Merge branch 'next/kvm' into mips-for-linux-next
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42
43 /*
44 * Usage:
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
57 * - d_count
58 * - d_unhashed()
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
61 * - d_alias, d_inode
62 *
63 * Ordering:
64 * dentry->d_inode->i_lock
65 * dentry->d_lock
66 * dcache_lru_lock
67 * dcache_hash_bucket lock
68 * s_anon lock
69 *
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *dentry_cache __read_mostly;
90
91 /*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99 #define D_HASHBITS d_hash_shift
100 #define D_HASHMASK d_hash_mask
101
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 unsigned int hash)
109 {
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 hash = hash + (hash >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
113 }
114
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118 };
119
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
124 {
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
130 }
131
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
134 {
135 dentry_stat.nr_dentry = get_nr_dentry();
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139
140 /*
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
143 */
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
145
146 #include <asm/word-at-a-time.h>
147 /*
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
152 *
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
155 */
156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
157 {
158 unsigned long a,b,mask;
159
160 for (;;) {
161 a = *(unsigned long *)cs;
162 b = load_unaligned_zeropad(ct);
163 if (tcount < sizeof(unsigned long))
164 break;
165 if (unlikely(a != b))
166 return 1;
167 cs += sizeof(unsigned long);
168 ct += sizeof(unsigned long);
169 tcount -= sizeof(unsigned long);
170 if (!tcount)
171 return 0;
172 }
173 mask = ~(~0ul << tcount*8);
174 return unlikely(!!((a ^ b) & mask));
175 }
176
177 #else
178
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 do {
182 if (*cs != *ct)
183 return 1;
184 cs++;
185 ct++;
186 tcount--;
187 } while (tcount);
188 return 0;
189 }
190
191 #endif
192
193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194 {
195 const unsigned char *cs;
196 /*
197 * Be careful about RCU walk racing with rename:
198 * use ACCESS_ONCE to fetch the name pointer.
199 *
200 * NOTE! Even if a rename will mean that the length
201 * was not loaded atomically, we don't care. The
202 * RCU walk will check the sequence count eventually,
203 * and catch it. And we won't overrun the buffer,
204 * because we're reading the name pointer atomically,
205 * and a dentry name is guaranteed to be properly
206 * terminated with a NUL byte.
207 *
208 * End result: even if 'len' is wrong, we'll exit
209 * early because the data cannot match (there can
210 * be no NUL in the ct/tcount data)
211 */
212 cs = ACCESS_ONCE(dentry->d_name.name);
213 smp_read_barrier_depends();
214 return dentry_string_cmp(cs, ct, tcount);
215 }
216
217 static void __d_free(struct rcu_head *head)
218 {
219 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220
221 WARN_ON(!hlist_unhashed(&dentry->d_alias));
222 if (dname_external(dentry))
223 kfree(dentry->d_name.name);
224 kmem_cache_free(dentry_cache, dentry);
225 }
226
227 /*
228 * no locks, please.
229 */
230 static void d_free(struct dentry *dentry)
231 {
232 BUG_ON(dentry->d_count);
233 this_cpu_dec(nr_dentry);
234 if (dentry->d_op && dentry->d_op->d_release)
235 dentry->d_op->d_release(dentry);
236
237 /* if dentry was never visible to RCU, immediate free is OK */
238 if (!(dentry->d_flags & DCACHE_RCUACCESS))
239 __d_free(&dentry->d_u.d_rcu);
240 else
241 call_rcu(&dentry->d_u.d_rcu, __d_free);
242 }
243
244 /**
245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246 * @dentry: the target dentry
247 * After this call, in-progress rcu-walk path lookup will fail. This
248 * should be called after unhashing, and after changing d_inode (if
249 * the dentry has not already been unhashed).
250 */
251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252 {
253 assert_spin_locked(&dentry->d_lock);
254 /* Go through a barrier */
255 write_seqcount_barrier(&dentry->d_seq);
256 }
257
258 /*
259 * Release the dentry's inode, using the filesystem
260 * d_iput() operation if defined. Dentry has no refcount
261 * and is unhashed.
262 */
263 static void dentry_iput(struct dentry * dentry)
264 __releases(dentry->d_lock)
265 __releases(dentry->d_inode->i_lock)
266 {
267 struct inode *inode = dentry->d_inode;
268 if (inode) {
269 dentry->d_inode = NULL;
270 hlist_del_init(&dentry->d_alias);
271 spin_unlock(&dentry->d_lock);
272 spin_unlock(&inode->i_lock);
273 if (!inode->i_nlink)
274 fsnotify_inoderemove(inode);
275 if (dentry->d_op && dentry->d_op->d_iput)
276 dentry->d_op->d_iput(dentry, inode);
277 else
278 iput(inode);
279 } else {
280 spin_unlock(&dentry->d_lock);
281 }
282 }
283
284 /*
285 * Release the dentry's inode, using the filesystem
286 * d_iput() operation if defined. dentry remains in-use.
287 */
288 static void dentry_unlink_inode(struct dentry * dentry)
289 __releases(dentry->d_lock)
290 __releases(dentry->d_inode->i_lock)
291 {
292 struct inode *inode = dentry->d_inode;
293 dentry->d_inode = NULL;
294 hlist_del_init(&dentry->d_alias);
295 dentry_rcuwalk_barrier(dentry);
296 spin_unlock(&dentry->d_lock);
297 spin_unlock(&inode->i_lock);
298 if (!inode->i_nlink)
299 fsnotify_inoderemove(inode);
300 if (dentry->d_op && dentry->d_op->d_iput)
301 dentry->d_op->d_iput(dentry, inode);
302 else
303 iput(inode);
304 }
305
306 /*
307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
308 */
309 static void dentry_lru_add(struct dentry *dentry)
310 {
311 if (list_empty(&dentry->d_lru)) {
312 spin_lock(&dcache_lru_lock);
313 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 dentry->d_sb->s_nr_dentry_unused++;
315 dentry_stat.nr_unused++;
316 spin_unlock(&dcache_lru_lock);
317 }
318 }
319
320 static void __dentry_lru_del(struct dentry *dentry)
321 {
322 list_del_init(&dentry->d_lru);
323 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
324 dentry->d_sb->s_nr_dentry_unused--;
325 dentry_stat.nr_unused--;
326 }
327
328 /*
329 * Remove a dentry with references from the LRU.
330 */
331 static void dentry_lru_del(struct dentry *dentry)
332 {
333 if (!list_empty(&dentry->d_lru)) {
334 spin_lock(&dcache_lru_lock);
335 __dentry_lru_del(dentry);
336 spin_unlock(&dcache_lru_lock);
337 }
338 }
339
340 /*
341 * Remove a dentry that is unreferenced and about to be pruned
342 * (unhashed and destroyed) from the LRU, and inform the file system.
343 * This wrapper should be called _prior_ to unhashing a victim dentry.
344 */
345 static void dentry_lru_prune(struct dentry *dentry)
346 {
347 if (!list_empty(&dentry->d_lru)) {
348 if (dentry->d_flags & DCACHE_OP_PRUNE)
349 dentry->d_op->d_prune(dentry);
350
351 spin_lock(&dcache_lru_lock);
352 __dentry_lru_del(dentry);
353 spin_unlock(&dcache_lru_lock);
354 }
355 }
356
357 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
358 {
359 spin_lock(&dcache_lru_lock);
360 if (list_empty(&dentry->d_lru)) {
361 list_add_tail(&dentry->d_lru, list);
362 dentry->d_sb->s_nr_dentry_unused++;
363 dentry_stat.nr_unused++;
364 } else {
365 list_move_tail(&dentry->d_lru, list);
366 }
367 spin_unlock(&dcache_lru_lock);
368 }
369
370 /**
371 * d_kill - kill dentry and return parent
372 * @dentry: dentry to kill
373 * @parent: parent dentry
374 *
375 * The dentry must already be unhashed and removed from the LRU.
376 *
377 * If this is the root of the dentry tree, return NULL.
378 *
379 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
380 * d_kill.
381 */
382 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
383 __releases(dentry->d_lock)
384 __releases(parent->d_lock)
385 __releases(dentry->d_inode->i_lock)
386 {
387 list_del(&dentry->d_u.d_child);
388 /*
389 * Inform try_to_ascend() that we are no longer attached to the
390 * dentry tree
391 */
392 dentry->d_flags |= DCACHE_DENTRY_KILLED;
393 if (parent)
394 spin_unlock(&parent->d_lock);
395 dentry_iput(dentry);
396 /*
397 * dentry_iput drops the locks, at which point nobody (except
398 * transient RCU lookups) can reach this dentry.
399 */
400 d_free(dentry);
401 return parent;
402 }
403
404 /*
405 * Unhash a dentry without inserting an RCU walk barrier or checking that
406 * dentry->d_lock is locked. The caller must take care of that, if
407 * appropriate.
408 */
409 static void __d_shrink(struct dentry *dentry)
410 {
411 if (!d_unhashed(dentry)) {
412 struct hlist_bl_head *b;
413 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
414 b = &dentry->d_sb->s_anon;
415 else
416 b = d_hash(dentry->d_parent, dentry->d_name.hash);
417
418 hlist_bl_lock(b);
419 __hlist_bl_del(&dentry->d_hash);
420 dentry->d_hash.pprev = NULL;
421 hlist_bl_unlock(b);
422 }
423 }
424
425 /**
426 * d_drop - drop a dentry
427 * @dentry: dentry to drop
428 *
429 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
430 * be found through a VFS lookup any more. Note that this is different from
431 * deleting the dentry - d_delete will try to mark the dentry negative if
432 * possible, giving a successful _negative_ lookup, while d_drop will
433 * just make the cache lookup fail.
434 *
435 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
436 * reason (NFS timeouts or autofs deletes).
437 *
438 * __d_drop requires dentry->d_lock.
439 */
440 void __d_drop(struct dentry *dentry)
441 {
442 if (!d_unhashed(dentry)) {
443 __d_shrink(dentry);
444 dentry_rcuwalk_barrier(dentry);
445 }
446 }
447 EXPORT_SYMBOL(__d_drop);
448
449 void d_drop(struct dentry *dentry)
450 {
451 spin_lock(&dentry->d_lock);
452 __d_drop(dentry);
453 spin_unlock(&dentry->d_lock);
454 }
455 EXPORT_SYMBOL(d_drop);
456
457 /*
458 * Finish off a dentry we've decided to kill.
459 * dentry->d_lock must be held, returns with it unlocked.
460 * If ref is non-zero, then decrement the refcount too.
461 * Returns dentry requiring refcount drop, or NULL if we're done.
462 */
463 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
464 __releases(dentry->d_lock)
465 {
466 struct inode *inode;
467 struct dentry *parent;
468
469 inode = dentry->d_inode;
470 if (inode && !spin_trylock(&inode->i_lock)) {
471 relock:
472 spin_unlock(&dentry->d_lock);
473 cpu_relax();
474 return dentry; /* try again with same dentry */
475 }
476 if (IS_ROOT(dentry))
477 parent = NULL;
478 else
479 parent = dentry->d_parent;
480 if (parent && !spin_trylock(&parent->d_lock)) {
481 if (inode)
482 spin_unlock(&inode->i_lock);
483 goto relock;
484 }
485
486 if (ref)
487 dentry->d_count--;
488 /*
489 * if dentry was on the d_lru list delete it from there.
490 * inform the fs via d_prune that this dentry is about to be
491 * unhashed and destroyed.
492 */
493 dentry_lru_prune(dentry);
494 /* if it was on the hash then remove it */
495 __d_drop(dentry);
496 return d_kill(dentry, parent);
497 }
498
499 /*
500 * This is dput
501 *
502 * This is complicated by the fact that we do not want to put
503 * dentries that are no longer on any hash chain on the unused
504 * list: we'd much rather just get rid of them immediately.
505 *
506 * However, that implies that we have to traverse the dentry
507 * tree upwards to the parents which might _also_ now be
508 * scheduled for deletion (it may have been only waiting for
509 * its last child to go away).
510 *
511 * This tail recursion is done by hand as we don't want to depend
512 * on the compiler to always get this right (gcc generally doesn't).
513 * Real recursion would eat up our stack space.
514 */
515
516 /*
517 * dput - release a dentry
518 * @dentry: dentry to release
519 *
520 * Release a dentry. This will drop the usage count and if appropriate
521 * call the dentry unlink method as well as removing it from the queues and
522 * releasing its resources. If the parent dentries were scheduled for release
523 * they too may now get deleted.
524 */
525 void dput(struct dentry *dentry)
526 {
527 if (!dentry)
528 return;
529
530 repeat:
531 if (dentry->d_count == 1)
532 might_sleep();
533 spin_lock(&dentry->d_lock);
534 BUG_ON(!dentry->d_count);
535 if (dentry->d_count > 1) {
536 dentry->d_count--;
537 spin_unlock(&dentry->d_lock);
538 return;
539 }
540
541 if (dentry->d_flags & DCACHE_OP_DELETE) {
542 if (dentry->d_op->d_delete(dentry))
543 goto kill_it;
544 }
545
546 /* Unreachable? Get rid of it */
547 if (d_unhashed(dentry))
548 goto kill_it;
549
550 dentry->d_flags |= DCACHE_REFERENCED;
551 dentry_lru_add(dentry);
552
553 dentry->d_count--;
554 spin_unlock(&dentry->d_lock);
555 return;
556
557 kill_it:
558 dentry = dentry_kill(dentry, 1);
559 if (dentry)
560 goto repeat;
561 }
562 EXPORT_SYMBOL(dput);
563
564 /**
565 * d_invalidate - invalidate a dentry
566 * @dentry: dentry to invalidate
567 *
568 * Try to invalidate the dentry if it turns out to be
569 * possible. If there are other dentries that can be
570 * reached through this one we can't delete it and we
571 * return -EBUSY. On success we return 0.
572 *
573 * no dcache lock.
574 */
575
576 int d_invalidate(struct dentry * dentry)
577 {
578 /*
579 * If it's already been dropped, return OK.
580 */
581 spin_lock(&dentry->d_lock);
582 if (d_unhashed(dentry)) {
583 spin_unlock(&dentry->d_lock);
584 return 0;
585 }
586 /*
587 * Check whether to do a partial shrink_dcache
588 * to get rid of unused child entries.
589 */
590 if (!list_empty(&dentry->d_subdirs)) {
591 spin_unlock(&dentry->d_lock);
592 shrink_dcache_parent(dentry);
593 spin_lock(&dentry->d_lock);
594 }
595
596 /*
597 * Somebody else still using it?
598 *
599 * If it's a directory, we can't drop it
600 * for fear of somebody re-populating it
601 * with children (even though dropping it
602 * would make it unreachable from the root,
603 * we might still populate it if it was a
604 * working directory or similar).
605 * We also need to leave mountpoints alone,
606 * directory or not.
607 */
608 if (dentry->d_count > 1 && dentry->d_inode) {
609 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
610 spin_unlock(&dentry->d_lock);
611 return -EBUSY;
612 }
613 }
614
615 __d_drop(dentry);
616 spin_unlock(&dentry->d_lock);
617 return 0;
618 }
619 EXPORT_SYMBOL(d_invalidate);
620
621 /* This must be called with d_lock held */
622 static inline void __dget_dlock(struct dentry *dentry)
623 {
624 dentry->d_count++;
625 }
626
627 static inline void __dget(struct dentry *dentry)
628 {
629 spin_lock(&dentry->d_lock);
630 __dget_dlock(dentry);
631 spin_unlock(&dentry->d_lock);
632 }
633
634 struct dentry *dget_parent(struct dentry *dentry)
635 {
636 struct dentry *ret;
637
638 repeat:
639 /*
640 * Don't need rcu_dereference because we re-check it was correct under
641 * the lock.
642 */
643 rcu_read_lock();
644 ret = dentry->d_parent;
645 spin_lock(&ret->d_lock);
646 if (unlikely(ret != dentry->d_parent)) {
647 spin_unlock(&ret->d_lock);
648 rcu_read_unlock();
649 goto repeat;
650 }
651 rcu_read_unlock();
652 BUG_ON(!ret->d_count);
653 ret->d_count++;
654 spin_unlock(&ret->d_lock);
655 return ret;
656 }
657 EXPORT_SYMBOL(dget_parent);
658
659 /**
660 * d_find_alias - grab a hashed alias of inode
661 * @inode: inode in question
662 * @want_discon: flag, used by d_splice_alias, to request
663 * that only a DISCONNECTED alias be returned.
664 *
665 * If inode has a hashed alias, or is a directory and has any alias,
666 * acquire the reference to alias and return it. Otherwise return NULL.
667 * Notice that if inode is a directory there can be only one alias and
668 * it can be unhashed only if it has no children, or if it is the root
669 * of a filesystem.
670 *
671 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
672 * any other hashed alias over that one unless @want_discon is set,
673 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
674 */
675 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
676 {
677 struct dentry *alias, *discon_alias;
678
679 again:
680 discon_alias = NULL;
681 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
682 spin_lock(&alias->d_lock);
683 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
684 if (IS_ROOT(alias) &&
685 (alias->d_flags & DCACHE_DISCONNECTED)) {
686 discon_alias = alias;
687 } else if (!want_discon) {
688 __dget_dlock(alias);
689 spin_unlock(&alias->d_lock);
690 return alias;
691 }
692 }
693 spin_unlock(&alias->d_lock);
694 }
695 if (discon_alias) {
696 alias = discon_alias;
697 spin_lock(&alias->d_lock);
698 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
699 if (IS_ROOT(alias) &&
700 (alias->d_flags & DCACHE_DISCONNECTED)) {
701 __dget_dlock(alias);
702 spin_unlock(&alias->d_lock);
703 return alias;
704 }
705 }
706 spin_unlock(&alias->d_lock);
707 goto again;
708 }
709 return NULL;
710 }
711
712 struct dentry *d_find_alias(struct inode *inode)
713 {
714 struct dentry *de = NULL;
715
716 if (!hlist_empty(&inode->i_dentry)) {
717 spin_lock(&inode->i_lock);
718 de = __d_find_alias(inode, 0);
719 spin_unlock(&inode->i_lock);
720 }
721 return de;
722 }
723 EXPORT_SYMBOL(d_find_alias);
724
725 /*
726 * Try to kill dentries associated with this inode.
727 * WARNING: you must own a reference to inode.
728 */
729 void d_prune_aliases(struct inode *inode)
730 {
731 struct dentry *dentry;
732 restart:
733 spin_lock(&inode->i_lock);
734 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
735 spin_lock(&dentry->d_lock);
736 if (!dentry->d_count) {
737 __dget_dlock(dentry);
738 __d_drop(dentry);
739 spin_unlock(&dentry->d_lock);
740 spin_unlock(&inode->i_lock);
741 dput(dentry);
742 goto restart;
743 }
744 spin_unlock(&dentry->d_lock);
745 }
746 spin_unlock(&inode->i_lock);
747 }
748 EXPORT_SYMBOL(d_prune_aliases);
749
750 /*
751 * Try to throw away a dentry - free the inode, dput the parent.
752 * Requires dentry->d_lock is held, and dentry->d_count == 0.
753 * Releases dentry->d_lock.
754 *
755 * This may fail if locks cannot be acquired no problem, just try again.
756 */
757 static void try_prune_one_dentry(struct dentry *dentry)
758 __releases(dentry->d_lock)
759 {
760 struct dentry *parent;
761
762 parent = dentry_kill(dentry, 0);
763 /*
764 * If dentry_kill returns NULL, we have nothing more to do.
765 * if it returns the same dentry, trylocks failed. In either
766 * case, just loop again.
767 *
768 * Otherwise, we need to prune ancestors too. This is necessary
769 * to prevent quadratic behavior of shrink_dcache_parent(), but
770 * is also expected to be beneficial in reducing dentry cache
771 * fragmentation.
772 */
773 if (!parent)
774 return;
775 if (parent == dentry)
776 return;
777
778 /* Prune ancestors. */
779 dentry = parent;
780 while (dentry) {
781 spin_lock(&dentry->d_lock);
782 if (dentry->d_count > 1) {
783 dentry->d_count--;
784 spin_unlock(&dentry->d_lock);
785 return;
786 }
787 dentry = dentry_kill(dentry, 1);
788 }
789 }
790
791 static void shrink_dentry_list(struct list_head *list)
792 {
793 struct dentry *dentry;
794
795 rcu_read_lock();
796 for (;;) {
797 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
798 if (&dentry->d_lru == list)
799 break; /* empty */
800 spin_lock(&dentry->d_lock);
801 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
802 spin_unlock(&dentry->d_lock);
803 continue;
804 }
805
806 /*
807 * We found an inuse dentry which was not removed from
808 * the LRU because of laziness during lookup. Do not free
809 * it - just keep it off the LRU list.
810 */
811 if (dentry->d_count) {
812 dentry_lru_del(dentry);
813 spin_unlock(&dentry->d_lock);
814 continue;
815 }
816
817 rcu_read_unlock();
818
819 try_prune_one_dentry(dentry);
820
821 rcu_read_lock();
822 }
823 rcu_read_unlock();
824 }
825
826 /**
827 * prune_dcache_sb - shrink the dcache
828 * @sb: superblock
829 * @count: number of entries to try to free
830 *
831 * Attempt to shrink the superblock dcache LRU by @count entries. This is
832 * done when we need more memory an called from the superblock shrinker
833 * function.
834 *
835 * This function may fail to free any resources if all the dentries are in
836 * use.
837 */
838 void prune_dcache_sb(struct super_block *sb, int count)
839 {
840 struct dentry *dentry;
841 LIST_HEAD(referenced);
842 LIST_HEAD(tmp);
843
844 relock:
845 spin_lock(&dcache_lru_lock);
846 while (!list_empty(&sb->s_dentry_lru)) {
847 dentry = list_entry(sb->s_dentry_lru.prev,
848 struct dentry, d_lru);
849 BUG_ON(dentry->d_sb != sb);
850
851 if (!spin_trylock(&dentry->d_lock)) {
852 spin_unlock(&dcache_lru_lock);
853 cpu_relax();
854 goto relock;
855 }
856
857 if (dentry->d_flags & DCACHE_REFERENCED) {
858 dentry->d_flags &= ~DCACHE_REFERENCED;
859 list_move(&dentry->d_lru, &referenced);
860 spin_unlock(&dentry->d_lock);
861 } else {
862 list_move_tail(&dentry->d_lru, &tmp);
863 dentry->d_flags |= DCACHE_SHRINK_LIST;
864 spin_unlock(&dentry->d_lock);
865 if (!--count)
866 break;
867 }
868 cond_resched_lock(&dcache_lru_lock);
869 }
870 if (!list_empty(&referenced))
871 list_splice(&referenced, &sb->s_dentry_lru);
872 spin_unlock(&dcache_lru_lock);
873
874 shrink_dentry_list(&tmp);
875 }
876
877 /**
878 * shrink_dcache_sb - shrink dcache for a superblock
879 * @sb: superblock
880 *
881 * Shrink the dcache for the specified super block. This is used to free
882 * the dcache before unmounting a file system.
883 */
884 void shrink_dcache_sb(struct super_block *sb)
885 {
886 LIST_HEAD(tmp);
887
888 spin_lock(&dcache_lru_lock);
889 while (!list_empty(&sb->s_dentry_lru)) {
890 list_splice_init(&sb->s_dentry_lru, &tmp);
891 spin_unlock(&dcache_lru_lock);
892 shrink_dentry_list(&tmp);
893 spin_lock(&dcache_lru_lock);
894 }
895 spin_unlock(&dcache_lru_lock);
896 }
897 EXPORT_SYMBOL(shrink_dcache_sb);
898
899 /*
900 * destroy a single subtree of dentries for unmount
901 * - see the comments on shrink_dcache_for_umount() for a description of the
902 * locking
903 */
904 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
905 {
906 struct dentry *parent;
907
908 BUG_ON(!IS_ROOT(dentry));
909
910 for (;;) {
911 /* descend to the first leaf in the current subtree */
912 while (!list_empty(&dentry->d_subdirs))
913 dentry = list_entry(dentry->d_subdirs.next,
914 struct dentry, d_u.d_child);
915
916 /* consume the dentries from this leaf up through its parents
917 * until we find one with children or run out altogether */
918 do {
919 struct inode *inode;
920
921 /*
922 * remove the dentry from the lru, and inform
923 * the fs that this dentry is about to be
924 * unhashed and destroyed.
925 */
926 dentry_lru_prune(dentry);
927 __d_shrink(dentry);
928
929 if (dentry->d_count != 0) {
930 printk(KERN_ERR
931 "BUG: Dentry %p{i=%lx,n=%s}"
932 " still in use (%d)"
933 " [unmount of %s %s]\n",
934 dentry,
935 dentry->d_inode ?
936 dentry->d_inode->i_ino : 0UL,
937 dentry->d_name.name,
938 dentry->d_count,
939 dentry->d_sb->s_type->name,
940 dentry->d_sb->s_id);
941 BUG();
942 }
943
944 if (IS_ROOT(dentry)) {
945 parent = NULL;
946 list_del(&dentry->d_u.d_child);
947 } else {
948 parent = dentry->d_parent;
949 parent->d_count--;
950 list_del(&dentry->d_u.d_child);
951 }
952
953 inode = dentry->d_inode;
954 if (inode) {
955 dentry->d_inode = NULL;
956 hlist_del_init(&dentry->d_alias);
957 if (dentry->d_op && dentry->d_op->d_iput)
958 dentry->d_op->d_iput(dentry, inode);
959 else
960 iput(inode);
961 }
962
963 d_free(dentry);
964
965 /* finished when we fall off the top of the tree,
966 * otherwise we ascend to the parent and move to the
967 * next sibling if there is one */
968 if (!parent)
969 return;
970 dentry = parent;
971 } while (list_empty(&dentry->d_subdirs));
972
973 dentry = list_entry(dentry->d_subdirs.next,
974 struct dentry, d_u.d_child);
975 }
976 }
977
978 /*
979 * destroy the dentries attached to a superblock on unmounting
980 * - we don't need to use dentry->d_lock because:
981 * - the superblock is detached from all mountings and open files, so the
982 * dentry trees will not be rearranged by the VFS
983 * - s_umount is write-locked, so the memory pressure shrinker will ignore
984 * any dentries belonging to this superblock that it comes across
985 * - the filesystem itself is no longer permitted to rearrange the dentries
986 * in this superblock
987 */
988 void shrink_dcache_for_umount(struct super_block *sb)
989 {
990 struct dentry *dentry;
991
992 if (down_read_trylock(&sb->s_umount))
993 BUG();
994
995 dentry = sb->s_root;
996 sb->s_root = NULL;
997 dentry->d_count--;
998 shrink_dcache_for_umount_subtree(dentry);
999
1000 while (!hlist_bl_empty(&sb->s_anon)) {
1001 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1002 shrink_dcache_for_umount_subtree(dentry);
1003 }
1004 }
1005
1006 /*
1007 * This tries to ascend one level of parenthood, but
1008 * we can race with renaming, so we need to re-check
1009 * the parenthood after dropping the lock and check
1010 * that the sequence number still matches.
1011 */
1012 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1013 {
1014 struct dentry *new = old->d_parent;
1015
1016 rcu_read_lock();
1017 spin_unlock(&old->d_lock);
1018 spin_lock(&new->d_lock);
1019
1020 /*
1021 * might go back up the wrong parent if we have had a rename
1022 * or deletion
1023 */
1024 if (new != old->d_parent ||
1025 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1026 (!locked && read_seqretry(&rename_lock, seq))) {
1027 spin_unlock(&new->d_lock);
1028 new = NULL;
1029 }
1030 rcu_read_unlock();
1031 return new;
1032 }
1033
1034
1035 /*
1036 * Search for at least 1 mount point in the dentry's subdirs.
1037 * We descend to the next level whenever the d_subdirs
1038 * list is non-empty and continue searching.
1039 */
1040
1041 /**
1042 * have_submounts - check for mounts over a dentry
1043 * @parent: dentry to check.
1044 *
1045 * Return true if the parent or its subdirectories contain
1046 * a mount point
1047 */
1048 int have_submounts(struct dentry *parent)
1049 {
1050 struct dentry *this_parent;
1051 struct list_head *next;
1052 unsigned seq;
1053 int locked = 0;
1054
1055 seq = read_seqbegin(&rename_lock);
1056 again:
1057 this_parent = parent;
1058
1059 if (d_mountpoint(parent))
1060 goto positive;
1061 spin_lock(&this_parent->d_lock);
1062 repeat:
1063 next = this_parent->d_subdirs.next;
1064 resume:
1065 while (next != &this_parent->d_subdirs) {
1066 struct list_head *tmp = next;
1067 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1068 next = tmp->next;
1069
1070 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1071 /* Have we found a mount point ? */
1072 if (d_mountpoint(dentry)) {
1073 spin_unlock(&dentry->d_lock);
1074 spin_unlock(&this_parent->d_lock);
1075 goto positive;
1076 }
1077 if (!list_empty(&dentry->d_subdirs)) {
1078 spin_unlock(&this_parent->d_lock);
1079 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1080 this_parent = dentry;
1081 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1082 goto repeat;
1083 }
1084 spin_unlock(&dentry->d_lock);
1085 }
1086 /*
1087 * All done at this level ... ascend and resume the search.
1088 */
1089 if (this_parent != parent) {
1090 struct dentry *child = this_parent;
1091 this_parent = try_to_ascend(this_parent, locked, seq);
1092 if (!this_parent)
1093 goto rename_retry;
1094 next = child->d_u.d_child.next;
1095 goto resume;
1096 }
1097 spin_unlock(&this_parent->d_lock);
1098 if (!locked && read_seqretry(&rename_lock, seq))
1099 goto rename_retry;
1100 if (locked)
1101 write_sequnlock(&rename_lock);
1102 return 0; /* No mount points found in tree */
1103 positive:
1104 if (!locked && read_seqretry(&rename_lock, seq))
1105 goto rename_retry;
1106 if (locked)
1107 write_sequnlock(&rename_lock);
1108 return 1;
1109
1110 rename_retry:
1111 if (locked)
1112 goto again;
1113 locked = 1;
1114 write_seqlock(&rename_lock);
1115 goto again;
1116 }
1117 EXPORT_SYMBOL(have_submounts);
1118
1119 /*
1120 * Search the dentry child list of the specified parent,
1121 * and move any unused dentries to the end of the unused
1122 * list for prune_dcache(). We descend to the next level
1123 * whenever the d_subdirs list is non-empty and continue
1124 * searching.
1125 *
1126 * It returns zero iff there are no unused children,
1127 * otherwise it returns the number of children moved to
1128 * the end of the unused list. This may not be the total
1129 * number of unused children, because select_parent can
1130 * drop the lock and return early due to latency
1131 * constraints.
1132 */
1133 static int select_parent(struct dentry *parent, struct list_head *dispose)
1134 {
1135 struct dentry *this_parent;
1136 struct list_head *next;
1137 unsigned seq;
1138 int found = 0;
1139 int locked = 0;
1140
1141 seq = read_seqbegin(&rename_lock);
1142 again:
1143 this_parent = parent;
1144 spin_lock(&this_parent->d_lock);
1145 repeat:
1146 next = this_parent->d_subdirs.next;
1147 resume:
1148 while (next != &this_parent->d_subdirs) {
1149 struct list_head *tmp = next;
1150 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1151 next = tmp->next;
1152
1153 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1154
1155 /*
1156 * move only zero ref count dentries to the dispose list.
1157 *
1158 * Those which are presently on the shrink list, being processed
1159 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1160 * loop in shrink_dcache_parent() might not make any progress
1161 * and loop forever.
1162 */
1163 if (dentry->d_count) {
1164 dentry_lru_del(dentry);
1165 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1166 dentry_lru_move_list(dentry, dispose);
1167 dentry->d_flags |= DCACHE_SHRINK_LIST;
1168 found++;
1169 }
1170 /*
1171 * We can return to the caller if we have found some (this
1172 * ensures forward progress). We'll be coming back to find
1173 * the rest.
1174 */
1175 if (found && need_resched()) {
1176 spin_unlock(&dentry->d_lock);
1177 goto out;
1178 }
1179
1180 /*
1181 * Descend a level if the d_subdirs list is non-empty.
1182 */
1183 if (!list_empty(&dentry->d_subdirs)) {
1184 spin_unlock(&this_parent->d_lock);
1185 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1186 this_parent = dentry;
1187 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1188 goto repeat;
1189 }
1190
1191 spin_unlock(&dentry->d_lock);
1192 }
1193 /*
1194 * All done at this level ... ascend and resume the search.
1195 */
1196 if (this_parent != parent) {
1197 struct dentry *child = this_parent;
1198 this_parent = try_to_ascend(this_parent, locked, seq);
1199 if (!this_parent)
1200 goto rename_retry;
1201 next = child->d_u.d_child.next;
1202 goto resume;
1203 }
1204 out:
1205 spin_unlock(&this_parent->d_lock);
1206 if (!locked && read_seqretry(&rename_lock, seq))
1207 goto rename_retry;
1208 if (locked)
1209 write_sequnlock(&rename_lock);
1210 return found;
1211
1212 rename_retry:
1213 if (found)
1214 return found;
1215 if (locked)
1216 goto again;
1217 locked = 1;
1218 write_seqlock(&rename_lock);
1219 goto again;
1220 }
1221
1222 /**
1223 * shrink_dcache_parent - prune dcache
1224 * @parent: parent of entries to prune
1225 *
1226 * Prune the dcache to remove unused children of the parent dentry.
1227 */
1228 void shrink_dcache_parent(struct dentry * parent)
1229 {
1230 LIST_HEAD(dispose);
1231 int found;
1232
1233 while ((found = select_parent(parent, &dispose)) != 0)
1234 shrink_dentry_list(&dispose);
1235 }
1236 EXPORT_SYMBOL(shrink_dcache_parent);
1237
1238 /**
1239 * __d_alloc - allocate a dcache entry
1240 * @sb: filesystem it will belong to
1241 * @name: qstr of the name
1242 *
1243 * Allocates a dentry. It returns %NULL if there is insufficient memory
1244 * available. On a success the dentry is returned. The name passed in is
1245 * copied and the copy passed in may be reused after this call.
1246 */
1247
1248 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1249 {
1250 struct dentry *dentry;
1251 char *dname;
1252
1253 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1254 if (!dentry)
1255 return NULL;
1256
1257 /*
1258 * We guarantee that the inline name is always NUL-terminated.
1259 * This way the memcpy() done by the name switching in rename
1260 * will still always have a NUL at the end, even if we might
1261 * be overwriting an internal NUL character
1262 */
1263 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1264 if (name->len > DNAME_INLINE_LEN-1) {
1265 dname = kmalloc(name->len + 1, GFP_KERNEL);
1266 if (!dname) {
1267 kmem_cache_free(dentry_cache, dentry);
1268 return NULL;
1269 }
1270 } else {
1271 dname = dentry->d_iname;
1272 }
1273
1274 dentry->d_name.len = name->len;
1275 dentry->d_name.hash = name->hash;
1276 memcpy(dname, name->name, name->len);
1277 dname[name->len] = 0;
1278
1279 /* Make sure we always see the terminating NUL character */
1280 smp_wmb();
1281 dentry->d_name.name = dname;
1282
1283 dentry->d_count = 1;
1284 dentry->d_flags = 0;
1285 spin_lock_init(&dentry->d_lock);
1286 seqcount_init(&dentry->d_seq);
1287 dentry->d_inode = NULL;
1288 dentry->d_parent = dentry;
1289 dentry->d_sb = sb;
1290 dentry->d_op = NULL;
1291 dentry->d_fsdata = NULL;
1292 INIT_HLIST_BL_NODE(&dentry->d_hash);
1293 INIT_LIST_HEAD(&dentry->d_lru);
1294 INIT_LIST_HEAD(&dentry->d_subdirs);
1295 INIT_HLIST_NODE(&dentry->d_alias);
1296 INIT_LIST_HEAD(&dentry->d_u.d_child);
1297 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1298
1299 this_cpu_inc(nr_dentry);
1300
1301 return dentry;
1302 }
1303
1304 /**
1305 * d_alloc - allocate a dcache entry
1306 * @parent: parent of entry to allocate
1307 * @name: qstr of the name
1308 *
1309 * Allocates a dentry. It returns %NULL if there is insufficient memory
1310 * available. On a success the dentry is returned. The name passed in is
1311 * copied and the copy passed in may be reused after this call.
1312 */
1313 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1314 {
1315 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1316 if (!dentry)
1317 return NULL;
1318
1319 spin_lock(&parent->d_lock);
1320 /*
1321 * don't need child lock because it is not subject
1322 * to concurrency here
1323 */
1324 __dget_dlock(parent);
1325 dentry->d_parent = parent;
1326 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1327 spin_unlock(&parent->d_lock);
1328
1329 return dentry;
1330 }
1331 EXPORT_SYMBOL(d_alloc);
1332
1333 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1334 {
1335 struct dentry *dentry = __d_alloc(sb, name);
1336 if (dentry)
1337 dentry->d_flags |= DCACHE_DISCONNECTED;
1338 return dentry;
1339 }
1340 EXPORT_SYMBOL(d_alloc_pseudo);
1341
1342 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1343 {
1344 struct qstr q;
1345
1346 q.name = name;
1347 q.len = strlen(name);
1348 q.hash = full_name_hash(q.name, q.len);
1349 return d_alloc(parent, &q);
1350 }
1351 EXPORT_SYMBOL(d_alloc_name);
1352
1353 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1354 {
1355 WARN_ON_ONCE(dentry->d_op);
1356 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1357 DCACHE_OP_COMPARE |
1358 DCACHE_OP_REVALIDATE |
1359 DCACHE_OP_WEAK_REVALIDATE |
1360 DCACHE_OP_DELETE ));
1361 dentry->d_op = op;
1362 if (!op)
1363 return;
1364 if (op->d_hash)
1365 dentry->d_flags |= DCACHE_OP_HASH;
1366 if (op->d_compare)
1367 dentry->d_flags |= DCACHE_OP_COMPARE;
1368 if (op->d_revalidate)
1369 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1370 if (op->d_weak_revalidate)
1371 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1372 if (op->d_delete)
1373 dentry->d_flags |= DCACHE_OP_DELETE;
1374 if (op->d_prune)
1375 dentry->d_flags |= DCACHE_OP_PRUNE;
1376
1377 }
1378 EXPORT_SYMBOL(d_set_d_op);
1379
1380 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1381 {
1382 spin_lock(&dentry->d_lock);
1383 if (inode) {
1384 if (unlikely(IS_AUTOMOUNT(inode)))
1385 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1386 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1387 }
1388 dentry->d_inode = inode;
1389 dentry_rcuwalk_barrier(dentry);
1390 spin_unlock(&dentry->d_lock);
1391 fsnotify_d_instantiate(dentry, inode);
1392 }
1393
1394 /**
1395 * d_instantiate - fill in inode information for a dentry
1396 * @entry: dentry to complete
1397 * @inode: inode to attach to this dentry
1398 *
1399 * Fill in inode information in the entry.
1400 *
1401 * This turns negative dentries into productive full members
1402 * of society.
1403 *
1404 * NOTE! This assumes that the inode count has been incremented
1405 * (or otherwise set) by the caller to indicate that it is now
1406 * in use by the dcache.
1407 */
1408
1409 void d_instantiate(struct dentry *entry, struct inode * inode)
1410 {
1411 BUG_ON(!hlist_unhashed(&entry->d_alias));
1412 if (inode)
1413 spin_lock(&inode->i_lock);
1414 __d_instantiate(entry, inode);
1415 if (inode)
1416 spin_unlock(&inode->i_lock);
1417 security_d_instantiate(entry, inode);
1418 }
1419 EXPORT_SYMBOL(d_instantiate);
1420
1421 /**
1422 * d_instantiate_unique - instantiate a non-aliased dentry
1423 * @entry: dentry to instantiate
1424 * @inode: inode to attach to this dentry
1425 *
1426 * Fill in inode information in the entry. On success, it returns NULL.
1427 * If an unhashed alias of "entry" already exists, then we return the
1428 * aliased dentry instead and drop one reference to inode.
1429 *
1430 * Note that in order to avoid conflicts with rename() etc, the caller
1431 * had better be holding the parent directory semaphore.
1432 *
1433 * This also assumes that the inode count has been incremented
1434 * (or otherwise set) by the caller to indicate that it is now
1435 * in use by the dcache.
1436 */
1437 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1438 struct inode *inode)
1439 {
1440 struct dentry *alias;
1441 int len = entry->d_name.len;
1442 const char *name = entry->d_name.name;
1443 unsigned int hash = entry->d_name.hash;
1444
1445 if (!inode) {
1446 __d_instantiate(entry, NULL);
1447 return NULL;
1448 }
1449
1450 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1451 /*
1452 * Don't need alias->d_lock here, because aliases with
1453 * d_parent == entry->d_parent are not subject to name or
1454 * parent changes, because the parent inode i_mutex is held.
1455 */
1456 if (alias->d_name.hash != hash)
1457 continue;
1458 if (alias->d_parent != entry->d_parent)
1459 continue;
1460 if (alias->d_name.len != len)
1461 continue;
1462 if (dentry_cmp(alias, name, len))
1463 continue;
1464 __dget(alias);
1465 return alias;
1466 }
1467
1468 __d_instantiate(entry, inode);
1469 return NULL;
1470 }
1471
1472 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1473 {
1474 struct dentry *result;
1475
1476 BUG_ON(!hlist_unhashed(&entry->d_alias));
1477
1478 if (inode)
1479 spin_lock(&inode->i_lock);
1480 result = __d_instantiate_unique(entry, inode);
1481 if (inode)
1482 spin_unlock(&inode->i_lock);
1483
1484 if (!result) {
1485 security_d_instantiate(entry, inode);
1486 return NULL;
1487 }
1488
1489 BUG_ON(!d_unhashed(result));
1490 iput(inode);
1491 return result;
1492 }
1493
1494 EXPORT_SYMBOL(d_instantiate_unique);
1495
1496 struct dentry *d_make_root(struct inode *root_inode)
1497 {
1498 struct dentry *res = NULL;
1499
1500 if (root_inode) {
1501 static const struct qstr name = QSTR_INIT("/", 1);
1502
1503 res = __d_alloc(root_inode->i_sb, &name);
1504 if (res)
1505 d_instantiate(res, root_inode);
1506 else
1507 iput(root_inode);
1508 }
1509 return res;
1510 }
1511 EXPORT_SYMBOL(d_make_root);
1512
1513 static struct dentry * __d_find_any_alias(struct inode *inode)
1514 {
1515 struct dentry *alias;
1516
1517 if (hlist_empty(&inode->i_dentry))
1518 return NULL;
1519 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1520 __dget(alias);
1521 return alias;
1522 }
1523
1524 /**
1525 * d_find_any_alias - find any alias for a given inode
1526 * @inode: inode to find an alias for
1527 *
1528 * If any aliases exist for the given inode, take and return a
1529 * reference for one of them. If no aliases exist, return %NULL.
1530 */
1531 struct dentry *d_find_any_alias(struct inode *inode)
1532 {
1533 struct dentry *de;
1534
1535 spin_lock(&inode->i_lock);
1536 de = __d_find_any_alias(inode);
1537 spin_unlock(&inode->i_lock);
1538 return de;
1539 }
1540 EXPORT_SYMBOL(d_find_any_alias);
1541
1542 /**
1543 * d_obtain_alias - find or allocate a dentry for a given inode
1544 * @inode: inode to allocate the dentry for
1545 *
1546 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1547 * similar open by handle operations. The returned dentry may be anonymous,
1548 * or may have a full name (if the inode was already in the cache).
1549 *
1550 * When called on a directory inode, we must ensure that the inode only ever
1551 * has one dentry. If a dentry is found, that is returned instead of
1552 * allocating a new one.
1553 *
1554 * On successful return, the reference to the inode has been transferred
1555 * to the dentry. In case of an error the reference on the inode is released.
1556 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1557 * be passed in and will be the error will be propagate to the return value,
1558 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1559 */
1560 struct dentry *d_obtain_alias(struct inode *inode)
1561 {
1562 static const struct qstr anonstring = QSTR_INIT("/", 1);
1563 struct dentry *tmp;
1564 struct dentry *res;
1565
1566 if (!inode)
1567 return ERR_PTR(-ESTALE);
1568 if (IS_ERR(inode))
1569 return ERR_CAST(inode);
1570
1571 res = d_find_any_alias(inode);
1572 if (res)
1573 goto out_iput;
1574
1575 tmp = __d_alloc(inode->i_sb, &anonstring);
1576 if (!tmp) {
1577 res = ERR_PTR(-ENOMEM);
1578 goto out_iput;
1579 }
1580
1581 spin_lock(&inode->i_lock);
1582 res = __d_find_any_alias(inode);
1583 if (res) {
1584 spin_unlock(&inode->i_lock);
1585 dput(tmp);
1586 goto out_iput;
1587 }
1588
1589 /* attach a disconnected dentry */
1590 spin_lock(&tmp->d_lock);
1591 tmp->d_inode = inode;
1592 tmp->d_flags |= DCACHE_DISCONNECTED;
1593 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1594 hlist_bl_lock(&tmp->d_sb->s_anon);
1595 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1596 hlist_bl_unlock(&tmp->d_sb->s_anon);
1597 spin_unlock(&tmp->d_lock);
1598 spin_unlock(&inode->i_lock);
1599 security_d_instantiate(tmp, inode);
1600
1601 return tmp;
1602
1603 out_iput:
1604 if (res && !IS_ERR(res))
1605 security_d_instantiate(res, inode);
1606 iput(inode);
1607 return res;
1608 }
1609 EXPORT_SYMBOL(d_obtain_alias);
1610
1611 /**
1612 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1613 * @inode: the inode which may have a disconnected dentry
1614 * @dentry: a negative dentry which we want to point to the inode.
1615 *
1616 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1617 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1618 * and return it, else simply d_add the inode to the dentry and return NULL.
1619 *
1620 * This is needed in the lookup routine of any filesystem that is exportable
1621 * (via knfsd) so that we can build dcache paths to directories effectively.
1622 *
1623 * If a dentry was found and moved, then it is returned. Otherwise NULL
1624 * is returned. This matches the expected return value of ->lookup.
1625 *
1626 */
1627 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1628 {
1629 struct dentry *new = NULL;
1630
1631 if (IS_ERR(inode))
1632 return ERR_CAST(inode);
1633
1634 if (inode && S_ISDIR(inode->i_mode)) {
1635 spin_lock(&inode->i_lock);
1636 new = __d_find_alias(inode, 1);
1637 if (new) {
1638 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1639 spin_unlock(&inode->i_lock);
1640 security_d_instantiate(new, inode);
1641 d_move(new, dentry);
1642 iput(inode);
1643 } else {
1644 /* already taking inode->i_lock, so d_add() by hand */
1645 __d_instantiate(dentry, inode);
1646 spin_unlock(&inode->i_lock);
1647 security_d_instantiate(dentry, inode);
1648 d_rehash(dentry);
1649 }
1650 } else
1651 d_add(dentry, inode);
1652 return new;
1653 }
1654 EXPORT_SYMBOL(d_splice_alias);
1655
1656 /**
1657 * d_add_ci - lookup or allocate new dentry with case-exact name
1658 * @inode: the inode case-insensitive lookup has found
1659 * @dentry: the negative dentry that was passed to the parent's lookup func
1660 * @name: the case-exact name to be associated with the returned dentry
1661 *
1662 * This is to avoid filling the dcache with case-insensitive names to the
1663 * same inode, only the actual correct case is stored in the dcache for
1664 * case-insensitive filesystems.
1665 *
1666 * For a case-insensitive lookup match and if the the case-exact dentry
1667 * already exists in in the dcache, use it and return it.
1668 *
1669 * If no entry exists with the exact case name, allocate new dentry with
1670 * the exact case, and return the spliced entry.
1671 */
1672 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1673 struct qstr *name)
1674 {
1675 struct dentry *found;
1676 struct dentry *new;
1677
1678 /*
1679 * First check if a dentry matching the name already exists,
1680 * if not go ahead and create it now.
1681 */
1682 found = d_hash_and_lookup(dentry->d_parent, name);
1683 if (unlikely(IS_ERR(found)))
1684 goto err_out;
1685 if (!found) {
1686 new = d_alloc(dentry->d_parent, name);
1687 if (!new) {
1688 found = ERR_PTR(-ENOMEM);
1689 goto err_out;
1690 }
1691
1692 found = d_splice_alias(inode, new);
1693 if (found) {
1694 dput(new);
1695 return found;
1696 }
1697 return new;
1698 }
1699
1700 /*
1701 * If a matching dentry exists, and it's not negative use it.
1702 *
1703 * Decrement the reference count to balance the iget() done
1704 * earlier on.
1705 */
1706 if (found->d_inode) {
1707 if (unlikely(found->d_inode != inode)) {
1708 /* This can't happen because bad inodes are unhashed. */
1709 BUG_ON(!is_bad_inode(inode));
1710 BUG_ON(!is_bad_inode(found->d_inode));
1711 }
1712 iput(inode);
1713 return found;
1714 }
1715
1716 /*
1717 * Negative dentry: instantiate it unless the inode is a directory and
1718 * already has a dentry.
1719 */
1720 new = d_splice_alias(inode, found);
1721 if (new) {
1722 dput(found);
1723 found = new;
1724 }
1725 return found;
1726
1727 err_out:
1728 iput(inode);
1729 return found;
1730 }
1731 EXPORT_SYMBOL(d_add_ci);
1732
1733 /*
1734 * Do the slow-case of the dentry name compare.
1735 *
1736 * Unlike the dentry_cmp() function, we need to atomically
1737 * load the name, length and inode information, so that the
1738 * filesystem can rely on them, and can use the 'name' and
1739 * 'len' information without worrying about walking off the
1740 * end of memory etc.
1741 *
1742 * Thus the read_seqcount_retry() and the "duplicate" info
1743 * in arguments (the low-level filesystem should not look
1744 * at the dentry inode or name contents directly, since
1745 * rename can change them while we're in RCU mode).
1746 */
1747 enum slow_d_compare {
1748 D_COMP_OK,
1749 D_COMP_NOMATCH,
1750 D_COMP_SEQRETRY,
1751 };
1752
1753 static noinline enum slow_d_compare slow_dentry_cmp(
1754 const struct dentry *parent,
1755 struct inode *inode,
1756 struct dentry *dentry,
1757 unsigned int seq,
1758 const struct qstr *name)
1759 {
1760 int tlen = dentry->d_name.len;
1761 const char *tname = dentry->d_name.name;
1762 struct inode *i = dentry->d_inode;
1763
1764 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1765 cpu_relax();
1766 return D_COMP_SEQRETRY;
1767 }
1768 if (parent->d_op->d_compare(parent, inode,
1769 dentry, i,
1770 tlen, tname, name))
1771 return D_COMP_NOMATCH;
1772 return D_COMP_OK;
1773 }
1774
1775 /**
1776 * __d_lookup_rcu - search for a dentry (racy, store-free)
1777 * @parent: parent dentry
1778 * @name: qstr of name we wish to find
1779 * @seqp: returns d_seq value at the point where the dentry was found
1780 * @inode: returns dentry->d_inode when the inode was found valid.
1781 * Returns: dentry, or NULL
1782 *
1783 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1784 * resolution (store-free path walking) design described in
1785 * Documentation/filesystems/path-lookup.txt.
1786 *
1787 * This is not to be used outside core vfs.
1788 *
1789 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1790 * held, and rcu_read_lock held. The returned dentry must not be stored into
1791 * without taking d_lock and checking d_seq sequence count against @seq
1792 * returned here.
1793 *
1794 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1795 * function.
1796 *
1797 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1798 * the returned dentry, so long as its parent's seqlock is checked after the
1799 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1800 * is formed, giving integrity down the path walk.
1801 *
1802 * NOTE! The caller *has* to check the resulting dentry against the sequence
1803 * number we've returned before using any of the resulting dentry state!
1804 */
1805 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1806 const struct qstr *name,
1807 unsigned *seqp, struct inode *inode)
1808 {
1809 u64 hashlen = name->hash_len;
1810 const unsigned char *str = name->name;
1811 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1812 struct hlist_bl_node *node;
1813 struct dentry *dentry;
1814
1815 /*
1816 * Note: There is significant duplication with __d_lookup_rcu which is
1817 * required to prevent single threaded performance regressions
1818 * especially on architectures where smp_rmb (in seqcounts) are costly.
1819 * Keep the two functions in sync.
1820 */
1821
1822 /*
1823 * The hash list is protected using RCU.
1824 *
1825 * Carefully use d_seq when comparing a candidate dentry, to avoid
1826 * races with d_move().
1827 *
1828 * It is possible that concurrent renames can mess up our list
1829 * walk here and result in missing our dentry, resulting in the
1830 * false-negative result. d_lookup() protects against concurrent
1831 * renames using rename_lock seqlock.
1832 *
1833 * See Documentation/filesystems/path-lookup.txt for more details.
1834 */
1835 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1836 unsigned seq;
1837
1838 seqretry:
1839 /*
1840 * The dentry sequence count protects us from concurrent
1841 * renames, and thus protects inode, parent and name fields.
1842 *
1843 * The caller must perform a seqcount check in order
1844 * to do anything useful with the returned dentry,
1845 * including using the 'd_inode' pointer.
1846 *
1847 * NOTE! We do a "raw" seqcount_begin here. That means that
1848 * we don't wait for the sequence count to stabilize if it
1849 * is in the middle of a sequence change. If we do the slow
1850 * dentry compare, we will do seqretries until it is stable,
1851 * and if we end up with a successful lookup, we actually
1852 * want to exit RCU lookup anyway.
1853 */
1854 seq = raw_seqcount_begin(&dentry->d_seq);
1855 if (dentry->d_parent != parent)
1856 continue;
1857 if (d_unhashed(dentry))
1858 continue;
1859 *seqp = seq;
1860
1861 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1862 if (dentry->d_name.hash != hashlen_hash(hashlen))
1863 continue;
1864 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1865 case D_COMP_OK:
1866 return dentry;
1867 case D_COMP_NOMATCH:
1868 continue;
1869 default:
1870 goto seqretry;
1871 }
1872 }
1873
1874 if (dentry->d_name.hash_len != hashlen)
1875 continue;
1876 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
1877 return dentry;
1878 }
1879 return NULL;
1880 }
1881
1882 /**
1883 * d_lookup - search for a dentry
1884 * @parent: parent dentry
1885 * @name: qstr of name we wish to find
1886 * Returns: dentry, or NULL
1887 *
1888 * d_lookup searches the children of the parent dentry for the name in
1889 * question. If the dentry is found its reference count is incremented and the
1890 * dentry is returned. The caller must use dput to free the entry when it has
1891 * finished using it. %NULL is returned if the dentry does not exist.
1892 */
1893 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1894 {
1895 struct dentry *dentry;
1896 unsigned seq;
1897
1898 do {
1899 seq = read_seqbegin(&rename_lock);
1900 dentry = __d_lookup(parent, name);
1901 if (dentry)
1902 break;
1903 } while (read_seqretry(&rename_lock, seq));
1904 return dentry;
1905 }
1906 EXPORT_SYMBOL(d_lookup);
1907
1908 /**
1909 * __d_lookup - search for a dentry (racy)
1910 * @parent: parent dentry
1911 * @name: qstr of name we wish to find
1912 * Returns: dentry, or NULL
1913 *
1914 * __d_lookup is like d_lookup, however it may (rarely) return a
1915 * false-negative result due to unrelated rename activity.
1916 *
1917 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1918 * however it must be used carefully, eg. with a following d_lookup in
1919 * the case of failure.
1920 *
1921 * __d_lookup callers must be commented.
1922 */
1923 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1924 {
1925 unsigned int len = name->len;
1926 unsigned int hash = name->hash;
1927 const unsigned char *str = name->name;
1928 struct hlist_bl_head *b = d_hash(parent, hash);
1929 struct hlist_bl_node *node;
1930 struct dentry *found = NULL;
1931 struct dentry *dentry;
1932
1933 /*
1934 * Note: There is significant duplication with __d_lookup_rcu which is
1935 * required to prevent single threaded performance regressions
1936 * especially on architectures where smp_rmb (in seqcounts) are costly.
1937 * Keep the two functions in sync.
1938 */
1939
1940 /*
1941 * The hash list is protected using RCU.
1942 *
1943 * Take d_lock when comparing a candidate dentry, to avoid races
1944 * with d_move().
1945 *
1946 * It is possible that concurrent renames can mess up our list
1947 * walk here and result in missing our dentry, resulting in the
1948 * false-negative result. d_lookup() protects against concurrent
1949 * renames using rename_lock seqlock.
1950 *
1951 * See Documentation/filesystems/path-lookup.txt for more details.
1952 */
1953 rcu_read_lock();
1954
1955 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1956
1957 if (dentry->d_name.hash != hash)
1958 continue;
1959
1960 spin_lock(&dentry->d_lock);
1961 if (dentry->d_parent != parent)
1962 goto next;
1963 if (d_unhashed(dentry))
1964 goto next;
1965
1966 /*
1967 * It is safe to compare names since d_move() cannot
1968 * change the qstr (protected by d_lock).
1969 */
1970 if (parent->d_flags & DCACHE_OP_COMPARE) {
1971 int tlen = dentry->d_name.len;
1972 const char *tname = dentry->d_name.name;
1973 if (parent->d_op->d_compare(parent, parent->d_inode,
1974 dentry, dentry->d_inode,
1975 tlen, tname, name))
1976 goto next;
1977 } else {
1978 if (dentry->d_name.len != len)
1979 goto next;
1980 if (dentry_cmp(dentry, str, len))
1981 goto next;
1982 }
1983
1984 dentry->d_count++;
1985 found = dentry;
1986 spin_unlock(&dentry->d_lock);
1987 break;
1988 next:
1989 spin_unlock(&dentry->d_lock);
1990 }
1991 rcu_read_unlock();
1992
1993 return found;
1994 }
1995
1996 /**
1997 * d_hash_and_lookup - hash the qstr then search for a dentry
1998 * @dir: Directory to search in
1999 * @name: qstr of name we wish to find
2000 *
2001 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2002 */
2003 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2004 {
2005 /*
2006 * Check for a fs-specific hash function. Note that we must
2007 * calculate the standard hash first, as the d_op->d_hash()
2008 * routine may choose to leave the hash value unchanged.
2009 */
2010 name->hash = full_name_hash(name->name, name->len);
2011 if (dir->d_flags & DCACHE_OP_HASH) {
2012 int err = dir->d_op->d_hash(dir, dir->d_inode, name);
2013 if (unlikely(err < 0))
2014 return ERR_PTR(err);
2015 }
2016 return d_lookup(dir, name);
2017 }
2018 EXPORT_SYMBOL(d_hash_and_lookup);
2019
2020 /**
2021 * d_validate - verify dentry provided from insecure source (deprecated)
2022 * @dentry: The dentry alleged to be valid child of @dparent
2023 * @dparent: The parent dentry (known to be valid)
2024 *
2025 * An insecure source has sent us a dentry, here we verify it and dget() it.
2026 * This is used by ncpfs in its readdir implementation.
2027 * Zero is returned in the dentry is invalid.
2028 *
2029 * This function is slow for big directories, and deprecated, do not use it.
2030 */
2031 int d_validate(struct dentry *dentry, struct dentry *dparent)
2032 {
2033 struct dentry *child;
2034
2035 spin_lock(&dparent->d_lock);
2036 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2037 if (dentry == child) {
2038 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2039 __dget_dlock(dentry);
2040 spin_unlock(&dentry->d_lock);
2041 spin_unlock(&dparent->d_lock);
2042 return 1;
2043 }
2044 }
2045 spin_unlock(&dparent->d_lock);
2046
2047 return 0;
2048 }
2049 EXPORT_SYMBOL(d_validate);
2050
2051 /*
2052 * When a file is deleted, we have two options:
2053 * - turn this dentry into a negative dentry
2054 * - unhash this dentry and free it.
2055 *
2056 * Usually, we want to just turn this into
2057 * a negative dentry, but if anybody else is
2058 * currently using the dentry or the inode
2059 * we can't do that and we fall back on removing
2060 * it from the hash queues and waiting for
2061 * it to be deleted later when it has no users
2062 */
2063
2064 /**
2065 * d_delete - delete a dentry
2066 * @dentry: The dentry to delete
2067 *
2068 * Turn the dentry into a negative dentry if possible, otherwise
2069 * remove it from the hash queues so it can be deleted later
2070 */
2071
2072 void d_delete(struct dentry * dentry)
2073 {
2074 struct inode *inode;
2075 int isdir = 0;
2076 /*
2077 * Are we the only user?
2078 */
2079 again:
2080 spin_lock(&dentry->d_lock);
2081 inode = dentry->d_inode;
2082 isdir = S_ISDIR(inode->i_mode);
2083 if (dentry->d_count == 1) {
2084 if (!spin_trylock(&inode->i_lock)) {
2085 spin_unlock(&dentry->d_lock);
2086 cpu_relax();
2087 goto again;
2088 }
2089 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2090 dentry_unlink_inode(dentry);
2091 fsnotify_nameremove(dentry, isdir);
2092 return;
2093 }
2094
2095 if (!d_unhashed(dentry))
2096 __d_drop(dentry);
2097
2098 spin_unlock(&dentry->d_lock);
2099
2100 fsnotify_nameremove(dentry, isdir);
2101 }
2102 EXPORT_SYMBOL(d_delete);
2103
2104 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2105 {
2106 BUG_ON(!d_unhashed(entry));
2107 hlist_bl_lock(b);
2108 entry->d_flags |= DCACHE_RCUACCESS;
2109 hlist_bl_add_head_rcu(&entry->d_hash, b);
2110 hlist_bl_unlock(b);
2111 }
2112
2113 static void _d_rehash(struct dentry * entry)
2114 {
2115 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2116 }
2117
2118 /**
2119 * d_rehash - add an entry back to the hash
2120 * @entry: dentry to add to the hash
2121 *
2122 * Adds a dentry to the hash according to its name.
2123 */
2124
2125 void d_rehash(struct dentry * entry)
2126 {
2127 spin_lock(&entry->d_lock);
2128 _d_rehash(entry);
2129 spin_unlock(&entry->d_lock);
2130 }
2131 EXPORT_SYMBOL(d_rehash);
2132
2133 /**
2134 * dentry_update_name_case - update case insensitive dentry with a new name
2135 * @dentry: dentry to be updated
2136 * @name: new name
2137 *
2138 * Update a case insensitive dentry with new case of name.
2139 *
2140 * dentry must have been returned by d_lookup with name @name. Old and new
2141 * name lengths must match (ie. no d_compare which allows mismatched name
2142 * lengths).
2143 *
2144 * Parent inode i_mutex must be held over d_lookup and into this call (to
2145 * keep renames and concurrent inserts, and readdir(2) away).
2146 */
2147 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2148 {
2149 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2150 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2151
2152 spin_lock(&dentry->d_lock);
2153 write_seqcount_begin(&dentry->d_seq);
2154 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2155 write_seqcount_end(&dentry->d_seq);
2156 spin_unlock(&dentry->d_lock);
2157 }
2158 EXPORT_SYMBOL(dentry_update_name_case);
2159
2160 static void switch_names(struct dentry *dentry, struct dentry *target)
2161 {
2162 if (dname_external(target)) {
2163 if (dname_external(dentry)) {
2164 /*
2165 * Both external: swap the pointers
2166 */
2167 swap(target->d_name.name, dentry->d_name.name);
2168 } else {
2169 /*
2170 * dentry:internal, target:external. Steal target's
2171 * storage and make target internal.
2172 */
2173 memcpy(target->d_iname, dentry->d_name.name,
2174 dentry->d_name.len + 1);
2175 dentry->d_name.name = target->d_name.name;
2176 target->d_name.name = target->d_iname;
2177 }
2178 } else {
2179 if (dname_external(dentry)) {
2180 /*
2181 * dentry:external, target:internal. Give dentry's
2182 * storage to target and make dentry internal
2183 */
2184 memcpy(dentry->d_iname, target->d_name.name,
2185 target->d_name.len + 1);
2186 target->d_name.name = dentry->d_name.name;
2187 dentry->d_name.name = dentry->d_iname;
2188 } else {
2189 /*
2190 * Both are internal. Just copy target to dentry
2191 */
2192 memcpy(dentry->d_iname, target->d_name.name,
2193 target->d_name.len + 1);
2194 dentry->d_name.len = target->d_name.len;
2195 return;
2196 }
2197 }
2198 swap(dentry->d_name.len, target->d_name.len);
2199 }
2200
2201 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2202 {
2203 /*
2204 * XXXX: do we really need to take target->d_lock?
2205 */
2206 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2207 spin_lock(&target->d_parent->d_lock);
2208 else {
2209 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2210 spin_lock(&dentry->d_parent->d_lock);
2211 spin_lock_nested(&target->d_parent->d_lock,
2212 DENTRY_D_LOCK_NESTED);
2213 } else {
2214 spin_lock(&target->d_parent->d_lock);
2215 spin_lock_nested(&dentry->d_parent->d_lock,
2216 DENTRY_D_LOCK_NESTED);
2217 }
2218 }
2219 if (target < dentry) {
2220 spin_lock_nested(&target->d_lock, 2);
2221 spin_lock_nested(&dentry->d_lock, 3);
2222 } else {
2223 spin_lock_nested(&dentry->d_lock, 2);
2224 spin_lock_nested(&target->d_lock, 3);
2225 }
2226 }
2227
2228 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2229 struct dentry *target)
2230 {
2231 if (target->d_parent != dentry->d_parent)
2232 spin_unlock(&dentry->d_parent->d_lock);
2233 if (target->d_parent != target)
2234 spin_unlock(&target->d_parent->d_lock);
2235 }
2236
2237 /*
2238 * When switching names, the actual string doesn't strictly have to
2239 * be preserved in the target - because we're dropping the target
2240 * anyway. As such, we can just do a simple memcpy() to copy over
2241 * the new name before we switch.
2242 *
2243 * Note that we have to be a lot more careful about getting the hash
2244 * switched - we have to switch the hash value properly even if it
2245 * then no longer matches the actual (corrupted) string of the target.
2246 * The hash value has to match the hash queue that the dentry is on..
2247 */
2248 /*
2249 * __d_move - move a dentry
2250 * @dentry: entry to move
2251 * @target: new dentry
2252 *
2253 * Update the dcache to reflect the move of a file name. Negative
2254 * dcache entries should not be moved in this way. Caller must hold
2255 * rename_lock, the i_mutex of the source and target directories,
2256 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2257 */
2258 static void __d_move(struct dentry * dentry, struct dentry * target)
2259 {
2260 if (!dentry->d_inode)
2261 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2262
2263 BUG_ON(d_ancestor(dentry, target));
2264 BUG_ON(d_ancestor(target, dentry));
2265
2266 dentry_lock_for_move(dentry, target);
2267
2268 write_seqcount_begin(&dentry->d_seq);
2269 write_seqcount_begin(&target->d_seq);
2270
2271 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2272
2273 /*
2274 * Move the dentry to the target hash queue. Don't bother checking
2275 * for the same hash queue because of how unlikely it is.
2276 */
2277 __d_drop(dentry);
2278 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2279
2280 /* Unhash the target: dput() will then get rid of it */
2281 __d_drop(target);
2282
2283 list_del(&dentry->d_u.d_child);
2284 list_del(&target->d_u.d_child);
2285
2286 /* Switch the names.. */
2287 switch_names(dentry, target);
2288 swap(dentry->d_name.hash, target->d_name.hash);
2289
2290 /* ... and switch the parents */
2291 if (IS_ROOT(dentry)) {
2292 dentry->d_parent = target->d_parent;
2293 target->d_parent = target;
2294 INIT_LIST_HEAD(&target->d_u.d_child);
2295 } else {
2296 swap(dentry->d_parent, target->d_parent);
2297
2298 /* And add them back to the (new) parent lists */
2299 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2300 }
2301
2302 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2303
2304 write_seqcount_end(&target->d_seq);
2305 write_seqcount_end(&dentry->d_seq);
2306
2307 dentry_unlock_parents_for_move(dentry, target);
2308 spin_unlock(&target->d_lock);
2309 fsnotify_d_move(dentry);
2310 spin_unlock(&dentry->d_lock);
2311 }
2312
2313 /*
2314 * d_move - move a dentry
2315 * @dentry: entry to move
2316 * @target: new dentry
2317 *
2318 * Update the dcache to reflect the move of a file name. Negative
2319 * dcache entries should not be moved in this way. See the locking
2320 * requirements for __d_move.
2321 */
2322 void d_move(struct dentry *dentry, struct dentry *target)
2323 {
2324 write_seqlock(&rename_lock);
2325 __d_move(dentry, target);
2326 write_sequnlock(&rename_lock);
2327 }
2328 EXPORT_SYMBOL(d_move);
2329
2330 /**
2331 * d_ancestor - search for an ancestor
2332 * @p1: ancestor dentry
2333 * @p2: child dentry
2334 *
2335 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2336 * an ancestor of p2, else NULL.
2337 */
2338 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2339 {
2340 struct dentry *p;
2341
2342 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2343 if (p->d_parent == p1)
2344 return p;
2345 }
2346 return NULL;
2347 }
2348
2349 /*
2350 * This helper attempts to cope with remotely renamed directories
2351 *
2352 * It assumes that the caller is already holding
2353 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2354 *
2355 * Note: If ever the locking in lock_rename() changes, then please
2356 * remember to update this too...
2357 */
2358 static struct dentry *__d_unalias(struct inode *inode,
2359 struct dentry *dentry, struct dentry *alias)
2360 {
2361 struct mutex *m1 = NULL, *m2 = NULL;
2362 struct dentry *ret = ERR_PTR(-EBUSY);
2363
2364 /* If alias and dentry share a parent, then no extra locks required */
2365 if (alias->d_parent == dentry->d_parent)
2366 goto out_unalias;
2367
2368 /* See lock_rename() */
2369 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2370 goto out_err;
2371 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2372 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2373 goto out_err;
2374 m2 = &alias->d_parent->d_inode->i_mutex;
2375 out_unalias:
2376 if (likely(!d_mountpoint(alias))) {
2377 __d_move(alias, dentry);
2378 ret = alias;
2379 }
2380 out_err:
2381 spin_unlock(&inode->i_lock);
2382 if (m2)
2383 mutex_unlock(m2);
2384 if (m1)
2385 mutex_unlock(m1);
2386 return ret;
2387 }
2388
2389 /*
2390 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2391 * named dentry in place of the dentry to be replaced.
2392 * returns with anon->d_lock held!
2393 */
2394 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2395 {
2396 struct dentry *dparent;
2397
2398 dentry_lock_for_move(anon, dentry);
2399
2400 write_seqcount_begin(&dentry->d_seq);
2401 write_seqcount_begin(&anon->d_seq);
2402
2403 dparent = dentry->d_parent;
2404
2405 switch_names(dentry, anon);
2406 swap(dentry->d_name.hash, anon->d_name.hash);
2407
2408 dentry->d_parent = dentry;
2409 list_del_init(&dentry->d_u.d_child);
2410 anon->d_parent = dparent;
2411 list_del(&anon->d_u.d_child);
2412 list_add(&anon->d_u.d_child, &dparent->d_subdirs);
2413
2414 write_seqcount_end(&dentry->d_seq);
2415 write_seqcount_end(&anon->d_seq);
2416
2417 dentry_unlock_parents_for_move(anon, dentry);
2418 spin_unlock(&dentry->d_lock);
2419
2420 /* anon->d_lock still locked, returns locked */
2421 anon->d_flags &= ~DCACHE_DISCONNECTED;
2422 }
2423
2424 /**
2425 * d_materialise_unique - introduce an inode into the tree
2426 * @dentry: candidate dentry
2427 * @inode: inode to bind to the dentry, to which aliases may be attached
2428 *
2429 * Introduces an dentry into the tree, substituting an extant disconnected
2430 * root directory alias in its place if there is one. Caller must hold the
2431 * i_mutex of the parent directory.
2432 */
2433 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2434 {
2435 struct dentry *actual;
2436
2437 BUG_ON(!d_unhashed(dentry));
2438
2439 if (!inode) {
2440 actual = dentry;
2441 __d_instantiate(dentry, NULL);
2442 d_rehash(actual);
2443 goto out_nolock;
2444 }
2445
2446 spin_lock(&inode->i_lock);
2447
2448 if (S_ISDIR(inode->i_mode)) {
2449 struct dentry *alias;
2450
2451 /* Does an aliased dentry already exist? */
2452 alias = __d_find_alias(inode, 0);
2453 if (alias) {
2454 actual = alias;
2455 write_seqlock(&rename_lock);
2456
2457 if (d_ancestor(alias, dentry)) {
2458 /* Check for loops */
2459 actual = ERR_PTR(-ELOOP);
2460 spin_unlock(&inode->i_lock);
2461 } else if (IS_ROOT(alias)) {
2462 /* Is this an anonymous mountpoint that we
2463 * could splice into our tree? */
2464 __d_materialise_dentry(dentry, alias);
2465 write_sequnlock(&rename_lock);
2466 __d_drop(alias);
2467 goto found;
2468 } else {
2469 /* Nope, but we must(!) avoid directory
2470 * aliasing. This drops inode->i_lock */
2471 actual = __d_unalias(inode, dentry, alias);
2472 }
2473 write_sequnlock(&rename_lock);
2474 if (IS_ERR(actual)) {
2475 if (PTR_ERR(actual) == -ELOOP)
2476 pr_warn_ratelimited(
2477 "VFS: Lookup of '%s' in %s %s"
2478 " would have caused loop\n",
2479 dentry->d_name.name,
2480 inode->i_sb->s_type->name,
2481 inode->i_sb->s_id);
2482 dput(alias);
2483 }
2484 goto out_nolock;
2485 }
2486 }
2487
2488 /* Add a unique reference */
2489 actual = __d_instantiate_unique(dentry, inode);
2490 if (!actual)
2491 actual = dentry;
2492 else
2493 BUG_ON(!d_unhashed(actual));
2494
2495 spin_lock(&actual->d_lock);
2496 found:
2497 _d_rehash(actual);
2498 spin_unlock(&actual->d_lock);
2499 spin_unlock(&inode->i_lock);
2500 out_nolock:
2501 if (actual == dentry) {
2502 security_d_instantiate(dentry, inode);
2503 return NULL;
2504 }
2505
2506 iput(inode);
2507 return actual;
2508 }
2509 EXPORT_SYMBOL_GPL(d_materialise_unique);
2510
2511 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2512 {
2513 *buflen -= namelen;
2514 if (*buflen < 0)
2515 return -ENAMETOOLONG;
2516 *buffer -= namelen;
2517 memcpy(*buffer, str, namelen);
2518 return 0;
2519 }
2520
2521 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2522 {
2523 return prepend(buffer, buflen, name->name, name->len);
2524 }
2525
2526 /**
2527 * prepend_path - Prepend path string to a buffer
2528 * @path: the dentry/vfsmount to report
2529 * @root: root vfsmnt/dentry
2530 * @buffer: pointer to the end of the buffer
2531 * @buflen: pointer to buffer length
2532 *
2533 * Caller holds the rename_lock.
2534 */
2535 static int prepend_path(const struct path *path,
2536 const struct path *root,
2537 char **buffer, int *buflen)
2538 {
2539 struct dentry *dentry = path->dentry;
2540 struct vfsmount *vfsmnt = path->mnt;
2541 struct mount *mnt = real_mount(vfsmnt);
2542 bool slash = false;
2543 int error = 0;
2544
2545 while (dentry != root->dentry || vfsmnt != root->mnt) {
2546 struct dentry * parent;
2547
2548 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2549 /* Global root? */
2550 if (!mnt_has_parent(mnt))
2551 goto global_root;
2552 dentry = mnt->mnt_mountpoint;
2553 mnt = mnt->mnt_parent;
2554 vfsmnt = &mnt->mnt;
2555 continue;
2556 }
2557 parent = dentry->d_parent;
2558 prefetch(parent);
2559 spin_lock(&dentry->d_lock);
2560 error = prepend_name(buffer, buflen, &dentry->d_name);
2561 spin_unlock(&dentry->d_lock);
2562 if (!error)
2563 error = prepend(buffer, buflen, "/", 1);
2564 if (error)
2565 break;
2566
2567 slash = true;
2568 dentry = parent;
2569 }
2570
2571 if (!error && !slash)
2572 error = prepend(buffer, buflen, "/", 1);
2573
2574 return error;
2575
2576 global_root:
2577 /*
2578 * Filesystems needing to implement special "root names"
2579 * should do so with ->d_dname()
2580 */
2581 if (IS_ROOT(dentry) &&
2582 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2583 WARN(1, "Root dentry has weird name <%.*s>\n",
2584 (int) dentry->d_name.len, dentry->d_name.name);
2585 }
2586 if (!slash)
2587 error = prepend(buffer, buflen, "/", 1);
2588 if (!error)
2589 error = is_mounted(vfsmnt) ? 1 : 2;
2590 return error;
2591 }
2592
2593 /**
2594 * __d_path - return the path of a dentry
2595 * @path: the dentry/vfsmount to report
2596 * @root: root vfsmnt/dentry
2597 * @buf: buffer to return value in
2598 * @buflen: buffer length
2599 *
2600 * Convert a dentry into an ASCII path name.
2601 *
2602 * Returns a pointer into the buffer or an error code if the
2603 * path was too long.
2604 *
2605 * "buflen" should be positive.
2606 *
2607 * If the path is not reachable from the supplied root, return %NULL.
2608 */
2609 char *__d_path(const struct path *path,
2610 const struct path *root,
2611 char *buf, int buflen)
2612 {
2613 char *res = buf + buflen;
2614 int error;
2615
2616 prepend(&res, &buflen, "\0", 1);
2617 br_read_lock(&vfsmount_lock);
2618 write_seqlock(&rename_lock);
2619 error = prepend_path(path, root, &res, &buflen);
2620 write_sequnlock(&rename_lock);
2621 br_read_unlock(&vfsmount_lock);
2622
2623 if (error < 0)
2624 return ERR_PTR(error);
2625 if (error > 0)
2626 return NULL;
2627 return res;
2628 }
2629
2630 char *d_absolute_path(const struct path *path,
2631 char *buf, int buflen)
2632 {
2633 struct path root = {};
2634 char *res = buf + buflen;
2635 int error;
2636
2637 prepend(&res, &buflen, "\0", 1);
2638 br_read_lock(&vfsmount_lock);
2639 write_seqlock(&rename_lock);
2640 error = prepend_path(path, &root, &res, &buflen);
2641 write_sequnlock(&rename_lock);
2642 br_read_unlock(&vfsmount_lock);
2643
2644 if (error > 1)
2645 error = -EINVAL;
2646 if (error < 0)
2647 return ERR_PTR(error);
2648 return res;
2649 }
2650
2651 /*
2652 * same as __d_path but appends "(deleted)" for unlinked files.
2653 */
2654 static int path_with_deleted(const struct path *path,
2655 const struct path *root,
2656 char **buf, int *buflen)
2657 {
2658 prepend(buf, buflen, "\0", 1);
2659 if (d_unlinked(path->dentry)) {
2660 int error = prepend(buf, buflen, " (deleted)", 10);
2661 if (error)
2662 return error;
2663 }
2664
2665 return prepend_path(path, root, buf, buflen);
2666 }
2667
2668 static int prepend_unreachable(char **buffer, int *buflen)
2669 {
2670 return prepend(buffer, buflen, "(unreachable)", 13);
2671 }
2672
2673 /**
2674 * d_path - return the path of a dentry
2675 * @path: path to report
2676 * @buf: buffer to return value in
2677 * @buflen: buffer length
2678 *
2679 * Convert a dentry into an ASCII path name. If the entry has been deleted
2680 * the string " (deleted)" is appended. Note that this is ambiguous.
2681 *
2682 * Returns a pointer into the buffer or an error code if the path was
2683 * too long. Note: Callers should use the returned pointer, not the passed
2684 * in buffer, to use the name! The implementation often starts at an offset
2685 * into the buffer, and may leave 0 bytes at the start.
2686 *
2687 * "buflen" should be positive.
2688 */
2689 char *d_path(const struct path *path, char *buf, int buflen)
2690 {
2691 char *res = buf + buflen;
2692 struct path root;
2693 int error;
2694
2695 /*
2696 * We have various synthetic filesystems that never get mounted. On
2697 * these filesystems dentries are never used for lookup purposes, and
2698 * thus don't need to be hashed. They also don't need a name until a
2699 * user wants to identify the object in /proc/pid/fd/. The little hack
2700 * below allows us to generate a name for these objects on demand:
2701 */
2702 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2703 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2704
2705 get_fs_root(current->fs, &root);
2706 br_read_lock(&vfsmount_lock);
2707 write_seqlock(&rename_lock);
2708 error = path_with_deleted(path, &root, &res, &buflen);
2709 write_sequnlock(&rename_lock);
2710 br_read_unlock(&vfsmount_lock);
2711 if (error < 0)
2712 res = ERR_PTR(error);
2713 path_put(&root);
2714 return res;
2715 }
2716 EXPORT_SYMBOL(d_path);
2717
2718 /*
2719 * Helper function for dentry_operations.d_dname() members
2720 */
2721 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2722 const char *fmt, ...)
2723 {
2724 va_list args;
2725 char temp[64];
2726 int sz;
2727
2728 va_start(args, fmt);
2729 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2730 va_end(args);
2731
2732 if (sz > sizeof(temp) || sz > buflen)
2733 return ERR_PTR(-ENAMETOOLONG);
2734
2735 buffer += buflen - sz;
2736 return memcpy(buffer, temp, sz);
2737 }
2738
2739 /*
2740 * Write full pathname from the root of the filesystem into the buffer.
2741 */
2742 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2743 {
2744 char *end = buf + buflen;
2745 char *retval;
2746
2747 prepend(&end, &buflen, "\0", 1);
2748 if (buflen < 1)
2749 goto Elong;
2750 /* Get '/' right */
2751 retval = end-1;
2752 *retval = '/';
2753
2754 while (!IS_ROOT(dentry)) {
2755 struct dentry *parent = dentry->d_parent;
2756 int error;
2757
2758 prefetch(parent);
2759 spin_lock(&dentry->d_lock);
2760 error = prepend_name(&end, &buflen, &dentry->d_name);
2761 spin_unlock(&dentry->d_lock);
2762 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2763 goto Elong;
2764
2765 retval = end;
2766 dentry = parent;
2767 }
2768 return retval;
2769 Elong:
2770 return ERR_PTR(-ENAMETOOLONG);
2771 }
2772
2773 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2774 {
2775 char *retval;
2776
2777 write_seqlock(&rename_lock);
2778 retval = __dentry_path(dentry, buf, buflen);
2779 write_sequnlock(&rename_lock);
2780
2781 return retval;
2782 }
2783 EXPORT_SYMBOL(dentry_path_raw);
2784
2785 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2786 {
2787 char *p = NULL;
2788 char *retval;
2789
2790 write_seqlock(&rename_lock);
2791 if (d_unlinked(dentry)) {
2792 p = buf + buflen;
2793 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2794 goto Elong;
2795 buflen++;
2796 }
2797 retval = __dentry_path(dentry, buf, buflen);
2798 write_sequnlock(&rename_lock);
2799 if (!IS_ERR(retval) && p)
2800 *p = '/'; /* restore '/' overriden with '\0' */
2801 return retval;
2802 Elong:
2803 return ERR_PTR(-ENAMETOOLONG);
2804 }
2805
2806 /*
2807 * NOTE! The user-level library version returns a
2808 * character pointer. The kernel system call just
2809 * returns the length of the buffer filled (which
2810 * includes the ending '\0' character), or a negative
2811 * error value. So libc would do something like
2812 *
2813 * char *getcwd(char * buf, size_t size)
2814 * {
2815 * int retval;
2816 *
2817 * retval = sys_getcwd(buf, size);
2818 * if (retval >= 0)
2819 * return buf;
2820 * errno = -retval;
2821 * return NULL;
2822 * }
2823 */
2824 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2825 {
2826 int error;
2827 struct path pwd, root;
2828 char *page = (char *) __get_free_page(GFP_USER);
2829
2830 if (!page)
2831 return -ENOMEM;
2832
2833 get_fs_root_and_pwd(current->fs, &root, &pwd);
2834
2835 error = -ENOENT;
2836 br_read_lock(&vfsmount_lock);
2837 write_seqlock(&rename_lock);
2838 if (!d_unlinked(pwd.dentry)) {
2839 unsigned long len;
2840 char *cwd = page + PAGE_SIZE;
2841 int buflen = PAGE_SIZE;
2842
2843 prepend(&cwd, &buflen, "\0", 1);
2844 error = prepend_path(&pwd, &root, &cwd, &buflen);
2845 write_sequnlock(&rename_lock);
2846 br_read_unlock(&vfsmount_lock);
2847
2848 if (error < 0)
2849 goto out;
2850
2851 /* Unreachable from current root */
2852 if (error > 0) {
2853 error = prepend_unreachable(&cwd, &buflen);
2854 if (error)
2855 goto out;
2856 }
2857
2858 error = -ERANGE;
2859 len = PAGE_SIZE + page - cwd;
2860 if (len <= size) {
2861 error = len;
2862 if (copy_to_user(buf, cwd, len))
2863 error = -EFAULT;
2864 }
2865 } else {
2866 write_sequnlock(&rename_lock);
2867 br_read_unlock(&vfsmount_lock);
2868 }
2869
2870 out:
2871 path_put(&pwd);
2872 path_put(&root);
2873 free_page((unsigned long) page);
2874 return error;
2875 }
2876
2877 /*
2878 * Test whether new_dentry is a subdirectory of old_dentry.
2879 *
2880 * Trivially implemented using the dcache structure
2881 */
2882
2883 /**
2884 * is_subdir - is new dentry a subdirectory of old_dentry
2885 * @new_dentry: new dentry
2886 * @old_dentry: old dentry
2887 *
2888 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2889 * Returns 0 otherwise.
2890 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2891 */
2892
2893 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2894 {
2895 int result;
2896 unsigned seq;
2897
2898 if (new_dentry == old_dentry)
2899 return 1;
2900
2901 do {
2902 /* for restarting inner loop in case of seq retry */
2903 seq = read_seqbegin(&rename_lock);
2904 /*
2905 * Need rcu_readlock to protect against the d_parent trashing
2906 * due to d_move
2907 */
2908 rcu_read_lock();
2909 if (d_ancestor(old_dentry, new_dentry))
2910 result = 1;
2911 else
2912 result = 0;
2913 rcu_read_unlock();
2914 } while (read_seqretry(&rename_lock, seq));
2915
2916 return result;
2917 }
2918
2919 void d_genocide(struct dentry *root)
2920 {
2921 struct dentry *this_parent;
2922 struct list_head *next;
2923 unsigned seq;
2924 int locked = 0;
2925
2926 seq = read_seqbegin(&rename_lock);
2927 again:
2928 this_parent = root;
2929 spin_lock(&this_parent->d_lock);
2930 repeat:
2931 next = this_parent->d_subdirs.next;
2932 resume:
2933 while (next != &this_parent->d_subdirs) {
2934 struct list_head *tmp = next;
2935 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2936 next = tmp->next;
2937
2938 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2939 if (d_unhashed(dentry) || !dentry->d_inode) {
2940 spin_unlock(&dentry->d_lock);
2941 continue;
2942 }
2943 if (!list_empty(&dentry->d_subdirs)) {
2944 spin_unlock(&this_parent->d_lock);
2945 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2946 this_parent = dentry;
2947 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2948 goto repeat;
2949 }
2950 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2951 dentry->d_flags |= DCACHE_GENOCIDE;
2952 dentry->d_count--;
2953 }
2954 spin_unlock(&dentry->d_lock);
2955 }
2956 if (this_parent != root) {
2957 struct dentry *child = this_parent;
2958 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2959 this_parent->d_flags |= DCACHE_GENOCIDE;
2960 this_parent->d_count--;
2961 }
2962 this_parent = try_to_ascend(this_parent, locked, seq);
2963 if (!this_parent)
2964 goto rename_retry;
2965 next = child->d_u.d_child.next;
2966 goto resume;
2967 }
2968 spin_unlock(&this_parent->d_lock);
2969 if (!locked && read_seqretry(&rename_lock, seq))
2970 goto rename_retry;
2971 if (locked)
2972 write_sequnlock(&rename_lock);
2973 return;
2974
2975 rename_retry:
2976 if (locked)
2977 goto again;
2978 locked = 1;
2979 write_seqlock(&rename_lock);
2980 goto again;
2981 }
2982
2983 /**
2984 * find_inode_number - check for dentry with name
2985 * @dir: directory to check
2986 * @name: Name to find.
2987 *
2988 * Check whether a dentry already exists for the given name,
2989 * and return the inode number if it has an inode. Otherwise
2990 * 0 is returned.
2991 *
2992 * This routine is used to post-process directory listings for
2993 * filesystems using synthetic inode numbers, and is necessary
2994 * to keep getcwd() working.
2995 */
2996
2997 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2998 {
2999 struct dentry * dentry;
3000 ino_t ino = 0;
3001
3002 dentry = d_hash_and_lookup(dir, name);
3003 if (!IS_ERR_OR_NULL(dentry)) {
3004 if (dentry->d_inode)
3005 ino = dentry->d_inode->i_ino;
3006 dput(dentry);
3007 }
3008 return ino;
3009 }
3010 EXPORT_SYMBOL(find_inode_number);
3011
3012 static __initdata unsigned long dhash_entries;
3013 static int __init set_dhash_entries(char *str)
3014 {
3015 if (!str)
3016 return 0;
3017 dhash_entries = simple_strtoul(str, &str, 0);
3018 return 1;
3019 }
3020 __setup("dhash_entries=", set_dhash_entries);
3021
3022 static void __init dcache_init_early(void)
3023 {
3024 unsigned int loop;
3025
3026 /* If hashes are distributed across NUMA nodes, defer
3027 * hash allocation until vmalloc space is available.
3028 */
3029 if (hashdist)
3030 return;
3031
3032 dentry_hashtable =
3033 alloc_large_system_hash("Dentry cache",
3034 sizeof(struct hlist_bl_head),
3035 dhash_entries,
3036 13,
3037 HASH_EARLY,
3038 &d_hash_shift,
3039 &d_hash_mask,
3040 0,
3041 0);
3042
3043 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3044 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3045 }
3046
3047 static void __init dcache_init(void)
3048 {
3049 unsigned int loop;
3050
3051 /*
3052 * A constructor could be added for stable state like the lists,
3053 * but it is probably not worth it because of the cache nature
3054 * of the dcache.
3055 */
3056 dentry_cache = KMEM_CACHE(dentry,
3057 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3058
3059 /* Hash may have been set up in dcache_init_early */
3060 if (!hashdist)
3061 return;
3062
3063 dentry_hashtable =
3064 alloc_large_system_hash("Dentry cache",
3065 sizeof(struct hlist_bl_head),
3066 dhash_entries,
3067 13,
3068 0,
3069 &d_hash_shift,
3070 &d_hash_mask,
3071 0,
3072 0);
3073
3074 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3075 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3076 }
3077
3078 /* SLAB cache for __getname() consumers */
3079 struct kmem_cache *names_cachep __read_mostly;
3080 EXPORT_SYMBOL(names_cachep);
3081
3082 EXPORT_SYMBOL(d_genocide);
3083
3084 void __init vfs_caches_init_early(void)
3085 {
3086 dcache_init_early();
3087 inode_init_early();
3088 }
3089
3090 void __init vfs_caches_init(unsigned long mempages)
3091 {
3092 unsigned long reserve;
3093
3094 /* Base hash sizes on available memory, with a reserve equal to
3095 150% of current kernel size */
3096
3097 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3098 mempages -= reserve;
3099
3100 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3101 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3102
3103 dcache_init();
3104 inode_init();
3105 files_init(mempages);
3106 mnt_init();
3107 bdev_cache_init();
3108 chrdev_init();
3109 }