Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ecryptfs / crypto.c
1 /**
2 * eCryptfs: Linux filesystem encryption layer
3 *
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
24 */
25
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <linux/slab.h>
37 #include <asm/unaligned.h>
38 #include "ecryptfs_kernel.h"
39
40 static int
41 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
42 struct page *dst_page, int dst_offset,
43 struct page *src_page, int src_offset, int size,
44 unsigned char *iv);
45 static int
46 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
47 struct page *dst_page, int dst_offset,
48 struct page *src_page, int src_offset, int size,
49 unsigned char *iv);
50
51 /**
52 * ecryptfs_to_hex
53 * @dst: Buffer to take hex character representation of contents of
54 * src; must be at least of size (src_size * 2)
55 * @src: Buffer to be converted to a hex string respresentation
56 * @src_size: number of bytes to convert
57 */
58 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
59 {
60 int x;
61
62 for (x = 0; x < src_size; x++)
63 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
64 }
65
66 /**
67 * ecryptfs_from_hex
68 * @dst: Buffer to take the bytes from src hex; must be at least of
69 * size (src_size / 2)
70 * @src: Buffer to be converted from a hex string respresentation to raw value
71 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72 */
73 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
74 {
75 int x;
76 char tmp[3] = { 0, };
77
78 for (x = 0; x < dst_size; x++) {
79 tmp[0] = src[x * 2];
80 tmp[1] = src[x * 2 + 1];
81 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
82 }
83 }
84
85 /**
86 * ecryptfs_calculate_md5 - calculates the md5 of @src
87 * @dst: Pointer to 16 bytes of allocated memory
88 * @crypt_stat: Pointer to crypt_stat struct for the current inode
89 * @src: Data to be md5'd
90 * @len: Length of @src
91 *
92 * Uses the allocated crypto context that crypt_stat references to
93 * generate the MD5 sum of the contents of src.
94 */
95 static int ecryptfs_calculate_md5(char *dst,
96 struct ecryptfs_crypt_stat *crypt_stat,
97 char *src, int len)
98 {
99 struct scatterlist sg;
100 struct hash_desc desc = {
101 .tfm = crypt_stat->hash_tfm,
102 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
103 };
104 int rc = 0;
105
106 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
107 sg_init_one(&sg, (u8 *)src, len);
108 if (!desc.tfm) {
109 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
110 CRYPTO_ALG_ASYNC);
111 if (IS_ERR(desc.tfm)) {
112 rc = PTR_ERR(desc.tfm);
113 ecryptfs_printk(KERN_ERR, "Error attempting to "
114 "allocate crypto context; rc = [%d]\n",
115 rc);
116 goto out;
117 }
118 crypt_stat->hash_tfm = desc.tfm;
119 }
120 rc = crypto_hash_init(&desc);
121 if (rc) {
122 printk(KERN_ERR
123 "%s: Error initializing crypto hash; rc = [%d]\n",
124 __func__, rc);
125 goto out;
126 }
127 rc = crypto_hash_update(&desc, &sg, len);
128 if (rc) {
129 printk(KERN_ERR
130 "%s: Error updating crypto hash; rc = [%d]\n",
131 __func__, rc);
132 goto out;
133 }
134 rc = crypto_hash_final(&desc, dst);
135 if (rc) {
136 printk(KERN_ERR
137 "%s: Error finalizing crypto hash; rc = [%d]\n",
138 __func__, rc);
139 goto out;
140 }
141 out:
142 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
143 return rc;
144 }
145
146 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
147 char *cipher_name,
148 char *chaining_modifier)
149 {
150 int cipher_name_len = strlen(cipher_name);
151 int chaining_modifier_len = strlen(chaining_modifier);
152 int algified_name_len;
153 int rc;
154
155 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
156 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
157 if (!(*algified_name)) {
158 rc = -ENOMEM;
159 goto out;
160 }
161 snprintf((*algified_name), algified_name_len, "%s(%s)",
162 chaining_modifier, cipher_name);
163 rc = 0;
164 out:
165 return rc;
166 }
167
168 /**
169 * ecryptfs_derive_iv
170 * @iv: destination for the derived iv vale
171 * @crypt_stat: Pointer to crypt_stat struct for the current inode
172 * @offset: Offset of the extent whose IV we are to derive
173 *
174 * Generate the initialization vector from the given root IV and page
175 * offset.
176 *
177 * Returns zero on success; non-zero on error.
178 */
179 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
180 loff_t offset)
181 {
182 int rc = 0;
183 char dst[MD5_DIGEST_SIZE];
184 char src[ECRYPTFS_MAX_IV_BYTES + 16];
185
186 if (unlikely(ecryptfs_verbosity > 0)) {
187 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
188 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
189 }
190 /* TODO: It is probably secure to just cast the least
191 * significant bits of the root IV into an unsigned long and
192 * add the offset to that rather than go through all this
193 * hashing business. -Halcrow */
194 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
195 memset((src + crypt_stat->iv_bytes), 0, 16);
196 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
197 if (unlikely(ecryptfs_verbosity > 0)) {
198 ecryptfs_printk(KERN_DEBUG, "source:\n");
199 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
200 }
201 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
202 (crypt_stat->iv_bytes + 16));
203 if (rc) {
204 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
205 "MD5 while generating IV for a page\n");
206 goto out;
207 }
208 memcpy(iv, dst, crypt_stat->iv_bytes);
209 if (unlikely(ecryptfs_verbosity > 0)) {
210 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
211 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
212 }
213 out:
214 return rc;
215 }
216
217 /**
218 * ecryptfs_init_crypt_stat
219 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220 *
221 * Initialize the crypt_stat structure.
222 */
223 void
224 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
225 {
226 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
227 INIT_LIST_HEAD(&crypt_stat->keysig_list);
228 mutex_init(&crypt_stat->keysig_list_mutex);
229 mutex_init(&crypt_stat->cs_mutex);
230 mutex_init(&crypt_stat->cs_tfm_mutex);
231 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
232 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
233 }
234
235 /**
236 * ecryptfs_destroy_crypt_stat
237 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238 *
239 * Releases all memory associated with a crypt_stat struct.
240 */
241 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
242 {
243 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
244
245 if (crypt_stat->tfm)
246 crypto_free_blkcipher(crypt_stat->tfm);
247 if (crypt_stat->hash_tfm)
248 crypto_free_hash(crypt_stat->hash_tfm);
249 list_for_each_entry_safe(key_sig, key_sig_tmp,
250 &crypt_stat->keysig_list, crypt_stat_list) {
251 list_del(&key_sig->crypt_stat_list);
252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
253 }
254 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
255 }
256
257 void ecryptfs_destroy_mount_crypt_stat(
258 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
259 {
260 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
261
262 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
263 return;
264 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
265 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
266 &mount_crypt_stat->global_auth_tok_list,
267 mount_crypt_stat_list) {
268 list_del(&auth_tok->mount_crypt_stat_list);
269 if (auth_tok->global_auth_tok_key
270 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
271 key_put(auth_tok->global_auth_tok_key);
272 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
273 }
274 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
275 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
276 }
277
278 /**
279 * virt_to_scatterlist
280 * @addr: Virtual address
281 * @size: Size of data; should be an even multiple of the block size
282 * @sg: Pointer to scatterlist array; set to NULL to obtain only
283 * the number of scatterlist structs required in array
284 * @sg_size: Max array size
285 *
286 * Fills in a scatterlist array with page references for a passed
287 * virtual address.
288 *
289 * Returns the number of scatterlist structs in array used
290 */
291 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
292 int sg_size)
293 {
294 int i = 0;
295 struct page *pg;
296 int offset;
297 int remainder_of_page;
298
299 sg_init_table(sg, sg_size);
300
301 while (size > 0 && i < sg_size) {
302 pg = virt_to_page(addr);
303 offset = offset_in_page(addr);
304 if (sg)
305 sg_set_page(&sg[i], pg, 0, offset);
306 remainder_of_page = PAGE_CACHE_SIZE - offset;
307 if (size >= remainder_of_page) {
308 if (sg)
309 sg[i].length = remainder_of_page;
310 addr += remainder_of_page;
311 size -= remainder_of_page;
312 } else {
313 if (sg)
314 sg[i].length = size;
315 addr += size;
316 size = 0;
317 }
318 i++;
319 }
320 if (size > 0)
321 return -ENOMEM;
322 return i;
323 }
324
325 /**
326 * encrypt_scatterlist
327 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
328 * @dest_sg: Destination of encrypted data
329 * @src_sg: Data to be encrypted
330 * @size: Length of data to be encrypted
331 * @iv: iv to use during encryption
332 *
333 * Returns the number of bytes encrypted; negative value on error
334 */
335 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
336 struct scatterlist *dest_sg,
337 struct scatterlist *src_sg, int size,
338 unsigned char *iv)
339 {
340 struct blkcipher_desc desc = {
341 .tfm = crypt_stat->tfm,
342 .info = iv,
343 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
344 };
345 int rc = 0;
346
347 BUG_ON(!crypt_stat || !crypt_stat->tfm
348 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
349 if (unlikely(ecryptfs_verbosity > 0)) {
350 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
351 crypt_stat->key_size);
352 ecryptfs_dump_hex(crypt_stat->key,
353 crypt_stat->key_size);
354 }
355 /* Consider doing this once, when the file is opened */
356 mutex_lock(&crypt_stat->cs_tfm_mutex);
357 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
358 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
359 crypt_stat->key_size);
360 crypt_stat->flags |= ECRYPTFS_KEY_SET;
361 }
362 if (rc) {
363 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
364 rc);
365 mutex_unlock(&crypt_stat->cs_tfm_mutex);
366 rc = -EINVAL;
367 goto out;
368 }
369 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
370 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
371 mutex_unlock(&crypt_stat->cs_tfm_mutex);
372 out:
373 return rc;
374 }
375
376 /**
377 * ecryptfs_lower_offset_for_extent
378 *
379 * Convert an eCryptfs page index into a lower byte offset
380 */
381 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
382 struct ecryptfs_crypt_stat *crypt_stat)
383 {
384 (*offset) = ecryptfs_lower_header_size(crypt_stat)
385 + (crypt_stat->extent_size * extent_num);
386 }
387
388 /**
389 * ecryptfs_encrypt_extent
390 * @enc_extent_page: Allocated page into which to encrypt the data in
391 * @page
392 * @crypt_stat: crypt_stat containing cryptographic context for the
393 * encryption operation
394 * @page: Page containing plaintext data extent to encrypt
395 * @extent_offset: Page extent offset for use in generating IV
396 *
397 * Encrypts one extent of data.
398 *
399 * Return zero on success; non-zero otherwise
400 */
401 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
402 struct ecryptfs_crypt_stat *crypt_stat,
403 struct page *page,
404 unsigned long extent_offset)
405 {
406 loff_t extent_base;
407 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
408 int rc;
409
410 extent_base = (((loff_t)page->index)
411 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
412 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
413 (extent_base + extent_offset));
414 if (rc) {
415 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
416 "extent [0x%.16llx]; rc = [%d]\n",
417 (unsigned long long)(extent_base + extent_offset), rc);
418 goto out;
419 }
420 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
421 page, (extent_offset
422 * crypt_stat->extent_size),
423 crypt_stat->extent_size, extent_iv);
424 if (rc < 0) {
425 printk(KERN_ERR "%s: Error attempting to encrypt page with "
426 "page->index = [%ld], extent_offset = [%ld]; "
427 "rc = [%d]\n", __func__, page->index, extent_offset,
428 rc);
429 goto out;
430 }
431 rc = 0;
432 out:
433 return rc;
434 }
435
436 /**
437 * ecryptfs_encrypt_page
438 * @page: Page mapped from the eCryptfs inode for the file; contains
439 * decrypted content that needs to be encrypted (to a temporary
440 * page; not in place) and written out to the lower file
441 *
442 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
443 * that eCryptfs pages may straddle the lower pages -- for instance,
444 * if the file was created on a machine with an 8K page size
445 * (resulting in an 8K header), and then the file is copied onto a
446 * host with a 32K page size, then when reading page 0 of the eCryptfs
447 * file, 24K of page 0 of the lower file will be read and decrypted,
448 * and then 8K of page 1 of the lower file will be read and decrypted.
449 *
450 * Returns zero on success; negative on error
451 */
452 int ecryptfs_encrypt_page(struct page *page)
453 {
454 struct inode *ecryptfs_inode;
455 struct ecryptfs_crypt_stat *crypt_stat;
456 char *enc_extent_virt;
457 struct page *enc_extent_page = NULL;
458 loff_t extent_offset;
459 int rc = 0;
460
461 ecryptfs_inode = page->mapping->host;
462 crypt_stat =
463 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
464 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
465 enc_extent_page = alloc_page(GFP_USER);
466 if (!enc_extent_page) {
467 rc = -ENOMEM;
468 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
469 "encrypted extent\n");
470 goto out;
471 }
472 enc_extent_virt = kmap(enc_extent_page);
473 for (extent_offset = 0;
474 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
475 extent_offset++) {
476 loff_t offset;
477
478 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
479 extent_offset);
480 if (rc) {
481 printk(KERN_ERR "%s: Error encrypting extent; "
482 "rc = [%d]\n", __func__, rc);
483 goto out;
484 }
485 ecryptfs_lower_offset_for_extent(
486 &offset, ((((loff_t)page->index)
487 * (PAGE_CACHE_SIZE
488 / crypt_stat->extent_size))
489 + extent_offset), crypt_stat);
490 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
491 offset, crypt_stat->extent_size);
492 if (rc < 0) {
493 ecryptfs_printk(KERN_ERR, "Error attempting "
494 "to write lower page; rc = [%d]"
495 "\n", rc);
496 goto out;
497 }
498 }
499 rc = 0;
500 out:
501 if (enc_extent_page) {
502 kunmap(enc_extent_page);
503 __free_page(enc_extent_page);
504 }
505 return rc;
506 }
507
508 static int ecryptfs_decrypt_extent(struct page *page,
509 struct ecryptfs_crypt_stat *crypt_stat,
510 struct page *enc_extent_page,
511 unsigned long extent_offset)
512 {
513 loff_t extent_base;
514 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
515 int rc;
516
517 extent_base = (((loff_t)page->index)
518 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
519 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
520 (extent_base + extent_offset));
521 if (rc) {
522 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
523 "extent [0x%.16llx]; rc = [%d]\n",
524 (unsigned long long)(extent_base + extent_offset), rc);
525 goto out;
526 }
527 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
528 (extent_offset
529 * crypt_stat->extent_size),
530 enc_extent_page, 0,
531 crypt_stat->extent_size, extent_iv);
532 if (rc < 0) {
533 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
534 "page->index = [%ld], extent_offset = [%ld]; "
535 "rc = [%d]\n", __func__, page->index, extent_offset,
536 rc);
537 goto out;
538 }
539 rc = 0;
540 out:
541 return rc;
542 }
543
544 /**
545 * ecryptfs_decrypt_page
546 * @page: Page mapped from the eCryptfs inode for the file; data read
547 * and decrypted from the lower file will be written into this
548 * page
549 *
550 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
551 * that eCryptfs pages may straddle the lower pages -- for instance,
552 * if the file was created on a machine with an 8K page size
553 * (resulting in an 8K header), and then the file is copied onto a
554 * host with a 32K page size, then when reading page 0 of the eCryptfs
555 * file, 24K of page 0 of the lower file will be read and decrypted,
556 * and then 8K of page 1 of the lower file will be read and decrypted.
557 *
558 * Returns zero on success; negative on error
559 */
560 int ecryptfs_decrypt_page(struct page *page)
561 {
562 struct inode *ecryptfs_inode;
563 struct ecryptfs_crypt_stat *crypt_stat;
564 char *enc_extent_virt;
565 struct page *enc_extent_page = NULL;
566 unsigned long extent_offset;
567 int rc = 0;
568
569 ecryptfs_inode = page->mapping->host;
570 crypt_stat =
571 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
572 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
573 enc_extent_page = alloc_page(GFP_USER);
574 if (!enc_extent_page) {
575 rc = -ENOMEM;
576 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
577 "encrypted extent\n");
578 goto out;
579 }
580 enc_extent_virt = kmap(enc_extent_page);
581 for (extent_offset = 0;
582 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
583 extent_offset++) {
584 loff_t offset;
585
586 ecryptfs_lower_offset_for_extent(
587 &offset, ((page->index * (PAGE_CACHE_SIZE
588 / crypt_stat->extent_size))
589 + extent_offset), crypt_stat);
590 rc = ecryptfs_read_lower(enc_extent_virt, offset,
591 crypt_stat->extent_size,
592 ecryptfs_inode);
593 if (rc < 0) {
594 ecryptfs_printk(KERN_ERR, "Error attempting "
595 "to read lower page; rc = [%d]"
596 "\n", rc);
597 goto out;
598 }
599 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
600 extent_offset);
601 if (rc) {
602 printk(KERN_ERR "%s: Error encrypting extent; "
603 "rc = [%d]\n", __func__, rc);
604 goto out;
605 }
606 }
607 out:
608 if (enc_extent_page) {
609 kunmap(enc_extent_page);
610 __free_page(enc_extent_page);
611 }
612 return rc;
613 }
614
615 /**
616 * decrypt_scatterlist
617 * @crypt_stat: Cryptographic context
618 * @dest_sg: The destination scatterlist to decrypt into
619 * @src_sg: The source scatterlist to decrypt from
620 * @size: The number of bytes to decrypt
621 * @iv: The initialization vector to use for the decryption
622 *
623 * Returns the number of bytes decrypted; negative value on error
624 */
625 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
626 struct scatterlist *dest_sg,
627 struct scatterlist *src_sg, int size,
628 unsigned char *iv)
629 {
630 struct blkcipher_desc desc = {
631 .tfm = crypt_stat->tfm,
632 .info = iv,
633 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
634 };
635 int rc = 0;
636
637 /* Consider doing this once, when the file is opened */
638 mutex_lock(&crypt_stat->cs_tfm_mutex);
639 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
640 crypt_stat->key_size);
641 if (rc) {
642 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
643 rc);
644 mutex_unlock(&crypt_stat->cs_tfm_mutex);
645 rc = -EINVAL;
646 goto out;
647 }
648 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
649 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
650 mutex_unlock(&crypt_stat->cs_tfm_mutex);
651 if (rc) {
652 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
653 rc);
654 goto out;
655 }
656 rc = size;
657 out:
658 return rc;
659 }
660
661 /**
662 * ecryptfs_encrypt_page_offset
663 * @crypt_stat: The cryptographic context
664 * @dst_page: The page to encrypt into
665 * @dst_offset: The offset in the page to encrypt into
666 * @src_page: The page to encrypt from
667 * @src_offset: The offset in the page to encrypt from
668 * @size: The number of bytes to encrypt
669 * @iv: The initialization vector to use for the encryption
670 *
671 * Returns the number of bytes encrypted
672 */
673 static int
674 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
675 struct page *dst_page, int dst_offset,
676 struct page *src_page, int src_offset, int size,
677 unsigned char *iv)
678 {
679 struct scatterlist src_sg, dst_sg;
680
681 sg_init_table(&src_sg, 1);
682 sg_init_table(&dst_sg, 1);
683
684 sg_set_page(&src_sg, src_page, size, src_offset);
685 sg_set_page(&dst_sg, dst_page, size, dst_offset);
686 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
687 }
688
689 /**
690 * ecryptfs_decrypt_page_offset
691 * @crypt_stat: The cryptographic context
692 * @dst_page: The page to decrypt into
693 * @dst_offset: The offset in the page to decrypt into
694 * @src_page: The page to decrypt from
695 * @src_offset: The offset in the page to decrypt from
696 * @size: The number of bytes to decrypt
697 * @iv: The initialization vector to use for the decryption
698 *
699 * Returns the number of bytes decrypted
700 */
701 static int
702 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
703 struct page *dst_page, int dst_offset,
704 struct page *src_page, int src_offset, int size,
705 unsigned char *iv)
706 {
707 struct scatterlist src_sg, dst_sg;
708
709 sg_init_table(&src_sg, 1);
710 sg_set_page(&src_sg, src_page, size, src_offset);
711
712 sg_init_table(&dst_sg, 1);
713 sg_set_page(&dst_sg, dst_page, size, dst_offset);
714
715 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
716 }
717
718 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
719
720 /**
721 * ecryptfs_init_crypt_ctx
722 * @crypt_stat: Uninitialized crypt stats structure
723 *
724 * Initialize the crypto context.
725 *
726 * TODO: Performance: Keep a cache of initialized cipher contexts;
727 * only init if needed
728 */
729 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
730 {
731 char *full_alg_name;
732 int rc = -EINVAL;
733
734 if (!crypt_stat->cipher) {
735 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
736 goto out;
737 }
738 ecryptfs_printk(KERN_DEBUG,
739 "Initializing cipher [%s]; strlen = [%d]; "
740 "key_size_bits = [%zd]\n",
741 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
742 crypt_stat->key_size << 3);
743 if (crypt_stat->tfm) {
744 rc = 0;
745 goto out;
746 }
747 mutex_lock(&crypt_stat->cs_tfm_mutex);
748 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
749 crypt_stat->cipher, "cbc");
750 if (rc)
751 goto out_unlock;
752 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
753 CRYPTO_ALG_ASYNC);
754 kfree(full_alg_name);
755 if (IS_ERR(crypt_stat->tfm)) {
756 rc = PTR_ERR(crypt_stat->tfm);
757 crypt_stat->tfm = NULL;
758 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
759 "Error initializing cipher [%s]\n",
760 crypt_stat->cipher);
761 goto out_unlock;
762 }
763 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
764 rc = 0;
765 out_unlock:
766 mutex_unlock(&crypt_stat->cs_tfm_mutex);
767 out:
768 return rc;
769 }
770
771 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
772 {
773 int extent_size_tmp;
774
775 crypt_stat->extent_mask = 0xFFFFFFFF;
776 crypt_stat->extent_shift = 0;
777 if (crypt_stat->extent_size == 0)
778 return;
779 extent_size_tmp = crypt_stat->extent_size;
780 while ((extent_size_tmp & 0x01) == 0) {
781 extent_size_tmp >>= 1;
782 crypt_stat->extent_mask <<= 1;
783 crypt_stat->extent_shift++;
784 }
785 }
786
787 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
788 {
789 /* Default values; may be overwritten as we are parsing the
790 * packets. */
791 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
792 set_extent_mask_and_shift(crypt_stat);
793 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
794 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
795 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
796 else {
797 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
798 crypt_stat->metadata_size =
799 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
800 else
801 crypt_stat->metadata_size = PAGE_CACHE_SIZE;
802 }
803 }
804
805 /**
806 * ecryptfs_compute_root_iv
807 * @crypt_stats
808 *
809 * On error, sets the root IV to all 0's.
810 */
811 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
812 {
813 int rc = 0;
814 char dst[MD5_DIGEST_SIZE];
815
816 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
817 BUG_ON(crypt_stat->iv_bytes <= 0);
818 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
819 rc = -EINVAL;
820 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
821 "cannot generate root IV\n");
822 goto out;
823 }
824 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
825 crypt_stat->key_size);
826 if (rc) {
827 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
828 "MD5 while generating root IV\n");
829 goto out;
830 }
831 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
832 out:
833 if (rc) {
834 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
835 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
836 }
837 return rc;
838 }
839
840 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
841 {
842 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
843 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
844 ecryptfs_compute_root_iv(crypt_stat);
845 if (unlikely(ecryptfs_verbosity > 0)) {
846 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
847 ecryptfs_dump_hex(crypt_stat->key,
848 crypt_stat->key_size);
849 }
850 }
851
852 /**
853 * ecryptfs_copy_mount_wide_flags_to_inode_flags
854 * @crypt_stat: The inode's cryptographic context
855 * @mount_crypt_stat: The mount point's cryptographic context
856 *
857 * This function propagates the mount-wide flags to individual inode
858 * flags.
859 */
860 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
861 struct ecryptfs_crypt_stat *crypt_stat,
862 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
863 {
864 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
865 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
866 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
867 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
868 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
869 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
870 if (mount_crypt_stat->flags
871 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
872 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
873 else if (mount_crypt_stat->flags
874 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
875 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
876 }
877 }
878
879 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
880 struct ecryptfs_crypt_stat *crypt_stat,
881 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
882 {
883 struct ecryptfs_global_auth_tok *global_auth_tok;
884 int rc = 0;
885
886 mutex_lock(&crypt_stat->keysig_list_mutex);
887 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
888
889 list_for_each_entry(global_auth_tok,
890 &mount_crypt_stat->global_auth_tok_list,
891 mount_crypt_stat_list) {
892 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
893 continue;
894 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
895 if (rc) {
896 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
897 goto out;
898 }
899 }
900
901 out:
902 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
903 mutex_unlock(&crypt_stat->keysig_list_mutex);
904 return rc;
905 }
906
907 /**
908 * ecryptfs_set_default_crypt_stat_vals
909 * @crypt_stat: The inode's cryptographic context
910 * @mount_crypt_stat: The mount point's cryptographic context
911 *
912 * Default values in the event that policy does not override them.
913 */
914 static void ecryptfs_set_default_crypt_stat_vals(
915 struct ecryptfs_crypt_stat *crypt_stat,
916 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
917 {
918 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
919 mount_crypt_stat);
920 ecryptfs_set_default_sizes(crypt_stat);
921 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
922 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
923 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
924 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
925 crypt_stat->mount_crypt_stat = mount_crypt_stat;
926 }
927
928 /**
929 * ecryptfs_new_file_context
930 * @ecryptfs_inode: The eCryptfs inode
931 *
932 * If the crypto context for the file has not yet been established,
933 * this is where we do that. Establishing a new crypto context
934 * involves the following decisions:
935 * - What cipher to use?
936 * - What set of authentication tokens to use?
937 * Here we just worry about getting enough information into the
938 * authentication tokens so that we know that they are available.
939 * We associate the available authentication tokens with the new file
940 * via the set of signatures in the crypt_stat struct. Later, when
941 * the headers are actually written out, we may again defer to
942 * userspace to perform the encryption of the session key; for the
943 * foreseeable future, this will be the case with public key packets.
944 *
945 * Returns zero on success; non-zero otherwise
946 */
947 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
948 {
949 struct ecryptfs_crypt_stat *crypt_stat =
950 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
951 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
952 &ecryptfs_superblock_to_private(
953 ecryptfs_inode->i_sb)->mount_crypt_stat;
954 int cipher_name_len;
955 int rc = 0;
956
957 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
958 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
959 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
960 mount_crypt_stat);
961 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
962 mount_crypt_stat);
963 if (rc) {
964 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
965 "to the inode key sigs; rc = [%d]\n", rc);
966 goto out;
967 }
968 cipher_name_len =
969 strlen(mount_crypt_stat->global_default_cipher_name);
970 memcpy(crypt_stat->cipher,
971 mount_crypt_stat->global_default_cipher_name,
972 cipher_name_len);
973 crypt_stat->cipher[cipher_name_len] = '\0';
974 crypt_stat->key_size =
975 mount_crypt_stat->global_default_cipher_key_size;
976 ecryptfs_generate_new_key(crypt_stat);
977 rc = ecryptfs_init_crypt_ctx(crypt_stat);
978 if (rc)
979 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
980 "context for cipher [%s]: rc = [%d]\n",
981 crypt_stat->cipher, rc);
982 out:
983 return rc;
984 }
985
986 /**
987 * ecryptfs_validate_marker - check for the ecryptfs marker
988 * @data: The data block in which to check
989 *
990 * Returns zero if marker found; -EINVAL if not found
991 */
992 static int ecryptfs_validate_marker(char *data)
993 {
994 u32 m_1, m_2;
995
996 m_1 = get_unaligned_be32(data);
997 m_2 = get_unaligned_be32(data + 4);
998 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
999 return 0;
1000 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1001 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1002 MAGIC_ECRYPTFS_MARKER);
1003 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1004 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1005 return -EINVAL;
1006 }
1007
1008 struct ecryptfs_flag_map_elem {
1009 u32 file_flag;
1010 u32 local_flag;
1011 };
1012
1013 /* Add support for additional flags by adding elements here. */
1014 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1015 {0x00000001, ECRYPTFS_ENABLE_HMAC},
1016 {0x00000002, ECRYPTFS_ENCRYPTED},
1017 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1018 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1019 };
1020
1021 /**
1022 * ecryptfs_process_flags
1023 * @crypt_stat: The cryptographic context
1024 * @page_virt: Source data to be parsed
1025 * @bytes_read: Updated with the number of bytes read
1026 *
1027 * Returns zero on success; non-zero if the flag set is invalid
1028 */
1029 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1030 char *page_virt, int *bytes_read)
1031 {
1032 int rc = 0;
1033 int i;
1034 u32 flags;
1035
1036 flags = get_unaligned_be32(page_virt);
1037 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1038 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1039 if (flags & ecryptfs_flag_map[i].file_flag) {
1040 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1041 } else
1042 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1043 /* Version is in top 8 bits of the 32-bit flag vector */
1044 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1045 (*bytes_read) = 4;
1046 return rc;
1047 }
1048
1049 /**
1050 * write_ecryptfs_marker
1051 * @page_virt: The pointer to in a page to begin writing the marker
1052 * @written: Number of bytes written
1053 *
1054 * Marker = 0x3c81b7f5
1055 */
1056 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1057 {
1058 u32 m_1, m_2;
1059
1060 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1061 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1062 put_unaligned_be32(m_1, page_virt);
1063 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1064 put_unaligned_be32(m_2, page_virt);
1065 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1066 }
1067
1068 void ecryptfs_write_crypt_stat_flags(char *page_virt,
1069 struct ecryptfs_crypt_stat *crypt_stat,
1070 size_t *written)
1071 {
1072 u32 flags = 0;
1073 int i;
1074
1075 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1076 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1077 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1078 flags |= ecryptfs_flag_map[i].file_flag;
1079 /* Version is in top 8 bits of the 32-bit flag vector */
1080 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1081 put_unaligned_be32(flags, page_virt);
1082 (*written) = 4;
1083 }
1084
1085 struct ecryptfs_cipher_code_str_map_elem {
1086 char cipher_str[16];
1087 u8 cipher_code;
1088 };
1089
1090 /* Add support for additional ciphers by adding elements here. The
1091 * cipher_code is whatever OpenPGP applicatoins use to identify the
1092 * ciphers. List in order of probability. */
1093 static struct ecryptfs_cipher_code_str_map_elem
1094 ecryptfs_cipher_code_str_map[] = {
1095 {"aes",RFC2440_CIPHER_AES_128 },
1096 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1097 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1098 {"cast5", RFC2440_CIPHER_CAST_5},
1099 {"twofish", RFC2440_CIPHER_TWOFISH},
1100 {"cast6", RFC2440_CIPHER_CAST_6},
1101 {"aes", RFC2440_CIPHER_AES_192},
1102 {"aes", RFC2440_CIPHER_AES_256}
1103 };
1104
1105 /**
1106 * ecryptfs_code_for_cipher_string
1107 * @cipher_name: The string alias for the cipher
1108 * @key_bytes: Length of key in bytes; used for AES code selection
1109 *
1110 * Returns zero on no match, or the cipher code on match
1111 */
1112 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1113 {
1114 int i;
1115 u8 code = 0;
1116 struct ecryptfs_cipher_code_str_map_elem *map =
1117 ecryptfs_cipher_code_str_map;
1118
1119 if (strcmp(cipher_name, "aes") == 0) {
1120 switch (key_bytes) {
1121 case 16:
1122 code = RFC2440_CIPHER_AES_128;
1123 break;
1124 case 24:
1125 code = RFC2440_CIPHER_AES_192;
1126 break;
1127 case 32:
1128 code = RFC2440_CIPHER_AES_256;
1129 }
1130 } else {
1131 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1132 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1133 code = map[i].cipher_code;
1134 break;
1135 }
1136 }
1137 return code;
1138 }
1139
1140 /**
1141 * ecryptfs_cipher_code_to_string
1142 * @str: Destination to write out the cipher name
1143 * @cipher_code: The code to convert to cipher name string
1144 *
1145 * Returns zero on success
1146 */
1147 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1148 {
1149 int rc = 0;
1150 int i;
1151
1152 str[0] = '\0';
1153 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1154 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1155 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1156 if (str[0] == '\0') {
1157 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1158 "[%d]\n", cipher_code);
1159 rc = -EINVAL;
1160 }
1161 return rc;
1162 }
1163
1164 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1165 {
1166 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1167 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1168 int rc;
1169
1170 rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1171 inode);
1172 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1173 return rc >= 0 ? -EINVAL : rc;
1174 rc = ecryptfs_validate_marker(marker);
1175 if (!rc)
1176 ecryptfs_i_size_init(file_size, inode);
1177 return rc;
1178 }
1179
1180 void
1181 ecryptfs_write_header_metadata(char *virt,
1182 struct ecryptfs_crypt_stat *crypt_stat,
1183 size_t *written)
1184 {
1185 u32 header_extent_size;
1186 u16 num_header_extents_at_front;
1187
1188 header_extent_size = (u32)crypt_stat->extent_size;
1189 num_header_extents_at_front =
1190 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1191 put_unaligned_be32(header_extent_size, virt);
1192 virt += 4;
1193 put_unaligned_be16(num_header_extents_at_front, virt);
1194 (*written) = 6;
1195 }
1196
1197 struct kmem_cache *ecryptfs_header_cache;
1198
1199 /**
1200 * ecryptfs_write_headers_virt
1201 * @page_virt: The virtual address to write the headers to
1202 * @max: The size of memory allocated at page_virt
1203 * @size: Set to the number of bytes written by this function
1204 * @crypt_stat: The cryptographic context
1205 * @ecryptfs_dentry: The eCryptfs dentry
1206 *
1207 * Format version: 1
1208 *
1209 * Header Extent:
1210 * Octets 0-7: Unencrypted file size (big-endian)
1211 * Octets 8-15: eCryptfs special marker
1212 * Octets 16-19: Flags
1213 * Octet 16: File format version number (between 0 and 255)
1214 * Octets 17-18: Reserved
1215 * Octet 19: Bit 1 (lsb): Reserved
1216 * Bit 2: Encrypted?
1217 * Bits 3-8: Reserved
1218 * Octets 20-23: Header extent size (big-endian)
1219 * Octets 24-25: Number of header extents at front of file
1220 * (big-endian)
1221 * Octet 26: Begin RFC 2440 authentication token packet set
1222 * Data Extent 0:
1223 * Lower data (CBC encrypted)
1224 * Data Extent 1:
1225 * Lower data (CBC encrypted)
1226 * ...
1227 *
1228 * Returns zero on success
1229 */
1230 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1231 size_t *size,
1232 struct ecryptfs_crypt_stat *crypt_stat,
1233 struct dentry *ecryptfs_dentry)
1234 {
1235 int rc;
1236 size_t written;
1237 size_t offset;
1238
1239 offset = ECRYPTFS_FILE_SIZE_BYTES;
1240 write_ecryptfs_marker((page_virt + offset), &written);
1241 offset += written;
1242 ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1243 &written);
1244 offset += written;
1245 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1246 &written);
1247 offset += written;
1248 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1249 ecryptfs_dentry, &written,
1250 max - offset);
1251 if (rc)
1252 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1253 "set; rc = [%d]\n", rc);
1254 if (size) {
1255 offset += written;
1256 *size = offset;
1257 }
1258 return rc;
1259 }
1260
1261 static int
1262 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1263 char *virt, size_t virt_len)
1264 {
1265 int rc;
1266
1267 rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1268 0, virt_len);
1269 if (rc < 0)
1270 printk(KERN_ERR "%s: Error attempting to write header "
1271 "information to lower file; rc = [%d]\n", __func__, rc);
1272 else
1273 rc = 0;
1274 return rc;
1275 }
1276
1277 static int
1278 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1279 char *page_virt, size_t size)
1280 {
1281 int rc;
1282
1283 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1284 size, 0);
1285 return rc;
1286 }
1287
1288 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1289 unsigned int order)
1290 {
1291 struct page *page;
1292
1293 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1294 if (page)
1295 return (unsigned long) page_address(page);
1296 return 0;
1297 }
1298
1299 /**
1300 * ecryptfs_write_metadata
1301 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1302 * @ecryptfs_inode: The newly created eCryptfs inode
1303 *
1304 * Write the file headers out. This will likely involve a userspace
1305 * callout, in which the session key is encrypted with one or more
1306 * public keys and/or the passphrase necessary to do the encryption is
1307 * retrieved via a prompt. Exactly what happens at this point should
1308 * be policy-dependent.
1309 *
1310 * Returns zero on success; non-zero on error
1311 */
1312 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1313 struct inode *ecryptfs_inode)
1314 {
1315 struct ecryptfs_crypt_stat *crypt_stat =
1316 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1317 unsigned int order;
1318 char *virt;
1319 size_t virt_len;
1320 size_t size = 0;
1321 int rc = 0;
1322
1323 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1324 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1325 printk(KERN_ERR "Key is invalid; bailing out\n");
1326 rc = -EINVAL;
1327 goto out;
1328 }
1329 } else {
1330 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1331 __func__);
1332 rc = -EINVAL;
1333 goto out;
1334 }
1335 virt_len = crypt_stat->metadata_size;
1336 order = get_order(virt_len);
1337 /* Released in this function */
1338 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1339 if (!virt) {
1340 printk(KERN_ERR "%s: Out of memory\n", __func__);
1341 rc = -ENOMEM;
1342 goto out;
1343 }
1344 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1345 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1346 ecryptfs_dentry);
1347 if (unlikely(rc)) {
1348 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1349 __func__, rc);
1350 goto out_free;
1351 }
1352 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1353 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1354 size);
1355 else
1356 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1357 virt_len);
1358 if (rc) {
1359 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1360 "rc = [%d]\n", __func__, rc);
1361 goto out_free;
1362 }
1363 out_free:
1364 free_pages((unsigned long)virt, order);
1365 out:
1366 return rc;
1367 }
1368
1369 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1370 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1371 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1372 char *virt, int *bytes_read,
1373 int validate_header_size)
1374 {
1375 int rc = 0;
1376 u32 header_extent_size;
1377 u16 num_header_extents_at_front;
1378
1379 header_extent_size = get_unaligned_be32(virt);
1380 virt += sizeof(__be32);
1381 num_header_extents_at_front = get_unaligned_be16(virt);
1382 crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1383 * (size_t)header_extent_size));
1384 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1385 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1386 && (crypt_stat->metadata_size
1387 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1388 rc = -EINVAL;
1389 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1390 crypt_stat->metadata_size);
1391 }
1392 return rc;
1393 }
1394
1395 /**
1396 * set_default_header_data
1397 * @crypt_stat: The cryptographic context
1398 *
1399 * For version 0 file format; this function is only for backwards
1400 * compatibility for files created with the prior versions of
1401 * eCryptfs.
1402 */
1403 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1404 {
1405 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1406 }
1407
1408 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1409 {
1410 struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1411 struct ecryptfs_crypt_stat *crypt_stat;
1412 u64 file_size;
1413
1414 crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1415 mount_crypt_stat =
1416 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1417 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1418 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1419 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1420 file_size += crypt_stat->metadata_size;
1421 } else
1422 file_size = get_unaligned_be64(page_virt);
1423 i_size_write(inode, (loff_t)file_size);
1424 crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1425 }
1426
1427 /**
1428 * ecryptfs_read_headers_virt
1429 * @page_virt: The virtual address into which to read the headers
1430 * @crypt_stat: The cryptographic context
1431 * @ecryptfs_dentry: The eCryptfs dentry
1432 * @validate_header_size: Whether to validate the header size while reading
1433 *
1434 * Read/parse the header data. The header format is detailed in the
1435 * comment block for the ecryptfs_write_headers_virt() function.
1436 *
1437 * Returns zero on success
1438 */
1439 static int ecryptfs_read_headers_virt(char *page_virt,
1440 struct ecryptfs_crypt_stat *crypt_stat,
1441 struct dentry *ecryptfs_dentry,
1442 int validate_header_size)
1443 {
1444 int rc = 0;
1445 int offset;
1446 int bytes_read;
1447
1448 ecryptfs_set_default_sizes(crypt_stat);
1449 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1450 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1451 offset = ECRYPTFS_FILE_SIZE_BYTES;
1452 rc = ecryptfs_validate_marker(page_virt + offset);
1453 if (rc)
1454 goto out;
1455 if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1456 ecryptfs_i_size_init(page_virt, ecryptfs_dentry->d_inode);
1457 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1458 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1459 &bytes_read);
1460 if (rc) {
1461 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1462 goto out;
1463 }
1464 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1465 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1466 "file version [%d] is supported by this "
1467 "version of eCryptfs\n",
1468 crypt_stat->file_version,
1469 ECRYPTFS_SUPPORTED_FILE_VERSION);
1470 rc = -EINVAL;
1471 goto out;
1472 }
1473 offset += bytes_read;
1474 if (crypt_stat->file_version >= 1) {
1475 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1476 &bytes_read, validate_header_size);
1477 if (rc) {
1478 ecryptfs_printk(KERN_WARNING, "Error reading header "
1479 "metadata; rc = [%d]\n", rc);
1480 }
1481 offset += bytes_read;
1482 } else
1483 set_default_header_data(crypt_stat);
1484 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1485 ecryptfs_dentry);
1486 out:
1487 return rc;
1488 }
1489
1490 /**
1491 * ecryptfs_read_xattr_region
1492 * @page_virt: The vitual address into which to read the xattr data
1493 * @ecryptfs_inode: The eCryptfs inode
1494 *
1495 * Attempts to read the crypto metadata from the extended attribute
1496 * region of the lower file.
1497 *
1498 * Returns zero on success; non-zero on error
1499 */
1500 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1501 {
1502 struct dentry *lower_dentry =
1503 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1504 ssize_t size;
1505 int rc = 0;
1506
1507 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1508 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1509 if (size < 0) {
1510 if (unlikely(ecryptfs_verbosity > 0))
1511 printk(KERN_INFO "Error attempting to read the [%s] "
1512 "xattr from the lower file; return value = "
1513 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1514 rc = -EINVAL;
1515 goto out;
1516 }
1517 out:
1518 return rc;
1519 }
1520
1521 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1522 struct inode *inode)
1523 {
1524 u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1525 u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1526 int rc;
1527
1528 rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1529 ECRYPTFS_XATTR_NAME, file_size,
1530 ECRYPTFS_SIZE_AND_MARKER_BYTES);
1531 if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1532 return rc >= 0 ? -EINVAL : rc;
1533 rc = ecryptfs_validate_marker(marker);
1534 if (!rc)
1535 ecryptfs_i_size_init(file_size, inode);
1536 return rc;
1537 }
1538
1539 /**
1540 * ecryptfs_read_metadata
1541 *
1542 * Common entry point for reading file metadata. From here, we could
1543 * retrieve the header information from the header region of the file,
1544 * the xattr region of the file, or some other repostory that is
1545 * stored separately from the file itself. The current implementation
1546 * supports retrieving the metadata information from the file contents
1547 * and from the xattr region.
1548 *
1549 * Returns zero if valid headers found and parsed; non-zero otherwise
1550 */
1551 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1552 {
1553 int rc;
1554 char *page_virt;
1555 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1556 struct ecryptfs_crypt_stat *crypt_stat =
1557 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1558 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1559 &ecryptfs_superblock_to_private(
1560 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1561
1562 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1563 mount_crypt_stat);
1564 /* Read the first page from the underlying file */
1565 page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1566 if (!page_virt) {
1567 rc = -ENOMEM;
1568 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1569 __func__);
1570 goto out;
1571 }
1572 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1573 ecryptfs_inode);
1574 if (rc >= 0)
1575 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1576 ecryptfs_dentry,
1577 ECRYPTFS_VALIDATE_HEADER_SIZE);
1578 if (rc) {
1579 /* metadata is not in the file header, so try xattrs */
1580 memset(page_virt, 0, PAGE_CACHE_SIZE);
1581 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1582 if (rc) {
1583 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1584 "file header region or xattr region, inode %lu\n",
1585 ecryptfs_inode->i_ino);
1586 rc = -EINVAL;
1587 goto out;
1588 }
1589 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1590 ecryptfs_dentry,
1591 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1592 if (rc) {
1593 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1594 "file xattr region either, inode %lu\n",
1595 ecryptfs_inode->i_ino);
1596 rc = -EINVAL;
1597 }
1598 if (crypt_stat->mount_crypt_stat->flags
1599 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1600 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1601 } else {
1602 printk(KERN_WARNING "Attempt to access file with "
1603 "crypto metadata only in the extended attribute "
1604 "region, but eCryptfs was mounted without "
1605 "xattr support enabled. eCryptfs will not treat "
1606 "this like an encrypted file, inode %lu\n",
1607 ecryptfs_inode->i_ino);
1608 rc = -EINVAL;
1609 }
1610 }
1611 out:
1612 if (page_virt) {
1613 memset(page_virt, 0, PAGE_CACHE_SIZE);
1614 kmem_cache_free(ecryptfs_header_cache, page_virt);
1615 }
1616 return rc;
1617 }
1618
1619 /**
1620 * ecryptfs_encrypt_filename - encrypt filename
1621 *
1622 * CBC-encrypts the filename. We do not want to encrypt the same
1623 * filename with the same key and IV, which may happen with hard
1624 * links, so we prepend random bits to each filename.
1625 *
1626 * Returns zero on success; non-zero otherwise
1627 */
1628 static int
1629 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1630 struct ecryptfs_crypt_stat *crypt_stat,
1631 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1632 {
1633 int rc = 0;
1634
1635 filename->encrypted_filename = NULL;
1636 filename->encrypted_filename_size = 0;
1637 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1638 || (mount_crypt_stat && (mount_crypt_stat->flags
1639 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1640 size_t packet_size;
1641 size_t remaining_bytes;
1642
1643 rc = ecryptfs_write_tag_70_packet(
1644 NULL, NULL,
1645 &filename->encrypted_filename_size,
1646 mount_crypt_stat, NULL,
1647 filename->filename_size);
1648 if (rc) {
1649 printk(KERN_ERR "%s: Error attempting to get packet "
1650 "size for tag 72; rc = [%d]\n", __func__,
1651 rc);
1652 filename->encrypted_filename_size = 0;
1653 goto out;
1654 }
1655 filename->encrypted_filename =
1656 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1657 if (!filename->encrypted_filename) {
1658 printk(KERN_ERR "%s: Out of memory whilst attempting "
1659 "to kmalloc [%zd] bytes\n", __func__,
1660 filename->encrypted_filename_size);
1661 rc = -ENOMEM;
1662 goto out;
1663 }
1664 remaining_bytes = filename->encrypted_filename_size;
1665 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1666 &remaining_bytes,
1667 &packet_size,
1668 mount_crypt_stat,
1669 filename->filename,
1670 filename->filename_size);
1671 if (rc) {
1672 printk(KERN_ERR "%s: Error attempting to generate "
1673 "tag 70 packet; rc = [%d]\n", __func__,
1674 rc);
1675 kfree(filename->encrypted_filename);
1676 filename->encrypted_filename = NULL;
1677 filename->encrypted_filename_size = 0;
1678 goto out;
1679 }
1680 filename->encrypted_filename_size = packet_size;
1681 } else {
1682 printk(KERN_ERR "%s: No support for requested filename "
1683 "encryption method in this release\n", __func__);
1684 rc = -EOPNOTSUPP;
1685 goto out;
1686 }
1687 out:
1688 return rc;
1689 }
1690
1691 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1692 const char *name, size_t name_size)
1693 {
1694 int rc = 0;
1695
1696 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1697 if (!(*copied_name)) {
1698 rc = -ENOMEM;
1699 goto out;
1700 }
1701 memcpy((void *)(*copied_name), (void *)name, name_size);
1702 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1703 * in printing out the
1704 * string in debug
1705 * messages */
1706 (*copied_name_size) = name_size;
1707 out:
1708 return rc;
1709 }
1710
1711 /**
1712 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1713 * @key_tfm: Crypto context for key material, set by this function
1714 * @cipher_name: Name of the cipher
1715 * @key_size: Size of the key in bytes
1716 *
1717 * Returns zero on success. Any crypto_tfm structs allocated here
1718 * should be released by other functions, such as on a superblock put
1719 * event, regardless of whether this function succeeds for fails.
1720 */
1721 static int
1722 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1723 char *cipher_name, size_t *key_size)
1724 {
1725 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1726 char *full_alg_name = NULL;
1727 int rc;
1728
1729 *key_tfm = NULL;
1730 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1731 rc = -EINVAL;
1732 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1733 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1734 goto out;
1735 }
1736 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1737 "ecb");
1738 if (rc)
1739 goto out;
1740 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1741 if (IS_ERR(*key_tfm)) {
1742 rc = PTR_ERR(*key_tfm);
1743 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1744 "[%s]; rc = [%d]\n", full_alg_name, rc);
1745 goto out;
1746 }
1747 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1748 if (*key_size == 0) {
1749 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1750
1751 *key_size = alg->max_keysize;
1752 }
1753 get_random_bytes(dummy_key, *key_size);
1754 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1755 if (rc) {
1756 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1757 "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1758 rc);
1759 rc = -EINVAL;
1760 goto out;
1761 }
1762 out:
1763 kfree(full_alg_name);
1764 return rc;
1765 }
1766
1767 struct kmem_cache *ecryptfs_key_tfm_cache;
1768 static struct list_head key_tfm_list;
1769 struct mutex key_tfm_list_mutex;
1770
1771 int __init ecryptfs_init_crypto(void)
1772 {
1773 mutex_init(&key_tfm_list_mutex);
1774 INIT_LIST_HEAD(&key_tfm_list);
1775 return 0;
1776 }
1777
1778 /**
1779 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1780 *
1781 * Called only at module unload time
1782 */
1783 int ecryptfs_destroy_crypto(void)
1784 {
1785 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1786
1787 mutex_lock(&key_tfm_list_mutex);
1788 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1789 key_tfm_list) {
1790 list_del(&key_tfm->key_tfm_list);
1791 if (key_tfm->key_tfm)
1792 crypto_free_blkcipher(key_tfm->key_tfm);
1793 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1794 }
1795 mutex_unlock(&key_tfm_list_mutex);
1796 return 0;
1797 }
1798
1799 int
1800 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1801 size_t key_size)
1802 {
1803 struct ecryptfs_key_tfm *tmp_tfm;
1804 int rc = 0;
1805
1806 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1807
1808 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1809 if (key_tfm != NULL)
1810 (*key_tfm) = tmp_tfm;
1811 if (!tmp_tfm) {
1812 rc = -ENOMEM;
1813 printk(KERN_ERR "Error attempting to allocate from "
1814 "ecryptfs_key_tfm_cache\n");
1815 goto out;
1816 }
1817 mutex_init(&tmp_tfm->key_tfm_mutex);
1818 strncpy(tmp_tfm->cipher_name, cipher_name,
1819 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1820 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1821 tmp_tfm->key_size = key_size;
1822 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1823 tmp_tfm->cipher_name,
1824 &tmp_tfm->key_size);
1825 if (rc) {
1826 printk(KERN_ERR "Error attempting to initialize key TFM "
1827 "cipher with name = [%s]; rc = [%d]\n",
1828 tmp_tfm->cipher_name, rc);
1829 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1830 if (key_tfm != NULL)
1831 (*key_tfm) = NULL;
1832 goto out;
1833 }
1834 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1835 out:
1836 return rc;
1837 }
1838
1839 /**
1840 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1841 * @cipher_name: the name of the cipher to search for
1842 * @key_tfm: set to corresponding tfm if found
1843 *
1844 * Searches for cached key_tfm matching @cipher_name
1845 * Must be called with &key_tfm_list_mutex held
1846 * Returns 1 if found, with @key_tfm set
1847 * Returns 0 if not found, with @key_tfm set to NULL
1848 */
1849 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1850 {
1851 struct ecryptfs_key_tfm *tmp_key_tfm;
1852
1853 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1854
1855 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1856 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1857 if (key_tfm)
1858 (*key_tfm) = tmp_key_tfm;
1859 return 1;
1860 }
1861 }
1862 if (key_tfm)
1863 (*key_tfm) = NULL;
1864 return 0;
1865 }
1866
1867 /**
1868 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1869 *
1870 * @tfm: set to cached tfm found, or new tfm created
1871 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1872 * @cipher_name: the name of the cipher to search for and/or add
1873 *
1874 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1875 * Searches for cached item first, and creates new if not found.
1876 * Returns 0 on success, non-zero if adding new cipher failed
1877 */
1878 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1879 struct mutex **tfm_mutex,
1880 char *cipher_name)
1881 {
1882 struct ecryptfs_key_tfm *key_tfm;
1883 int rc = 0;
1884
1885 (*tfm) = NULL;
1886 (*tfm_mutex) = NULL;
1887
1888 mutex_lock(&key_tfm_list_mutex);
1889 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1890 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1891 if (rc) {
1892 printk(KERN_ERR "Error adding new key_tfm to list; "
1893 "rc = [%d]\n", rc);
1894 goto out;
1895 }
1896 }
1897 (*tfm) = key_tfm->key_tfm;
1898 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1899 out:
1900 mutex_unlock(&key_tfm_list_mutex);
1901 return rc;
1902 }
1903
1904 /* 64 characters forming a 6-bit target field */
1905 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1906 "EFGHIJKLMNOPQRST"
1907 "UVWXYZabcdefghij"
1908 "klmnopqrstuvwxyz");
1909
1910 /* We could either offset on every reverse map or just pad some 0x00's
1911 * at the front here */
1912 static const unsigned char filename_rev_map[256] = {
1913 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1914 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1915 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1916 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1917 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1918 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1919 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1920 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1921 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1922 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1923 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1924 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1925 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1926 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1927 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1928 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1929 };
1930
1931 /**
1932 * ecryptfs_encode_for_filename
1933 * @dst: Destination location for encoded filename
1934 * @dst_size: Size of the encoded filename in bytes
1935 * @src: Source location for the filename to encode
1936 * @src_size: Size of the source in bytes
1937 */
1938 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1939 unsigned char *src, size_t src_size)
1940 {
1941 size_t num_blocks;
1942 size_t block_num = 0;
1943 size_t dst_offset = 0;
1944 unsigned char last_block[3];
1945
1946 if (src_size == 0) {
1947 (*dst_size) = 0;
1948 goto out;
1949 }
1950 num_blocks = (src_size / 3);
1951 if ((src_size % 3) == 0) {
1952 memcpy(last_block, (&src[src_size - 3]), 3);
1953 } else {
1954 num_blocks++;
1955 last_block[2] = 0x00;
1956 switch (src_size % 3) {
1957 case 1:
1958 last_block[0] = src[src_size - 1];
1959 last_block[1] = 0x00;
1960 break;
1961 case 2:
1962 last_block[0] = src[src_size - 2];
1963 last_block[1] = src[src_size - 1];
1964 }
1965 }
1966 (*dst_size) = (num_blocks * 4);
1967 if (!dst)
1968 goto out;
1969 while (block_num < num_blocks) {
1970 unsigned char *src_block;
1971 unsigned char dst_block[4];
1972
1973 if (block_num == (num_blocks - 1))
1974 src_block = last_block;
1975 else
1976 src_block = &src[block_num * 3];
1977 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1978 dst_block[1] = (((src_block[0] << 4) & 0x30)
1979 | ((src_block[1] >> 4) & 0x0F));
1980 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1981 | ((src_block[2] >> 6) & 0x03));
1982 dst_block[3] = (src_block[2] & 0x3F);
1983 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1984 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1985 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1986 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1987 block_num++;
1988 }
1989 out:
1990 return;
1991 }
1992
1993 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1994 {
1995 /* Not exact; conservatively long. Every block of 4
1996 * encoded characters decodes into a block of 3
1997 * decoded characters. This segment of code provides
1998 * the caller with the maximum amount of allocated
1999 * space that @dst will need to point to in a
2000 * subsequent call. */
2001 return ((encoded_size + 1) * 3) / 4;
2002 }
2003
2004 /**
2005 * ecryptfs_decode_from_filename
2006 * @dst: If NULL, this function only sets @dst_size and returns. If
2007 * non-NULL, this function decodes the encoded octets in @src
2008 * into the memory that @dst points to.
2009 * @dst_size: Set to the size of the decoded string.
2010 * @src: The encoded set of octets to decode.
2011 * @src_size: The size of the encoded set of octets to decode.
2012 */
2013 static void
2014 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2015 const unsigned char *src, size_t src_size)
2016 {
2017 u8 current_bit_offset = 0;
2018 size_t src_byte_offset = 0;
2019 size_t dst_byte_offset = 0;
2020
2021 if (dst == NULL) {
2022 (*dst_size) = ecryptfs_max_decoded_size(src_size);
2023 goto out;
2024 }
2025 while (src_byte_offset < src_size) {
2026 unsigned char src_byte =
2027 filename_rev_map[(int)src[src_byte_offset]];
2028
2029 switch (current_bit_offset) {
2030 case 0:
2031 dst[dst_byte_offset] = (src_byte << 2);
2032 current_bit_offset = 6;
2033 break;
2034 case 6:
2035 dst[dst_byte_offset++] |= (src_byte >> 4);
2036 dst[dst_byte_offset] = ((src_byte & 0xF)
2037 << 4);
2038 current_bit_offset = 4;
2039 break;
2040 case 4:
2041 dst[dst_byte_offset++] |= (src_byte >> 2);
2042 dst[dst_byte_offset] = (src_byte << 6);
2043 current_bit_offset = 2;
2044 break;
2045 case 2:
2046 dst[dst_byte_offset++] |= (src_byte);
2047 dst[dst_byte_offset] = 0;
2048 current_bit_offset = 0;
2049 break;
2050 }
2051 src_byte_offset++;
2052 }
2053 (*dst_size) = dst_byte_offset;
2054 out:
2055 return;
2056 }
2057
2058 /**
2059 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2060 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2061 * @name: The plaintext name
2062 * @length: The length of the plaintext
2063 * @encoded_name: The encypted name
2064 *
2065 * Encrypts and encodes a filename into something that constitutes a
2066 * valid filename for a filesystem, with printable characters.
2067 *
2068 * We assume that we have a properly initialized crypto context,
2069 * pointed to by crypt_stat->tfm.
2070 *
2071 * Returns zero on success; non-zero on otherwise
2072 */
2073 int ecryptfs_encrypt_and_encode_filename(
2074 char **encoded_name,
2075 size_t *encoded_name_size,
2076 struct ecryptfs_crypt_stat *crypt_stat,
2077 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2078 const char *name, size_t name_size)
2079 {
2080 size_t encoded_name_no_prefix_size;
2081 int rc = 0;
2082
2083 (*encoded_name) = NULL;
2084 (*encoded_name_size) = 0;
2085 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2086 || (mount_crypt_stat && (mount_crypt_stat->flags
2087 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2088 struct ecryptfs_filename *filename;
2089
2090 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2091 if (!filename) {
2092 printk(KERN_ERR "%s: Out of memory whilst attempting "
2093 "to kzalloc [%zd] bytes\n", __func__,
2094 sizeof(*filename));
2095 rc = -ENOMEM;
2096 goto out;
2097 }
2098 filename->filename = (char *)name;
2099 filename->filename_size = name_size;
2100 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2101 mount_crypt_stat);
2102 if (rc) {
2103 printk(KERN_ERR "%s: Error attempting to encrypt "
2104 "filename; rc = [%d]\n", __func__, rc);
2105 kfree(filename);
2106 goto out;
2107 }
2108 ecryptfs_encode_for_filename(
2109 NULL, &encoded_name_no_prefix_size,
2110 filename->encrypted_filename,
2111 filename->encrypted_filename_size);
2112 if ((crypt_stat && (crypt_stat->flags
2113 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2114 || (mount_crypt_stat
2115 && (mount_crypt_stat->flags
2116 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2117 (*encoded_name_size) =
2118 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2119 + encoded_name_no_prefix_size);
2120 else
2121 (*encoded_name_size) =
2122 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2123 + encoded_name_no_prefix_size);
2124 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2125 if (!(*encoded_name)) {
2126 printk(KERN_ERR "%s: Out of memory whilst attempting "
2127 "to kzalloc [%zd] bytes\n", __func__,
2128 (*encoded_name_size));
2129 rc = -ENOMEM;
2130 kfree(filename->encrypted_filename);
2131 kfree(filename);
2132 goto out;
2133 }
2134 if ((crypt_stat && (crypt_stat->flags
2135 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2136 || (mount_crypt_stat
2137 && (mount_crypt_stat->flags
2138 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2139 memcpy((*encoded_name),
2140 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2141 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2142 ecryptfs_encode_for_filename(
2143 ((*encoded_name)
2144 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2145 &encoded_name_no_prefix_size,
2146 filename->encrypted_filename,
2147 filename->encrypted_filename_size);
2148 (*encoded_name_size) =
2149 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2150 + encoded_name_no_prefix_size);
2151 (*encoded_name)[(*encoded_name_size)] = '\0';
2152 } else {
2153 rc = -EOPNOTSUPP;
2154 }
2155 if (rc) {
2156 printk(KERN_ERR "%s: Error attempting to encode "
2157 "encrypted filename; rc = [%d]\n", __func__,
2158 rc);
2159 kfree((*encoded_name));
2160 (*encoded_name) = NULL;
2161 (*encoded_name_size) = 0;
2162 }
2163 kfree(filename->encrypted_filename);
2164 kfree(filename);
2165 } else {
2166 rc = ecryptfs_copy_filename(encoded_name,
2167 encoded_name_size,
2168 name, name_size);
2169 }
2170 out:
2171 return rc;
2172 }
2173
2174 /**
2175 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2176 * @plaintext_name: The plaintext name
2177 * @plaintext_name_size: The plaintext name size
2178 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2179 * @name: The filename in cipher text
2180 * @name_size: The cipher text name size
2181 *
2182 * Decrypts and decodes the filename.
2183 *
2184 * Returns zero on error; non-zero otherwise
2185 */
2186 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2187 size_t *plaintext_name_size,
2188 struct dentry *ecryptfs_dir_dentry,
2189 const char *name, size_t name_size)
2190 {
2191 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2192 &ecryptfs_superblock_to_private(
2193 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2194 char *decoded_name;
2195 size_t decoded_name_size;
2196 size_t packet_size;
2197 int rc = 0;
2198
2199 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2200 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2201 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2202 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2203 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2204 const char *orig_name = name;
2205 size_t orig_name_size = name_size;
2206
2207 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2208 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2209 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2210 name, name_size);
2211 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2212 if (!decoded_name) {
2213 printk(KERN_ERR "%s: Out of memory whilst attempting "
2214 "to kmalloc [%zd] bytes\n", __func__,
2215 decoded_name_size);
2216 rc = -ENOMEM;
2217 goto out;
2218 }
2219 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2220 name, name_size);
2221 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2222 plaintext_name_size,
2223 &packet_size,
2224 mount_crypt_stat,
2225 decoded_name,
2226 decoded_name_size);
2227 if (rc) {
2228 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2229 "from filename; copying through filename "
2230 "as-is\n", __func__);
2231 rc = ecryptfs_copy_filename(plaintext_name,
2232 plaintext_name_size,
2233 orig_name, orig_name_size);
2234 goto out_free;
2235 }
2236 } else {
2237 rc = ecryptfs_copy_filename(plaintext_name,
2238 plaintext_name_size,
2239 name, name_size);
2240 goto out;
2241 }
2242 out_free:
2243 kfree(decoded_name);
2244 out:
2245 return rc;
2246 }
2247
2248 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2249
2250 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2251 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2252 {
2253 struct blkcipher_desc desc;
2254 struct mutex *tfm_mutex;
2255 size_t cipher_blocksize;
2256 int rc;
2257
2258 if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2259 (*namelen) = lower_namelen;
2260 return 0;
2261 }
2262
2263 rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&desc.tfm, &tfm_mutex,
2264 mount_crypt_stat->global_default_fn_cipher_name);
2265 if (unlikely(rc)) {
2266 (*namelen) = 0;
2267 return rc;
2268 }
2269
2270 mutex_lock(tfm_mutex);
2271 cipher_blocksize = crypto_blkcipher_blocksize(desc.tfm);
2272 mutex_unlock(tfm_mutex);
2273
2274 /* Return an exact amount for the common cases */
2275 if (lower_namelen == NAME_MAX
2276 && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2277 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2278 return 0;
2279 }
2280
2281 /* Return a safe estimate for the uncommon cases */
2282 (*namelen) = lower_namelen;
2283 (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2284 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2285 (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2286 (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2287 (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2288 /* Worst case is that the filename is padded nearly a full block size */
2289 (*namelen) -= cipher_blocksize - 1;
2290
2291 if ((*namelen) < 0)
2292 (*namelen) = 0;
2293
2294 return 0;
2295 }