Merge 4.14.84 into android-4.14-p
[GitHub/MotorolaMobilityLLC/kernel-slsi.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /*
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
65 *
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
72 *
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88
89 EXPORT_SYMBOL(rename_lock);
90
91 static struct kmem_cache *dentry_cache __read_mostly;
92
93 const struct qstr empty_name = QSTR_INIT("", 0);
94 EXPORT_SYMBOL(empty_name);
95 const struct qstr slash_name = QSTR_INIT("/", 1);
96 EXPORT_SYMBOL(slash_name);
97
98 /*
99 * This is the single most critical data structure when it comes
100 * to the dcache: the hashtable for lookups. Somebody should try
101 * to make this good - I've just made it work.
102 *
103 * This hash-function tries to avoid losing too many bits of hash
104 * information, yet avoid using a prime hash-size or similar.
105 */
106
107 static unsigned int d_hash_mask __read_mostly;
108 static unsigned int d_hash_shift __read_mostly;
109
110 static struct hlist_bl_head *dentry_hashtable __read_mostly;
111
112 static inline struct hlist_bl_head *d_hash(unsigned int hash)
113 {
114 return dentry_hashtable + (hash >> (32 - d_hash_shift));
115 }
116
117 #define IN_LOOKUP_SHIFT 10
118 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
119
120 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
121 unsigned int hash)
122 {
123 hash += (unsigned long) parent / L1_CACHE_BYTES;
124 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
125 }
126
127
128 /* Statistics gathering. */
129 struct dentry_stat_t dentry_stat = {
130 .age_limit = 45,
131 };
132
133 static DEFINE_PER_CPU(long, nr_dentry);
134 static DEFINE_PER_CPU(long, nr_dentry_unused);
135
136 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
137
138 /*
139 * Here we resort to our own counters instead of using generic per-cpu counters
140 * for consistency with what the vfs inode code does. We are expected to harvest
141 * better code and performance by having our own specialized counters.
142 *
143 * Please note that the loop is done over all possible CPUs, not over all online
144 * CPUs. The reason for this is that we don't want to play games with CPUs going
145 * on and off. If one of them goes off, we will just keep their counters.
146 *
147 * glommer: See cffbc8a for details, and if you ever intend to change this,
148 * please update all vfs counters to match.
149 */
150 static long get_nr_dentry(void)
151 {
152 int i;
153 long sum = 0;
154 for_each_possible_cpu(i)
155 sum += per_cpu(nr_dentry, i);
156 return sum < 0 ? 0 : sum;
157 }
158
159 static long get_nr_dentry_unused(void)
160 {
161 int i;
162 long sum = 0;
163 for_each_possible_cpu(i)
164 sum += per_cpu(nr_dentry_unused, i);
165 return sum < 0 ? 0 : sum;
166 }
167
168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
169 size_t *lenp, loff_t *ppos)
170 {
171 dentry_stat.nr_dentry = get_nr_dentry();
172 dentry_stat.nr_unused = get_nr_dentry_unused();
173 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
174 }
175 #endif
176
177 /*
178 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
179 * The strings are both count bytes long, and count is non-zero.
180 */
181 #ifdef CONFIG_DCACHE_WORD_ACCESS
182
183 #include <asm/word-at-a-time.h>
184 /*
185 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
186 * aligned allocation for this particular component. We don't
187 * strictly need the load_unaligned_zeropad() safety, but it
188 * doesn't hurt either.
189 *
190 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
191 * need the careful unaligned handling.
192 */
193 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
194 {
195 unsigned long a,b,mask;
196
197 for (;;) {
198 a = *(unsigned long *)cs;
199 b = load_unaligned_zeropad(ct);
200 if (tcount < sizeof(unsigned long))
201 break;
202 if (unlikely(a != b))
203 return 1;
204 cs += sizeof(unsigned long);
205 ct += sizeof(unsigned long);
206 tcount -= sizeof(unsigned long);
207 if (!tcount)
208 return 0;
209 }
210 mask = bytemask_from_count(tcount);
211 return unlikely(!!((a ^ b) & mask));
212 }
213
214 #else
215
216 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
217 {
218 do {
219 if (*cs != *ct)
220 return 1;
221 cs++;
222 ct++;
223 tcount--;
224 } while (tcount);
225 return 0;
226 }
227
228 #endif
229
230 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
231 {
232 /*
233 * Be careful about RCU walk racing with rename:
234 * use 'READ_ONCE' to fetch the name pointer.
235 *
236 * NOTE! Even if a rename will mean that the length
237 * was not loaded atomically, we don't care. The
238 * RCU walk will check the sequence count eventually,
239 * and catch it. And we won't overrun the buffer,
240 * because we're reading the name pointer atomically,
241 * and a dentry name is guaranteed to be properly
242 * terminated with a NUL byte.
243 *
244 * End result: even if 'len' is wrong, we'll exit
245 * early because the data cannot match (there can
246 * be no NUL in the ct/tcount data)
247 */
248 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
249
250 return dentry_string_cmp(cs, ct, tcount);
251 }
252
253 struct external_name {
254 union {
255 atomic_t count;
256 struct rcu_head head;
257 } u;
258 unsigned char name[];
259 };
260
261 static inline struct external_name *external_name(struct dentry *dentry)
262 {
263 return container_of(dentry->d_name.name, struct external_name, name[0]);
264 }
265
266 static void __d_free(struct rcu_head *head)
267 {
268 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
269
270 kmem_cache_free(dentry_cache, dentry);
271 }
272
273 static void __d_free_external_name(struct rcu_head *head)
274 {
275 struct external_name *name = container_of(head, struct external_name,
276 u.head);
277
278 mod_node_page_state(page_pgdat(virt_to_page(name)),
279 NR_INDIRECTLY_RECLAIMABLE_BYTES,
280 -ksize(name));
281
282 kfree(name);
283 }
284
285 static void __d_free_external(struct rcu_head *head)
286 {
287 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
288
289 __d_free_external_name(&external_name(dentry)->u.head);
290
291 kmem_cache_free(dentry_cache, dentry);
292 }
293
294 static inline int dname_external(const struct dentry *dentry)
295 {
296 return dentry->d_name.name != dentry->d_iname;
297 }
298
299 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
300 {
301 spin_lock(&dentry->d_lock);
302 if (unlikely(dname_external(dentry))) {
303 struct external_name *p = external_name(dentry);
304 atomic_inc(&p->u.count);
305 spin_unlock(&dentry->d_lock);
306 name->name = p->name;
307 } else {
308 memcpy(name->inline_name, dentry->d_iname,
309 dentry->d_name.len + 1);
310 spin_unlock(&dentry->d_lock);
311 name->name = name->inline_name;
312 }
313 }
314 EXPORT_SYMBOL(take_dentry_name_snapshot);
315
316 void release_dentry_name_snapshot(struct name_snapshot *name)
317 {
318 if (unlikely(name->name != name->inline_name)) {
319 struct external_name *p;
320 p = container_of(name->name, struct external_name, name[0]);
321 if (unlikely(atomic_dec_and_test(&p->u.count)))
322 call_rcu(&p->u.head, __d_free_external_name);
323 }
324 }
325 EXPORT_SYMBOL(release_dentry_name_snapshot);
326
327 static inline void __d_set_inode_and_type(struct dentry *dentry,
328 struct inode *inode,
329 unsigned type_flags)
330 {
331 unsigned flags;
332
333 dentry->d_inode = inode;
334 flags = READ_ONCE(dentry->d_flags);
335 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
336 flags |= type_flags;
337 WRITE_ONCE(dentry->d_flags, flags);
338 }
339
340 static inline void __d_clear_type_and_inode(struct dentry *dentry)
341 {
342 unsigned flags = READ_ONCE(dentry->d_flags);
343
344 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
345 WRITE_ONCE(dentry->d_flags, flags);
346 dentry->d_inode = NULL;
347 }
348
349 static void dentry_free(struct dentry *dentry)
350 {
351 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
352 if (unlikely(dname_external(dentry))) {
353 struct external_name *p = external_name(dentry);
354 if (likely(atomic_dec_and_test(&p->u.count))) {
355 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
356 return;
357 }
358 }
359 /* if dentry was never visible to RCU, immediate free is OK */
360 if (!(dentry->d_flags & DCACHE_RCUACCESS))
361 __d_free(&dentry->d_u.d_rcu);
362 else
363 call_rcu(&dentry->d_u.d_rcu, __d_free);
364 }
365
366 /*
367 * Release the dentry's inode, using the filesystem
368 * d_iput() operation if defined.
369 */
370 static void dentry_unlink_inode(struct dentry * dentry)
371 __releases(dentry->d_lock)
372 __releases(dentry->d_inode->i_lock)
373 {
374 struct inode *inode = dentry->d_inode;
375
376 raw_write_seqcount_begin(&dentry->d_seq);
377 __d_clear_type_and_inode(dentry);
378 hlist_del_init(&dentry->d_u.d_alias);
379 raw_write_seqcount_end(&dentry->d_seq);
380 spin_unlock(&dentry->d_lock);
381 spin_unlock(&inode->i_lock);
382 if (!inode->i_nlink)
383 fsnotify_inoderemove(inode);
384 if (dentry->d_op && dentry->d_op->d_iput)
385 dentry->d_op->d_iput(dentry, inode);
386 else
387 iput(inode);
388 }
389
390 /*
391 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
392 * is in use - which includes both the "real" per-superblock
393 * LRU list _and_ the DCACHE_SHRINK_LIST use.
394 *
395 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
396 * on the shrink list (ie not on the superblock LRU list).
397 *
398 * The per-cpu "nr_dentry_unused" counters are updated with
399 * the DCACHE_LRU_LIST bit.
400 *
401 * These helper functions make sure we always follow the
402 * rules. d_lock must be held by the caller.
403 */
404 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
405 static void d_lru_add(struct dentry *dentry)
406 {
407 D_FLAG_VERIFY(dentry, 0);
408 dentry->d_flags |= DCACHE_LRU_LIST;
409 this_cpu_inc(nr_dentry_unused);
410 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
411 }
412
413 static void d_lru_del(struct dentry *dentry)
414 {
415 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
416 dentry->d_flags &= ~DCACHE_LRU_LIST;
417 this_cpu_dec(nr_dentry_unused);
418 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
419 }
420
421 static void d_shrink_del(struct dentry *dentry)
422 {
423 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
424 list_del_init(&dentry->d_lru);
425 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
426 this_cpu_dec(nr_dentry_unused);
427 }
428
429 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
430 {
431 D_FLAG_VERIFY(dentry, 0);
432 list_add(&dentry->d_lru, list);
433 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
434 this_cpu_inc(nr_dentry_unused);
435 }
436
437 /*
438 * These can only be called under the global LRU lock, ie during the
439 * callback for freeing the LRU list. "isolate" removes it from the
440 * LRU lists entirely, while shrink_move moves it to the indicated
441 * private list.
442 */
443 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
444 {
445 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
446 dentry->d_flags &= ~DCACHE_LRU_LIST;
447 this_cpu_dec(nr_dentry_unused);
448 list_lru_isolate(lru, &dentry->d_lru);
449 }
450
451 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
452 struct list_head *list)
453 {
454 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
455 dentry->d_flags |= DCACHE_SHRINK_LIST;
456 list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458
459 /*
460 * dentry_lru_(add|del)_list) must be called with d_lock held.
461 */
462 static void dentry_lru_add(struct dentry *dentry)
463 {
464 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
465 d_lru_add(dentry);
466 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
467 dentry->d_flags |= DCACHE_REFERENCED;
468 }
469
470 /**
471 * d_drop - drop a dentry
472 * @dentry: dentry to drop
473 *
474 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
475 * be found through a VFS lookup any more. Note that this is different from
476 * deleting the dentry - d_delete will try to mark the dentry negative if
477 * possible, giving a successful _negative_ lookup, while d_drop will
478 * just make the cache lookup fail.
479 *
480 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
481 * reason (NFS timeouts or autofs deletes).
482 *
483 * __d_drop requires dentry->d_lock
484 * ___d_drop doesn't mark dentry as "unhashed"
485 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
486 */
487 static void ___d_drop(struct dentry *dentry)
488 {
489 if (!d_unhashed(dentry)) {
490 struct hlist_bl_head *b;
491 /*
492 * Hashed dentries are normally on the dentry hashtable,
493 * with the exception of those newly allocated by
494 * d_obtain_alias, which are always IS_ROOT:
495 */
496 if (unlikely(IS_ROOT(dentry)))
497 b = &dentry->d_sb->s_anon;
498 else
499 b = d_hash(dentry->d_name.hash);
500
501 hlist_bl_lock(b);
502 __hlist_bl_del(&dentry->d_hash);
503 hlist_bl_unlock(b);
504 /* After this call, in-progress rcu-walk path lookup will fail. */
505 write_seqcount_invalidate(&dentry->d_seq);
506 }
507 }
508
509 void __d_drop(struct dentry *dentry)
510 {
511 ___d_drop(dentry);
512 dentry->d_hash.pprev = NULL;
513 }
514 EXPORT_SYMBOL(__d_drop);
515
516 void d_drop(struct dentry *dentry)
517 {
518 spin_lock(&dentry->d_lock);
519 __d_drop(dentry);
520 spin_unlock(&dentry->d_lock);
521 }
522 EXPORT_SYMBOL(d_drop);
523
524 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
525 {
526 struct dentry *next;
527 /*
528 * Inform d_walk() and shrink_dentry_list() that we are no longer
529 * attached to the dentry tree
530 */
531 dentry->d_flags |= DCACHE_DENTRY_KILLED;
532 if (unlikely(list_empty(&dentry->d_child)))
533 return;
534 __list_del_entry(&dentry->d_child);
535 /*
536 * Cursors can move around the list of children. While we'd been
537 * a normal list member, it didn't matter - ->d_child.next would've
538 * been updated. However, from now on it won't be and for the
539 * things like d_walk() it might end up with a nasty surprise.
540 * Normally d_walk() doesn't care about cursors moving around -
541 * ->d_lock on parent prevents that and since a cursor has no children
542 * of its own, we get through it without ever unlocking the parent.
543 * There is one exception, though - if we ascend from a child that
544 * gets killed as soon as we unlock it, the next sibling is found
545 * using the value left in its ->d_child.next. And if _that_
546 * pointed to a cursor, and cursor got moved (e.g. by lseek())
547 * before d_walk() regains parent->d_lock, we'll end up skipping
548 * everything the cursor had been moved past.
549 *
550 * Solution: make sure that the pointer left behind in ->d_child.next
551 * points to something that won't be moving around. I.e. skip the
552 * cursors.
553 */
554 while (dentry->d_child.next != &parent->d_subdirs) {
555 next = list_entry(dentry->d_child.next, struct dentry, d_child);
556 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
557 break;
558 dentry->d_child.next = next->d_child.next;
559 }
560 }
561
562 static void __dentry_kill(struct dentry *dentry)
563 {
564 struct dentry *parent = NULL;
565 bool can_free = true;
566 if (!IS_ROOT(dentry))
567 parent = dentry->d_parent;
568
569 /*
570 * The dentry is now unrecoverably dead to the world.
571 */
572 lockref_mark_dead(&dentry->d_lockref);
573
574 /*
575 * inform the fs via d_prune that this dentry is about to be
576 * unhashed and destroyed.
577 */
578 if (dentry->d_flags & DCACHE_OP_PRUNE)
579 dentry->d_op->d_prune(dentry);
580
581 if (dentry->d_flags & DCACHE_LRU_LIST) {
582 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
583 d_lru_del(dentry);
584 }
585 /* if it was on the hash then remove it */
586 __d_drop(dentry);
587 dentry_unlist(dentry, parent);
588 if (parent)
589 spin_unlock(&parent->d_lock);
590 if (dentry->d_inode)
591 dentry_unlink_inode(dentry);
592 else
593 spin_unlock(&dentry->d_lock);
594 this_cpu_dec(nr_dentry);
595 if (dentry->d_op && dentry->d_op->d_release)
596 dentry->d_op->d_release(dentry);
597
598 spin_lock(&dentry->d_lock);
599 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
600 dentry->d_flags |= DCACHE_MAY_FREE;
601 can_free = false;
602 }
603 spin_unlock(&dentry->d_lock);
604 if (likely(can_free))
605 dentry_free(dentry);
606 }
607
608 /*
609 * Finish off a dentry we've decided to kill.
610 * dentry->d_lock must be held, returns with it unlocked.
611 * If ref is non-zero, then decrement the refcount too.
612 * Returns dentry requiring refcount drop, or NULL if we're done.
613 */
614 static struct dentry *dentry_kill(struct dentry *dentry)
615 __releases(dentry->d_lock)
616 {
617 struct inode *inode = dentry->d_inode;
618 struct dentry *parent = NULL;
619
620 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
621 goto failed;
622
623 if (!IS_ROOT(dentry)) {
624 parent = dentry->d_parent;
625 if (unlikely(!spin_trylock(&parent->d_lock))) {
626 if (inode)
627 spin_unlock(&inode->i_lock);
628 goto failed;
629 }
630 }
631
632 __dentry_kill(dentry);
633 return parent;
634
635 failed:
636 spin_unlock(&dentry->d_lock);
637 return dentry; /* try again with same dentry */
638 }
639
640 static inline struct dentry *lock_parent(struct dentry *dentry)
641 {
642 struct dentry *parent = dentry->d_parent;
643 if (IS_ROOT(dentry))
644 return NULL;
645 if (unlikely(dentry->d_lockref.count < 0))
646 return NULL;
647 if (likely(spin_trylock(&parent->d_lock)))
648 return parent;
649 rcu_read_lock();
650 spin_unlock(&dentry->d_lock);
651 again:
652 parent = ACCESS_ONCE(dentry->d_parent);
653 spin_lock(&parent->d_lock);
654 /*
655 * We can't blindly lock dentry until we are sure
656 * that we won't violate the locking order.
657 * Any changes of dentry->d_parent must have
658 * been done with parent->d_lock held, so
659 * spin_lock() above is enough of a barrier
660 * for checking if it's still our child.
661 */
662 if (unlikely(parent != dentry->d_parent)) {
663 spin_unlock(&parent->d_lock);
664 goto again;
665 }
666 if (parent != dentry) {
667 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
668 if (unlikely(dentry->d_lockref.count < 0)) {
669 spin_unlock(&parent->d_lock);
670 parent = NULL;
671 }
672 } else {
673 parent = NULL;
674 }
675 rcu_read_unlock();
676 return parent;
677 }
678
679 /*
680 * Try to do a lockless dput(), and return whether that was successful.
681 *
682 * If unsuccessful, we return false, having already taken the dentry lock.
683 *
684 * The caller needs to hold the RCU read lock, so that the dentry is
685 * guaranteed to stay around even if the refcount goes down to zero!
686 */
687 static inline bool fast_dput(struct dentry *dentry)
688 {
689 int ret;
690 unsigned int d_flags;
691
692 /*
693 * If we have a d_op->d_delete() operation, we sould not
694 * let the dentry count go to zero, so use "put_or_lock".
695 */
696 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
697 return lockref_put_or_lock(&dentry->d_lockref);
698
699 /*
700 * .. otherwise, we can try to just decrement the
701 * lockref optimistically.
702 */
703 ret = lockref_put_return(&dentry->d_lockref);
704
705 /*
706 * If the lockref_put_return() failed due to the lock being held
707 * by somebody else, the fast path has failed. We will need to
708 * get the lock, and then check the count again.
709 */
710 if (unlikely(ret < 0)) {
711 spin_lock(&dentry->d_lock);
712 if (dentry->d_lockref.count > 1) {
713 dentry->d_lockref.count--;
714 spin_unlock(&dentry->d_lock);
715 return 1;
716 }
717 return 0;
718 }
719
720 /*
721 * If we weren't the last ref, we're done.
722 */
723 if (ret)
724 return 1;
725
726 /*
727 * Careful, careful. The reference count went down
728 * to zero, but we don't hold the dentry lock, so
729 * somebody else could get it again, and do another
730 * dput(), and we need to not race with that.
731 *
732 * However, there is a very special and common case
733 * where we don't care, because there is nothing to
734 * do: the dentry is still hashed, it does not have
735 * a 'delete' op, and it's referenced and already on
736 * the LRU list.
737 *
738 * NOTE! Since we aren't locked, these values are
739 * not "stable". However, it is sufficient that at
740 * some point after we dropped the reference the
741 * dentry was hashed and the flags had the proper
742 * value. Other dentry users may have re-gotten
743 * a reference to the dentry and change that, but
744 * our work is done - we can leave the dentry
745 * around with a zero refcount.
746 */
747 smp_rmb();
748 d_flags = ACCESS_ONCE(dentry->d_flags);
749 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
750
751 /* Nothing to do? Dropping the reference was all we needed? */
752 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
753 return 1;
754
755 /*
756 * Not the fast normal case? Get the lock. We've already decremented
757 * the refcount, but we'll need to re-check the situation after
758 * getting the lock.
759 */
760 spin_lock(&dentry->d_lock);
761
762 /*
763 * Did somebody else grab a reference to it in the meantime, and
764 * we're no longer the last user after all? Alternatively, somebody
765 * else could have killed it and marked it dead. Either way, we
766 * don't need to do anything else.
767 */
768 if (dentry->d_lockref.count) {
769 spin_unlock(&dentry->d_lock);
770 return 1;
771 }
772
773 /*
774 * Re-get the reference we optimistically dropped. We hold the
775 * lock, and we just tested that it was zero, so we can just
776 * set it to 1.
777 */
778 dentry->d_lockref.count = 1;
779 return 0;
780 }
781
782
783 /*
784 * This is dput
785 *
786 * This is complicated by the fact that we do not want to put
787 * dentries that are no longer on any hash chain on the unused
788 * list: we'd much rather just get rid of them immediately.
789 *
790 * However, that implies that we have to traverse the dentry
791 * tree upwards to the parents which might _also_ now be
792 * scheduled for deletion (it may have been only waiting for
793 * its last child to go away).
794 *
795 * This tail recursion is done by hand as we don't want to depend
796 * on the compiler to always get this right (gcc generally doesn't).
797 * Real recursion would eat up our stack space.
798 */
799
800 /*
801 * dput - release a dentry
802 * @dentry: dentry to release
803 *
804 * Release a dentry. This will drop the usage count and if appropriate
805 * call the dentry unlink method as well as removing it from the queues and
806 * releasing its resources. If the parent dentries were scheduled for release
807 * they too may now get deleted.
808 */
809 void dput(struct dentry *dentry)
810 {
811 if (unlikely(!dentry))
812 return;
813
814 repeat:
815 might_sleep();
816
817 rcu_read_lock();
818 if (likely(fast_dput(dentry))) {
819 rcu_read_unlock();
820 return;
821 }
822
823 /* Slow case: now with the dentry lock held */
824 rcu_read_unlock();
825
826 WARN_ON(d_in_lookup(dentry));
827
828 /* Unreachable? Get rid of it */
829 if (unlikely(d_unhashed(dentry)))
830 goto kill_it;
831
832 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
833 goto kill_it;
834
835 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
836 if (dentry->d_op->d_delete(dentry))
837 goto kill_it;
838 }
839
840 dentry_lru_add(dentry);
841
842 dentry->d_lockref.count--;
843 spin_unlock(&dentry->d_lock);
844 return;
845
846 kill_it:
847 dentry = dentry_kill(dentry);
848 if (dentry) {
849 cond_resched();
850 goto repeat;
851 }
852 }
853 EXPORT_SYMBOL(dput);
854
855
856 /* This must be called with d_lock held */
857 static inline void __dget_dlock(struct dentry *dentry)
858 {
859 dentry->d_lockref.count++;
860 }
861
862 static inline void __dget(struct dentry *dentry)
863 {
864 lockref_get(&dentry->d_lockref);
865 }
866
867 struct dentry *dget_parent(struct dentry *dentry)
868 {
869 int gotref;
870 struct dentry *ret;
871
872 /*
873 * Do optimistic parent lookup without any
874 * locking.
875 */
876 rcu_read_lock();
877 ret = ACCESS_ONCE(dentry->d_parent);
878 gotref = lockref_get_not_zero(&ret->d_lockref);
879 rcu_read_unlock();
880 if (likely(gotref)) {
881 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
882 return ret;
883 dput(ret);
884 }
885
886 repeat:
887 /*
888 * Don't need rcu_dereference because we re-check it was correct under
889 * the lock.
890 */
891 rcu_read_lock();
892 ret = dentry->d_parent;
893 spin_lock(&ret->d_lock);
894 if (unlikely(ret != dentry->d_parent)) {
895 spin_unlock(&ret->d_lock);
896 rcu_read_unlock();
897 goto repeat;
898 }
899 rcu_read_unlock();
900 BUG_ON(!ret->d_lockref.count);
901 ret->d_lockref.count++;
902 spin_unlock(&ret->d_lock);
903 return ret;
904 }
905 EXPORT_SYMBOL(dget_parent);
906
907 /**
908 * d_find_alias - grab a hashed alias of inode
909 * @inode: inode in question
910 *
911 * If inode has a hashed alias, or is a directory and has any alias,
912 * acquire the reference to alias and return it. Otherwise return NULL.
913 * Notice that if inode is a directory there can be only one alias and
914 * it can be unhashed only if it has no children, or if it is the root
915 * of a filesystem, or if the directory was renamed and d_revalidate
916 * was the first vfs operation to notice.
917 *
918 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
919 * any other hashed alias over that one.
920 */
921 static struct dentry *__d_find_alias(struct inode *inode)
922 {
923 struct dentry *alias, *discon_alias;
924
925 again:
926 discon_alias = NULL;
927 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
928 spin_lock(&alias->d_lock);
929 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
930 if (IS_ROOT(alias) &&
931 (alias->d_flags & DCACHE_DISCONNECTED)) {
932 discon_alias = alias;
933 } else {
934 __dget_dlock(alias);
935 spin_unlock(&alias->d_lock);
936 return alias;
937 }
938 }
939 spin_unlock(&alias->d_lock);
940 }
941 if (discon_alias) {
942 alias = discon_alias;
943 spin_lock(&alias->d_lock);
944 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
945 __dget_dlock(alias);
946 spin_unlock(&alias->d_lock);
947 return alias;
948 }
949 spin_unlock(&alias->d_lock);
950 goto again;
951 }
952 return NULL;
953 }
954
955 struct dentry *d_find_alias(struct inode *inode)
956 {
957 struct dentry *de = NULL;
958
959 if (!hlist_empty(&inode->i_dentry)) {
960 spin_lock(&inode->i_lock);
961 de = __d_find_alias(inode);
962 spin_unlock(&inode->i_lock);
963 }
964 return de;
965 }
966 EXPORT_SYMBOL(d_find_alias);
967
968 /*
969 * Try to kill dentries associated with this inode.
970 * WARNING: you must own a reference to inode.
971 */
972 void d_prune_aliases(struct inode *inode)
973 {
974 struct dentry *dentry;
975 restart:
976 spin_lock(&inode->i_lock);
977 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
978 spin_lock(&dentry->d_lock);
979 if (!dentry->d_lockref.count) {
980 struct dentry *parent = lock_parent(dentry);
981 if (likely(!dentry->d_lockref.count)) {
982 __dentry_kill(dentry);
983 dput(parent);
984 goto restart;
985 }
986 if (parent)
987 spin_unlock(&parent->d_lock);
988 }
989 spin_unlock(&dentry->d_lock);
990 }
991 spin_unlock(&inode->i_lock);
992 }
993 EXPORT_SYMBOL(d_prune_aliases);
994
995 static void shrink_dentry_list(struct list_head *list)
996 {
997 struct dentry *dentry, *parent;
998
999 while (!list_empty(list)) {
1000 struct inode *inode;
1001 dentry = list_entry(list->prev, struct dentry, d_lru);
1002 spin_lock(&dentry->d_lock);
1003 parent = lock_parent(dentry);
1004
1005 /*
1006 * The dispose list is isolated and dentries are not accounted
1007 * to the LRU here, so we can simply remove it from the list
1008 * here regardless of whether it is referenced or not.
1009 */
1010 d_shrink_del(dentry);
1011
1012 /*
1013 * We found an inuse dentry which was not removed from
1014 * the LRU because of laziness during lookup. Do not free it.
1015 */
1016 if (dentry->d_lockref.count > 0) {
1017 spin_unlock(&dentry->d_lock);
1018 if (parent)
1019 spin_unlock(&parent->d_lock);
1020 continue;
1021 }
1022
1023
1024 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
1025 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1026 spin_unlock(&dentry->d_lock);
1027 if (parent)
1028 spin_unlock(&parent->d_lock);
1029 if (can_free)
1030 dentry_free(dentry);
1031 continue;
1032 }
1033
1034 inode = dentry->d_inode;
1035 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1036 d_shrink_add(dentry, list);
1037 spin_unlock(&dentry->d_lock);
1038 if (parent)
1039 spin_unlock(&parent->d_lock);
1040 continue;
1041 }
1042
1043 __dentry_kill(dentry);
1044
1045 /*
1046 * We need to prune ancestors too. This is necessary to prevent
1047 * quadratic behavior of shrink_dcache_parent(), but is also
1048 * expected to be beneficial in reducing dentry cache
1049 * fragmentation.
1050 */
1051 dentry = parent;
1052 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1053 parent = lock_parent(dentry);
1054 if (dentry->d_lockref.count != 1) {
1055 dentry->d_lockref.count--;
1056 spin_unlock(&dentry->d_lock);
1057 if (parent)
1058 spin_unlock(&parent->d_lock);
1059 break;
1060 }
1061 inode = dentry->d_inode; /* can't be NULL */
1062 if (unlikely(!spin_trylock(&inode->i_lock))) {
1063 spin_unlock(&dentry->d_lock);
1064 if (parent)
1065 spin_unlock(&parent->d_lock);
1066 cpu_relax();
1067 continue;
1068 }
1069 __dentry_kill(dentry);
1070 dentry = parent;
1071 }
1072 }
1073 }
1074
1075 static enum lru_status dentry_lru_isolate(struct list_head *item,
1076 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1077 {
1078 struct list_head *freeable = arg;
1079 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1080
1081
1082 /*
1083 * we are inverting the lru lock/dentry->d_lock here,
1084 * so use a trylock. If we fail to get the lock, just skip
1085 * it
1086 */
1087 if (!spin_trylock(&dentry->d_lock))
1088 return LRU_SKIP;
1089
1090 /*
1091 * Referenced dentries are still in use. If they have active
1092 * counts, just remove them from the LRU. Otherwise give them
1093 * another pass through the LRU.
1094 */
1095 if (dentry->d_lockref.count) {
1096 d_lru_isolate(lru, dentry);
1097 spin_unlock(&dentry->d_lock);
1098 return LRU_REMOVED;
1099 }
1100
1101 if (dentry->d_flags & DCACHE_REFERENCED) {
1102 dentry->d_flags &= ~DCACHE_REFERENCED;
1103 spin_unlock(&dentry->d_lock);
1104
1105 /*
1106 * The list move itself will be made by the common LRU code. At
1107 * this point, we've dropped the dentry->d_lock but keep the
1108 * lru lock. This is safe to do, since every list movement is
1109 * protected by the lru lock even if both locks are held.
1110 *
1111 * This is guaranteed by the fact that all LRU management
1112 * functions are intermediated by the LRU API calls like
1113 * list_lru_add and list_lru_del. List movement in this file
1114 * only ever occur through this functions or through callbacks
1115 * like this one, that are called from the LRU API.
1116 *
1117 * The only exceptions to this are functions like
1118 * shrink_dentry_list, and code that first checks for the
1119 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1120 * operating only with stack provided lists after they are
1121 * properly isolated from the main list. It is thus, always a
1122 * local access.
1123 */
1124 return LRU_ROTATE;
1125 }
1126
1127 d_lru_shrink_move(lru, dentry, freeable);
1128 spin_unlock(&dentry->d_lock);
1129
1130 return LRU_REMOVED;
1131 }
1132
1133 /**
1134 * prune_dcache_sb - shrink the dcache
1135 * @sb: superblock
1136 * @sc: shrink control, passed to list_lru_shrink_walk()
1137 *
1138 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1139 * is done when we need more memory and called from the superblock shrinker
1140 * function.
1141 *
1142 * This function may fail to free any resources if all the dentries are in
1143 * use.
1144 */
1145 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1146 {
1147 LIST_HEAD(dispose);
1148 long freed;
1149
1150 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1151 dentry_lru_isolate, &dispose);
1152 shrink_dentry_list(&dispose);
1153 return freed;
1154 }
1155
1156 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1157 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1158 {
1159 struct list_head *freeable = arg;
1160 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1161
1162 /*
1163 * we are inverting the lru lock/dentry->d_lock here,
1164 * so use a trylock. If we fail to get the lock, just skip
1165 * it
1166 */
1167 if (!spin_trylock(&dentry->d_lock))
1168 return LRU_SKIP;
1169
1170 d_lru_shrink_move(lru, dentry, freeable);
1171 spin_unlock(&dentry->d_lock);
1172
1173 return LRU_REMOVED;
1174 }
1175
1176
1177 /**
1178 * shrink_dcache_sb - shrink dcache for a superblock
1179 * @sb: superblock
1180 *
1181 * Shrink the dcache for the specified super block. This is used to free
1182 * the dcache before unmounting a file system.
1183 */
1184 void shrink_dcache_sb(struct super_block *sb)
1185 {
1186 long freed;
1187
1188 do {
1189 LIST_HEAD(dispose);
1190
1191 freed = list_lru_walk(&sb->s_dentry_lru,
1192 dentry_lru_isolate_shrink, &dispose, 1024);
1193
1194 this_cpu_sub(nr_dentry_unused, freed);
1195 shrink_dentry_list(&dispose);
1196 cond_resched();
1197 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1198 }
1199 EXPORT_SYMBOL(shrink_dcache_sb);
1200
1201 /**
1202 * enum d_walk_ret - action to talke during tree walk
1203 * @D_WALK_CONTINUE: contrinue walk
1204 * @D_WALK_QUIT: quit walk
1205 * @D_WALK_NORETRY: quit when retry is needed
1206 * @D_WALK_SKIP: skip this dentry and its children
1207 */
1208 enum d_walk_ret {
1209 D_WALK_CONTINUE,
1210 D_WALK_QUIT,
1211 D_WALK_NORETRY,
1212 D_WALK_SKIP,
1213 };
1214
1215 /**
1216 * d_walk - walk the dentry tree
1217 * @parent: start of walk
1218 * @data: data passed to @enter() and @finish()
1219 * @enter: callback when first entering the dentry
1220 * @finish: callback when successfully finished the walk
1221 *
1222 * The @enter() and @finish() callbacks are called with d_lock held.
1223 */
1224 static void d_walk(struct dentry *parent, void *data,
1225 enum d_walk_ret (*enter)(void *, struct dentry *),
1226 void (*finish)(void *))
1227 {
1228 struct dentry *this_parent;
1229 struct list_head *next;
1230 unsigned seq = 0;
1231 enum d_walk_ret ret;
1232 bool retry = true;
1233
1234 again:
1235 read_seqbegin_or_lock(&rename_lock, &seq);
1236 this_parent = parent;
1237 spin_lock(&this_parent->d_lock);
1238
1239 ret = enter(data, this_parent);
1240 switch (ret) {
1241 case D_WALK_CONTINUE:
1242 break;
1243 case D_WALK_QUIT:
1244 case D_WALK_SKIP:
1245 goto out_unlock;
1246 case D_WALK_NORETRY:
1247 retry = false;
1248 break;
1249 }
1250 repeat:
1251 next = this_parent->d_subdirs.next;
1252 resume:
1253 while (next != &this_parent->d_subdirs) {
1254 struct list_head *tmp = next;
1255 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1256 next = tmp->next;
1257
1258 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1259 continue;
1260
1261 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1262
1263 ret = enter(data, dentry);
1264 switch (ret) {
1265 case D_WALK_CONTINUE:
1266 break;
1267 case D_WALK_QUIT:
1268 spin_unlock(&dentry->d_lock);
1269 goto out_unlock;
1270 case D_WALK_NORETRY:
1271 retry = false;
1272 break;
1273 case D_WALK_SKIP:
1274 spin_unlock(&dentry->d_lock);
1275 continue;
1276 }
1277
1278 if (!list_empty(&dentry->d_subdirs)) {
1279 spin_unlock(&this_parent->d_lock);
1280 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1281 this_parent = dentry;
1282 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1283 goto repeat;
1284 }
1285 spin_unlock(&dentry->d_lock);
1286 }
1287 /*
1288 * All done at this level ... ascend and resume the search.
1289 */
1290 rcu_read_lock();
1291 ascend:
1292 if (this_parent != parent) {
1293 struct dentry *child = this_parent;
1294 this_parent = child->d_parent;
1295
1296 spin_unlock(&child->d_lock);
1297 spin_lock(&this_parent->d_lock);
1298
1299 /* might go back up the wrong parent if we have had a rename. */
1300 if (need_seqretry(&rename_lock, seq))
1301 goto rename_retry;
1302 /* go into the first sibling still alive */
1303 do {
1304 next = child->d_child.next;
1305 if (next == &this_parent->d_subdirs)
1306 goto ascend;
1307 child = list_entry(next, struct dentry, d_child);
1308 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1309 rcu_read_unlock();
1310 goto resume;
1311 }
1312 if (need_seqretry(&rename_lock, seq))
1313 goto rename_retry;
1314 rcu_read_unlock();
1315 if (finish)
1316 finish(data);
1317
1318 out_unlock:
1319 spin_unlock(&this_parent->d_lock);
1320 done_seqretry(&rename_lock, seq);
1321 return;
1322
1323 rename_retry:
1324 spin_unlock(&this_parent->d_lock);
1325 rcu_read_unlock();
1326 BUG_ON(seq & 1);
1327 if (!retry)
1328 return;
1329 seq = 1;
1330 goto again;
1331 }
1332
1333 struct check_mount {
1334 struct vfsmount *mnt;
1335 unsigned int mounted;
1336 };
1337
1338 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1339 {
1340 struct check_mount *info = data;
1341 struct path path = { .mnt = info->mnt, .dentry = dentry };
1342
1343 if (likely(!d_mountpoint(dentry)))
1344 return D_WALK_CONTINUE;
1345 if (__path_is_mountpoint(&path)) {
1346 info->mounted = 1;
1347 return D_WALK_QUIT;
1348 }
1349 return D_WALK_CONTINUE;
1350 }
1351
1352 /**
1353 * path_has_submounts - check for mounts over a dentry in the
1354 * current namespace.
1355 * @parent: path to check.
1356 *
1357 * Return true if the parent or its subdirectories contain
1358 * a mount point in the current namespace.
1359 */
1360 int path_has_submounts(const struct path *parent)
1361 {
1362 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1363
1364 read_seqlock_excl(&mount_lock);
1365 d_walk(parent->dentry, &data, path_check_mount, NULL);
1366 read_sequnlock_excl(&mount_lock);
1367
1368 return data.mounted;
1369 }
1370 EXPORT_SYMBOL(path_has_submounts);
1371
1372 /*
1373 * Called by mount code to set a mountpoint and check if the mountpoint is
1374 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1375 * subtree can become unreachable).
1376 *
1377 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1378 * this reason take rename_lock and d_lock on dentry and ancestors.
1379 */
1380 int d_set_mounted(struct dentry *dentry)
1381 {
1382 struct dentry *p;
1383 int ret = -ENOENT;
1384 write_seqlock(&rename_lock);
1385 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1386 /* Need exclusion wrt. d_invalidate() */
1387 spin_lock(&p->d_lock);
1388 if (unlikely(d_unhashed(p))) {
1389 spin_unlock(&p->d_lock);
1390 goto out;
1391 }
1392 spin_unlock(&p->d_lock);
1393 }
1394 spin_lock(&dentry->d_lock);
1395 if (!d_unlinked(dentry)) {
1396 ret = -EBUSY;
1397 if (!d_mountpoint(dentry)) {
1398 dentry->d_flags |= DCACHE_MOUNTED;
1399 ret = 0;
1400 }
1401 }
1402 spin_unlock(&dentry->d_lock);
1403 out:
1404 write_sequnlock(&rename_lock);
1405 return ret;
1406 }
1407
1408 /*
1409 * Search the dentry child list of the specified parent,
1410 * and move any unused dentries to the end of the unused
1411 * list for prune_dcache(). We descend to the next level
1412 * whenever the d_subdirs list is non-empty and continue
1413 * searching.
1414 *
1415 * It returns zero iff there are no unused children,
1416 * otherwise it returns the number of children moved to
1417 * the end of the unused list. This may not be the total
1418 * number of unused children, because select_parent can
1419 * drop the lock and return early due to latency
1420 * constraints.
1421 */
1422
1423 struct select_data {
1424 struct dentry *start;
1425 struct list_head dispose;
1426 int found;
1427 };
1428
1429 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1430 {
1431 struct select_data *data = _data;
1432 enum d_walk_ret ret = D_WALK_CONTINUE;
1433
1434 if (data->start == dentry)
1435 goto out;
1436
1437 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1438 data->found++;
1439 } else {
1440 if (dentry->d_flags & DCACHE_LRU_LIST)
1441 d_lru_del(dentry);
1442 if (!dentry->d_lockref.count) {
1443 d_shrink_add(dentry, &data->dispose);
1444 data->found++;
1445 }
1446 }
1447 /*
1448 * We can return to the caller if we have found some (this
1449 * ensures forward progress). We'll be coming back to find
1450 * the rest.
1451 */
1452 if (!list_empty(&data->dispose))
1453 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1454 out:
1455 return ret;
1456 }
1457
1458 /**
1459 * shrink_dcache_parent - prune dcache
1460 * @parent: parent of entries to prune
1461 *
1462 * Prune the dcache to remove unused children of the parent dentry.
1463 */
1464 void shrink_dcache_parent(struct dentry *parent)
1465 {
1466 for (;;) {
1467 struct select_data data;
1468
1469 INIT_LIST_HEAD(&data.dispose);
1470 data.start = parent;
1471 data.found = 0;
1472
1473 d_walk(parent, &data, select_collect, NULL);
1474 if (!data.found)
1475 break;
1476
1477 shrink_dentry_list(&data.dispose);
1478 cond_resched();
1479 }
1480 }
1481 EXPORT_SYMBOL(shrink_dcache_parent);
1482
1483 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1484 {
1485 /* it has busy descendents; complain about those instead */
1486 if (!list_empty(&dentry->d_subdirs))
1487 return D_WALK_CONTINUE;
1488
1489 /* root with refcount 1 is fine */
1490 if (dentry == _data && dentry->d_lockref.count == 1)
1491 return D_WALK_CONTINUE;
1492
1493 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1494 " still in use (%d) [unmount of %s %s]\n",
1495 dentry,
1496 dentry->d_inode ?
1497 dentry->d_inode->i_ino : 0UL,
1498 dentry,
1499 dentry->d_lockref.count,
1500 dentry->d_sb->s_type->name,
1501 dentry->d_sb->s_id);
1502 WARN_ON(1);
1503 return D_WALK_CONTINUE;
1504 }
1505
1506 static void do_one_tree(struct dentry *dentry)
1507 {
1508 shrink_dcache_parent(dentry);
1509 d_walk(dentry, dentry, umount_check, NULL);
1510 d_drop(dentry);
1511 dput(dentry);
1512 }
1513
1514 /*
1515 * destroy the dentries attached to a superblock on unmounting
1516 */
1517 void shrink_dcache_for_umount(struct super_block *sb)
1518 {
1519 struct dentry *dentry;
1520
1521 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1522
1523 dentry = sb->s_root;
1524 sb->s_root = NULL;
1525 do_one_tree(dentry);
1526
1527 while (!hlist_bl_empty(&sb->s_anon)) {
1528 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1529 do_one_tree(dentry);
1530 }
1531 }
1532
1533 struct detach_data {
1534 struct select_data select;
1535 struct dentry *mountpoint;
1536 };
1537 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1538 {
1539 struct detach_data *data = _data;
1540
1541 if (d_mountpoint(dentry)) {
1542 __dget_dlock(dentry);
1543 data->mountpoint = dentry;
1544 return D_WALK_QUIT;
1545 }
1546
1547 return select_collect(&data->select, dentry);
1548 }
1549
1550 static void check_and_drop(void *_data)
1551 {
1552 struct detach_data *data = _data;
1553
1554 if (!data->mountpoint && list_empty(&data->select.dispose))
1555 __d_drop(data->select.start);
1556 }
1557
1558 /**
1559 * d_invalidate - detach submounts, prune dcache, and drop
1560 * @dentry: dentry to invalidate (aka detach, prune and drop)
1561 *
1562 * no dcache lock.
1563 *
1564 * The final d_drop is done as an atomic operation relative to
1565 * rename_lock ensuring there are no races with d_set_mounted. This
1566 * ensures there are no unhashed dentries on the path to a mountpoint.
1567 */
1568 void d_invalidate(struct dentry *dentry)
1569 {
1570 /*
1571 * If it's already been dropped, return OK.
1572 */
1573 spin_lock(&dentry->d_lock);
1574 if (d_unhashed(dentry)) {
1575 spin_unlock(&dentry->d_lock);
1576 return;
1577 }
1578 spin_unlock(&dentry->d_lock);
1579
1580 /* Negative dentries can be dropped without further checks */
1581 if (!dentry->d_inode) {
1582 d_drop(dentry);
1583 return;
1584 }
1585
1586 for (;;) {
1587 struct detach_data data;
1588
1589 data.mountpoint = NULL;
1590 INIT_LIST_HEAD(&data.select.dispose);
1591 data.select.start = dentry;
1592 data.select.found = 0;
1593
1594 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1595
1596 if (!list_empty(&data.select.dispose))
1597 shrink_dentry_list(&data.select.dispose);
1598 else if (!data.mountpoint)
1599 return;
1600
1601 if (data.mountpoint) {
1602 detach_mounts(data.mountpoint);
1603 dput(data.mountpoint);
1604 }
1605 cond_resched();
1606 }
1607 }
1608 EXPORT_SYMBOL(d_invalidate);
1609
1610 /**
1611 * __d_alloc - allocate a dcache entry
1612 * @sb: filesystem it will belong to
1613 * @name: qstr of the name
1614 *
1615 * Allocates a dentry. It returns %NULL if there is insufficient memory
1616 * available. On a success the dentry is returned. The name passed in is
1617 * copied and the copy passed in may be reused after this call.
1618 */
1619
1620 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1621 {
1622 struct external_name *ext = NULL;
1623 struct dentry *dentry;
1624 char *dname;
1625 int err;
1626
1627 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1628 if (!dentry)
1629 return NULL;
1630
1631 /*
1632 * We guarantee that the inline name is always NUL-terminated.
1633 * This way the memcpy() done by the name switching in rename
1634 * will still always have a NUL at the end, even if we might
1635 * be overwriting an internal NUL character
1636 */
1637 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1638 if (unlikely(!name)) {
1639 name = &slash_name;
1640 dname = dentry->d_iname;
1641 } else if (name->len > DNAME_INLINE_LEN-1) {
1642 size_t size = offsetof(struct external_name, name[1]);
1643 ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT);
1644 if (!ext) {
1645 kmem_cache_free(dentry_cache, dentry);
1646 return NULL;
1647 }
1648 atomic_set(&ext->u.count, 1);
1649 dname = ext->name;
1650 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1651 kasan_unpoison_shadow(dname,
1652 round_up(name->len + 1, sizeof(unsigned long)));
1653 } else {
1654 dname = dentry->d_iname;
1655 }
1656
1657 dentry->d_name.len = name->len;
1658 dentry->d_name.hash = name->hash;
1659 memcpy(dname, name->name, name->len);
1660 dname[name->len] = 0;
1661
1662 /* Make sure we always see the terminating NUL character */
1663 smp_wmb();
1664 dentry->d_name.name = dname;
1665
1666 dentry->d_lockref.count = 1;
1667 dentry->d_flags = 0;
1668 spin_lock_init(&dentry->d_lock);
1669 seqcount_init(&dentry->d_seq);
1670 dentry->d_inode = NULL;
1671 dentry->d_parent = dentry;
1672 dentry->d_sb = sb;
1673 dentry->d_op = NULL;
1674 dentry->d_fsdata = NULL;
1675 INIT_HLIST_BL_NODE(&dentry->d_hash);
1676 INIT_LIST_HEAD(&dentry->d_lru);
1677 INIT_LIST_HEAD(&dentry->d_subdirs);
1678 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1679 INIT_LIST_HEAD(&dentry->d_child);
1680 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1681
1682 if (dentry->d_op && dentry->d_op->d_init) {
1683 err = dentry->d_op->d_init(dentry);
1684 if (err) {
1685 if (dname_external(dentry))
1686 kfree(external_name(dentry));
1687 kmem_cache_free(dentry_cache, dentry);
1688 return NULL;
1689 }
1690 }
1691
1692 if (unlikely(ext)) {
1693 pg_data_t *pgdat = page_pgdat(virt_to_page(ext));
1694 mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES,
1695 ksize(ext));
1696 }
1697
1698 this_cpu_inc(nr_dentry);
1699
1700 return dentry;
1701 }
1702
1703 /**
1704 * d_alloc - allocate a dcache entry
1705 * @parent: parent of entry to allocate
1706 * @name: qstr of the name
1707 *
1708 * Allocates a dentry. It returns %NULL if there is insufficient memory
1709 * available. On a success the dentry is returned. The name passed in is
1710 * copied and the copy passed in may be reused after this call.
1711 */
1712 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1713 {
1714 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1715 if (!dentry)
1716 return NULL;
1717 dentry->d_flags |= DCACHE_RCUACCESS;
1718 spin_lock(&parent->d_lock);
1719 /*
1720 * don't need child lock because it is not subject
1721 * to concurrency here
1722 */
1723 __dget_dlock(parent);
1724 dentry->d_parent = parent;
1725 list_add(&dentry->d_child, &parent->d_subdirs);
1726 spin_unlock(&parent->d_lock);
1727
1728 return dentry;
1729 }
1730 EXPORT_SYMBOL(d_alloc);
1731
1732 struct dentry *d_alloc_cursor(struct dentry * parent)
1733 {
1734 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1735 if (dentry) {
1736 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1737 dentry->d_parent = dget(parent);
1738 }
1739 return dentry;
1740 }
1741
1742 /**
1743 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1744 * @sb: the superblock
1745 * @name: qstr of the name
1746 *
1747 * For a filesystem that just pins its dentries in memory and never
1748 * performs lookups at all, return an unhashed IS_ROOT dentry.
1749 */
1750 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1751 {
1752 return __d_alloc(sb, name);
1753 }
1754 EXPORT_SYMBOL(d_alloc_pseudo);
1755
1756 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1757 {
1758 struct qstr q;
1759
1760 q.name = name;
1761 q.hash_len = hashlen_string(parent, name);
1762 return d_alloc(parent, &q);
1763 }
1764 EXPORT_SYMBOL(d_alloc_name);
1765
1766 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1767 {
1768 WARN_ON_ONCE(dentry->d_op);
1769 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1770 DCACHE_OP_COMPARE |
1771 DCACHE_OP_REVALIDATE |
1772 DCACHE_OP_WEAK_REVALIDATE |
1773 DCACHE_OP_DELETE |
1774 DCACHE_OP_REAL));
1775 dentry->d_op = op;
1776 if (!op)
1777 return;
1778 if (op->d_hash)
1779 dentry->d_flags |= DCACHE_OP_HASH;
1780 if (op->d_compare)
1781 dentry->d_flags |= DCACHE_OP_COMPARE;
1782 if (op->d_revalidate)
1783 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1784 if (op->d_weak_revalidate)
1785 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1786 if (op->d_delete)
1787 dentry->d_flags |= DCACHE_OP_DELETE;
1788 if (op->d_prune)
1789 dentry->d_flags |= DCACHE_OP_PRUNE;
1790 if (op->d_real)
1791 dentry->d_flags |= DCACHE_OP_REAL;
1792
1793 }
1794 EXPORT_SYMBOL(d_set_d_op);
1795
1796
1797 /*
1798 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1799 * @dentry - The dentry to mark
1800 *
1801 * Mark a dentry as falling through to the lower layer (as set with
1802 * d_pin_lower()). This flag may be recorded on the medium.
1803 */
1804 void d_set_fallthru(struct dentry *dentry)
1805 {
1806 spin_lock(&dentry->d_lock);
1807 dentry->d_flags |= DCACHE_FALLTHRU;
1808 spin_unlock(&dentry->d_lock);
1809 }
1810 EXPORT_SYMBOL(d_set_fallthru);
1811
1812 static unsigned d_flags_for_inode(struct inode *inode)
1813 {
1814 unsigned add_flags = DCACHE_REGULAR_TYPE;
1815
1816 if (!inode)
1817 return DCACHE_MISS_TYPE;
1818
1819 if (S_ISDIR(inode->i_mode)) {
1820 add_flags = DCACHE_DIRECTORY_TYPE;
1821 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1822 if (unlikely(!inode->i_op->lookup))
1823 add_flags = DCACHE_AUTODIR_TYPE;
1824 else
1825 inode->i_opflags |= IOP_LOOKUP;
1826 }
1827 goto type_determined;
1828 }
1829
1830 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1831 if (unlikely(inode->i_op->get_link)) {
1832 add_flags = DCACHE_SYMLINK_TYPE;
1833 goto type_determined;
1834 }
1835 inode->i_opflags |= IOP_NOFOLLOW;
1836 }
1837
1838 if (unlikely(!S_ISREG(inode->i_mode)))
1839 add_flags = DCACHE_SPECIAL_TYPE;
1840
1841 type_determined:
1842 if (unlikely(IS_AUTOMOUNT(inode)))
1843 add_flags |= DCACHE_NEED_AUTOMOUNT;
1844 return add_flags;
1845 }
1846
1847 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1848 {
1849 unsigned add_flags = d_flags_for_inode(inode);
1850 WARN_ON(d_in_lookup(dentry));
1851
1852 spin_lock(&dentry->d_lock);
1853 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1854 raw_write_seqcount_begin(&dentry->d_seq);
1855 __d_set_inode_and_type(dentry, inode, add_flags);
1856 raw_write_seqcount_end(&dentry->d_seq);
1857 fsnotify_update_flags(dentry);
1858 spin_unlock(&dentry->d_lock);
1859 }
1860
1861 /**
1862 * d_instantiate - fill in inode information for a dentry
1863 * @entry: dentry to complete
1864 * @inode: inode to attach to this dentry
1865 *
1866 * Fill in inode information in the entry.
1867 *
1868 * This turns negative dentries into productive full members
1869 * of society.
1870 *
1871 * NOTE! This assumes that the inode count has been incremented
1872 * (or otherwise set) by the caller to indicate that it is now
1873 * in use by the dcache.
1874 */
1875
1876 void d_instantiate(struct dentry *entry, struct inode * inode)
1877 {
1878 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1879 if (inode) {
1880 security_d_instantiate(entry, inode);
1881 spin_lock(&inode->i_lock);
1882 __d_instantiate(entry, inode);
1883 spin_unlock(&inode->i_lock);
1884 }
1885 }
1886 EXPORT_SYMBOL(d_instantiate);
1887
1888 /*
1889 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1890 * with lockdep-related part of unlock_new_inode() done before
1891 * anything else. Use that instead of open-coding d_instantiate()/
1892 * unlock_new_inode() combinations.
1893 */
1894 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1895 {
1896 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1897 BUG_ON(!inode);
1898 lockdep_annotate_inode_mutex_key(inode);
1899 security_d_instantiate(entry, inode);
1900 spin_lock(&inode->i_lock);
1901 __d_instantiate(entry, inode);
1902 WARN_ON(!(inode->i_state & I_NEW));
1903 inode->i_state &= ~I_NEW;
1904 smp_mb();
1905 wake_up_bit(&inode->i_state, __I_NEW);
1906 spin_unlock(&inode->i_lock);
1907 }
1908 EXPORT_SYMBOL(d_instantiate_new);
1909
1910 /**
1911 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1912 * @entry: dentry to complete
1913 * @inode: inode to attach to this dentry
1914 *
1915 * Fill in inode information in the entry. If a directory alias is found, then
1916 * return an error (and drop inode). Together with d_materialise_unique() this
1917 * guarantees that a directory inode may never have more than one alias.
1918 */
1919 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1920 {
1921 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1922
1923 security_d_instantiate(entry, inode);
1924 spin_lock(&inode->i_lock);
1925 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1926 spin_unlock(&inode->i_lock);
1927 iput(inode);
1928 return -EBUSY;
1929 }
1930 __d_instantiate(entry, inode);
1931 spin_unlock(&inode->i_lock);
1932
1933 return 0;
1934 }
1935 EXPORT_SYMBOL(d_instantiate_no_diralias);
1936
1937 struct dentry *d_make_root(struct inode *root_inode)
1938 {
1939 struct dentry *res = NULL;
1940
1941 if (root_inode) {
1942 res = __d_alloc(root_inode->i_sb, NULL);
1943 if (res) {
1944 res->d_flags |= DCACHE_RCUACCESS;
1945 d_instantiate(res, root_inode);
1946 } else {
1947 iput(root_inode);
1948 }
1949 }
1950 return res;
1951 }
1952 EXPORT_SYMBOL(d_make_root);
1953
1954 static struct dentry * __d_find_any_alias(struct inode *inode)
1955 {
1956 struct dentry *alias;
1957
1958 if (hlist_empty(&inode->i_dentry))
1959 return NULL;
1960 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1961 __dget(alias);
1962 return alias;
1963 }
1964
1965 /**
1966 * d_find_any_alias - find any alias for a given inode
1967 * @inode: inode to find an alias for
1968 *
1969 * If any aliases exist for the given inode, take and return a
1970 * reference for one of them. If no aliases exist, return %NULL.
1971 */
1972 struct dentry *d_find_any_alias(struct inode *inode)
1973 {
1974 struct dentry *de;
1975
1976 spin_lock(&inode->i_lock);
1977 de = __d_find_any_alias(inode);
1978 spin_unlock(&inode->i_lock);
1979 return de;
1980 }
1981 EXPORT_SYMBOL(d_find_any_alias);
1982
1983 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1984 {
1985 struct dentry *tmp;
1986 struct dentry *res;
1987 unsigned add_flags;
1988
1989 if (!inode)
1990 return ERR_PTR(-ESTALE);
1991 if (IS_ERR(inode))
1992 return ERR_CAST(inode);
1993
1994 res = d_find_any_alias(inode);
1995 if (res)
1996 goto out_iput;
1997
1998 tmp = __d_alloc(inode->i_sb, NULL);
1999 if (!tmp) {
2000 res = ERR_PTR(-ENOMEM);
2001 goto out_iput;
2002 }
2003
2004 security_d_instantiate(tmp, inode);
2005 spin_lock(&inode->i_lock);
2006 res = __d_find_any_alias(inode);
2007 if (res) {
2008 spin_unlock(&inode->i_lock);
2009 dput(tmp);
2010 goto out_iput;
2011 }
2012
2013 /* attach a disconnected dentry */
2014 add_flags = d_flags_for_inode(inode);
2015
2016 if (disconnected)
2017 add_flags |= DCACHE_DISCONNECTED;
2018
2019 spin_lock(&tmp->d_lock);
2020 __d_set_inode_and_type(tmp, inode, add_flags);
2021 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
2022 hlist_bl_lock(&tmp->d_sb->s_anon);
2023 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
2024 hlist_bl_unlock(&tmp->d_sb->s_anon);
2025 spin_unlock(&tmp->d_lock);
2026 spin_unlock(&inode->i_lock);
2027
2028 return tmp;
2029
2030 out_iput:
2031 iput(inode);
2032 return res;
2033 }
2034
2035 /**
2036 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2037 * @inode: inode to allocate the dentry for
2038 *
2039 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2040 * similar open by handle operations. The returned dentry may be anonymous,
2041 * or may have a full name (if the inode was already in the cache).
2042 *
2043 * When called on a directory inode, we must ensure that the inode only ever
2044 * has one dentry. If a dentry is found, that is returned instead of
2045 * allocating a new one.
2046 *
2047 * On successful return, the reference to the inode has been transferred
2048 * to the dentry. In case of an error the reference on the inode is released.
2049 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2050 * be passed in and the error will be propagated to the return value,
2051 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2052 */
2053 struct dentry *d_obtain_alias(struct inode *inode)
2054 {
2055 return __d_obtain_alias(inode, 1);
2056 }
2057 EXPORT_SYMBOL(d_obtain_alias);
2058
2059 /**
2060 * d_obtain_root - find or allocate a dentry for a given inode
2061 * @inode: inode to allocate the dentry for
2062 *
2063 * Obtain an IS_ROOT dentry for the root of a filesystem.
2064 *
2065 * We must ensure that directory inodes only ever have one dentry. If a
2066 * dentry is found, that is returned instead of allocating a new one.
2067 *
2068 * On successful return, the reference to the inode has been transferred
2069 * to the dentry. In case of an error the reference on the inode is
2070 * released. A %NULL or IS_ERR inode may be passed in and will be the
2071 * error will be propagate to the return value, with a %NULL @inode
2072 * replaced by ERR_PTR(-ESTALE).
2073 */
2074 struct dentry *d_obtain_root(struct inode *inode)
2075 {
2076 return __d_obtain_alias(inode, 0);
2077 }
2078 EXPORT_SYMBOL(d_obtain_root);
2079
2080 /**
2081 * d_add_ci - lookup or allocate new dentry with case-exact name
2082 * @inode: the inode case-insensitive lookup has found
2083 * @dentry: the negative dentry that was passed to the parent's lookup func
2084 * @name: the case-exact name to be associated with the returned dentry
2085 *
2086 * This is to avoid filling the dcache with case-insensitive names to the
2087 * same inode, only the actual correct case is stored in the dcache for
2088 * case-insensitive filesystems.
2089 *
2090 * For a case-insensitive lookup match and if the the case-exact dentry
2091 * already exists in in the dcache, use it and return it.
2092 *
2093 * If no entry exists with the exact case name, allocate new dentry with
2094 * the exact case, and return the spliced entry.
2095 */
2096 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2097 struct qstr *name)
2098 {
2099 struct dentry *found, *res;
2100
2101 /*
2102 * First check if a dentry matching the name already exists,
2103 * if not go ahead and create it now.
2104 */
2105 found = d_hash_and_lookup(dentry->d_parent, name);
2106 if (found) {
2107 iput(inode);
2108 return found;
2109 }
2110 if (d_in_lookup(dentry)) {
2111 found = d_alloc_parallel(dentry->d_parent, name,
2112 dentry->d_wait);
2113 if (IS_ERR(found) || !d_in_lookup(found)) {
2114 iput(inode);
2115 return found;
2116 }
2117 } else {
2118 found = d_alloc(dentry->d_parent, name);
2119 if (!found) {
2120 iput(inode);
2121 return ERR_PTR(-ENOMEM);
2122 }
2123 }
2124 res = d_splice_alias(inode, found);
2125 if (res) {
2126 dput(found);
2127 return res;
2128 }
2129 return found;
2130 }
2131 EXPORT_SYMBOL(d_add_ci);
2132
2133
2134 static inline bool d_same_name(const struct dentry *dentry,
2135 const struct dentry *parent,
2136 const struct qstr *name)
2137 {
2138 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2139 if (dentry->d_name.len != name->len)
2140 return false;
2141 return dentry_cmp(dentry, name->name, name->len) == 0;
2142 }
2143 return parent->d_op->d_compare(dentry,
2144 dentry->d_name.len, dentry->d_name.name,
2145 name) == 0;
2146 }
2147
2148 /**
2149 * __d_lookup_rcu - search for a dentry (racy, store-free)
2150 * @parent: parent dentry
2151 * @name: qstr of name we wish to find
2152 * @seqp: returns d_seq value at the point where the dentry was found
2153 * Returns: dentry, or NULL
2154 *
2155 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2156 * resolution (store-free path walking) design described in
2157 * Documentation/filesystems/path-lookup.txt.
2158 *
2159 * This is not to be used outside core vfs.
2160 *
2161 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2162 * held, and rcu_read_lock held. The returned dentry must not be stored into
2163 * without taking d_lock and checking d_seq sequence count against @seq
2164 * returned here.
2165 *
2166 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2167 * function.
2168 *
2169 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2170 * the returned dentry, so long as its parent's seqlock is checked after the
2171 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2172 * is formed, giving integrity down the path walk.
2173 *
2174 * NOTE! The caller *has* to check the resulting dentry against the sequence
2175 * number we've returned before using any of the resulting dentry state!
2176 */
2177 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2178 const struct qstr *name,
2179 unsigned *seqp)
2180 {
2181 u64 hashlen = name->hash_len;
2182 const unsigned char *str = name->name;
2183 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2184 struct hlist_bl_node *node;
2185 struct dentry *dentry;
2186
2187 /*
2188 * Note: There is significant duplication with __d_lookup_rcu which is
2189 * required to prevent single threaded performance regressions
2190 * especially on architectures where smp_rmb (in seqcounts) are costly.
2191 * Keep the two functions in sync.
2192 */
2193
2194 /*
2195 * The hash list is protected using RCU.
2196 *
2197 * Carefully use d_seq when comparing a candidate dentry, to avoid
2198 * races with d_move().
2199 *
2200 * It is possible that concurrent renames can mess up our list
2201 * walk here and result in missing our dentry, resulting in the
2202 * false-negative result. d_lookup() protects against concurrent
2203 * renames using rename_lock seqlock.
2204 *
2205 * See Documentation/filesystems/path-lookup.txt for more details.
2206 */
2207 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2208 unsigned seq;
2209
2210 seqretry:
2211 /*
2212 * The dentry sequence count protects us from concurrent
2213 * renames, and thus protects parent and name fields.
2214 *
2215 * The caller must perform a seqcount check in order
2216 * to do anything useful with the returned dentry.
2217 *
2218 * NOTE! We do a "raw" seqcount_begin here. That means that
2219 * we don't wait for the sequence count to stabilize if it
2220 * is in the middle of a sequence change. If we do the slow
2221 * dentry compare, we will do seqretries until it is stable,
2222 * and if we end up with a successful lookup, we actually
2223 * want to exit RCU lookup anyway.
2224 *
2225 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2226 * we are still guaranteed NUL-termination of ->d_name.name.
2227 */
2228 seq = raw_seqcount_begin(&dentry->d_seq);
2229 if (dentry->d_parent != parent)
2230 continue;
2231 if (d_unhashed(dentry))
2232 continue;
2233
2234 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2235 int tlen;
2236 const char *tname;
2237 if (dentry->d_name.hash != hashlen_hash(hashlen))
2238 continue;
2239 tlen = dentry->d_name.len;
2240 tname = dentry->d_name.name;
2241 /* we want a consistent (name,len) pair */
2242 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2243 cpu_relax();
2244 goto seqretry;
2245 }
2246 if (parent->d_op->d_compare(dentry,
2247 tlen, tname, name) != 0)
2248 continue;
2249 } else {
2250 if (dentry->d_name.hash_len != hashlen)
2251 continue;
2252 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2253 continue;
2254 }
2255 *seqp = seq;
2256 return dentry;
2257 }
2258 return NULL;
2259 }
2260
2261 /**
2262 * d_lookup - search for a dentry
2263 * @parent: parent dentry
2264 * @name: qstr of name we wish to find
2265 * Returns: dentry, or NULL
2266 *
2267 * d_lookup searches the children of the parent dentry for the name in
2268 * question. If the dentry is found its reference count is incremented and the
2269 * dentry is returned. The caller must use dput to free the entry when it has
2270 * finished using it. %NULL is returned if the dentry does not exist.
2271 */
2272 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2273 {
2274 struct dentry *dentry;
2275 unsigned seq;
2276
2277 do {
2278 seq = read_seqbegin(&rename_lock);
2279 dentry = __d_lookup(parent, name);
2280 if (dentry)
2281 break;
2282 } while (read_seqretry(&rename_lock, seq));
2283 return dentry;
2284 }
2285 EXPORT_SYMBOL(d_lookup);
2286
2287 /**
2288 * __d_lookup - search for a dentry (racy)
2289 * @parent: parent dentry
2290 * @name: qstr of name we wish to find
2291 * Returns: dentry, or NULL
2292 *
2293 * __d_lookup is like d_lookup, however it may (rarely) return a
2294 * false-negative result due to unrelated rename activity.
2295 *
2296 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2297 * however it must be used carefully, eg. with a following d_lookup in
2298 * the case of failure.
2299 *
2300 * __d_lookup callers must be commented.
2301 */
2302 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2303 {
2304 unsigned int hash = name->hash;
2305 struct hlist_bl_head *b = d_hash(hash);
2306 struct hlist_bl_node *node;
2307 struct dentry *found = NULL;
2308 struct dentry *dentry;
2309
2310 /*
2311 * Note: There is significant duplication with __d_lookup_rcu which is
2312 * required to prevent single threaded performance regressions
2313 * especially on architectures where smp_rmb (in seqcounts) are costly.
2314 * Keep the two functions in sync.
2315 */
2316
2317 /*
2318 * The hash list is protected using RCU.
2319 *
2320 * Take d_lock when comparing a candidate dentry, to avoid races
2321 * with d_move().
2322 *
2323 * It is possible that concurrent renames can mess up our list
2324 * walk here and result in missing our dentry, resulting in the
2325 * false-negative result. d_lookup() protects against concurrent
2326 * renames using rename_lock seqlock.
2327 *
2328 * See Documentation/filesystems/path-lookup.txt for more details.
2329 */
2330 rcu_read_lock();
2331
2332 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2333
2334 if (dentry->d_name.hash != hash)
2335 continue;
2336
2337 spin_lock(&dentry->d_lock);
2338 if (dentry->d_parent != parent)
2339 goto next;
2340 if (d_unhashed(dentry))
2341 goto next;
2342
2343 if (!d_same_name(dentry, parent, name))
2344 goto next;
2345
2346 dentry->d_lockref.count++;
2347 found = dentry;
2348 spin_unlock(&dentry->d_lock);
2349 break;
2350 next:
2351 spin_unlock(&dentry->d_lock);
2352 }
2353 rcu_read_unlock();
2354
2355 return found;
2356 }
2357
2358 /**
2359 * d_hash_and_lookup - hash the qstr then search for a dentry
2360 * @dir: Directory to search in
2361 * @name: qstr of name we wish to find
2362 *
2363 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2364 */
2365 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2366 {
2367 /*
2368 * Check for a fs-specific hash function. Note that we must
2369 * calculate the standard hash first, as the d_op->d_hash()
2370 * routine may choose to leave the hash value unchanged.
2371 */
2372 name->hash = full_name_hash(dir, name->name, name->len);
2373 if (dir->d_flags & DCACHE_OP_HASH) {
2374 int err = dir->d_op->d_hash(dir, name);
2375 if (unlikely(err < 0))
2376 return ERR_PTR(err);
2377 }
2378 return d_lookup(dir, name);
2379 }
2380 EXPORT_SYMBOL(d_hash_and_lookup);
2381
2382 /*
2383 * When a file is deleted, we have two options:
2384 * - turn this dentry into a negative dentry
2385 * - unhash this dentry and free it.
2386 *
2387 * Usually, we want to just turn this into
2388 * a negative dentry, but if anybody else is
2389 * currently using the dentry or the inode
2390 * we can't do that and we fall back on removing
2391 * it from the hash queues and waiting for
2392 * it to be deleted later when it has no users
2393 */
2394
2395 /**
2396 * d_delete - delete a dentry
2397 * @dentry: The dentry to delete
2398 *
2399 * Turn the dentry into a negative dentry if possible, otherwise
2400 * remove it from the hash queues so it can be deleted later
2401 */
2402
2403 void d_delete(struct dentry * dentry)
2404 {
2405 struct inode *inode;
2406 int isdir = 0;
2407 /*
2408 * Are we the only user?
2409 */
2410 again:
2411 spin_lock(&dentry->d_lock);
2412 inode = dentry->d_inode;
2413 isdir = S_ISDIR(inode->i_mode);
2414 if (dentry->d_lockref.count == 1) {
2415 if (!spin_trylock(&inode->i_lock)) {
2416 spin_unlock(&dentry->d_lock);
2417 cpu_relax();
2418 goto again;
2419 }
2420 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2421 dentry_unlink_inode(dentry);
2422 fsnotify_nameremove(dentry, isdir);
2423 return;
2424 }
2425
2426 if (!d_unhashed(dentry))
2427 __d_drop(dentry);
2428
2429 spin_unlock(&dentry->d_lock);
2430
2431 fsnotify_nameremove(dentry, isdir);
2432 }
2433 EXPORT_SYMBOL(d_delete);
2434
2435 static void __d_rehash(struct dentry *entry)
2436 {
2437 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2438
2439 hlist_bl_lock(b);
2440 hlist_bl_add_head_rcu(&entry->d_hash, b);
2441 hlist_bl_unlock(b);
2442 }
2443
2444 /**
2445 * d_rehash - add an entry back to the hash
2446 * @entry: dentry to add to the hash
2447 *
2448 * Adds a dentry to the hash according to its name.
2449 */
2450
2451 void d_rehash(struct dentry * entry)
2452 {
2453 spin_lock(&entry->d_lock);
2454 __d_rehash(entry);
2455 spin_unlock(&entry->d_lock);
2456 }
2457 EXPORT_SYMBOL(d_rehash);
2458
2459 static inline unsigned start_dir_add(struct inode *dir)
2460 {
2461
2462 for (;;) {
2463 unsigned n = dir->i_dir_seq;
2464 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2465 return n;
2466 cpu_relax();
2467 }
2468 }
2469
2470 static inline void end_dir_add(struct inode *dir, unsigned n)
2471 {
2472 smp_store_release(&dir->i_dir_seq, n + 2);
2473 }
2474
2475 static void d_wait_lookup(struct dentry *dentry)
2476 {
2477 if (d_in_lookup(dentry)) {
2478 DECLARE_WAITQUEUE(wait, current);
2479 add_wait_queue(dentry->d_wait, &wait);
2480 do {
2481 set_current_state(TASK_UNINTERRUPTIBLE);
2482 spin_unlock(&dentry->d_lock);
2483 schedule();
2484 spin_lock(&dentry->d_lock);
2485 } while (d_in_lookup(dentry));
2486 }
2487 }
2488
2489 struct dentry *d_alloc_parallel(struct dentry *parent,
2490 const struct qstr *name,
2491 wait_queue_head_t *wq)
2492 {
2493 unsigned int hash = name->hash;
2494 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2495 struct hlist_bl_node *node;
2496 struct dentry *new = d_alloc(parent, name);
2497 struct dentry *dentry;
2498 unsigned seq, r_seq, d_seq;
2499
2500 if (unlikely(!new))
2501 return ERR_PTR(-ENOMEM);
2502
2503 retry:
2504 rcu_read_lock();
2505 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2506 r_seq = read_seqbegin(&rename_lock);
2507 dentry = __d_lookup_rcu(parent, name, &d_seq);
2508 if (unlikely(dentry)) {
2509 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2510 rcu_read_unlock();
2511 goto retry;
2512 }
2513 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2514 rcu_read_unlock();
2515 dput(dentry);
2516 goto retry;
2517 }
2518 rcu_read_unlock();
2519 dput(new);
2520 return dentry;
2521 }
2522 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2523 rcu_read_unlock();
2524 goto retry;
2525 }
2526
2527 if (unlikely(seq & 1)) {
2528 rcu_read_unlock();
2529 goto retry;
2530 }
2531
2532 hlist_bl_lock(b);
2533 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2534 hlist_bl_unlock(b);
2535 rcu_read_unlock();
2536 goto retry;
2537 }
2538 /*
2539 * No changes for the parent since the beginning of d_lookup().
2540 * Since all removals from the chain happen with hlist_bl_lock(),
2541 * any potential in-lookup matches are going to stay here until
2542 * we unlock the chain. All fields are stable in everything
2543 * we encounter.
2544 */
2545 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2546 if (dentry->d_name.hash != hash)
2547 continue;
2548 if (dentry->d_parent != parent)
2549 continue;
2550 if (!d_same_name(dentry, parent, name))
2551 continue;
2552 hlist_bl_unlock(b);
2553 /* now we can try to grab a reference */
2554 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2555 rcu_read_unlock();
2556 goto retry;
2557 }
2558
2559 rcu_read_unlock();
2560 /*
2561 * somebody is likely to be still doing lookup for it;
2562 * wait for them to finish
2563 */
2564 spin_lock(&dentry->d_lock);
2565 d_wait_lookup(dentry);
2566 /*
2567 * it's not in-lookup anymore; in principle we should repeat
2568 * everything from dcache lookup, but it's likely to be what
2569 * d_lookup() would've found anyway. If it is, just return it;
2570 * otherwise we really have to repeat the whole thing.
2571 */
2572 if (unlikely(dentry->d_name.hash != hash))
2573 goto mismatch;
2574 if (unlikely(dentry->d_parent != parent))
2575 goto mismatch;
2576 if (unlikely(d_unhashed(dentry)))
2577 goto mismatch;
2578 if (unlikely(!d_same_name(dentry, parent, name)))
2579 goto mismatch;
2580 /* OK, it *is* a hashed match; return it */
2581 spin_unlock(&dentry->d_lock);
2582 dput(new);
2583 return dentry;
2584 }
2585 rcu_read_unlock();
2586 /* we can't take ->d_lock here; it's OK, though. */
2587 new->d_flags |= DCACHE_PAR_LOOKUP;
2588 new->d_wait = wq;
2589 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2590 hlist_bl_unlock(b);
2591 return new;
2592 mismatch:
2593 spin_unlock(&dentry->d_lock);
2594 dput(dentry);
2595 goto retry;
2596 }
2597 EXPORT_SYMBOL(d_alloc_parallel);
2598
2599 void __d_lookup_done(struct dentry *dentry)
2600 {
2601 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2602 dentry->d_name.hash);
2603 hlist_bl_lock(b);
2604 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2605 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2606 wake_up_all(dentry->d_wait);
2607 dentry->d_wait = NULL;
2608 hlist_bl_unlock(b);
2609 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2610 INIT_LIST_HEAD(&dentry->d_lru);
2611 }
2612 EXPORT_SYMBOL(__d_lookup_done);
2613
2614 /* inode->i_lock held if inode is non-NULL */
2615
2616 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2617 {
2618 struct inode *dir = NULL;
2619 unsigned n;
2620 spin_lock(&dentry->d_lock);
2621 if (unlikely(d_in_lookup(dentry))) {
2622 dir = dentry->d_parent->d_inode;
2623 n = start_dir_add(dir);
2624 __d_lookup_done(dentry);
2625 }
2626 if (inode) {
2627 unsigned add_flags = d_flags_for_inode(inode);
2628 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2629 raw_write_seqcount_begin(&dentry->d_seq);
2630 __d_set_inode_and_type(dentry, inode, add_flags);
2631 raw_write_seqcount_end(&dentry->d_seq);
2632 fsnotify_update_flags(dentry);
2633 }
2634 __d_rehash(dentry);
2635 if (dir)
2636 end_dir_add(dir, n);
2637 spin_unlock(&dentry->d_lock);
2638 if (inode)
2639 spin_unlock(&inode->i_lock);
2640 }
2641
2642 /**
2643 * d_add - add dentry to hash queues
2644 * @entry: dentry to add
2645 * @inode: The inode to attach to this dentry
2646 *
2647 * This adds the entry to the hash queues and initializes @inode.
2648 * The entry was actually filled in earlier during d_alloc().
2649 */
2650
2651 void d_add(struct dentry *entry, struct inode *inode)
2652 {
2653 if (inode) {
2654 security_d_instantiate(entry, inode);
2655 spin_lock(&inode->i_lock);
2656 }
2657 __d_add(entry, inode);
2658 }
2659 EXPORT_SYMBOL(d_add);
2660
2661 /**
2662 * d_exact_alias - find and hash an exact unhashed alias
2663 * @entry: dentry to add
2664 * @inode: The inode to go with this dentry
2665 *
2666 * If an unhashed dentry with the same name/parent and desired
2667 * inode already exists, hash and return it. Otherwise, return
2668 * NULL.
2669 *
2670 * Parent directory should be locked.
2671 */
2672 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2673 {
2674 struct dentry *alias;
2675 unsigned int hash = entry->d_name.hash;
2676
2677 spin_lock(&inode->i_lock);
2678 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2679 /*
2680 * Don't need alias->d_lock here, because aliases with
2681 * d_parent == entry->d_parent are not subject to name or
2682 * parent changes, because the parent inode i_mutex is held.
2683 */
2684 if (alias->d_name.hash != hash)
2685 continue;
2686 if (alias->d_parent != entry->d_parent)
2687 continue;
2688 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2689 continue;
2690 spin_lock(&alias->d_lock);
2691 if (!d_unhashed(alias)) {
2692 spin_unlock(&alias->d_lock);
2693 alias = NULL;
2694 } else {
2695 __dget_dlock(alias);
2696 __d_rehash(alias);
2697 spin_unlock(&alias->d_lock);
2698 }
2699 spin_unlock(&inode->i_lock);
2700 return alias;
2701 }
2702 spin_unlock(&inode->i_lock);
2703 return NULL;
2704 }
2705 EXPORT_SYMBOL(d_exact_alias);
2706
2707 /**
2708 * dentry_update_name_case - update case insensitive dentry with a new name
2709 * @dentry: dentry to be updated
2710 * @name: new name
2711 *
2712 * Update a case insensitive dentry with new case of name.
2713 *
2714 * dentry must have been returned by d_lookup with name @name. Old and new
2715 * name lengths must match (ie. no d_compare which allows mismatched name
2716 * lengths).
2717 *
2718 * Parent inode i_mutex must be held over d_lookup and into this call (to
2719 * keep renames and concurrent inserts, and readdir(2) away).
2720 */
2721 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2722 {
2723 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2724 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2725
2726 spin_lock(&dentry->d_lock);
2727 write_seqcount_begin(&dentry->d_seq);
2728 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2729 write_seqcount_end(&dentry->d_seq);
2730 spin_unlock(&dentry->d_lock);
2731 }
2732 EXPORT_SYMBOL(dentry_update_name_case);
2733
2734 static void swap_names(struct dentry *dentry, struct dentry *target)
2735 {
2736 if (unlikely(dname_external(target))) {
2737 if (unlikely(dname_external(dentry))) {
2738 /*
2739 * Both external: swap the pointers
2740 */
2741 swap(target->d_name.name, dentry->d_name.name);
2742 } else {
2743 /*
2744 * dentry:internal, target:external. Steal target's
2745 * storage and make target internal.
2746 */
2747 memcpy(target->d_iname, dentry->d_name.name,
2748 dentry->d_name.len + 1);
2749 dentry->d_name.name = target->d_name.name;
2750 target->d_name.name = target->d_iname;
2751 }
2752 } else {
2753 if (unlikely(dname_external(dentry))) {
2754 /*
2755 * dentry:external, target:internal. Give dentry's
2756 * storage to target and make dentry internal
2757 */
2758 memcpy(dentry->d_iname, target->d_name.name,
2759 target->d_name.len + 1);
2760 target->d_name.name = dentry->d_name.name;
2761 dentry->d_name.name = dentry->d_iname;
2762 } else {
2763 /*
2764 * Both are internal.
2765 */
2766 unsigned int i;
2767 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2768 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2769 swap(((long *) &dentry->d_iname)[i],
2770 ((long *) &target->d_iname)[i]);
2771 }
2772 }
2773 }
2774 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2775 }
2776
2777 static void copy_name(struct dentry *dentry, struct dentry *target)
2778 {
2779 struct external_name *old_name = NULL;
2780 if (unlikely(dname_external(dentry)))
2781 old_name = external_name(dentry);
2782 if (unlikely(dname_external(target))) {
2783 atomic_inc(&external_name(target)->u.count);
2784 dentry->d_name = target->d_name;
2785 } else {
2786 memcpy(dentry->d_iname, target->d_name.name,
2787 target->d_name.len + 1);
2788 dentry->d_name.name = dentry->d_iname;
2789 dentry->d_name.hash_len = target->d_name.hash_len;
2790 }
2791 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2792 call_rcu(&old_name->u.head, __d_free_external_name);
2793 }
2794
2795 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2796 {
2797 /*
2798 * XXXX: do we really need to take target->d_lock?
2799 */
2800 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2801 spin_lock(&target->d_parent->d_lock);
2802 else {
2803 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2804 spin_lock(&dentry->d_parent->d_lock);
2805 spin_lock_nested(&target->d_parent->d_lock,
2806 DENTRY_D_LOCK_NESTED);
2807 } else {
2808 spin_lock(&target->d_parent->d_lock);
2809 spin_lock_nested(&dentry->d_parent->d_lock,
2810 DENTRY_D_LOCK_NESTED);
2811 }
2812 }
2813 if (target < dentry) {
2814 spin_lock_nested(&target->d_lock, 2);
2815 spin_lock_nested(&dentry->d_lock, 3);
2816 } else {
2817 spin_lock_nested(&dentry->d_lock, 2);
2818 spin_lock_nested(&target->d_lock, 3);
2819 }
2820 }
2821
2822 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2823 {
2824 if (target->d_parent != dentry->d_parent)
2825 spin_unlock(&dentry->d_parent->d_lock);
2826 if (target->d_parent != target)
2827 spin_unlock(&target->d_parent->d_lock);
2828 spin_unlock(&target->d_lock);
2829 spin_unlock(&dentry->d_lock);
2830 }
2831
2832 /*
2833 * When switching names, the actual string doesn't strictly have to
2834 * be preserved in the target - because we're dropping the target
2835 * anyway. As such, we can just do a simple memcpy() to copy over
2836 * the new name before we switch, unless we are going to rehash
2837 * it. Note that if we *do* unhash the target, we are not allowed
2838 * to rehash it without giving it a new name/hash key - whether
2839 * we swap or overwrite the names here, resulting name won't match
2840 * the reality in filesystem; it's only there for d_path() purposes.
2841 * Note that all of this is happening under rename_lock, so the
2842 * any hash lookup seeing it in the middle of manipulations will
2843 * be discarded anyway. So we do not care what happens to the hash
2844 * key in that case.
2845 */
2846 /*
2847 * __d_move - move a dentry
2848 * @dentry: entry to move
2849 * @target: new dentry
2850 * @exchange: exchange the two dentries
2851 *
2852 * Update the dcache to reflect the move of a file name. Negative
2853 * dcache entries should not be moved in this way. Caller must hold
2854 * rename_lock, the i_mutex of the source and target directories,
2855 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2856 */
2857 static void __d_move(struct dentry *dentry, struct dentry *target,
2858 bool exchange)
2859 {
2860 struct inode *dir = NULL;
2861 unsigned n;
2862 if (!dentry->d_inode)
2863 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2864
2865 BUG_ON(d_ancestor(dentry, target));
2866 BUG_ON(d_ancestor(target, dentry));
2867
2868 dentry_lock_for_move(dentry, target);
2869 if (unlikely(d_in_lookup(target))) {
2870 dir = target->d_parent->d_inode;
2871 n = start_dir_add(dir);
2872 __d_lookup_done(target);
2873 }
2874
2875 write_seqcount_begin(&dentry->d_seq);
2876 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2877
2878 /* unhash both */
2879 /* ___d_drop does write_seqcount_barrier, but they're OK to nest. */
2880 ___d_drop(dentry);
2881 ___d_drop(target);
2882
2883 /* Switch the names.. */
2884 if (exchange)
2885 swap_names(dentry, target);
2886 else
2887 copy_name(dentry, target);
2888
2889 /* rehash in new place(s) */
2890 __d_rehash(dentry);
2891 if (exchange)
2892 __d_rehash(target);
2893 else
2894 target->d_hash.pprev = NULL;
2895
2896 /* ... and switch them in the tree */
2897 if (IS_ROOT(dentry)) {
2898 /* splicing a tree */
2899 dentry->d_flags |= DCACHE_RCUACCESS;
2900 dentry->d_parent = target->d_parent;
2901 target->d_parent = target;
2902 list_del_init(&target->d_child);
2903 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2904 } else {
2905 /* swapping two dentries */
2906 swap(dentry->d_parent, target->d_parent);
2907 list_move(&target->d_child, &target->d_parent->d_subdirs);
2908 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2909 if (exchange)
2910 fsnotify_update_flags(target);
2911 fsnotify_update_flags(dentry);
2912 }
2913
2914 write_seqcount_end(&target->d_seq);
2915 write_seqcount_end(&dentry->d_seq);
2916
2917 if (dir)
2918 end_dir_add(dir, n);
2919 dentry_unlock_for_move(dentry, target);
2920 }
2921
2922 /*
2923 * d_move - move a dentry
2924 * @dentry: entry to move
2925 * @target: new dentry
2926 *
2927 * Update the dcache to reflect the move of a file name. Negative
2928 * dcache entries should not be moved in this way. See the locking
2929 * requirements for __d_move.
2930 */
2931 void d_move(struct dentry *dentry, struct dentry *target)
2932 {
2933 write_seqlock(&rename_lock);
2934 __d_move(dentry, target, false);
2935 write_sequnlock(&rename_lock);
2936 }
2937 EXPORT_SYMBOL(d_move);
2938
2939 /*
2940 * d_exchange - exchange two dentries
2941 * @dentry1: first dentry
2942 * @dentry2: second dentry
2943 */
2944 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2945 {
2946 write_seqlock(&rename_lock);
2947
2948 WARN_ON(!dentry1->d_inode);
2949 WARN_ON(!dentry2->d_inode);
2950 WARN_ON(IS_ROOT(dentry1));
2951 WARN_ON(IS_ROOT(dentry2));
2952
2953 __d_move(dentry1, dentry2, true);
2954
2955 write_sequnlock(&rename_lock);
2956 }
2957
2958 /**
2959 * d_ancestor - search for an ancestor
2960 * @p1: ancestor dentry
2961 * @p2: child dentry
2962 *
2963 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2964 * an ancestor of p2, else NULL.
2965 */
2966 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2967 {
2968 struct dentry *p;
2969
2970 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2971 if (p->d_parent == p1)
2972 return p;
2973 }
2974 return NULL;
2975 }
2976
2977 /*
2978 * This helper attempts to cope with remotely renamed directories
2979 *
2980 * It assumes that the caller is already holding
2981 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2982 *
2983 * Note: If ever the locking in lock_rename() changes, then please
2984 * remember to update this too...
2985 */
2986 static int __d_unalias(struct inode *inode,
2987 struct dentry *dentry, struct dentry *alias)
2988 {
2989 struct mutex *m1 = NULL;
2990 struct rw_semaphore *m2 = NULL;
2991 int ret = -ESTALE;
2992
2993 /* If alias and dentry share a parent, then no extra locks required */
2994 if (alias->d_parent == dentry->d_parent)
2995 goto out_unalias;
2996
2997 /* See lock_rename() */
2998 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2999 goto out_err;
3000 m1 = &dentry->d_sb->s_vfs_rename_mutex;
3001 if (!inode_trylock_shared(alias->d_parent->d_inode))
3002 goto out_err;
3003 m2 = &alias->d_parent->d_inode->i_rwsem;
3004 out_unalias:
3005 __d_move(alias, dentry, false);
3006 ret = 0;
3007 out_err:
3008 if (m2)
3009 up_read(m2);
3010 if (m1)
3011 mutex_unlock(m1);
3012 return ret;
3013 }
3014
3015 /**
3016 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3017 * @inode: the inode which may have a disconnected dentry
3018 * @dentry: a negative dentry which we want to point to the inode.
3019 *
3020 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3021 * place of the given dentry and return it, else simply d_add the inode
3022 * to the dentry and return NULL.
3023 *
3024 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3025 * we should error out: directories can't have multiple aliases.
3026 *
3027 * This is needed in the lookup routine of any filesystem that is exportable
3028 * (via knfsd) so that we can build dcache paths to directories effectively.
3029 *
3030 * If a dentry was found and moved, then it is returned. Otherwise NULL
3031 * is returned. This matches the expected return value of ->lookup.
3032 *
3033 * Cluster filesystems may call this function with a negative, hashed dentry.
3034 * In that case, we know that the inode will be a regular file, and also this
3035 * will only occur during atomic_open. So we need to check for the dentry
3036 * being already hashed only in the final case.
3037 */
3038 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3039 {
3040 if (IS_ERR(inode))
3041 return ERR_CAST(inode);
3042
3043 BUG_ON(!d_unhashed(dentry));
3044
3045 if (!inode)
3046 goto out;
3047
3048 security_d_instantiate(dentry, inode);
3049 spin_lock(&inode->i_lock);
3050 if (S_ISDIR(inode->i_mode)) {
3051 struct dentry *new = __d_find_any_alias(inode);
3052 if (unlikely(new)) {
3053 /* The reference to new ensures it remains an alias */
3054 spin_unlock(&inode->i_lock);
3055 write_seqlock(&rename_lock);
3056 if (unlikely(d_ancestor(new, dentry))) {
3057 write_sequnlock(&rename_lock);
3058 dput(new);
3059 new = ERR_PTR(-ELOOP);
3060 pr_warn_ratelimited(
3061 "VFS: Lookup of '%s' in %s %s"
3062 " would have caused loop\n",
3063 dentry->d_name.name,
3064 inode->i_sb->s_type->name,
3065 inode->i_sb->s_id);
3066 } else if (!IS_ROOT(new)) {
3067 int err = __d_unalias(inode, dentry, new);
3068 write_sequnlock(&rename_lock);
3069 if (err) {
3070 dput(new);
3071 new = ERR_PTR(err);
3072 }
3073 } else {
3074 __d_move(new, dentry, false);
3075 write_sequnlock(&rename_lock);
3076 }
3077 iput(inode);
3078 return new;
3079 }
3080 }
3081 out:
3082 __d_add(dentry, inode);
3083 return NULL;
3084 }
3085 EXPORT_SYMBOL(d_splice_alias);
3086
3087 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3088 {
3089 *buflen -= namelen;
3090 if (*buflen < 0)
3091 return -ENAMETOOLONG;
3092 *buffer -= namelen;
3093 memcpy(*buffer, str, namelen);
3094 return 0;
3095 }
3096
3097 /**
3098 * prepend_name - prepend a pathname in front of current buffer pointer
3099 * @buffer: buffer pointer
3100 * @buflen: allocated length of the buffer
3101 * @name: name string and length qstr structure
3102 *
3103 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3104 * make sure that either the old or the new name pointer and length are
3105 * fetched. However, there may be mismatch between length and pointer.
3106 * The length cannot be trusted, we need to copy it byte-by-byte until
3107 * the length is reached or a null byte is found. It also prepends "/" at
3108 * the beginning of the name. The sequence number check at the caller will
3109 * retry it again when a d_move() does happen. So any garbage in the buffer
3110 * due to mismatched pointer and length will be discarded.
3111 *
3112 * Data dependency barrier is needed to make sure that we see that terminating
3113 * NUL. Alpha strikes again, film at 11...
3114 */
3115 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3116 {
3117 const char *dname = ACCESS_ONCE(name->name);
3118 u32 dlen = ACCESS_ONCE(name->len);
3119 char *p;
3120
3121 smp_read_barrier_depends();
3122
3123 *buflen -= dlen + 1;
3124 if (*buflen < 0)
3125 return -ENAMETOOLONG;
3126 p = *buffer -= dlen + 1;
3127 *p++ = '/';
3128 while (dlen--) {
3129 char c = *dname++;
3130 if (!c)
3131 break;
3132 *p++ = c;
3133 }
3134 return 0;
3135 }
3136
3137 /**
3138 * prepend_path - Prepend path string to a buffer
3139 * @path: the dentry/vfsmount to report
3140 * @root: root vfsmnt/dentry
3141 * @buffer: pointer to the end of the buffer
3142 * @buflen: pointer to buffer length
3143 *
3144 * The function will first try to write out the pathname without taking any
3145 * lock other than the RCU read lock to make sure that dentries won't go away.
3146 * It only checks the sequence number of the global rename_lock as any change
3147 * in the dentry's d_seq will be preceded by changes in the rename_lock
3148 * sequence number. If the sequence number had been changed, it will restart
3149 * the whole pathname back-tracing sequence again by taking the rename_lock.
3150 * In this case, there is no need to take the RCU read lock as the recursive
3151 * parent pointer references will keep the dentry chain alive as long as no
3152 * rename operation is performed.
3153 */
3154 static int prepend_path(const struct path *path,
3155 const struct path *root,
3156 char **buffer, int *buflen)
3157 {
3158 struct dentry *dentry;
3159 struct vfsmount *vfsmnt;
3160 struct mount *mnt;
3161 int error = 0;
3162 unsigned seq, m_seq = 0;
3163 char *bptr;
3164 int blen;
3165
3166 rcu_read_lock();
3167 restart_mnt:
3168 read_seqbegin_or_lock(&mount_lock, &m_seq);
3169 seq = 0;
3170 rcu_read_lock();
3171 restart:
3172 bptr = *buffer;
3173 blen = *buflen;
3174 error = 0;
3175 dentry = path->dentry;
3176 vfsmnt = path->mnt;
3177 mnt = real_mount(vfsmnt);
3178 read_seqbegin_or_lock(&rename_lock, &seq);
3179 while (dentry != root->dentry || vfsmnt != root->mnt) {
3180 struct dentry * parent;
3181
3182 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3183 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3184 /* Escaped? */
3185 if (dentry != vfsmnt->mnt_root) {
3186 bptr = *buffer;
3187 blen = *buflen;
3188 error = 3;
3189 break;
3190 }
3191 /* Global root? */
3192 if (mnt != parent) {
3193 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3194 mnt = parent;
3195 vfsmnt = &mnt->mnt;
3196 continue;
3197 }
3198 if (!error)
3199 error = is_mounted(vfsmnt) ? 1 : 2;
3200 break;
3201 }
3202 parent = dentry->d_parent;
3203 prefetch(parent);
3204 error = prepend_name(&bptr, &blen, &dentry->d_name);
3205 if (error)
3206 break;
3207
3208 dentry = parent;
3209 }
3210 if (!(seq & 1))
3211 rcu_read_unlock();
3212 if (need_seqretry(&rename_lock, seq)) {
3213 seq = 1;
3214 goto restart;
3215 }
3216 done_seqretry(&rename_lock, seq);
3217
3218 if (!(m_seq & 1))
3219 rcu_read_unlock();
3220 if (need_seqretry(&mount_lock, m_seq)) {
3221 m_seq = 1;
3222 goto restart_mnt;
3223 }
3224 done_seqretry(&mount_lock, m_seq);
3225
3226 if (error >= 0 && bptr == *buffer) {
3227 if (--blen < 0)
3228 error = -ENAMETOOLONG;
3229 else
3230 *--bptr = '/';
3231 }
3232 *buffer = bptr;
3233 *buflen = blen;
3234 return error;
3235 }
3236
3237 /**
3238 * __d_path - return the path of a dentry
3239 * @path: the dentry/vfsmount to report
3240 * @root: root vfsmnt/dentry
3241 * @buf: buffer to return value in
3242 * @buflen: buffer length
3243 *
3244 * Convert a dentry into an ASCII path name.
3245 *
3246 * Returns a pointer into the buffer or an error code if the
3247 * path was too long.
3248 *
3249 * "buflen" should be positive.
3250 *
3251 * If the path is not reachable from the supplied root, return %NULL.
3252 */
3253 char *__d_path(const struct path *path,
3254 const struct path *root,
3255 char *buf, int buflen)
3256 {
3257 char *res = buf + buflen;
3258 int error;
3259
3260 prepend(&res, &buflen, "\0", 1);
3261 error = prepend_path(path, root, &res, &buflen);
3262
3263 if (error < 0)
3264 return ERR_PTR(error);
3265 if (error > 0)
3266 return NULL;
3267 return res;
3268 }
3269
3270 char *d_absolute_path(const struct path *path,
3271 char *buf, int buflen)
3272 {
3273 struct path root = {};
3274 char *res = buf + buflen;
3275 int error;
3276
3277 prepend(&res, &buflen, "\0", 1);
3278 error = prepend_path(path, &root, &res, &buflen);
3279
3280 if (error > 1)
3281 error = -EINVAL;
3282 if (error < 0)
3283 return ERR_PTR(error);
3284 return res;
3285 }
3286 EXPORT_SYMBOL(d_absolute_path);
3287
3288 /*
3289 * same as __d_path but appends "(deleted)" for unlinked files.
3290 */
3291 static int path_with_deleted(const struct path *path,
3292 const struct path *root,
3293 char **buf, int *buflen)
3294 {
3295 prepend(buf, buflen, "\0", 1);
3296 if (d_unlinked(path->dentry)) {
3297 int error = prepend(buf, buflen, " (deleted)", 10);
3298 if (error)
3299 return error;
3300 }
3301
3302 return prepend_path(path, root, buf, buflen);
3303 }
3304
3305 static int prepend_unreachable(char **buffer, int *buflen)
3306 {
3307 return prepend(buffer, buflen, "(unreachable)", 13);
3308 }
3309
3310 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3311 {
3312 unsigned seq;
3313
3314 do {
3315 seq = read_seqcount_begin(&fs->seq);
3316 *root = fs->root;
3317 } while (read_seqcount_retry(&fs->seq, seq));
3318 }
3319
3320 /**
3321 * d_path - return the path of a dentry
3322 * @path: path to report
3323 * @buf: buffer to return value in
3324 * @buflen: buffer length
3325 *
3326 * Convert a dentry into an ASCII path name. If the entry has been deleted
3327 * the string " (deleted)" is appended. Note that this is ambiguous.
3328 *
3329 * Returns a pointer into the buffer or an error code if the path was
3330 * too long. Note: Callers should use the returned pointer, not the passed
3331 * in buffer, to use the name! The implementation often starts at an offset
3332 * into the buffer, and may leave 0 bytes at the start.
3333 *
3334 * "buflen" should be positive.
3335 */
3336 char *d_path(const struct path *path, char *buf, int buflen)
3337 {
3338 char *res = buf + buflen;
3339 struct path root;
3340 int error;
3341
3342 /*
3343 * We have various synthetic filesystems that never get mounted. On
3344 * these filesystems dentries are never used for lookup purposes, and
3345 * thus don't need to be hashed. They also don't need a name until a
3346 * user wants to identify the object in /proc/pid/fd/. The little hack
3347 * below allows us to generate a name for these objects on demand:
3348 *
3349 * Some pseudo inodes are mountable. When they are mounted
3350 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3351 * and instead have d_path return the mounted path.
3352 */
3353 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3354 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3355 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3356
3357 rcu_read_lock();
3358 get_fs_root_rcu(current->fs, &root);
3359 error = path_with_deleted(path, &root, &res, &buflen);
3360 rcu_read_unlock();
3361
3362 if (error < 0)
3363 res = ERR_PTR(error);
3364 return res;
3365 }
3366 EXPORT_SYMBOL(d_path);
3367
3368 /*
3369 * Helper function for dentry_operations.d_dname() members
3370 */
3371 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3372 const char *fmt, ...)
3373 {
3374 va_list args;
3375 char temp[64];
3376 int sz;
3377
3378 va_start(args, fmt);
3379 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3380 va_end(args);
3381
3382 if (sz > sizeof(temp) || sz > buflen)
3383 return ERR_PTR(-ENAMETOOLONG);
3384
3385 buffer += buflen - sz;
3386 return memcpy(buffer, temp, sz);
3387 }
3388
3389 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3390 {
3391 char *end = buffer + buflen;
3392 /* these dentries are never renamed, so d_lock is not needed */
3393 if (prepend(&end, &buflen, " (deleted)", 11) ||
3394 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3395 prepend(&end, &buflen, "/", 1))
3396 end = ERR_PTR(-ENAMETOOLONG);
3397 return end;
3398 }
3399 EXPORT_SYMBOL(simple_dname);
3400
3401 /*
3402 * Write full pathname from the root of the filesystem into the buffer.
3403 */
3404 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3405 {
3406 struct dentry *dentry;
3407 char *end, *retval;
3408 int len, seq = 0;
3409 int error = 0;
3410
3411 if (buflen < 2)
3412 goto Elong;
3413
3414 rcu_read_lock();
3415 restart:
3416 dentry = d;
3417 end = buf + buflen;
3418 len = buflen;
3419 prepend(&end, &len, "\0", 1);
3420 /* Get '/' right */
3421 retval = end-1;
3422 *retval = '/';
3423 read_seqbegin_or_lock(&rename_lock, &seq);
3424 while (!IS_ROOT(dentry)) {
3425 struct dentry *parent = dentry->d_parent;
3426
3427 prefetch(parent);
3428 error = prepend_name(&end, &len, &dentry->d_name);
3429 if (error)
3430 break;
3431
3432 retval = end;
3433 dentry = parent;
3434 }
3435 if (!(seq & 1))
3436 rcu_read_unlock();
3437 if (need_seqretry(&rename_lock, seq)) {
3438 seq = 1;
3439 goto restart;
3440 }
3441 done_seqretry(&rename_lock, seq);
3442 if (error)
3443 goto Elong;
3444 return retval;
3445 Elong:
3446 return ERR_PTR(-ENAMETOOLONG);
3447 }
3448
3449 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3450 {
3451 return __dentry_path(dentry, buf, buflen);
3452 }
3453 EXPORT_SYMBOL(dentry_path_raw);
3454
3455 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3456 {
3457 char *p = NULL;
3458 char *retval;
3459
3460 if (d_unlinked(dentry)) {
3461 p = buf + buflen;
3462 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3463 goto Elong;
3464 buflen++;
3465 }
3466 retval = __dentry_path(dentry, buf, buflen);
3467 if (!IS_ERR(retval) && p)
3468 *p = '/'; /* restore '/' overriden with '\0' */
3469 return retval;
3470 Elong:
3471 return ERR_PTR(-ENAMETOOLONG);
3472 }
3473
3474 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3475 struct path *pwd)
3476 {
3477 unsigned seq;
3478
3479 do {
3480 seq = read_seqcount_begin(&fs->seq);
3481 *root = fs->root;
3482 *pwd = fs->pwd;
3483 } while (read_seqcount_retry(&fs->seq, seq));
3484 }
3485
3486 /*
3487 * NOTE! The user-level library version returns a
3488 * character pointer. The kernel system call just
3489 * returns the length of the buffer filled (which
3490 * includes the ending '\0' character), or a negative
3491 * error value. So libc would do something like
3492 *
3493 * char *getcwd(char * buf, size_t size)
3494 * {
3495 * int retval;
3496 *
3497 * retval = sys_getcwd(buf, size);
3498 * if (retval >= 0)
3499 * return buf;
3500 * errno = -retval;
3501 * return NULL;
3502 * }
3503 */
3504 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3505 {
3506 int error;
3507 struct path pwd, root;
3508 char *page = __getname();
3509
3510 if (!page)
3511 return -ENOMEM;
3512
3513 rcu_read_lock();
3514 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3515
3516 error = -ENOENT;
3517 if (!d_unlinked(pwd.dentry)) {
3518 unsigned long len;
3519 char *cwd = page + PATH_MAX;
3520 int buflen = PATH_MAX;
3521
3522 prepend(&cwd, &buflen, "\0", 1);
3523 error = prepend_path(&pwd, &root, &cwd, &buflen);
3524 rcu_read_unlock();
3525
3526 if (error < 0)
3527 goto out;
3528
3529 /* Unreachable from current root */
3530 if (error > 0) {
3531 error = prepend_unreachable(&cwd, &buflen);
3532 if (error)
3533 goto out;
3534 }
3535
3536 error = -ERANGE;
3537 len = PATH_MAX + page - cwd;
3538 if (len <= size) {
3539 error = len;
3540 if (copy_to_user(buf, cwd, len))
3541 error = -EFAULT;
3542 }
3543 } else {
3544 rcu_read_unlock();
3545 }
3546
3547 out:
3548 __putname(page);
3549 return error;
3550 }
3551
3552 /*
3553 * Test whether new_dentry is a subdirectory of old_dentry.
3554 *
3555 * Trivially implemented using the dcache structure
3556 */
3557
3558 /**
3559 * is_subdir - is new dentry a subdirectory of old_dentry
3560 * @new_dentry: new dentry
3561 * @old_dentry: old dentry
3562 *
3563 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3564 * Returns false otherwise.
3565 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3566 */
3567
3568 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3569 {
3570 bool result;
3571 unsigned seq;
3572
3573 if (new_dentry == old_dentry)
3574 return true;
3575
3576 do {
3577 /* for restarting inner loop in case of seq retry */
3578 seq = read_seqbegin(&rename_lock);
3579 /*
3580 * Need rcu_readlock to protect against the d_parent trashing
3581 * due to d_move
3582 */
3583 rcu_read_lock();
3584 if (d_ancestor(old_dentry, new_dentry))
3585 result = true;
3586 else
3587 result = false;
3588 rcu_read_unlock();
3589 } while (read_seqretry(&rename_lock, seq));
3590
3591 return result;
3592 }
3593
3594 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3595 {
3596 struct dentry *root = data;
3597 if (dentry != root) {
3598 if (d_unhashed(dentry) || !dentry->d_inode)
3599 return D_WALK_SKIP;
3600
3601 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3602 dentry->d_flags |= DCACHE_GENOCIDE;
3603 dentry->d_lockref.count--;
3604 }
3605 }
3606 return D_WALK_CONTINUE;
3607 }
3608
3609 void d_genocide(struct dentry *parent)
3610 {
3611 d_walk(parent, parent, d_genocide_kill, NULL);
3612 }
3613
3614 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3615 {
3616 inode_dec_link_count(inode);
3617 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3618 !hlist_unhashed(&dentry->d_u.d_alias) ||
3619 !d_unlinked(dentry));
3620 spin_lock(&dentry->d_parent->d_lock);
3621 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3622 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3623 (unsigned long long)inode->i_ino);
3624 spin_unlock(&dentry->d_lock);
3625 spin_unlock(&dentry->d_parent->d_lock);
3626 d_instantiate(dentry, inode);
3627 }
3628 EXPORT_SYMBOL(d_tmpfile);
3629
3630 static __initdata unsigned long dhash_entries;
3631 static int __init set_dhash_entries(char *str)
3632 {
3633 if (!str)
3634 return 0;
3635 dhash_entries = simple_strtoul(str, &str, 0);
3636 return 1;
3637 }
3638 __setup("dhash_entries=", set_dhash_entries);
3639
3640 static void __init dcache_init_early(void)
3641 {
3642 /* If hashes are distributed across NUMA nodes, defer
3643 * hash allocation until vmalloc space is available.
3644 */
3645 if (hashdist)
3646 return;
3647
3648 dentry_hashtable =
3649 alloc_large_system_hash("Dentry cache",
3650 sizeof(struct hlist_bl_head),
3651 dhash_entries,
3652 13,
3653 HASH_EARLY | HASH_ZERO,
3654 &d_hash_shift,
3655 &d_hash_mask,
3656 0,
3657 0);
3658 }
3659
3660 static void __init dcache_init(void)
3661 {
3662 /*
3663 * A constructor could be added for stable state like the lists,
3664 * but it is probably not worth it because of the cache nature
3665 * of the dcache.
3666 */
3667 dentry_cache = KMEM_CACHE(dentry,
3668 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3669
3670 /* Hash may have been set up in dcache_init_early */
3671 if (!hashdist)
3672 return;
3673
3674 dentry_hashtable =
3675 alloc_large_system_hash("Dentry cache",
3676 sizeof(struct hlist_bl_head),
3677 dhash_entries,
3678 13,
3679 HASH_ZERO,
3680 &d_hash_shift,
3681 &d_hash_mask,
3682 0,
3683 0);
3684 }
3685
3686 /* SLAB cache for __getname() consumers */
3687 struct kmem_cache *names_cachep __read_mostly;
3688 EXPORT_SYMBOL(names_cachep);
3689
3690 EXPORT_SYMBOL(d_genocide);
3691
3692 void __init vfs_caches_init_early(void)
3693 {
3694 int i;
3695
3696 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3697 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3698
3699 dcache_init_early();
3700 inode_init_early();
3701 }
3702
3703 void __init vfs_caches_init(void)
3704 {
3705 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3706 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3707
3708 dcache_init();
3709 inode_init();
3710 files_init();
3711 files_maxfiles_init();
3712 mnt_init();
3713 bdev_cache_init();
3714 chrdev_init();
3715 }