
1482 */
1483 error = -ENOMEM;
1484 if (epi->nwait < 0)
1485 goto error_unregister;
1486
1487 /* Add the current item to the list of active epoll hook for this file */
1488 spin_lock(&tfile->f_lock);
1489 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1490 spin_unlock(&tfile->f_lock);
1491
1492 /*
1493 * Add the current item to the RB tree. All RB tree operations are
1494 * protected by "mtx", and ep_insert() is called with "mtx" held.
1495 */
1496 ep_rbtree_insert(ep, epi);
1497
1498 /* now check if we've created too many backpaths */
1499 error = -EINVAL;
1500 if (full_check && reverse_path_check())
1501 goto error_remove_epi;
1502
1503 /* We have to drop the new item inside our item list to keep track of it */
1504 spin_lock_irqsave(&ep->lock, flags);
1505
1506 /* record NAPI ID of new item if present */
1507 ep_set_busy_poll_napi_id(epi);
1508
1509 /* If the file is already "ready" we drop it inside the ready list */
1510 if ((revents & event->events) && !ep_is_linked(&epi->rdllink)) {
1511 list_add_tail(&epi->rdllink, &ep->rdllist);
1512 ep_pm_stay_awake(epi);
1513
1514 /* Notify waiting tasks that events are available */
1515 if (waitqueue_active(&ep->wq))
1516 wake_up_locked(&ep->wq);
1517 if (waitqueue_active(&ep->poll_wait))
1518 pwake++;
1519 }
1520
1521 spin_unlock_irqrestore(&ep->lock, flags);
1522
1523 atomic_long_inc(&ep->user->epoll_watches);
1524
1525 /* We have to call this outside the lock */
1526 if (pwake)
1527 ep_poll_safewake(&ep->poll_wait);
1528
1529 return 0;
1530
1531 error_remove_epi:
1532 spin_lock(&tfile->f_lock);
1533 list_del_rcu(&epi->fllink);
1534 spin_unlock(&tfile->f_lock);
1535
1536 rb_erase_cached(&epi->rbn, &ep->rbr);
1537
1538 error_unregister:
1539 ep_unregister_pollwait(ep, epi);
1540
1541 /*
1542 * We need to do this because an event could have been arrived on some
1543 * allocated wait queue. Note that we don't care about the ep->ovflist
1544 * list, since that is used/cleaned only inside a section bound by "mtx".
1545 * And ep_insert() is called with "mtx" held.
1546 */
1547 spin_lock_irqsave(&ep->lock, flags);
1548 if (ep_is_linked(&epi->rdllink))
1549 list_del_init(&epi->rdllink);
1550 spin_unlock_irqrestore(&ep->lock, flags);
1551
1552 wakeup_source_unregister(ep_wakeup_source(epi));
1553
1554 error_create_wakeup_source:
1555 kmem_cache_free(epi_cache, epi);
1556
1557 return error;
1558 }
1559
1560 /*
1561 * Modify the interest event mask by dropping an event if the new mask
1562 * has a match in the current file status. Must be called with "mtx" held.
1563 */
1564 static int ep_modify(struct eventpoll *ep, struct epitem *epi, struct epoll_event *event)
1565 {
1566 int pwake = 0;
1567 unsigned int revents;
1568 poll_table pt;
1569
1570 init_poll_funcptr(&pt, NULL);
1571
1572 /*
1573 * Set the new event interest mask before calling f_op->poll();
1574 * otherwise we might miss an event that happens between the
1575 * f_op->poll() call and the new event set registering.
1576 */
1577 epi->event.events = event->events; /* need barrier below */
1578 epi->event.data = event->data; /* protected by mtx */
1579 if (epi->event.events & EPOLLWAKEUP) {
1580 if (!ep_has_wakeup_source(epi))
1581 ep_create_wakeup_source(epi);
1582 } else if (ep_has_wakeup_source(epi)) {
1583 ep_destroy_wakeup_source(epi);
1584 }
1585
1586 /*
1587 * The following barrier has two effects:
1588 *
1589 * 1) Flush epi changes above to other CPUs. This ensures
1590 * we do not miss events from ep_poll_callback if an
1591 * event occurs immediately after we call f_op->poll().
1592 * We need this because we did not take ep->lock while
1593 * changing epi above (but ep_poll_callback does take
1594 * ep->lock).
1595 *
1596 * 2) We also need to ensure we do not miss _past_ events
1597 * when calling f_op->poll(). This barrier also
1598 * pairs with the barrier in wq_has_sleeper (see
1599 * comments for wq_has_sleeper).
1600 *
1601 * This barrier will now guarantee ep_poll_callback or f_op->poll
1602 * (or both) will notice the readiness of an item.
1603 */
1604 smp_mb();
1605
1606 /*
1607 * Get current event bits. We can safely use the file* here because
1608 * its usage count has been increased by the caller of this function.
1609 */
1610 revents = ep_item_poll(epi, &pt);
1611
1612 /*
1613 * If the item is "hot" and it is not registered inside the ready
1614 * list, push it inside.
1615 */
1616 if (revents & event->events) {
1617 spin_lock_irq(&ep->lock);
1618 if (!ep_is_linked(&epi->rdllink)) {
1619 list_add_tail(&epi->rdllink, &ep->rdllist);
1620 ep_pm_stay_awake(epi);
1621
1622 /* Notify waiting tasks that events are available */
1623 if (waitqueue_active(&ep->wq))
1624 wake_up_locked(&ep->wq);
1625 if (waitqueue_active(&ep->poll_wait))
1626 pwake++;
1627 }
1628 spin_unlock_irq(&ep->lock);
1629 }
1630
1631 /* We have to call this outside the lock */
1632 if (pwake)
1633 ep_poll_safewake(&ep->poll_wait);
1634
1635 return 0;
1636 }
1637
1638 static int ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1639 void *priv)
1640 {
1641 struct ep_send_events_data *esed = priv;
1642 int eventcnt;
1643 unsigned int revents;
1644 struct epitem *epi;
1645 struct epoll_event __user *uevent;
1646 struct wakeup_source *ws;
1647 poll_table pt;
1648
1649 init_poll_funcptr(&pt, NULL);
1650
1651 /*
1652 * We can loop without lock because we are passed a task private list.
1653 * Items cannot vanish during the loop because ep_scan_ready_list() is
1654 * holding "mtx" during this call.
1655 */
1656 for (eventcnt = 0, uevent = esed->events;
1657 !list_empty(head) && eventcnt < esed->maxevents;) {
1658 epi = list_first_entry(head, struct epitem, rdllink);
1659
1660 /*
1661 * Activate ep->ws before deactivating epi->ws to prevent
1662 * triggering auto-suspend here (in case we reactive epi->ws
1663 * below).
1664 *
1665 * This could be rearranged to delay the deactivation of epi->ws
1666 * instead, but then epi->ws would temporarily be out of sync
1667 * with ep_is_linked().
1668 */
1669 ws = ep_wakeup_source(epi);
1670 if (ws) {
1671 if (ws->active)
1672 __pm_stay_awake(ep->ws);
1673 __pm_relax(ws);
1674 }
1675
1676 list_del_init(&epi->rdllink);
1677
1678 revents = ep_item_poll(epi, &pt);
1679
1680 /*
1681 * If the event mask intersect the caller-requested one,
1682 * deliver the event to userspace. Again, ep_scan_ready_list()
1683 * is holding "mtx", so no operations coming from userspace
1684 * can change the item.
1685 */
1686 if (revents) {
1687 if (__put_user(revents, &uevent->events) ||
1688 __put_user(epi->event.data, &uevent->data)) {
1689 list_add(&epi->rdllink, head);
1690 ep_pm_stay_awake(epi);
1691 return eventcnt ? eventcnt : -EFAULT;
1692 }
1693 eventcnt++;
1694 uevent++;
1695 if (epi->event.events & EPOLLONESHOT)
1696 epi->event.events &= EP_PRIVATE_BITS;
1697 else if (!(epi->event.events & EPOLLET)) {
1698 /*
1699 * If this file has been added with Level
1700 * Trigger mode, we need to insert back inside
1701 * the ready list, so that the next call to
1702 * epoll_wait() will check again the events
1703 * availability. At this point, no one can insert
1704 * into ep->rdllist besides us. The epoll_ctl()
1705 * callers are locked out by
1706 * ep_scan_ready_list() holding "mtx" and the
1707 * poll callback will queue them in ep->ovflist.
1708 */
1709 list_add_tail(&epi->rdllink, &ep->rdllist);
1710 ep_pm_stay_awake(epi);
1711 }
1712 }
1713 }
1714
1715 return eventcnt;
1716 }
1717
1718 static int ep_send_events(struct eventpoll *ep,
1719 struct epoll_event __user *events, int maxevents)
1720 {
1721 struct ep_send_events_data esed;
1722
1723 esed.maxevents = maxevents;
1724 esed.events = events;
1725
1726 return ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1727 }
1728
1729 static inline struct timespec64 ep_set_mstimeout(long ms)
1730 {
1731 struct timespec64 now, ts = {
1732 .tv_sec = ms / MSEC_PER_SEC,
1733 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1734 };
1735
1736 ktime_get_ts64(&now);
1737 return timespec64_add_safe(now, ts);
1738 }
1739
1740 /**
1741 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1742 * event buffer.
1743 *
1744 * @ep: Pointer to the eventpoll context.
1745 * @events: Pointer to the userspace buffer where the ready events should be
1746 * stored.
1747 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1748 * @timeout: Maximum timeout for the ready events fetch operation, in
1749 * milliseconds. If the @timeout is zero, the function will not block,
1750 * while if the @timeout is less than zero, the function will block
1751 * until at least one event has been retrieved (or an error
1752 * occurred).
1753 *
1754 * Returns: Returns the number of ready events which have been fetched, or an
1755 * error code, in case of error.
1756 */
1757 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1758 int maxevents, long timeout)
1759 {
1760 int res = 0, eavail, timed_out = 0;
1761 unsigned long flags;
1762 u64 slack = 0;
1763 wait_queue_entry_t wait;
1764 ktime_t expires, *to = NULL;
1765
1766 if (timeout > 0) {
1767 struct timespec64 end_time = ep_set_mstimeout(timeout);
1768
1769 slack = select_estimate_accuracy(&end_time);
1770 to = &expires;
1771 *to = timespec64_to_ktime(end_time);
1772 } else if (timeout == 0) {
1773 /*
1774 * Avoid the unnecessary trip to the wait queue loop, if the
1775 * caller specified a non blocking operation.
1776 */
1777 timed_out = 1;
1778 spin_lock_irqsave(&ep->lock, flags);
1779 goto check_events;
1780 }
1781
1782 fetch_events:
1783
1784 if (!ep_events_available(ep))
1785 ep_busy_loop(ep, timed_out);
1786
1787 spin_lock_irqsave(&ep->lock, flags);
1788
1789 if (!ep_events_available(ep)) {
1790 /*
1791 * Busy poll timed out. Drop NAPI ID for now, we can add
1792 * it back in when we have moved a socket with a valid NAPI
1793 * ID onto the ready list.
1794 */
1795 ep_reset_busy_poll_napi_id(ep);
1796
1797 /*
1798 * We don't have any available event to return to the caller.
1799 * We need to sleep here, and we will be wake up by
1800 * ep_poll_callback() when events will become available.
1801 */
1802 init_waitqueue_entry(&wait, current);
1803 __add_wait_queue_exclusive(&ep->wq, &wait);
1804
1805 for (;;) {
1806 /*
1807 * We don't want to sleep if the ep_poll_callback() sends us
1808 * a wakeup in between. That's why we set the task state
1809 * to TASK_INTERRUPTIBLE before doing the checks.
1810 */
1811 set_current_state(TASK_INTERRUPTIBLE);
1812 /*
1813 * Always short-circuit for fatal signals to allow
1814 * threads to make a timely exit without the chance of
1815 * finding more events available and fetching
1816 * repeatedly.
1817 */
1818 if (fatal_signal_pending(current)) {
1819 res = -EINTR;
1820 break;
1821 }
1822 if (ep_events_available(ep) || timed_out)
1823 break;
1824 if (signal_pending(current)) {
1825 res = -EINTR;
1826 break;
1827 }
1828
1829 spin_unlock_irqrestore(&ep->lock, flags);
1830 if (!freezable_schedule_hrtimeout_range(to, slack,
1831 HRTIMER_MODE_ABS))
1832 timed_out = 1;
1833
1834 spin_lock_irqsave(&ep->lock, flags);
1835 }
1836
1837 __remove_wait_queue(&ep->wq, &wait);
1838 __set_current_state(TASK_RUNNING);
1839 }
1840 check_events:
1841 /* Is it worth to try to dig for events ? */
1842 eavail = ep_events_available(ep);
1843
1844 spin_unlock_irqrestore(&ep->lock, flags);
1845
1846 /*
1847 * Try to transfer events to user space. In case we get 0 events and
1848 * there's still timeout left over, we go trying again in search of
1849 * more luck.
1850 */
1851 if (!res && eavail &&
1852 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1853 goto fetch_events;
1854
1855 return res;
1856 }
1857
1858 /**
1859 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1860 * API, to verify that adding an epoll file inside another
1861 * epoll structure, does not violate the constraints, in
1862 * terms of closed loops, or too deep chains (which can
1863 * result in excessive stack usage).
1864 *
1865 * @priv: Pointer to the epoll file to be currently checked.
1866 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1867 * data structure pointer.
1868 * @call_nests: Current dept of the @ep_call_nested() call stack.
1869 *
1870 * Returns: Returns zero if adding the epoll @file inside current epoll
1871 * structure @ep does not violate the constraints, or -1 otherwise.
1872 */
1873 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1874 {
1875 int error = 0;
1876 struct file *file = priv;
1877 struct eventpoll *ep = file->private_data;
1878 struct eventpoll *ep_tovisit;
1879 struct rb_node *rbp;
1880 struct epitem *epi;
1881
1882 mutex_lock_nested(&ep->mtx, call_nests + 1);
1883 ep->visited = 1;
1884 list_add(&ep->visited_list_link, &visited_list);
1885 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1886 epi = rb_entry(rbp, struct epitem, rbn);
1887 if (unlikely(is_file_epoll(epi->ffd.file))) {
1888 ep_tovisit = epi->ffd.file->private_data;
1889 if (ep_tovisit->visited)
1890 continue;
1891 error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1892 ep_loop_check_proc, epi->ffd.file,
1893 ep_tovisit, current);
1894 if (error != 0)
1895 break;
1896 } else {
1897 /*
1898 * If we've reached a file that is not associated with
1899 * an ep, then we need to check if the newly added
1900 * links are going to add too many wakeup paths. We do
1901 * this by adding it to the tfile_check_list, if it's
1902 * not already there, and calling reverse_path_check()
1903 * during ep_insert().
1904 */
1905 if (list_empty(&epi->ffd.file->f_tfile_llink))
1906 list_add(&epi->ffd.file->f_tfile_llink,
1907 &tfile_check_list);
1908 }
1909 }
1910 mutex_unlock(&ep->mtx);
1911
1912 return error;
1913 }
1914
1915 /**
1916 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1917 * another epoll file (represented by @ep) does not create
1918 * closed loops or too deep chains.
1919 *
1920 * @ep: Pointer to the epoll private data structure.
1921 * @file: Pointer to the epoll file to be checked.
1922 *
1923 * Returns: Returns zero if adding the epoll @file inside current epoll
1924 * structure @ep does not violate the constraints, or -1 otherwise.
1925 */
1926 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1927 {
1928 int ret;
1929 struct eventpoll *ep_cur, *ep_next;
1930
1931 ret = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1932 ep_loop_check_proc, file, ep, current);
1933 /* clear visited list */
1934 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1935 visited_list_link) {
1936 ep_cur->visited = 0;
1937 list_del(&ep_cur->visited_list_link);
1938 }
1939 return ret;
1940 }
1941
1942 static void clear_tfile_check_list(void)
1943 {
1944 struct file *file;
1945
1946 /* first clear the tfile_check_list */
1947 while (!list_empty(&tfile_check_list)) {
1948 file = list_first_entry(&tfile_check_list, struct file,
1949 f_tfile_llink);
1950 list_del_init(&file->f_tfile_llink);
1951 }
1952 INIT_LIST_HEAD(&tfile_check_list);
1953 }
1954
1955 /*
1956 * Open an eventpoll file descriptor.
1957 */
1958 SYSCALL_DEFINE1(epoll_create1, int, flags)
1959 {
1960 int error, fd;
1961 struct eventpoll *ep = NULL;
1962 struct file *file;
1963
1964 /* Check the EPOLL_* constant for consistency. */
1965 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1966
1967 if (flags & ~EPOLL_CLOEXEC)
1968 return -EINVAL;
1969 /*
1970 * Create the internal data structure ("struct eventpoll").
1971 */
1972 error = ep_alloc(&ep);
1973 if (error < 0)
1974 return error;
1975 /*
1976 * Creates all the items needed to setup an eventpoll file. That is,
1977 * a file structure and a free file descriptor.
1978 */
1979 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1980 if (fd < 0) {
1981 error = fd;
1982 goto out_free_ep;
1983 }
1984 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1985 O_RDWR | (flags & O_CLOEXEC));
1986 if (IS_ERR(file)) {
1987 error = PTR_ERR(file);
1988 goto out_free_fd;
1989 }
1990 ep->file = file;
1991 fd_install(fd, file);
1992 return fd;
1993
1994 out_free_fd:
1995 put_unused_fd(fd);
1996 out_free_ep:
1997 ep_free(ep);
1998 return error;
1999 }
2000
2001 SYSCALL_DEFINE1(epoll_create, int, size)
2002 {
2003 if (size <= 0)
2004 return -EINVAL;
2005
2006 return sys_epoll_create1(0);
2007 }
2008
2009 /*
2010 * The following function implements the controller interface for
2011 * the eventpoll file that enables the insertion/removal/change of
2012 * file descriptors inside the interest set.
2013 */
2014 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2015 struct epoll_event __user *, event)
2016 {
2017 int error;
2018 int full_check = 0;
2019 struct fd f, tf;
2020 struct eventpoll *ep;
2021 struct epitem *epi;
2022 struct epoll_event epds;
2023 struct eventpoll *tep = NULL;
2024
2025 error = -EFAULT;
2026 if (ep_op_has_event(op) &&
2027 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2028 goto error_return;
2029
2030 error = -EBADF;
2031 f = fdget(epfd);
2032 if (!f.file)
2033 goto error_return;
2034
2035 /* Get the "struct file *" for the target file */
2036 tf = fdget(fd);
2037 if (!tf.file)
2038 goto error_fput;
2039
2040 /* The target file descriptor must support poll */
2041 error = -EPERM;
2042 if (!tf.file->f_op->poll)
2043 goto error_tgt_fput;
2044
2045 /* Check if EPOLLWAKEUP is allowed */
2046 if (ep_op_has_event(op))
2047 ep_take_care_of_epollwakeup(&epds);
2048
2049 /*
2050 * We have to check that the file structure underneath the file descriptor
2051 * the user passed to us _is_ an eventpoll file. And also we do not permit
2052 * adding an epoll file descriptor inside itself.
2053 */
2054 error = -EINVAL;
2055 if (f.file == tf.file || !is_file_epoll(f.file))
2056 goto error_tgt_fput;
2057
2058 /*
2059 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2060 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2061 * Also, we do not currently supported nested exclusive wakeups.
2062 */
2063 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2064 if (op == EPOLL_CTL_MOD)
2065 goto error_tgt_fput;
2066 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2067 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2068 goto error_tgt_fput;
2069 }
2070
2071 /*
2072 * At this point it is safe to assume that the "private_data" contains
2073 * our own data structure.
2074 */
2075 ep = f.file->private_data;
2076
2077 /*
2078 * When we insert an epoll file descriptor, inside another epoll file
2079 * descriptor, there is the change of creating closed loops, which are
2080 * better be handled here, than in more critical paths. While we are
2081 * checking for loops we also determine the list of files reachable
2082 * and hang them on the tfile_check_list, so we can check that we
2083 * haven't created too many possible wakeup paths.
2084 *
2085 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2086 * the epoll file descriptor is attaching directly to a wakeup source,
2087 * unless the epoll file descriptor is nested. The purpose of taking the
2088 * 'epmutex' on add is to prevent complex toplogies such as loops and
2089 * deep wakeup paths from forming in parallel through multiple
2090 * EPOLL_CTL_ADD operations.
2091 */
2092 mutex_lock_nested(&ep->mtx, 0);
2093 if (op == EPOLL_CTL_ADD) {
2094 if (!list_empty(&f.file->f_ep_links) ||
2095 is_file_epoll(tf.file)) {
2096 full_check = 1;
2097 mutex_unlock(&ep->mtx);
2098 mutex_lock(&epmutex);
2099 if (is_file_epoll(tf.file)) {
2100 error = -ELOOP;
2101 if (ep_loop_check(ep, tf.file) != 0) {
2102 clear_tfile_check_list();
2103 goto error_tgt_fput;
2104 }
2105 } else
2106 list_add(&tf.file->f_tfile_llink,
2107 &tfile_check_list);
2108 mutex_lock_nested(&ep->mtx, 0);
2109 if (is_file_epoll(tf.file)) {
2110 tep = tf.file->private_data;
2111 mutex_lock_nested(&tep->mtx, 1);
2112 }
2113 }
2114 }
2115
2116 /*
2117 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2118 * above, we can be sure to be able to use the item looked up by
2119 * ep_find() till we release the mutex.
2120 */
2121 epi = ep_find(ep, tf.file, fd);
2122
2123 error = -EINVAL;
2124 switch (op) {
2125 case EPOLL_CTL_ADD:
2126 if (!epi) {
2127 epds.events |= POLLERR | POLLHUP;
2128 error = ep_insert(ep, &epds, tf.file, fd, full_check);
2129 } else
2130 error = -EEXIST;
2131 if (full_check)
2132 clear_tfile_check_list();
2133 break;
2134 case EPOLL_CTL_DEL:
2135 if (epi)
2136 error = ep_remove(ep, epi);
2137 else
2138 error = -ENOENT;
2139 break;
2140 case EPOLL_CTL_MOD:
2141 if (epi) {
2142 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2143 epds.events |= POLLERR | POLLHUP;
2144 error = ep_modify(ep, epi, &epds);
2145 }
2146 } else
2147 error = -ENOENT;
2148 break;
2149 }
2150 if (tep != NULL)
2151 mutex_unlock(&tep->mtx);
2152 mutex_unlock(&ep->mtx);
2153
2154 error_tgt_fput:
2155 if (full_check)
2156 mutex_unlock(&epmutex);
2157
2158 fdput(tf);
2159 error_fput:
2160 fdput(f);
2161 error_return:
2162
2163 return error;
2164 }
2165
2166 /*
2167 * Implement the event wait interface for the eventpoll file. It is the kernel
2168 * part of the user space epoll_wait(2).
2169 */
2170 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2171 int, maxevents, int, timeout)
2172 {
2173 int error;
2174 struct fd f;
2175 struct eventpoll *ep;
2176
2177 /* The maximum number of event must be greater than zero */
2178 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2179 return -EINVAL;
2180
2181 /* Verify that the area passed by the user is writeable */
2182 if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
2183 return -EFAULT;
2184
2185 /* Get the "struct file *" for the eventpoll file */
2186 f = fdget(epfd);
2187 if (!f.file)
2188 return -EBADF;
2189
2190 /*
2191 * We have to check that the file structure underneath the fd
2192 * the user passed to us _is_ an eventpoll file.
2193 */
2194 error = -EINVAL;
2195 if (!is_file_epoll(f.file))
2196 goto error_fput;
2197
2198 /*
2199 * At this point it is safe to assume that the "private_data" contains
2200 * our own data structure.
2201 */
2202 ep = f.file->private_data;
2203
2204 /* Time to fish for events ... */
2205 error = ep_poll(ep, events, maxevents, timeout);
2206
2207 error_fput:
2208 fdput(f);
2209 return error;
2210 }
2211
2212 /*
2213 * Implement the event wait interface for the eventpoll file. It is the kernel
2214 * part of the user space epoll_pwait(2).
2215 */
2216 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2217 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2218 size_t, sigsetsize)
2219 {
2220 int error;
2221 sigset_t ksigmask, sigsaved;
2222
2223 /*
2224 * If the caller wants a certain signal mask to be set during the wait,
2225 * we apply it here.
2226 */
2227 if (sigmask) {
2228 if (sigsetsize != sizeof(sigset_t))
2229 return -EINVAL;
2230 if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2231 return -EFAULT;
2232 sigsaved = current->blocked;
2233 set_current_blocked(&ksigmask);
2234 }
2235
2236 error = sys_epoll_wait(epfd, events, maxevents, timeout);
2237
2238 /*
2239 * If we changed the signal mask, we need to restore the original one.
2240 * In case we've got a signal while waiting, we do not restore the
2241 * signal mask yet, and we allow do_signal() to deliver the signal on
2242 * the way back to userspace, before the signal mask is restored.
2243 */
2244 if (sigmask) {
2245 if (error == -EINTR) {
2246 memcpy(&current->saved_sigmask, &sigsaved,
2247 sizeof(sigsaved));
2248 set_restore_sigmask();
2249 } else
2250 set_current_blocked(&sigsaved);
2251 }
2252
2253 return error;
2254 }
2255
2256 #ifdef CONFIG_COMPAT
2257 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2258 struct epoll_event __user *, events,
2259 int, maxevents, int, timeout,
2260 const compat_sigset_t __user *, sigmask,
2261 compat_size_t, sigsetsize)
2262 {
2263 long err;
2264 compat_sigset_t csigmask;
2265 sigset_t ksigmask, sigsaved;
2266
2267 /*
2268 * If the caller wants a certain signal mask to be set during the wait,
2269 * we apply it here.
2270 */
2271 if (sigmask) {
2272 if (sigsetsize != sizeof(compat_sigset_t))
2273 return -EINVAL;
2274 if (copy_from_user(&csigmask, sigmask, sizeof(csigmask)))
2275 return -EFAULT;
2276 sigset_from_compat(&ksigmask, &csigmask);
2277 sigsaved = current->blocked;
2278 set_current_blocked(&ksigmask);
2279 }
2280
2281 err = sys_epoll_wait(epfd, events, maxevents, timeout);
2282
2283 /*
2284 * If we changed the signal mask, we need to restore the original one.
2285 * In case we've got a signal while waiting, we do not restore the
2286 * signal mask yet, and we allow do_signal() to deliver the signal on
2287 * the way back to userspace, before the signal mask is restored.
2288 */
2289 if (sigmask) {
2290 if (err == -EINTR) {
2291 memcpy(&current->saved_sigmask, &sigsaved,
2292 sizeof(sigsaved));
2293 set_restore_sigmask();
2294 } else
2295 set_current_blocked(&sigsaved);
2296 }
2297
2298 return err;
2299 }
2300 #endif
2301
2302 static int __init eventpoll_init(void)
2303 {
2304 struct sysinfo si;
2305
2306 si_meminfo(&si);
2307 /*
2308 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2309 */
2310 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2311 EP_ITEM_COST;
2312 BUG_ON(max_user_watches < 0);
2313
2314 /*
2315 * Initialize the structure used to perform epoll file descriptor
2316 * inclusion loops checks.
2317 */
2318 ep_nested_calls_init(&poll_loop_ncalls);
2319
2320 /* Initialize the structure used to perform safe poll wait head wake ups */
2321 ep_nested_calls_init(&poll_safewake_ncalls);
2322
2323 /* Initialize the structure used to perform file's f_op->poll() calls */
2324 ep_nested_calls_init(&poll_readywalk_ncalls);
2325
2326 /*
2327 * We can have many thousands of epitems, so prevent this from
2328 * using an extra cache line on 64-bit (and smaller) CPUs
2329 */
2330 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2331
2332 /* Allocates slab cache used to allocate "struct epitem" items */
2333 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2334 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
2335
2336 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2337 pwq_cache = kmem_cache_create("eventpoll_pwq",
2338 sizeof(struct eppoll_entry), 0, SLAB_PANIC, NULL);
2339
2340 return 0;
2341 }
2342 fs_initcall(eventpoll_init);