Merge 4.14.49 into android-4.14
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /*
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
65 *
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
72 *
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88
89 EXPORT_SYMBOL(rename_lock);
90
91 static struct kmem_cache *dentry_cache __read_mostly;
92
93 const struct qstr empty_name = QSTR_INIT("", 0);
94 EXPORT_SYMBOL(empty_name);
95 const struct qstr slash_name = QSTR_INIT("/", 1);
96 EXPORT_SYMBOL(slash_name);
97
98 /*
99 * This is the single most critical data structure when it comes
100 * to the dcache: the hashtable for lookups. Somebody should try
101 * to make this good - I've just made it work.
102 *
103 * This hash-function tries to avoid losing too many bits of hash
104 * information, yet avoid using a prime hash-size or similar.
105 */
106
107 static unsigned int d_hash_mask __read_mostly;
108 static unsigned int d_hash_shift __read_mostly;
109
110 static struct hlist_bl_head *dentry_hashtable __read_mostly;
111
112 static inline struct hlist_bl_head *d_hash(unsigned int hash)
113 {
114 return dentry_hashtable + (hash >> (32 - d_hash_shift));
115 }
116
117 #define IN_LOOKUP_SHIFT 10
118 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
119
120 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
121 unsigned int hash)
122 {
123 hash += (unsigned long) parent / L1_CACHE_BYTES;
124 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
125 }
126
127
128 /* Statistics gathering. */
129 struct dentry_stat_t dentry_stat = {
130 .age_limit = 45,
131 };
132
133 static DEFINE_PER_CPU(long, nr_dentry);
134 static DEFINE_PER_CPU(long, nr_dentry_unused);
135
136 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
137
138 /*
139 * Here we resort to our own counters instead of using generic per-cpu counters
140 * for consistency with what the vfs inode code does. We are expected to harvest
141 * better code and performance by having our own specialized counters.
142 *
143 * Please note that the loop is done over all possible CPUs, not over all online
144 * CPUs. The reason for this is that we don't want to play games with CPUs going
145 * on and off. If one of them goes off, we will just keep their counters.
146 *
147 * glommer: See cffbc8a for details, and if you ever intend to change this,
148 * please update all vfs counters to match.
149 */
150 static long get_nr_dentry(void)
151 {
152 int i;
153 long sum = 0;
154 for_each_possible_cpu(i)
155 sum += per_cpu(nr_dentry, i);
156 return sum < 0 ? 0 : sum;
157 }
158
159 static long get_nr_dentry_unused(void)
160 {
161 int i;
162 long sum = 0;
163 for_each_possible_cpu(i)
164 sum += per_cpu(nr_dentry_unused, i);
165 return sum < 0 ? 0 : sum;
166 }
167
168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
169 size_t *lenp, loff_t *ppos)
170 {
171 dentry_stat.nr_dentry = get_nr_dentry();
172 dentry_stat.nr_unused = get_nr_dentry_unused();
173 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
174 }
175 #endif
176
177 /*
178 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
179 * The strings are both count bytes long, and count is non-zero.
180 */
181 #ifdef CONFIG_DCACHE_WORD_ACCESS
182
183 #include <asm/word-at-a-time.h>
184 /*
185 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
186 * aligned allocation for this particular component. We don't
187 * strictly need the load_unaligned_zeropad() safety, but it
188 * doesn't hurt either.
189 *
190 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
191 * need the careful unaligned handling.
192 */
193 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
194 {
195 unsigned long a,b,mask;
196
197 for (;;) {
198 a = *(unsigned long *)cs;
199 b = load_unaligned_zeropad(ct);
200 if (tcount < sizeof(unsigned long))
201 break;
202 if (unlikely(a != b))
203 return 1;
204 cs += sizeof(unsigned long);
205 ct += sizeof(unsigned long);
206 tcount -= sizeof(unsigned long);
207 if (!tcount)
208 return 0;
209 }
210 mask = bytemask_from_count(tcount);
211 return unlikely(!!((a ^ b) & mask));
212 }
213
214 #else
215
216 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
217 {
218 do {
219 if (*cs != *ct)
220 return 1;
221 cs++;
222 ct++;
223 tcount--;
224 } while (tcount);
225 return 0;
226 }
227
228 #endif
229
230 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
231 {
232 /*
233 * Be careful about RCU walk racing with rename:
234 * use 'READ_ONCE' to fetch the name pointer.
235 *
236 * NOTE! Even if a rename will mean that the length
237 * was not loaded atomically, we don't care. The
238 * RCU walk will check the sequence count eventually,
239 * and catch it. And we won't overrun the buffer,
240 * because we're reading the name pointer atomically,
241 * and a dentry name is guaranteed to be properly
242 * terminated with a NUL byte.
243 *
244 * End result: even if 'len' is wrong, we'll exit
245 * early because the data cannot match (there can
246 * be no NUL in the ct/tcount data)
247 */
248 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
249
250 return dentry_string_cmp(cs, ct, tcount);
251 }
252
253 struct external_name {
254 union {
255 atomic_t count;
256 struct rcu_head head;
257 } u;
258 unsigned char name[];
259 };
260
261 static inline struct external_name *external_name(struct dentry *dentry)
262 {
263 return container_of(dentry->d_name.name, struct external_name, name[0]);
264 }
265
266 static void __d_free(struct rcu_head *head)
267 {
268 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
269
270 kmem_cache_free(dentry_cache, dentry);
271 }
272
273 static void __d_free_external(struct rcu_head *head)
274 {
275 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
276 kfree(external_name(dentry));
277 kmem_cache_free(dentry_cache, dentry);
278 }
279
280 static inline int dname_external(const struct dentry *dentry)
281 {
282 return dentry->d_name.name != dentry->d_iname;
283 }
284
285 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
286 {
287 spin_lock(&dentry->d_lock);
288 if (unlikely(dname_external(dentry))) {
289 struct external_name *p = external_name(dentry);
290 atomic_inc(&p->u.count);
291 spin_unlock(&dentry->d_lock);
292 name->name = p->name;
293 } else {
294 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
295 spin_unlock(&dentry->d_lock);
296 name->name = name->inline_name;
297 }
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300
301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303 if (unlikely(name->name != name->inline_name)) {
304 struct external_name *p;
305 p = container_of(name->name, struct external_name, name[0]);
306 if (unlikely(atomic_dec_and_test(&p->u.count)))
307 kfree_rcu(p, u.head);
308 }
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313 struct inode *inode,
314 unsigned type_flags)
315 {
316 unsigned flags;
317
318 dentry->d_inode = inode;
319 flags = READ_ONCE(dentry->d_flags);
320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 flags |= type_flags;
322 WRITE_ONCE(dentry->d_flags, flags);
323 }
324
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327 unsigned flags = READ_ONCE(dentry->d_flags);
328
329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 WRITE_ONCE(dentry->d_flags, flags);
331 dentry->d_inode = NULL;
332 }
333
334 static void dentry_free(struct dentry *dentry)
335 {
336 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
337 if (unlikely(dname_external(dentry))) {
338 struct external_name *p = external_name(dentry);
339 if (likely(atomic_dec_and_test(&p->u.count))) {
340 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
341 return;
342 }
343 }
344 /* if dentry was never visible to RCU, immediate free is OK */
345 if (!(dentry->d_flags & DCACHE_RCUACCESS))
346 __d_free(&dentry->d_u.d_rcu);
347 else
348 call_rcu(&dentry->d_u.d_rcu, __d_free);
349 }
350
351 /*
352 * Release the dentry's inode, using the filesystem
353 * d_iput() operation if defined.
354 */
355 static void dentry_unlink_inode(struct dentry * dentry)
356 __releases(dentry->d_lock)
357 __releases(dentry->d_inode->i_lock)
358 {
359 struct inode *inode = dentry->d_inode;
360 bool hashed = !d_unhashed(dentry);
361
362 if (hashed)
363 raw_write_seqcount_begin(&dentry->d_seq);
364 __d_clear_type_and_inode(dentry);
365 hlist_del_init(&dentry->d_u.d_alias);
366 if (hashed)
367 raw_write_seqcount_end(&dentry->d_seq);
368 spin_unlock(&dentry->d_lock);
369 spin_unlock(&inode->i_lock);
370 if (!inode->i_nlink)
371 fsnotify_inoderemove(inode);
372 if (dentry->d_op && dentry->d_op->d_iput)
373 dentry->d_op->d_iput(dentry, inode);
374 else
375 iput(inode);
376 }
377
378 /*
379 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
380 * is in use - which includes both the "real" per-superblock
381 * LRU list _and_ the DCACHE_SHRINK_LIST use.
382 *
383 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
384 * on the shrink list (ie not on the superblock LRU list).
385 *
386 * The per-cpu "nr_dentry_unused" counters are updated with
387 * the DCACHE_LRU_LIST bit.
388 *
389 * These helper functions make sure we always follow the
390 * rules. d_lock must be held by the caller.
391 */
392 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
393 static void d_lru_add(struct dentry *dentry)
394 {
395 D_FLAG_VERIFY(dentry, 0);
396 dentry->d_flags |= DCACHE_LRU_LIST;
397 this_cpu_inc(nr_dentry_unused);
398 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
399 }
400
401 static void d_lru_del(struct dentry *dentry)
402 {
403 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
404 dentry->d_flags &= ~DCACHE_LRU_LIST;
405 this_cpu_dec(nr_dentry_unused);
406 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
407 }
408
409 static void d_shrink_del(struct dentry *dentry)
410 {
411 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
412 list_del_init(&dentry->d_lru);
413 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
414 this_cpu_dec(nr_dentry_unused);
415 }
416
417 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
418 {
419 D_FLAG_VERIFY(dentry, 0);
420 list_add(&dentry->d_lru, list);
421 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
422 this_cpu_inc(nr_dentry_unused);
423 }
424
425 /*
426 * These can only be called under the global LRU lock, ie during the
427 * callback for freeing the LRU list. "isolate" removes it from the
428 * LRU lists entirely, while shrink_move moves it to the indicated
429 * private list.
430 */
431 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
432 {
433 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
434 dentry->d_flags &= ~DCACHE_LRU_LIST;
435 this_cpu_dec(nr_dentry_unused);
436 list_lru_isolate(lru, &dentry->d_lru);
437 }
438
439 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
440 struct list_head *list)
441 {
442 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
443 dentry->d_flags |= DCACHE_SHRINK_LIST;
444 list_lru_isolate_move(lru, &dentry->d_lru, list);
445 }
446
447 /*
448 * dentry_lru_(add|del)_list) must be called with d_lock held.
449 */
450 static void dentry_lru_add(struct dentry *dentry)
451 {
452 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
453 d_lru_add(dentry);
454 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
455 dentry->d_flags |= DCACHE_REFERENCED;
456 }
457
458 /**
459 * d_drop - drop a dentry
460 * @dentry: dentry to drop
461 *
462 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
463 * be found through a VFS lookup any more. Note that this is different from
464 * deleting the dentry - d_delete will try to mark the dentry negative if
465 * possible, giving a successful _negative_ lookup, while d_drop will
466 * just make the cache lookup fail.
467 *
468 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
469 * reason (NFS timeouts or autofs deletes).
470 *
471 * __d_drop requires dentry->d_lock
472 * ___d_drop doesn't mark dentry as "unhashed"
473 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
474 */
475 static void ___d_drop(struct dentry *dentry)
476 {
477 if (!d_unhashed(dentry)) {
478 struct hlist_bl_head *b;
479 /*
480 * Hashed dentries are normally on the dentry hashtable,
481 * with the exception of those newly allocated by
482 * d_obtain_alias, which are always IS_ROOT:
483 */
484 if (unlikely(IS_ROOT(dentry)))
485 b = &dentry->d_sb->s_anon;
486 else
487 b = d_hash(dentry->d_name.hash);
488
489 hlist_bl_lock(b);
490 __hlist_bl_del(&dentry->d_hash);
491 hlist_bl_unlock(b);
492 /* After this call, in-progress rcu-walk path lookup will fail. */
493 write_seqcount_invalidate(&dentry->d_seq);
494 }
495 }
496
497 void __d_drop(struct dentry *dentry)
498 {
499 ___d_drop(dentry);
500 dentry->d_hash.pprev = NULL;
501 }
502 EXPORT_SYMBOL(__d_drop);
503
504 void d_drop(struct dentry *dentry)
505 {
506 spin_lock(&dentry->d_lock);
507 __d_drop(dentry);
508 spin_unlock(&dentry->d_lock);
509 }
510 EXPORT_SYMBOL(d_drop);
511
512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
513 {
514 struct dentry *next;
515 /*
516 * Inform d_walk() and shrink_dentry_list() that we are no longer
517 * attached to the dentry tree
518 */
519 dentry->d_flags |= DCACHE_DENTRY_KILLED;
520 if (unlikely(list_empty(&dentry->d_child)))
521 return;
522 __list_del_entry(&dentry->d_child);
523 /*
524 * Cursors can move around the list of children. While we'd been
525 * a normal list member, it didn't matter - ->d_child.next would've
526 * been updated. However, from now on it won't be and for the
527 * things like d_walk() it might end up with a nasty surprise.
528 * Normally d_walk() doesn't care about cursors moving around -
529 * ->d_lock on parent prevents that and since a cursor has no children
530 * of its own, we get through it without ever unlocking the parent.
531 * There is one exception, though - if we ascend from a child that
532 * gets killed as soon as we unlock it, the next sibling is found
533 * using the value left in its ->d_child.next. And if _that_
534 * pointed to a cursor, and cursor got moved (e.g. by lseek())
535 * before d_walk() regains parent->d_lock, we'll end up skipping
536 * everything the cursor had been moved past.
537 *
538 * Solution: make sure that the pointer left behind in ->d_child.next
539 * points to something that won't be moving around. I.e. skip the
540 * cursors.
541 */
542 while (dentry->d_child.next != &parent->d_subdirs) {
543 next = list_entry(dentry->d_child.next, struct dentry, d_child);
544 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
545 break;
546 dentry->d_child.next = next->d_child.next;
547 }
548 }
549
550 static void __dentry_kill(struct dentry *dentry)
551 {
552 struct dentry *parent = NULL;
553 bool can_free = true;
554 if (!IS_ROOT(dentry))
555 parent = dentry->d_parent;
556
557 /*
558 * The dentry is now unrecoverably dead to the world.
559 */
560 lockref_mark_dead(&dentry->d_lockref);
561
562 /*
563 * inform the fs via d_prune that this dentry is about to be
564 * unhashed and destroyed.
565 */
566 if (dentry->d_flags & DCACHE_OP_PRUNE)
567 dentry->d_op->d_prune(dentry);
568
569 if (dentry->d_flags & DCACHE_LRU_LIST) {
570 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
571 d_lru_del(dentry);
572 }
573 /* if it was on the hash then remove it */
574 __d_drop(dentry);
575 dentry_unlist(dentry, parent);
576 if (parent)
577 spin_unlock(&parent->d_lock);
578 if (dentry->d_inode)
579 dentry_unlink_inode(dentry);
580 else
581 spin_unlock(&dentry->d_lock);
582 this_cpu_dec(nr_dentry);
583 if (dentry->d_op && dentry->d_op->d_release)
584 dentry->d_op->d_release(dentry);
585
586 spin_lock(&dentry->d_lock);
587 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
588 dentry->d_flags |= DCACHE_MAY_FREE;
589 can_free = false;
590 }
591 spin_unlock(&dentry->d_lock);
592 if (likely(can_free))
593 dentry_free(dentry);
594 }
595
596 /*
597 * Finish off a dentry we've decided to kill.
598 * dentry->d_lock must be held, returns with it unlocked.
599 * If ref is non-zero, then decrement the refcount too.
600 * Returns dentry requiring refcount drop, or NULL if we're done.
601 */
602 static struct dentry *dentry_kill(struct dentry *dentry)
603 __releases(dentry->d_lock)
604 {
605 struct inode *inode = dentry->d_inode;
606 struct dentry *parent = NULL;
607
608 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
609 goto failed;
610
611 if (!IS_ROOT(dentry)) {
612 parent = dentry->d_parent;
613 if (unlikely(!spin_trylock(&parent->d_lock))) {
614 if (inode)
615 spin_unlock(&inode->i_lock);
616 goto failed;
617 }
618 }
619
620 __dentry_kill(dentry);
621 return parent;
622
623 failed:
624 spin_unlock(&dentry->d_lock);
625 return dentry; /* try again with same dentry */
626 }
627
628 static inline struct dentry *lock_parent(struct dentry *dentry)
629 {
630 struct dentry *parent = dentry->d_parent;
631 if (IS_ROOT(dentry))
632 return NULL;
633 if (unlikely(dentry->d_lockref.count < 0))
634 return NULL;
635 if (likely(spin_trylock(&parent->d_lock)))
636 return parent;
637 rcu_read_lock();
638 spin_unlock(&dentry->d_lock);
639 again:
640 parent = ACCESS_ONCE(dentry->d_parent);
641 spin_lock(&parent->d_lock);
642 /*
643 * We can't blindly lock dentry until we are sure
644 * that we won't violate the locking order.
645 * Any changes of dentry->d_parent must have
646 * been done with parent->d_lock held, so
647 * spin_lock() above is enough of a barrier
648 * for checking if it's still our child.
649 */
650 if (unlikely(parent != dentry->d_parent)) {
651 spin_unlock(&parent->d_lock);
652 goto again;
653 }
654 if (parent != dentry) {
655 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
656 if (unlikely(dentry->d_lockref.count < 0)) {
657 spin_unlock(&parent->d_lock);
658 parent = NULL;
659 }
660 } else {
661 parent = NULL;
662 }
663 rcu_read_unlock();
664 return parent;
665 }
666
667 /*
668 * Try to do a lockless dput(), and return whether that was successful.
669 *
670 * If unsuccessful, we return false, having already taken the dentry lock.
671 *
672 * The caller needs to hold the RCU read lock, so that the dentry is
673 * guaranteed to stay around even if the refcount goes down to zero!
674 */
675 static inline bool fast_dput(struct dentry *dentry)
676 {
677 int ret;
678 unsigned int d_flags;
679
680 /*
681 * If we have a d_op->d_delete() operation, we sould not
682 * let the dentry count go to zero, so use "put_or_lock".
683 */
684 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
685 return lockref_put_or_lock(&dentry->d_lockref);
686
687 /*
688 * .. otherwise, we can try to just decrement the
689 * lockref optimistically.
690 */
691 ret = lockref_put_return(&dentry->d_lockref);
692
693 /*
694 * If the lockref_put_return() failed due to the lock being held
695 * by somebody else, the fast path has failed. We will need to
696 * get the lock, and then check the count again.
697 */
698 if (unlikely(ret < 0)) {
699 spin_lock(&dentry->d_lock);
700 if (dentry->d_lockref.count > 1) {
701 dentry->d_lockref.count--;
702 spin_unlock(&dentry->d_lock);
703 return 1;
704 }
705 return 0;
706 }
707
708 /*
709 * If we weren't the last ref, we're done.
710 */
711 if (ret)
712 return 1;
713
714 /*
715 * Careful, careful. The reference count went down
716 * to zero, but we don't hold the dentry lock, so
717 * somebody else could get it again, and do another
718 * dput(), and we need to not race with that.
719 *
720 * However, there is a very special and common case
721 * where we don't care, because there is nothing to
722 * do: the dentry is still hashed, it does not have
723 * a 'delete' op, and it's referenced and already on
724 * the LRU list.
725 *
726 * NOTE! Since we aren't locked, these values are
727 * not "stable". However, it is sufficient that at
728 * some point after we dropped the reference the
729 * dentry was hashed and the flags had the proper
730 * value. Other dentry users may have re-gotten
731 * a reference to the dentry and change that, but
732 * our work is done - we can leave the dentry
733 * around with a zero refcount.
734 */
735 smp_rmb();
736 d_flags = ACCESS_ONCE(dentry->d_flags);
737 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
738
739 /* Nothing to do? Dropping the reference was all we needed? */
740 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
741 return 1;
742
743 /*
744 * Not the fast normal case? Get the lock. We've already decremented
745 * the refcount, but we'll need to re-check the situation after
746 * getting the lock.
747 */
748 spin_lock(&dentry->d_lock);
749
750 /*
751 * Did somebody else grab a reference to it in the meantime, and
752 * we're no longer the last user after all? Alternatively, somebody
753 * else could have killed it and marked it dead. Either way, we
754 * don't need to do anything else.
755 */
756 if (dentry->d_lockref.count) {
757 spin_unlock(&dentry->d_lock);
758 return 1;
759 }
760
761 /*
762 * Re-get the reference we optimistically dropped. We hold the
763 * lock, and we just tested that it was zero, so we can just
764 * set it to 1.
765 */
766 dentry->d_lockref.count = 1;
767 return 0;
768 }
769
770
771 /*
772 * This is dput
773 *
774 * This is complicated by the fact that we do not want to put
775 * dentries that are no longer on any hash chain on the unused
776 * list: we'd much rather just get rid of them immediately.
777 *
778 * However, that implies that we have to traverse the dentry
779 * tree upwards to the parents which might _also_ now be
780 * scheduled for deletion (it may have been only waiting for
781 * its last child to go away).
782 *
783 * This tail recursion is done by hand as we don't want to depend
784 * on the compiler to always get this right (gcc generally doesn't).
785 * Real recursion would eat up our stack space.
786 */
787
788 /*
789 * dput - release a dentry
790 * @dentry: dentry to release
791 *
792 * Release a dentry. This will drop the usage count and if appropriate
793 * call the dentry unlink method as well as removing it from the queues and
794 * releasing its resources. If the parent dentries were scheduled for release
795 * they too may now get deleted.
796 */
797 void dput(struct dentry *dentry)
798 {
799 if (unlikely(!dentry))
800 return;
801
802 repeat:
803 might_sleep();
804
805 rcu_read_lock();
806 if (likely(fast_dput(dentry))) {
807 rcu_read_unlock();
808 return;
809 }
810
811 /* Slow case: now with the dentry lock held */
812 rcu_read_unlock();
813
814 WARN_ON(d_in_lookup(dentry));
815
816 /* Unreachable? Get rid of it */
817 if (unlikely(d_unhashed(dentry)))
818 goto kill_it;
819
820 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
821 goto kill_it;
822
823 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
824 if (dentry->d_op->d_delete(dentry))
825 goto kill_it;
826 }
827
828 dentry_lru_add(dentry);
829
830 dentry->d_lockref.count--;
831 spin_unlock(&dentry->d_lock);
832 return;
833
834 kill_it:
835 dentry = dentry_kill(dentry);
836 if (dentry) {
837 cond_resched();
838 goto repeat;
839 }
840 }
841 EXPORT_SYMBOL(dput);
842
843
844 /* This must be called with d_lock held */
845 static inline void __dget_dlock(struct dentry *dentry)
846 {
847 dentry->d_lockref.count++;
848 }
849
850 static inline void __dget(struct dentry *dentry)
851 {
852 lockref_get(&dentry->d_lockref);
853 }
854
855 struct dentry *dget_parent(struct dentry *dentry)
856 {
857 int gotref;
858 struct dentry *ret;
859
860 /*
861 * Do optimistic parent lookup without any
862 * locking.
863 */
864 rcu_read_lock();
865 ret = ACCESS_ONCE(dentry->d_parent);
866 gotref = lockref_get_not_zero(&ret->d_lockref);
867 rcu_read_unlock();
868 if (likely(gotref)) {
869 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
870 return ret;
871 dput(ret);
872 }
873
874 repeat:
875 /*
876 * Don't need rcu_dereference because we re-check it was correct under
877 * the lock.
878 */
879 rcu_read_lock();
880 ret = dentry->d_parent;
881 spin_lock(&ret->d_lock);
882 if (unlikely(ret != dentry->d_parent)) {
883 spin_unlock(&ret->d_lock);
884 rcu_read_unlock();
885 goto repeat;
886 }
887 rcu_read_unlock();
888 BUG_ON(!ret->d_lockref.count);
889 ret->d_lockref.count++;
890 spin_unlock(&ret->d_lock);
891 return ret;
892 }
893 EXPORT_SYMBOL(dget_parent);
894
895 /**
896 * d_find_alias - grab a hashed alias of inode
897 * @inode: inode in question
898 *
899 * If inode has a hashed alias, or is a directory and has any alias,
900 * acquire the reference to alias and return it. Otherwise return NULL.
901 * Notice that if inode is a directory there can be only one alias and
902 * it can be unhashed only if it has no children, or if it is the root
903 * of a filesystem, or if the directory was renamed and d_revalidate
904 * was the first vfs operation to notice.
905 *
906 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
907 * any other hashed alias over that one.
908 */
909 static struct dentry *__d_find_alias(struct inode *inode)
910 {
911 struct dentry *alias, *discon_alias;
912
913 again:
914 discon_alias = NULL;
915 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
916 spin_lock(&alias->d_lock);
917 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
918 if (IS_ROOT(alias) &&
919 (alias->d_flags & DCACHE_DISCONNECTED)) {
920 discon_alias = alias;
921 } else {
922 __dget_dlock(alias);
923 spin_unlock(&alias->d_lock);
924 return alias;
925 }
926 }
927 spin_unlock(&alias->d_lock);
928 }
929 if (discon_alias) {
930 alias = discon_alias;
931 spin_lock(&alias->d_lock);
932 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
933 __dget_dlock(alias);
934 spin_unlock(&alias->d_lock);
935 return alias;
936 }
937 spin_unlock(&alias->d_lock);
938 goto again;
939 }
940 return NULL;
941 }
942
943 struct dentry *d_find_alias(struct inode *inode)
944 {
945 struct dentry *de = NULL;
946
947 if (!hlist_empty(&inode->i_dentry)) {
948 spin_lock(&inode->i_lock);
949 de = __d_find_alias(inode);
950 spin_unlock(&inode->i_lock);
951 }
952 return de;
953 }
954 EXPORT_SYMBOL(d_find_alias);
955
956 /*
957 * Try to kill dentries associated with this inode.
958 * WARNING: you must own a reference to inode.
959 */
960 void d_prune_aliases(struct inode *inode)
961 {
962 struct dentry *dentry;
963 restart:
964 spin_lock(&inode->i_lock);
965 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
966 spin_lock(&dentry->d_lock);
967 if (!dentry->d_lockref.count) {
968 struct dentry *parent = lock_parent(dentry);
969 if (likely(!dentry->d_lockref.count)) {
970 __dentry_kill(dentry);
971 dput(parent);
972 goto restart;
973 }
974 if (parent)
975 spin_unlock(&parent->d_lock);
976 }
977 spin_unlock(&dentry->d_lock);
978 }
979 spin_unlock(&inode->i_lock);
980 }
981 EXPORT_SYMBOL(d_prune_aliases);
982
983 static void shrink_dentry_list(struct list_head *list)
984 {
985 struct dentry *dentry, *parent;
986
987 while (!list_empty(list)) {
988 struct inode *inode;
989 dentry = list_entry(list->prev, struct dentry, d_lru);
990 spin_lock(&dentry->d_lock);
991 parent = lock_parent(dentry);
992
993 /*
994 * The dispose list is isolated and dentries are not accounted
995 * to the LRU here, so we can simply remove it from the list
996 * here regardless of whether it is referenced or not.
997 */
998 d_shrink_del(dentry);
999
1000 /*
1001 * We found an inuse dentry which was not removed from
1002 * the LRU because of laziness during lookup. Do not free it.
1003 */
1004 if (dentry->d_lockref.count > 0) {
1005 spin_unlock(&dentry->d_lock);
1006 if (parent)
1007 spin_unlock(&parent->d_lock);
1008 continue;
1009 }
1010
1011
1012 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
1013 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1014 spin_unlock(&dentry->d_lock);
1015 if (parent)
1016 spin_unlock(&parent->d_lock);
1017 if (can_free)
1018 dentry_free(dentry);
1019 continue;
1020 }
1021
1022 inode = dentry->d_inode;
1023 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1024 d_shrink_add(dentry, list);
1025 spin_unlock(&dentry->d_lock);
1026 if (parent)
1027 spin_unlock(&parent->d_lock);
1028 continue;
1029 }
1030
1031 __dentry_kill(dentry);
1032
1033 /*
1034 * We need to prune ancestors too. This is necessary to prevent
1035 * quadratic behavior of shrink_dcache_parent(), but is also
1036 * expected to be beneficial in reducing dentry cache
1037 * fragmentation.
1038 */
1039 dentry = parent;
1040 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1041 parent = lock_parent(dentry);
1042 if (dentry->d_lockref.count != 1) {
1043 dentry->d_lockref.count--;
1044 spin_unlock(&dentry->d_lock);
1045 if (parent)
1046 spin_unlock(&parent->d_lock);
1047 break;
1048 }
1049 inode = dentry->d_inode; /* can't be NULL */
1050 if (unlikely(!spin_trylock(&inode->i_lock))) {
1051 spin_unlock(&dentry->d_lock);
1052 if (parent)
1053 spin_unlock(&parent->d_lock);
1054 cpu_relax();
1055 continue;
1056 }
1057 __dentry_kill(dentry);
1058 dentry = parent;
1059 }
1060 }
1061 }
1062
1063 static enum lru_status dentry_lru_isolate(struct list_head *item,
1064 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1065 {
1066 struct list_head *freeable = arg;
1067 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1068
1069
1070 /*
1071 * we are inverting the lru lock/dentry->d_lock here,
1072 * so use a trylock. If we fail to get the lock, just skip
1073 * it
1074 */
1075 if (!spin_trylock(&dentry->d_lock))
1076 return LRU_SKIP;
1077
1078 /*
1079 * Referenced dentries are still in use. If they have active
1080 * counts, just remove them from the LRU. Otherwise give them
1081 * another pass through the LRU.
1082 */
1083 if (dentry->d_lockref.count) {
1084 d_lru_isolate(lru, dentry);
1085 spin_unlock(&dentry->d_lock);
1086 return LRU_REMOVED;
1087 }
1088
1089 if (dentry->d_flags & DCACHE_REFERENCED) {
1090 dentry->d_flags &= ~DCACHE_REFERENCED;
1091 spin_unlock(&dentry->d_lock);
1092
1093 /*
1094 * The list move itself will be made by the common LRU code. At
1095 * this point, we've dropped the dentry->d_lock but keep the
1096 * lru lock. This is safe to do, since every list movement is
1097 * protected by the lru lock even if both locks are held.
1098 *
1099 * This is guaranteed by the fact that all LRU management
1100 * functions are intermediated by the LRU API calls like
1101 * list_lru_add and list_lru_del. List movement in this file
1102 * only ever occur through this functions or through callbacks
1103 * like this one, that are called from the LRU API.
1104 *
1105 * The only exceptions to this are functions like
1106 * shrink_dentry_list, and code that first checks for the
1107 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1108 * operating only with stack provided lists after they are
1109 * properly isolated from the main list. It is thus, always a
1110 * local access.
1111 */
1112 return LRU_ROTATE;
1113 }
1114
1115 d_lru_shrink_move(lru, dentry, freeable);
1116 spin_unlock(&dentry->d_lock);
1117
1118 return LRU_REMOVED;
1119 }
1120
1121 /**
1122 * prune_dcache_sb - shrink the dcache
1123 * @sb: superblock
1124 * @sc: shrink control, passed to list_lru_shrink_walk()
1125 *
1126 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1127 * is done when we need more memory and called from the superblock shrinker
1128 * function.
1129 *
1130 * This function may fail to free any resources if all the dentries are in
1131 * use.
1132 */
1133 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1134 {
1135 LIST_HEAD(dispose);
1136 long freed;
1137
1138 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1139 dentry_lru_isolate, &dispose);
1140 shrink_dentry_list(&dispose);
1141 return freed;
1142 }
1143
1144 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1145 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1146 {
1147 struct list_head *freeable = arg;
1148 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1149
1150 /*
1151 * we are inverting the lru lock/dentry->d_lock here,
1152 * so use a trylock. If we fail to get the lock, just skip
1153 * it
1154 */
1155 if (!spin_trylock(&dentry->d_lock))
1156 return LRU_SKIP;
1157
1158 d_lru_shrink_move(lru, dentry, freeable);
1159 spin_unlock(&dentry->d_lock);
1160
1161 return LRU_REMOVED;
1162 }
1163
1164
1165 /**
1166 * shrink_dcache_sb - shrink dcache for a superblock
1167 * @sb: superblock
1168 *
1169 * Shrink the dcache for the specified super block. This is used to free
1170 * the dcache before unmounting a file system.
1171 */
1172 void shrink_dcache_sb(struct super_block *sb)
1173 {
1174 long freed;
1175
1176 do {
1177 LIST_HEAD(dispose);
1178
1179 freed = list_lru_walk(&sb->s_dentry_lru,
1180 dentry_lru_isolate_shrink, &dispose, 1024);
1181
1182 this_cpu_sub(nr_dentry_unused, freed);
1183 shrink_dentry_list(&dispose);
1184 cond_resched();
1185 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1186 }
1187 EXPORT_SYMBOL(shrink_dcache_sb);
1188
1189 /**
1190 * enum d_walk_ret - action to talke during tree walk
1191 * @D_WALK_CONTINUE: contrinue walk
1192 * @D_WALK_QUIT: quit walk
1193 * @D_WALK_NORETRY: quit when retry is needed
1194 * @D_WALK_SKIP: skip this dentry and its children
1195 */
1196 enum d_walk_ret {
1197 D_WALK_CONTINUE,
1198 D_WALK_QUIT,
1199 D_WALK_NORETRY,
1200 D_WALK_SKIP,
1201 };
1202
1203 /**
1204 * d_walk - walk the dentry tree
1205 * @parent: start of walk
1206 * @data: data passed to @enter() and @finish()
1207 * @enter: callback when first entering the dentry
1208 * @finish: callback when successfully finished the walk
1209 *
1210 * The @enter() and @finish() callbacks are called with d_lock held.
1211 */
1212 static void d_walk(struct dentry *parent, void *data,
1213 enum d_walk_ret (*enter)(void *, struct dentry *),
1214 void (*finish)(void *))
1215 {
1216 struct dentry *this_parent;
1217 struct list_head *next;
1218 unsigned seq = 0;
1219 enum d_walk_ret ret;
1220 bool retry = true;
1221
1222 again:
1223 read_seqbegin_or_lock(&rename_lock, &seq);
1224 this_parent = parent;
1225 spin_lock(&this_parent->d_lock);
1226
1227 ret = enter(data, this_parent);
1228 switch (ret) {
1229 case D_WALK_CONTINUE:
1230 break;
1231 case D_WALK_QUIT:
1232 case D_WALK_SKIP:
1233 goto out_unlock;
1234 case D_WALK_NORETRY:
1235 retry = false;
1236 break;
1237 }
1238 repeat:
1239 next = this_parent->d_subdirs.next;
1240 resume:
1241 while (next != &this_parent->d_subdirs) {
1242 struct list_head *tmp = next;
1243 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1244 next = tmp->next;
1245
1246 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1247 continue;
1248
1249 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1250
1251 ret = enter(data, dentry);
1252 switch (ret) {
1253 case D_WALK_CONTINUE:
1254 break;
1255 case D_WALK_QUIT:
1256 spin_unlock(&dentry->d_lock);
1257 goto out_unlock;
1258 case D_WALK_NORETRY:
1259 retry = false;
1260 break;
1261 case D_WALK_SKIP:
1262 spin_unlock(&dentry->d_lock);
1263 continue;
1264 }
1265
1266 if (!list_empty(&dentry->d_subdirs)) {
1267 spin_unlock(&this_parent->d_lock);
1268 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1269 this_parent = dentry;
1270 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1271 goto repeat;
1272 }
1273 spin_unlock(&dentry->d_lock);
1274 }
1275 /*
1276 * All done at this level ... ascend and resume the search.
1277 */
1278 rcu_read_lock();
1279 ascend:
1280 if (this_parent != parent) {
1281 struct dentry *child = this_parent;
1282 this_parent = child->d_parent;
1283
1284 spin_unlock(&child->d_lock);
1285 spin_lock(&this_parent->d_lock);
1286
1287 /* might go back up the wrong parent if we have had a rename. */
1288 if (need_seqretry(&rename_lock, seq))
1289 goto rename_retry;
1290 /* go into the first sibling still alive */
1291 do {
1292 next = child->d_child.next;
1293 if (next == &this_parent->d_subdirs)
1294 goto ascend;
1295 child = list_entry(next, struct dentry, d_child);
1296 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1297 rcu_read_unlock();
1298 goto resume;
1299 }
1300 if (need_seqretry(&rename_lock, seq))
1301 goto rename_retry;
1302 rcu_read_unlock();
1303 if (finish)
1304 finish(data);
1305
1306 out_unlock:
1307 spin_unlock(&this_parent->d_lock);
1308 done_seqretry(&rename_lock, seq);
1309 return;
1310
1311 rename_retry:
1312 spin_unlock(&this_parent->d_lock);
1313 rcu_read_unlock();
1314 BUG_ON(seq & 1);
1315 if (!retry)
1316 return;
1317 seq = 1;
1318 goto again;
1319 }
1320
1321 struct check_mount {
1322 struct vfsmount *mnt;
1323 unsigned int mounted;
1324 };
1325
1326 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1327 {
1328 struct check_mount *info = data;
1329 struct path path = { .mnt = info->mnt, .dentry = dentry };
1330
1331 if (likely(!d_mountpoint(dentry)))
1332 return D_WALK_CONTINUE;
1333 if (__path_is_mountpoint(&path)) {
1334 info->mounted = 1;
1335 return D_WALK_QUIT;
1336 }
1337 return D_WALK_CONTINUE;
1338 }
1339
1340 /**
1341 * path_has_submounts - check for mounts over a dentry in the
1342 * current namespace.
1343 * @parent: path to check.
1344 *
1345 * Return true if the parent or its subdirectories contain
1346 * a mount point in the current namespace.
1347 */
1348 int path_has_submounts(const struct path *parent)
1349 {
1350 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1351
1352 read_seqlock_excl(&mount_lock);
1353 d_walk(parent->dentry, &data, path_check_mount, NULL);
1354 read_sequnlock_excl(&mount_lock);
1355
1356 return data.mounted;
1357 }
1358 EXPORT_SYMBOL(path_has_submounts);
1359
1360 /*
1361 * Called by mount code to set a mountpoint and check if the mountpoint is
1362 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1363 * subtree can become unreachable).
1364 *
1365 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1366 * this reason take rename_lock and d_lock on dentry and ancestors.
1367 */
1368 int d_set_mounted(struct dentry *dentry)
1369 {
1370 struct dentry *p;
1371 int ret = -ENOENT;
1372 write_seqlock(&rename_lock);
1373 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1374 /* Need exclusion wrt. d_invalidate() */
1375 spin_lock(&p->d_lock);
1376 if (unlikely(d_unhashed(p))) {
1377 spin_unlock(&p->d_lock);
1378 goto out;
1379 }
1380 spin_unlock(&p->d_lock);
1381 }
1382 spin_lock(&dentry->d_lock);
1383 if (!d_unlinked(dentry)) {
1384 ret = -EBUSY;
1385 if (!d_mountpoint(dentry)) {
1386 dentry->d_flags |= DCACHE_MOUNTED;
1387 ret = 0;
1388 }
1389 }
1390 spin_unlock(&dentry->d_lock);
1391 out:
1392 write_sequnlock(&rename_lock);
1393 return ret;
1394 }
1395
1396 /*
1397 * Search the dentry child list of the specified parent,
1398 * and move any unused dentries to the end of the unused
1399 * list for prune_dcache(). We descend to the next level
1400 * whenever the d_subdirs list is non-empty and continue
1401 * searching.
1402 *
1403 * It returns zero iff there are no unused children,
1404 * otherwise it returns the number of children moved to
1405 * the end of the unused list. This may not be the total
1406 * number of unused children, because select_parent can
1407 * drop the lock and return early due to latency
1408 * constraints.
1409 */
1410
1411 struct select_data {
1412 struct dentry *start;
1413 struct list_head dispose;
1414 int found;
1415 };
1416
1417 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1418 {
1419 struct select_data *data = _data;
1420 enum d_walk_ret ret = D_WALK_CONTINUE;
1421
1422 if (data->start == dentry)
1423 goto out;
1424
1425 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1426 data->found++;
1427 } else {
1428 if (dentry->d_flags & DCACHE_LRU_LIST)
1429 d_lru_del(dentry);
1430 if (!dentry->d_lockref.count) {
1431 d_shrink_add(dentry, &data->dispose);
1432 data->found++;
1433 }
1434 }
1435 /*
1436 * We can return to the caller if we have found some (this
1437 * ensures forward progress). We'll be coming back to find
1438 * the rest.
1439 */
1440 if (!list_empty(&data->dispose))
1441 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1442 out:
1443 return ret;
1444 }
1445
1446 /**
1447 * shrink_dcache_parent - prune dcache
1448 * @parent: parent of entries to prune
1449 *
1450 * Prune the dcache to remove unused children of the parent dentry.
1451 */
1452 void shrink_dcache_parent(struct dentry *parent)
1453 {
1454 for (;;) {
1455 struct select_data data;
1456
1457 INIT_LIST_HEAD(&data.dispose);
1458 data.start = parent;
1459 data.found = 0;
1460
1461 d_walk(parent, &data, select_collect, NULL);
1462 if (!data.found)
1463 break;
1464
1465 shrink_dentry_list(&data.dispose);
1466 cond_resched();
1467 }
1468 }
1469 EXPORT_SYMBOL(shrink_dcache_parent);
1470
1471 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1472 {
1473 /* it has busy descendents; complain about those instead */
1474 if (!list_empty(&dentry->d_subdirs))
1475 return D_WALK_CONTINUE;
1476
1477 /* root with refcount 1 is fine */
1478 if (dentry == _data && dentry->d_lockref.count == 1)
1479 return D_WALK_CONTINUE;
1480
1481 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1482 " still in use (%d) [unmount of %s %s]\n",
1483 dentry,
1484 dentry->d_inode ?
1485 dentry->d_inode->i_ino : 0UL,
1486 dentry,
1487 dentry->d_lockref.count,
1488 dentry->d_sb->s_type->name,
1489 dentry->d_sb->s_id);
1490 WARN_ON(1);
1491 return D_WALK_CONTINUE;
1492 }
1493
1494 static void do_one_tree(struct dentry *dentry)
1495 {
1496 shrink_dcache_parent(dentry);
1497 d_walk(dentry, dentry, umount_check, NULL);
1498 d_drop(dentry);
1499 dput(dentry);
1500 }
1501
1502 /*
1503 * destroy the dentries attached to a superblock on unmounting
1504 */
1505 void shrink_dcache_for_umount(struct super_block *sb)
1506 {
1507 struct dentry *dentry;
1508
1509 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1510
1511 dentry = sb->s_root;
1512 sb->s_root = NULL;
1513 do_one_tree(dentry);
1514
1515 while (!hlist_bl_empty(&sb->s_anon)) {
1516 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1517 do_one_tree(dentry);
1518 }
1519 }
1520
1521 struct detach_data {
1522 struct select_data select;
1523 struct dentry *mountpoint;
1524 };
1525 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1526 {
1527 struct detach_data *data = _data;
1528
1529 if (d_mountpoint(dentry)) {
1530 __dget_dlock(dentry);
1531 data->mountpoint = dentry;
1532 return D_WALK_QUIT;
1533 }
1534
1535 return select_collect(&data->select, dentry);
1536 }
1537
1538 static void check_and_drop(void *_data)
1539 {
1540 struct detach_data *data = _data;
1541
1542 if (!data->mountpoint && list_empty(&data->select.dispose))
1543 __d_drop(data->select.start);
1544 }
1545
1546 /**
1547 * d_invalidate - detach submounts, prune dcache, and drop
1548 * @dentry: dentry to invalidate (aka detach, prune and drop)
1549 *
1550 * no dcache lock.
1551 *
1552 * The final d_drop is done as an atomic operation relative to
1553 * rename_lock ensuring there are no races with d_set_mounted. This
1554 * ensures there are no unhashed dentries on the path to a mountpoint.
1555 */
1556 void d_invalidate(struct dentry *dentry)
1557 {
1558 /*
1559 * If it's already been dropped, return OK.
1560 */
1561 spin_lock(&dentry->d_lock);
1562 if (d_unhashed(dentry)) {
1563 spin_unlock(&dentry->d_lock);
1564 return;
1565 }
1566 spin_unlock(&dentry->d_lock);
1567
1568 /* Negative dentries can be dropped without further checks */
1569 if (!dentry->d_inode) {
1570 d_drop(dentry);
1571 return;
1572 }
1573
1574 for (;;) {
1575 struct detach_data data;
1576
1577 data.mountpoint = NULL;
1578 INIT_LIST_HEAD(&data.select.dispose);
1579 data.select.start = dentry;
1580 data.select.found = 0;
1581
1582 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1583
1584 if (!list_empty(&data.select.dispose))
1585 shrink_dentry_list(&data.select.dispose);
1586 else if (!data.mountpoint)
1587 return;
1588
1589 if (data.mountpoint) {
1590 detach_mounts(data.mountpoint);
1591 dput(data.mountpoint);
1592 }
1593 cond_resched();
1594 }
1595 }
1596 EXPORT_SYMBOL(d_invalidate);
1597
1598 /**
1599 * __d_alloc - allocate a dcache entry
1600 * @sb: filesystem it will belong to
1601 * @name: qstr of the name
1602 *
1603 * Allocates a dentry. It returns %NULL if there is insufficient memory
1604 * available. On a success the dentry is returned. The name passed in is
1605 * copied and the copy passed in may be reused after this call.
1606 */
1607
1608 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1609 {
1610 struct dentry *dentry;
1611 char *dname;
1612 int err;
1613
1614 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1615 if (!dentry)
1616 return NULL;
1617
1618 /*
1619 * We guarantee that the inline name is always NUL-terminated.
1620 * This way the memcpy() done by the name switching in rename
1621 * will still always have a NUL at the end, even if we might
1622 * be overwriting an internal NUL character
1623 */
1624 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1625 if (unlikely(!name)) {
1626 name = &slash_name;
1627 dname = dentry->d_iname;
1628 } else if (name->len > DNAME_INLINE_LEN-1) {
1629 size_t size = offsetof(struct external_name, name[1]);
1630 struct external_name *p = kmalloc(size + name->len,
1631 GFP_KERNEL_ACCOUNT);
1632 if (!p) {
1633 kmem_cache_free(dentry_cache, dentry);
1634 return NULL;
1635 }
1636 atomic_set(&p->u.count, 1);
1637 dname = p->name;
1638 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1639 kasan_unpoison_shadow(dname,
1640 round_up(name->len + 1, sizeof(unsigned long)));
1641 } else {
1642 dname = dentry->d_iname;
1643 }
1644
1645 dentry->d_name.len = name->len;
1646 dentry->d_name.hash = name->hash;
1647 memcpy(dname, name->name, name->len);
1648 dname[name->len] = 0;
1649
1650 /* Make sure we always see the terminating NUL character */
1651 smp_wmb();
1652 dentry->d_name.name = dname;
1653
1654 dentry->d_lockref.count = 1;
1655 dentry->d_flags = 0;
1656 spin_lock_init(&dentry->d_lock);
1657 seqcount_init(&dentry->d_seq);
1658 dentry->d_inode = NULL;
1659 dentry->d_parent = dentry;
1660 dentry->d_sb = sb;
1661 dentry->d_op = NULL;
1662 dentry->d_fsdata = NULL;
1663 INIT_HLIST_BL_NODE(&dentry->d_hash);
1664 INIT_LIST_HEAD(&dentry->d_lru);
1665 INIT_LIST_HEAD(&dentry->d_subdirs);
1666 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1667 INIT_LIST_HEAD(&dentry->d_child);
1668 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1669
1670 if (dentry->d_op && dentry->d_op->d_init) {
1671 err = dentry->d_op->d_init(dentry);
1672 if (err) {
1673 if (dname_external(dentry))
1674 kfree(external_name(dentry));
1675 kmem_cache_free(dentry_cache, dentry);
1676 return NULL;
1677 }
1678 }
1679
1680 this_cpu_inc(nr_dentry);
1681
1682 return dentry;
1683 }
1684
1685 /**
1686 * d_alloc - allocate a dcache entry
1687 * @parent: parent of entry to allocate
1688 * @name: qstr of the name
1689 *
1690 * Allocates a dentry. It returns %NULL if there is insufficient memory
1691 * available. On a success the dentry is returned. The name passed in is
1692 * copied and the copy passed in may be reused after this call.
1693 */
1694 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1695 {
1696 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1697 if (!dentry)
1698 return NULL;
1699 dentry->d_flags |= DCACHE_RCUACCESS;
1700 spin_lock(&parent->d_lock);
1701 /*
1702 * don't need child lock because it is not subject
1703 * to concurrency here
1704 */
1705 __dget_dlock(parent);
1706 dentry->d_parent = parent;
1707 list_add(&dentry->d_child, &parent->d_subdirs);
1708 spin_unlock(&parent->d_lock);
1709
1710 return dentry;
1711 }
1712 EXPORT_SYMBOL(d_alloc);
1713
1714 struct dentry *d_alloc_cursor(struct dentry * parent)
1715 {
1716 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1717 if (dentry) {
1718 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1719 dentry->d_parent = dget(parent);
1720 }
1721 return dentry;
1722 }
1723
1724 /**
1725 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1726 * @sb: the superblock
1727 * @name: qstr of the name
1728 *
1729 * For a filesystem that just pins its dentries in memory and never
1730 * performs lookups at all, return an unhashed IS_ROOT dentry.
1731 */
1732 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1733 {
1734 return __d_alloc(sb, name);
1735 }
1736 EXPORT_SYMBOL(d_alloc_pseudo);
1737
1738 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1739 {
1740 struct qstr q;
1741
1742 q.name = name;
1743 q.hash_len = hashlen_string(parent, name);
1744 return d_alloc(parent, &q);
1745 }
1746 EXPORT_SYMBOL(d_alloc_name);
1747
1748 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1749 {
1750 WARN_ON_ONCE(dentry->d_op);
1751 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1752 DCACHE_OP_COMPARE |
1753 DCACHE_OP_REVALIDATE |
1754 DCACHE_OP_WEAK_REVALIDATE |
1755 DCACHE_OP_DELETE |
1756 DCACHE_OP_REAL));
1757 dentry->d_op = op;
1758 if (!op)
1759 return;
1760 if (op->d_hash)
1761 dentry->d_flags |= DCACHE_OP_HASH;
1762 if (op->d_compare)
1763 dentry->d_flags |= DCACHE_OP_COMPARE;
1764 if (op->d_revalidate)
1765 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1766 if (op->d_weak_revalidate)
1767 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1768 if (op->d_delete)
1769 dentry->d_flags |= DCACHE_OP_DELETE;
1770 if (op->d_prune)
1771 dentry->d_flags |= DCACHE_OP_PRUNE;
1772 if (op->d_real)
1773 dentry->d_flags |= DCACHE_OP_REAL;
1774
1775 }
1776 EXPORT_SYMBOL(d_set_d_op);
1777
1778
1779 /*
1780 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1781 * @dentry - The dentry to mark
1782 *
1783 * Mark a dentry as falling through to the lower layer (as set with
1784 * d_pin_lower()). This flag may be recorded on the medium.
1785 */
1786 void d_set_fallthru(struct dentry *dentry)
1787 {
1788 spin_lock(&dentry->d_lock);
1789 dentry->d_flags |= DCACHE_FALLTHRU;
1790 spin_unlock(&dentry->d_lock);
1791 }
1792 EXPORT_SYMBOL(d_set_fallthru);
1793
1794 static unsigned d_flags_for_inode(struct inode *inode)
1795 {
1796 unsigned add_flags = DCACHE_REGULAR_TYPE;
1797
1798 if (!inode)
1799 return DCACHE_MISS_TYPE;
1800
1801 if (S_ISDIR(inode->i_mode)) {
1802 add_flags = DCACHE_DIRECTORY_TYPE;
1803 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1804 if (unlikely(!inode->i_op->lookup))
1805 add_flags = DCACHE_AUTODIR_TYPE;
1806 else
1807 inode->i_opflags |= IOP_LOOKUP;
1808 }
1809 goto type_determined;
1810 }
1811
1812 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1813 if (unlikely(inode->i_op->get_link)) {
1814 add_flags = DCACHE_SYMLINK_TYPE;
1815 goto type_determined;
1816 }
1817 inode->i_opflags |= IOP_NOFOLLOW;
1818 }
1819
1820 if (unlikely(!S_ISREG(inode->i_mode)))
1821 add_flags = DCACHE_SPECIAL_TYPE;
1822
1823 type_determined:
1824 if (unlikely(IS_AUTOMOUNT(inode)))
1825 add_flags |= DCACHE_NEED_AUTOMOUNT;
1826 return add_flags;
1827 }
1828
1829 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1830 {
1831 unsigned add_flags = d_flags_for_inode(inode);
1832 WARN_ON(d_in_lookup(dentry));
1833
1834 spin_lock(&dentry->d_lock);
1835 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1836 raw_write_seqcount_begin(&dentry->d_seq);
1837 __d_set_inode_and_type(dentry, inode, add_flags);
1838 raw_write_seqcount_end(&dentry->d_seq);
1839 fsnotify_update_flags(dentry);
1840 spin_unlock(&dentry->d_lock);
1841 }
1842
1843 /**
1844 * d_instantiate - fill in inode information for a dentry
1845 * @entry: dentry to complete
1846 * @inode: inode to attach to this dentry
1847 *
1848 * Fill in inode information in the entry.
1849 *
1850 * This turns negative dentries into productive full members
1851 * of society.
1852 *
1853 * NOTE! This assumes that the inode count has been incremented
1854 * (or otherwise set) by the caller to indicate that it is now
1855 * in use by the dcache.
1856 */
1857
1858 void d_instantiate(struct dentry *entry, struct inode * inode)
1859 {
1860 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1861 if (inode) {
1862 security_d_instantiate(entry, inode);
1863 spin_lock(&inode->i_lock);
1864 __d_instantiate(entry, inode);
1865 spin_unlock(&inode->i_lock);
1866 }
1867 }
1868 EXPORT_SYMBOL(d_instantiate);
1869
1870 /*
1871 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1872 * with lockdep-related part of unlock_new_inode() done before
1873 * anything else. Use that instead of open-coding d_instantiate()/
1874 * unlock_new_inode() combinations.
1875 */
1876 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1877 {
1878 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1879 BUG_ON(!inode);
1880 lockdep_annotate_inode_mutex_key(inode);
1881 security_d_instantiate(entry, inode);
1882 spin_lock(&inode->i_lock);
1883 __d_instantiate(entry, inode);
1884 WARN_ON(!(inode->i_state & I_NEW));
1885 inode->i_state &= ~I_NEW;
1886 smp_mb();
1887 wake_up_bit(&inode->i_state, __I_NEW);
1888 spin_unlock(&inode->i_lock);
1889 }
1890 EXPORT_SYMBOL(d_instantiate_new);
1891
1892 /**
1893 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1894 * @entry: dentry to complete
1895 * @inode: inode to attach to this dentry
1896 *
1897 * Fill in inode information in the entry. If a directory alias is found, then
1898 * return an error (and drop inode). Together with d_materialise_unique() this
1899 * guarantees that a directory inode may never have more than one alias.
1900 */
1901 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1902 {
1903 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1904
1905 security_d_instantiate(entry, inode);
1906 spin_lock(&inode->i_lock);
1907 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1908 spin_unlock(&inode->i_lock);
1909 iput(inode);
1910 return -EBUSY;
1911 }
1912 __d_instantiate(entry, inode);
1913 spin_unlock(&inode->i_lock);
1914
1915 return 0;
1916 }
1917 EXPORT_SYMBOL(d_instantiate_no_diralias);
1918
1919 struct dentry *d_make_root(struct inode *root_inode)
1920 {
1921 struct dentry *res = NULL;
1922
1923 if (root_inode) {
1924 res = __d_alloc(root_inode->i_sb, NULL);
1925 if (res)
1926 d_instantiate(res, root_inode);
1927 else
1928 iput(root_inode);
1929 }
1930 return res;
1931 }
1932 EXPORT_SYMBOL(d_make_root);
1933
1934 static struct dentry * __d_find_any_alias(struct inode *inode)
1935 {
1936 struct dentry *alias;
1937
1938 if (hlist_empty(&inode->i_dentry))
1939 return NULL;
1940 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1941 __dget(alias);
1942 return alias;
1943 }
1944
1945 /**
1946 * d_find_any_alias - find any alias for a given inode
1947 * @inode: inode to find an alias for
1948 *
1949 * If any aliases exist for the given inode, take and return a
1950 * reference for one of them. If no aliases exist, return %NULL.
1951 */
1952 struct dentry *d_find_any_alias(struct inode *inode)
1953 {
1954 struct dentry *de;
1955
1956 spin_lock(&inode->i_lock);
1957 de = __d_find_any_alias(inode);
1958 spin_unlock(&inode->i_lock);
1959 return de;
1960 }
1961 EXPORT_SYMBOL(d_find_any_alias);
1962
1963 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1964 {
1965 struct dentry *tmp;
1966 struct dentry *res;
1967 unsigned add_flags;
1968
1969 if (!inode)
1970 return ERR_PTR(-ESTALE);
1971 if (IS_ERR(inode))
1972 return ERR_CAST(inode);
1973
1974 res = d_find_any_alias(inode);
1975 if (res)
1976 goto out_iput;
1977
1978 tmp = __d_alloc(inode->i_sb, NULL);
1979 if (!tmp) {
1980 res = ERR_PTR(-ENOMEM);
1981 goto out_iput;
1982 }
1983
1984 security_d_instantiate(tmp, inode);
1985 spin_lock(&inode->i_lock);
1986 res = __d_find_any_alias(inode);
1987 if (res) {
1988 spin_unlock(&inode->i_lock);
1989 dput(tmp);
1990 goto out_iput;
1991 }
1992
1993 /* attach a disconnected dentry */
1994 add_flags = d_flags_for_inode(inode);
1995
1996 if (disconnected)
1997 add_flags |= DCACHE_DISCONNECTED;
1998
1999 spin_lock(&tmp->d_lock);
2000 __d_set_inode_and_type(tmp, inode, add_flags);
2001 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
2002 hlist_bl_lock(&tmp->d_sb->s_anon);
2003 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
2004 hlist_bl_unlock(&tmp->d_sb->s_anon);
2005 spin_unlock(&tmp->d_lock);
2006 spin_unlock(&inode->i_lock);
2007
2008 return tmp;
2009
2010 out_iput:
2011 iput(inode);
2012 return res;
2013 }
2014
2015 /**
2016 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2017 * @inode: inode to allocate the dentry for
2018 *
2019 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2020 * similar open by handle operations. The returned dentry may be anonymous,
2021 * or may have a full name (if the inode was already in the cache).
2022 *
2023 * When called on a directory inode, we must ensure that the inode only ever
2024 * has one dentry. If a dentry is found, that is returned instead of
2025 * allocating a new one.
2026 *
2027 * On successful return, the reference to the inode has been transferred
2028 * to the dentry. In case of an error the reference on the inode is released.
2029 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2030 * be passed in and the error will be propagated to the return value,
2031 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2032 */
2033 struct dentry *d_obtain_alias(struct inode *inode)
2034 {
2035 return __d_obtain_alias(inode, 1);
2036 }
2037 EXPORT_SYMBOL(d_obtain_alias);
2038
2039 /**
2040 * d_obtain_root - find or allocate a dentry for a given inode
2041 * @inode: inode to allocate the dentry for
2042 *
2043 * Obtain an IS_ROOT dentry for the root of a filesystem.
2044 *
2045 * We must ensure that directory inodes only ever have one dentry. If a
2046 * dentry is found, that is returned instead of allocating a new one.
2047 *
2048 * On successful return, the reference to the inode has been transferred
2049 * to the dentry. In case of an error the reference on the inode is
2050 * released. A %NULL or IS_ERR inode may be passed in and will be the
2051 * error will be propagate to the return value, with a %NULL @inode
2052 * replaced by ERR_PTR(-ESTALE).
2053 */
2054 struct dentry *d_obtain_root(struct inode *inode)
2055 {
2056 return __d_obtain_alias(inode, 0);
2057 }
2058 EXPORT_SYMBOL(d_obtain_root);
2059
2060 /**
2061 * d_add_ci - lookup or allocate new dentry with case-exact name
2062 * @inode: the inode case-insensitive lookup has found
2063 * @dentry: the negative dentry that was passed to the parent's lookup func
2064 * @name: the case-exact name to be associated with the returned dentry
2065 *
2066 * This is to avoid filling the dcache with case-insensitive names to the
2067 * same inode, only the actual correct case is stored in the dcache for
2068 * case-insensitive filesystems.
2069 *
2070 * For a case-insensitive lookup match and if the the case-exact dentry
2071 * already exists in in the dcache, use it and return it.
2072 *
2073 * If no entry exists with the exact case name, allocate new dentry with
2074 * the exact case, and return the spliced entry.
2075 */
2076 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2077 struct qstr *name)
2078 {
2079 struct dentry *found, *res;
2080
2081 /*
2082 * First check if a dentry matching the name already exists,
2083 * if not go ahead and create it now.
2084 */
2085 found = d_hash_and_lookup(dentry->d_parent, name);
2086 if (found) {
2087 iput(inode);
2088 return found;
2089 }
2090 if (d_in_lookup(dentry)) {
2091 found = d_alloc_parallel(dentry->d_parent, name,
2092 dentry->d_wait);
2093 if (IS_ERR(found) || !d_in_lookup(found)) {
2094 iput(inode);
2095 return found;
2096 }
2097 } else {
2098 found = d_alloc(dentry->d_parent, name);
2099 if (!found) {
2100 iput(inode);
2101 return ERR_PTR(-ENOMEM);
2102 }
2103 }
2104 res = d_splice_alias(inode, found);
2105 if (res) {
2106 dput(found);
2107 return res;
2108 }
2109 return found;
2110 }
2111 EXPORT_SYMBOL(d_add_ci);
2112
2113
2114 static inline bool d_same_name(const struct dentry *dentry,
2115 const struct dentry *parent,
2116 const struct qstr *name)
2117 {
2118 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2119 if (dentry->d_name.len != name->len)
2120 return false;
2121 return dentry_cmp(dentry, name->name, name->len) == 0;
2122 }
2123 return parent->d_op->d_compare(dentry,
2124 dentry->d_name.len, dentry->d_name.name,
2125 name) == 0;
2126 }
2127
2128 /**
2129 * __d_lookup_rcu - search for a dentry (racy, store-free)
2130 * @parent: parent dentry
2131 * @name: qstr of name we wish to find
2132 * @seqp: returns d_seq value at the point where the dentry was found
2133 * Returns: dentry, or NULL
2134 *
2135 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2136 * resolution (store-free path walking) design described in
2137 * Documentation/filesystems/path-lookup.txt.
2138 *
2139 * This is not to be used outside core vfs.
2140 *
2141 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2142 * held, and rcu_read_lock held. The returned dentry must not be stored into
2143 * without taking d_lock and checking d_seq sequence count against @seq
2144 * returned here.
2145 *
2146 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2147 * function.
2148 *
2149 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2150 * the returned dentry, so long as its parent's seqlock is checked after the
2151 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2152 * is formed, giving integrity down the path walk.
2153 *
2154 * NOTE! The caller *has* to check the resulting dentry against the sequence
2155 * number we've returned before using any of the resulting dentry state!
2156 */
2157 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2158 const struct qstr *name,
2159 unsigned *seqp)
2160 {
2161 u64 hashlen = name->hash_len;
2162 const unsigned char *str = name->name;
2163 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2164 struct hlist_bl_node *node;
2165 struct dentry *dentry;
2166
2167 /*
2168 * Note: There is significant duplication with __d_lookup_rcu which is
2169 * required to prevent single threaded performance regressions
2170 * especially on architectures where smp_rmb (in seqcounts) are costly.
2171 * Keep the two functions in sync.
2172 */
2173
2174 /*
2175 * The hash list is protected using RCU.
2176 *
2177 * Carefully use d_seq when comparing a candidate dentry, to avoid
2178 * races with d_move().
2179 *
2180 * It is possible that concurrent renames can mess up our list
2181 * walk here and result in missing our dentry, resulting in the
2182 * false-negative result. d_lookup() protects against concurrent
2183 * renames using rename_lock seqlock.
2184 *
2185 * See Documentation/filesystems/path-lookup.txt for more details.
2186 */
2187 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2188 unsigned seq;
2189
2190 seqretry:
2191 /*
2192 * The dentry sequence count protects us from concurrent
2193 * renames, and thus protects parent and name fields.
2194 *
2195 * The caller must perform a seqcount check in order
2196 * to do anything useful with the returned dentry.
2197 *
2198 * NOTE! We do a "raw" seqcount_begin here. That means that
2199 * we don't wait for the sequence count to stabilize if it
2200 * is in the middle of a sequence change. If we do the slow
2201 * dentry compare, we will do seqretries until it is stable,
2202 * and if we end up with a successful lookup, we actually
2203 * want to exit RCU lookup anyway.
2204 *
2205 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2206 * we are still guaranteed NUL-termination of ->d_name.name.
2207 */
2208 seq = raw_seqcount_begin(&dentry->d_seq);
2209 if (dentry->d_parent != parent)
2210 continue;
2211 if (d_unhashed(dentry))
2212 continue;
2213
2214 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2215 int tlen;
2216 const char *tname;
2217 if (dentry->d_name.hash != hashlen_hash(hashlen))
2218 continue;
2219 tlen = dentry->d_name.len;
2220 tname = dentry->d_name.name;
2221 /* we want a consistent (name,len) pair */
2222 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2223 cpu_relax();
2224 goto seqretry;
2225 }
2226 if (parent->d_op->d_compare(dentry,
2227 tlen, tname, name) != 0)
2228 continue;
2229 } else {
2230 if (dentry->d_name.hash_len != hashlen)
2231 continue;
2232 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2233 continue;
2234 }
2235 *seqp = seq;
2236 return dentry;
2237 }
2238 return NULL;
2239 }
2240
2241 /**
2242 * d_lookup - search for a dentry
2243 * @parent: parent dentry
2244 * @name: qstr of name we wish to find
2245 * Returns: dentry, or NULL
2246 *
2247 * d_lookup searches the children of the parent dentry for the name in
2248 * question. If the dentry is found its reference count is incremented and the
2249 * dentry is returned. The caller must use dput to free the entry when it has
2250 * finished using it. %NULL is returned if the dentry does not exist.
2251 */
2252 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2253 {
2254 struct dentry *dentry;
2255 unsigned seq;
2256
2257 do {
2258 seq = read_seqbegin(&rename_lock);
2259 dentry = __d_lookup(parent, name);
2260 if (dentry)
2261 break;
2262 } while (read_seqretry(&rename_lock, seq));
2263 return dentry;
2264 }
2265 EXPORT_SYMBOL(d_lookup);
2266
2267 /**
2268 * __d_lookup - search for a dentry (racy)
2269 * @parent: parent dentry
2270 * @name: qstr of name we wish to find
2271 * Returns: dentry, or NULL
2272 *
2273 * __d_lookup is like d_lookup, however it may (rarely) return a
2274 * false-negative result due to unrelated rename activity.
2275 *
2276 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2277 * however it must be used carefully, eg. with a following d_lookup in
2278 * the case of failure.
2279 *
2280 * __d_lookup callers must be commented.
2281 */
2282 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2283 {
2284 unsigned int hash = name->hash;
2285 struct hlist_bl_head *b = d_hash(hash);
2286 struct hlist_bl_node *node;
2287 struct dentry *found = NULL;
2288 struct dentry *dentry;
2289
2290 /*
2291 * Note: There is significant duplication with __d_lookup_rcu which is
2292 * required to prevent single threaded performance regressions
2293 * especially on architectures where smp_rmb (in seqcounts) are costly.
2294 * Keep the two functions in sync.
2295 */
2296
2297 /*
2298 * The hash list is protected using RCU.
2299 *
2300 * Take d_lock when comparing a candidate dentry, to avoid races
2301 * with d_move().
2302 *
2303 * It is possible that concurrent renames can mess up our list
2304 * walk here and result in missing our dentry, resulting in the
2305 * false-negative result. d_lookup() protects against concurrent
2306 * renames using rename_lock seqlock.
2307 *
2308 * See Documentation/filesystems/path-lookup.txt for more details.
2309 */
2310 rcu_read_lock();
2311
2312 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2313
2314 if (dentry->d_name.hash != hash)
2315 continue;
2316
2317 spin_lock(&dentry->d_lock);
2318 if (dentry->d_parent != parent)
2319 goto next;
2320 if (d_unhashed(dentry))
2321 goto next;
2322
2323 if (!d_same_name(dentry, parent, name))
2324 goto next;
2325
2326 dentry->d_lockref.count++;
2327 found = dentry;
2328 spin_unlock(&dentry->d_lock);
2329 break;
2330 next:
2331 spin_unlock(&dentry->d_lock);
2332 }
2333 rcu_read_unlock();
2334
2335 return found;
2336 }
2337
2338 /**
2339 * d_hash_and_lookup - hash the qstr then search for a dentry
2340 * @dir: Directory to search in
2341 * @name: qstr of name we wish to find
2342 *
2343 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2344 */
2345 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2346 {
2347 /*
2348 * Check for a fs-specific hash function. Note that we must
2349 * calculate the standard hash first, as the d_op->d_hash()
2350 * routine may choose to leave the hash value unchanged.
2351 */
2352 name->hash = full_name_hash(dir, name->name, name->len);
2353 if (dir->d_flags & DCACHE_OP_HASH) {
2354 int err = dir->d_op->d_hash(dir, name);
2355 if (unlikely(err < 0))
2356 return ERR_PTR(err);
2357 }
2358 return d_lookup(dir, name);
2359 }
2360 EXPORT_SYMBOL(d_hash_and_lookup);
2361
2362 /*
2363 * When a file is deleted, we have two options:
2364 * - turn this dentry into a negative dentry
2365 * - unhash this dentry and free it.
2366 *
2367 * Usually, we want to just turn this into
2368 * a negative dentry, but if anybody else is
2369 * currently using the dentry or the inode
2370 * we can't do that and we fall back on removing
2371 * it from the hash queues and waiting for
2372 * it to be deleted later when it has no users
2373 */
2374
2375 /**
2376 * d_delete - delete a dentry
2377 * @dentry: The dentry to delete
2378 *
2379 * Turn the dentry into a negative dentry if possible, otherwise
2380 * remove it from the hash queues so it can be deleted later
2381 */
2382
2383 void d_delete(struct dentry * dentry)
2384 {
2385 struct inode *inode;
2386 int isdir = 0;
2387 /*
2388 * Are we the only user?
2389 */
2390 again:
2391 spin_lock(&dentry->d_lock);
2392 inode = dentry->d_inode;
2393 isdir = S_ISDIR(inode->i_mode);
2394 if (dentry->d_lockref.count == 1) {
2395 if (!spin_trylock(&inode->i_lock)) {
2396 spin_unlock(&dentry->d_lock);
2397 cpu_relax();
2398 goto again;
2399 }
2400 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2401 dentry_unlink_inode(dentry);
2402 fsnotify_nameremove(dentry, isdir);
2403 return;
2404 }
2405
2406 if (!d_unhashed(dentry))
2407 __d_drop(dentry);
2408
2409 spin_unlock(&dentry->d_lock);
2410
2411 fsnotify_nameremove(dentry, isdir);
2412 }
2413 EXPORT_SYMBOL(d_delete);
2414
2415 static void __d_rehash(struct dentry *entry)
2416 {
2417 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2418
2419 hlist_bl_lock(b);
2420 hlist_bl_add_head_rcu(&entry->d_hash, b);
2421 hlist_bl_unlock(b);
2422 }
2423
2424 /**
2425 * d_rehash - add an entry back to the hash
2426 * @entry: dentry to add to the hash
2427 *
2428 * Adds a dentry to the hash according to its name.
2429 */
2430
2431 void d_rehash(struct dentry * entry)
2432 {
2433 spin_lock(&entry->d_lock);
2434 __d_rehash(entry);
2435 spin_unlock(&entry->d_lock);
2436 }
2437 EXPORT_SYMBOL(d_rehash);
2438
2439 static inline unsigned start_dir_add(struct inode *dir)
2440 {
2441
2442 for (;;) {
2443 unsigned n = dir->i_dir_seq;
2444 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2445 return n;
2446 cpu_relax();
2447 }
2448 }
2449
2450 static inline void end_dir_add(struct inode *dir, unsigned n)
2451 {
2452 smp_store_release(&dir->i_dir_seq, n + 2);
2453 }
2454
2455 static void d_wait_lookup(struct dentry *dentry)
2456 {
2457 if (d_in_lookup(dentry)) {
2458 DECLARE_WAITQUEUE(wait, current);
2459 add_wait_queue(dentry->d_wait, &wait);
2460 do {
2461 set_current_state(TASK_UNINTERRUPTIBLE);
2462 spin_unlock(&dentry->d_lock);
2463 schedule();
2464 spin_lock(&dentry->d_lock);
2465 } while (d_in_lookup(dentry));
2466 }
2467 }
2468
2469 struct dentry *d_alloc_parallel(struct dentry *parent,
2470 const struct qstr *name,
2471 wait_queue_head_t *wq)
2472 {
2473 unsigned int hash = name->hash;
2474 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2475 struct hlist_bl_node *node;
2476 struct dentry *new = d_alloc(parent, name);
2477 struct dentry *dentry;
2478 unsigned seq, r_seq, d_seq;
2479
2480 if (unlikely(!new))
2481 return ERR_PTR(-ENOMEM);
2482
2483 retry:
2484 rcu_read_lock();
2485 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2486 r_seq = read_seqbegin(&rename_lock);
2487 dentry = __d_lookup_rcu(parent, name, &d_seq);
2488 if (unlikely(dentry)) {
2489 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2490 rcu_read_unlock();
2491 goto retry;
2492 }
2493 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2494 rcu_read_unlock();
2495 dput(dentry);
2496 goto retry;
2497 }
2498 rcu_read_unlock();
2499 dput(new);
2500 return dentry;
2501 }
2502 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2503 rcu_read_unlock();
2504 goto retry;
2505 }
2506
2507 if (unlikely(seq & 1)) {
2508 rcu_read_unlock();
2509 goto retry;
2510 }
2511
2512 hlist_bl_lock(b);
2513 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2514 hlist_bl_unlock(b);
2515 rcu_read_unlock();
2516 goto retry;
2517 }
2518 /*
2519 * No changes for the parent since the beginning of d_lookup().
2520 * Since all removals from the chain happen with hlist_bl_lock(),
2521 * any potential in-lookup matches are going to stay here until
2522 * we unlock the chain. All fields are stable in everything
2523 * we encounter.
2524 */
2525 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2526 if (dentry->d_name.hash != hash)
2527 continue;
2528 if (dentry->d_parent != parent)
2529 continue;
2530 if (!d_same_name(dentry, parent, name))
2531 continue;
2532 hlist_bl_unlock(b);
2533 /* now we can try to grab a reference */
2534 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2535 rcu_read_unlock();
2536 goto retry;
2537 }
2538
2539 rcu_read_unlock();
2540 /*
2541 * somebody is likely to be still doing lookup for it;
2542 * wait for them to finish
2543 */
2544 spin_lock(&dentry->d_lock);
2545 d_wait_lookup(dentry);
2546 /*
2547 * it's not in-lookup anymore; in principle we should repeat
2548 * everything from dcache lookup, but it's likely to be what
2549 * d_lookup() would've found anyway. If it is, just return it;
2550 * otherwise we really have to repeat the whole thing.
2551 */
2552 if (unlikely(dentry->d_name.hash != hash))
2553 goto mismatch;
2554 if (unlikely(dentry->d_parent != parent))
2555 goto mismatch;
2556 if (unlikely(d_unhashed(dentry)))
2557 goto mismatch;
2558 if (unlikely(!d_same_name(dentry, parent, name)))
2559 goto mismatch;
2560 /* OK, it *is* a hashed match; return it */
2561 spin_unlock(&dentry->d_lock);
2562 dput(new);
2563 return dentry;
2564 }
2565 rcu_read_unlock();
2566 /* we can't take ->d_lock here; it's OK, though. */
2567 new->d_flags |= DCACHE_PAR_LOOKUP;
2568 new->d_wait = wq;
2569 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2570 hlist_bl_unlock(b);
2571 return new;
2572 mismatch:
2573 spin_unlock(&dentry->d_lock);
2574 dput(dentry);
2575 goto retry;
2576 }
2577 EXPORT_SYMBOL(d_alloc_parallel);
2578
2579 void __d_lookup_done(struct dentry *dentry)
2580 {
2581 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2582 dentry->d_name.hash);
2583 hlist_bl_lock(b);
2584 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2585 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2586 wake_up_all(dentry->d_wait);
2587 dentry->d_wait = NULL;
2588 hlist_bl_unlock(b);
2589 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2590 INIT_LIST_HEAD(&dentry->d_lru);
2591 }
2592 EXPORT_SYMBOL(__d_lookup_done);
2593
2594 /* inode->i_lock held if inode is non-NULL */
2595
2596 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2597 {
2598 struct inode *dir = NULL;
2599 unsigned n;
2600 spin_lock(&dentry->d_lock);
2601 if (unlikely(d_in_lookup(dentry))) {
2602 dir = dentry->d_parent->d_inode;
2603 n = start_dir_add(dir);
2604 __d_lookup_done(dentry);
2605 }
2606 if (inode) {
2607 unsigned add_flags = d_flags_for_inode(inode);
2608 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2609 raw_write_seqcount_begin(&dentry->d_seq);
2610 __d_set_inode_and_type(dentry, inode, add_flags);
2611 raw_write_seqcount_end(&dentry->d_seq);
2612 fsnotify_update_flags(dentry);
2613 }
2614 __d_rehash(dentry);
2615 if (dir)
2616 end_dir_add(dir, n);
2617 spin_unlock(&dentry->d_lock);
2618 if (inode)
2619 spin_unlock(&inode->i_lock);
2620 }
2621
2622 /**
2623 * d_add - add dentry to hash queues
2624 * @entry: dentry to add
2625 * @inode: The inode to attach to this dentry
2626 *
2627 * This adds the entry to the hash queues and initializes @inode.
2628 * The entry was actually filled in earlier during d_alloc().
2629 */
2630
2631 void d_add(struct dentry *entry, struct inode *inode)
2632 {
2633 if (inode) {
2634 security_d_instantiate(entry, inode);
2635 spin_lock(&inode->i_lock);
2636 }
2637 __d_add(entry, inode);
2638 }
2639 EXPORT_SYMBOL(d_add);
2640
2641 /**
2642 * d_exact_alias - find and hash an exact unhashed alias
2643 * @entry: dentry to add
2644 * @inode: The inode to go with this dentry
2645 *
2646 * If an unhashed dentry with the same name/parent and desired
2647 * inode already exists, hash and return it. Otherwise, return
2648 * NULL.
2649 *
2650 * Parent directory should be locked.
2651 */
2652 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2653 {
2654 struct dentry *alias;
2655 unsigned int hash = entry->d_name.hash;
2656
2657 spin_lock(&inode->i_lock);
2658 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2659 /*
2660 * Don't need alias->d_lock here, because aliases with
2661 * d_parent == entry->d_parent are not subject to name or
2662 * parent changes, because the parent inode i_mutex is held.
2663 */
2664 if (alias->d_name.hash != hash)
2665 continue;
2666 if (alias->d_parent != entry->d_parent)
2667 continue;
2668 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2669 continue;
2670 spin_lock(&alias->d_lock);
2671 if (!d_unhashed(alias)) {
2672 spin_unlock(&alias->d_lock);
2673 alias = NULL;
2674 } else {
2675 __dget_dlock(alias);
2676 __d_rehash(alias);
2677 spin_unlock(&alias->d_lock);
2678 }
2679 spin_unlock(&inode->i_lock);
2680 return alias;
2681 }
2682 spin_unlock(&inode->i_lock);
2683 return NULL;
2684 }
2685 EXPORT_SYMBOL(d_exact_alias);
2686
2687 /**
2688 * dentry_update_name_case - update case insensitive dentry with a new name
2689 * @dentry: dentry to be updated
2690 * @name: new name
2691 *
2692 * Update a case insensitive dentry with new case of name.
2693 *
2694 * dentry must have been returned by d_lookup with name @name. Old and new
2695 * name lengths must match (ie. no d_compare which allows mismatched name
2696 * lengths).
2697 *
2698 * Parent inode i_mutex must be held over d_lookup and into this call (to
2699 * keep renames and concurrent inserts, and readdir(2) away).
2700 */
2701 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2702 {
2703 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2704 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2705
2706 spin_lock(&dentry->d_lock);
2707 write_seqcount_begin(&dentry->d_seq);
2708 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2709 write_seqcount_end(&dentry->d_seq);
2710 spin_unlock(&dentry->d_lock);
2711 }
2712 EXPORT_SYMBOL(dentry_update_name_case);
2713
2714 static void swap_names(struct dentry *dentry, struct dentry *target)
2715 {
2716 if (unlikely(dname_external(target))) {
2717 if (unlikely(dname_external(dentry))) {
2718 /*
2719 * Both external: swap the pointers
2720 */
2721 swap(target->d_name.name, dentry->d_name.name);
2722 } else {
2723 /*
2724 * dentry:internal, target:external. Steal target's
2725 * storage and make target internal.
2726 */
2727 memcpy(target->d_iname, dentry->d_name.name,
2728 dentry->d_name.len + 1);
2729 dentry->d_name.name = target->d_name.name;
2730 target->d_name.name = target->d_iname;
2731 }
2732 } else {
2733 if (unlikely(dname_external(dentry))) {
2734 /*
2735 * dentry:external, target:internal. Give dentry's
2736 * storage to target and make dentry internal
2737 */
2738 memcpy(dentry->d_iname, target->d_name.name,
2739 target->d_name.len + 1);
2740 target->d_name.name = dentry->d_name.name;
2741 dentry->d_name.name = dentry->d_iname;
2742 } else {
2743 /*
2744 * Both are internal.
2745 */
2746 unsigned int i;
2747 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2748 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2749 swap(((long *) &dentry->d_iname)[i],
2750 ((long *) &target->d_iname)[i]);
2751 }
2752 }
2753 }
2754 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2755 }
2756
2757 static void copy_name(struct dentry *dentry, struct dentry *target)
2758 {
2759 struct external_name *old_name = NULL;
2760 if (unlikely(dname_external(dentry)))
2761 old_name = external_name(dentry);
2762 if (unlikely(dname_external(target))) {
2763 atomic_inc(&external_name(target)->u.count);
2764 dentry->d_name = target->d_name;
2765 } else {
2766 memcpy(dentry->d_iname, target->d_name.name,
2767 target->d_name.len + 1);
2768 dentry->d_name.name = dentry->d_iname;
2769 dentry->d_name.hash_len = target->d_name.hash_len;
2770 }
2771 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2772 kfree_rcu(old_name, u.head);
2773 }
2774
2775 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2776 {
2777 /*
2778 * XXXX: do we really need to take target->d_lock?
2779 */
2780 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2781 spin_lock(&target->d_parent->d_lock);
2782 else {
2783 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2784 spin_lock(&dentry->d_parent->d_lock);
2785 spin_lock_nested(&target->d_parent->d_lock,
2786 DENTRY_D_LOCK_NESTED);
2787 } else {
2788 spin_lock(&target->d_parent->d_lock);
2789 spin_lock_nested(&dentry->d_parent->d_lock,
2790 DENTRY_D_LOCK_NESTED);
2791 }
2792 }
2793 if (target < dentry) {
2794 spin_lock_nested(&target->d_lock, 2);
2795 spin_lock_nested(&dentry->d_lock, 3);
2796 } else {
2797 spin_lock_nested(&dentry->d_lock, 2);
2798 spin_lock_nested(&target->d_lock, 3);
2799 }
2800 }
2801
2802 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2803 {
2804 if (target->d_parent != dentry->d_parent)
2805 spin_unlock(&dentry->d_parent->d_lock);
2806 if (target->d_parent != target)
2807 spin_unlock(&target->d_parent->d_lock);
2808 spin_unlock(&target->d_lock);
2809 spin_unlock(&dentry->d_lock);
2810 }
2811
2812 /*
2813 * When switching names, the actual string doesn't strictly have to
2814 * be preserved in the target - because we're dropping the target
2815 * anyway. As such, we can just do a simple memcpy() to copy over
2816 * the new name before we switch, unless we are going to rehash
2817 * it. Note that if we *do* unhash the target, we are not allowed
2818 * to rehash it without giving it a new name/hash key - whether
2819 * we swap or overwrite the names here, resulting name won't match
2820 * the reality in filesystem; it's only there for d_path() purposes.
2821 * Note that all of this is happening under rename_lock, so the
2822 * any hash lookup seeing it in the middle of manipulations will
2823 * be discarded anyway. So we do not care what happens to the hash
2824 * key in that case.
2825 */
2826 /*
2827 * __d_move - move a dentry
2828 * @dentry: entry to move
2829 * @target: new dentry
2830 * @exchange: exchange the two dentries
2831 *
2832 * Update the dcache to reflect the move of a file name. Negative
2833 * dcache entries should not be moved in this way. Caller must hold
2834 * rename_lock, the i_mutex of the source and target directories,
2835 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2836 */
2837 static void __d_move(struct dentry *dentry, struct dentry *target,
2838 bool exchange)
2839 {
2840 struct inode *dir = NULL;
2841 unsigned n;
2842 if (!dentry->d_inode)
2843 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2844
2845 BUG_ON(d_ancestor(dentry, target));
2846 BUG_ON(d_ancestor(target, dentry));
2847
2848 dentry_lock_for_move(dentry, target);
2849 if (unlikely(d_in_lookup(target))) {
2850 dir = target->d_parent->d_inode;
2851 n = start_dir_add(dir);
2852 __d_lookup_done(target);
2853 }
2854
2855 write_seqcount_begin(&dentry->d_seq);
2856 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2857
2858 /* unhash both */
2859 /* ___d_drop does write_seqcount_barrier, but they're OK to nest. */
2860 ___d_drop(dentry);
2861 ___d_drop(target);
2862
2863 /* Switch the names.. */
2864 if (exchange)
2865 swap_names(dentry, target);
2866 else
2867 copy_name(dentry, target);
2868
2869 /* rehash in new place(s) */
2870 __d_rehash(dentry);
2871 if (exchange)
2872 __d_rehash(target);
2873 else
2874 target->d_hash.pprev = NULL;
2875
2876 /* ... and switch them in the tree */
2877 if (IS_ROOT(dentry)) {
2878 /* splicing a tree */
2879 dentry->d_flags |= DCACHE_RCUACCESS;
2880 dentry->d_parent = target->d_parent;
2881 target->d_parent = target;
2882 list_del_init(&target->d_child);
2883 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2884 } else {
2885 /* swapping two dentries */
2886 swap(dentry->d_parent, target->d_parent);
2887 list_move(&target->d_child, &target->d_parent->d_subdirs);
2888 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2889 if (exchange)
2890 fsnotify_update_flags(target);
2891 fsnotify_update_flags(dentry);
2892 }
2893
2894 write_seqcount_end(&target->d_seq);
2895 write_seqcount_end(&dentry->d_seq);
2896
2897 if (dir)
2898 end_dir_add(dir, n);
2899 dentry_unlock_for_move(dentry, target);
2900 }
2901
2902 /*
2903 * d_move - move a dentry
2904 * @dentry: entry to move
2905 * @target: new dentry
2906 *
2907 * Update the dcache to reflect the move of a file name. Negative
2908 * dcache entries should not be moved in this way. See the locking
2909 * requirements for __d_move.
2910 */
2911 void d_move(struct dentry *dentry, struct dentry *target)
2912 {
2913 write_seqlock(&rename_lock);
2914 __d_move(dentry, target, false);
2915 write_sequnlock(&rename_lock);
2916 }
2917 EXPORT_SYMBOL(d_move);
2918
2919 /*
2920 * d_exchange - exchange two dentries
2921 * @dentry1: first dentry
2922 * @dentry2: second dentry
2923 */
2924 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2925 {
2926 write_seqlock(&rename_lock);
2927
2928 WARN_ON(!dentry1->d_inode);
2929 WARN_ON(!dentry2->d_inode);
2930 WARN_ON(IS_ROOT(dentry1));
2931 WARN_ON(IS_ROOT(dentry2));
2932
2933 __d_move(dentry1, dentry2, true);
2934
2935 write_sequnlock(&rename_lock);
2936 }
2937
2938 /**
2939 * d_ancestor - search for an ancestor
2940 * @p1: ancestor dentry
2941 * @p2: child dentry
2942 *
2943 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2944 * an ancestor of p2, else NULL.
2945 */
2946 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2947 {
2948 struct dentry *p;
2949
2950 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2951 if (p->d_parent == p1)
2952 return p;
2953 }
2954 return NULL;
2955 }
2956
2957 /*
2958 * This helper attempts to cope with remotely renamed directories
2959 *
2960 * It assumes that the caller is already holding
2961 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2962 *
2963 * Note: If ever the locking in lock_rename() changes, then please
2964 * remember to update this too...
2965 */
2966 static int __d_unalias(struct inode *inode,
2967 struct dentry *dentry, struct dentry *alias)
2968 {
2969 struct mutex *m1 = NULL;
2970 struct rw_semaphore *m2 = NULL;
2971 int ret = -ESTALE;
2972
2973 /* If alias and dentry share a parent, then no extra locks required */
2974 if (alias->d_parent == dentry->d_parent)
2975 goto out_unalias;
2976
2977 /* See lock_rename() */
2978 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2979 goto out_err;
2980 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2981 if (!inode_trylock_shared(alias->d_parent->d_inode))
2982 goto out_err;
2983 m2 = &alias->d_parent->d_inode->i_rwsem;
2984 out_unalias:
2985 __d_move(alias, dentry, false);
2986 ret = 0;
2987 out_err:
2988 if (m2)
2989 up_read(m2);
2990 if (m1)
2991 mutex_unlock(m1);
2992 return ret;
2993 }
2994
2995 /**
2996 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2997 * @inode: the inode which may have a disconnected dentry
2998 * @dentry: a negative dentry which we want to point to the inode.
2999 *
3000 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3001 * place of the given dentry and return it, else simply d_add the inode
3002 * to the dentry and return NULL.
3003 *
3004 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3005 * we should error out: directories can't have multiple aliases.
3006 *
3007 * This is needed in the lookup routine of any filesystem that is exportable
3008 * (via knfsd) so that we can build dcache paths to directories effectively.
3009 *
3010 * If a dentry was found and moved, then it is returned. Otherwise NULL
3011 * is returned. This matches the expected return value of ->lookup.
3012 *
3013 * Cluster filesystems may call this function with a negative, hashed dentry.
3014 * In that case, we know that the inode will be a regular file, and also this
3015 * will only occur during atomic_open. So we need to check for the dentry
3016 * being already hashed only in the final case.
3017 */
3018 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3019 {
3020 if (IS_ERR(inode))
3021 return ERR_CAST(inode);
3022
3023 BUG_ON(!d_unhashed(dentry));
3024
3025 if (!inode)
3026 goto out;
3027
3028 security_d_instantiate(dentry, inode);
3029 spin_lock(&inode->i_lock);
3030 if (S_ISDIR(inode->i_mode)) {
3031 struct dentry *new = __d_find_any_alias(inode);
3032 if (unlikely(new)) {
3033 /* The reference to new ensures it remains an alias */
3034 spin_unlock(&inode->i_lock);
3035 write_seqlock(&rename_lock);
3036 if (unlikely(d_ancestor(new, dentry))) {
3037 write_sequnlock(&rename_lock);
3038 dput(new);
3039 new = ERR_PTR(-ELOOP);
3040 pr_warn_ratelimited(
3041 "VFS: Lookup of '%s' in %s %s"
3042 " would have caused loop\n",
3043 dentry->d_name.name,
3044 inode->i_sb->s_type->name,
3045 inode->i_sb->s_id);
3046 } else if (!IS_ROOT(new)) {
3047 int err = __d_unalias(inode, dentry, new);
3048 write_sequnlock(&rename_lock);
3049 if (err) {
3050 dput(new);
3051 new = ERR_PTR(err);
3052 }
3053 } else {
3054 __d_move(new, dentry, false);
3055 write_sequnlock(&rename_lock);
3056 }
3057 iput(inode);
3058 return new;
3059 }
3060 }
3061 out:
3062 __d_add(dentry, inode);
3063 return NULL;
3064 }
3065 EXPORT_SYMBOL(d_splice_alias);
3066
3067 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3068 {
3069 *buflen -= namelen;
3070 if (*buflen < 0)
3071 return -ENAMETOOLONG;
3072 *buffer -= namelen;
3073 memcpy(*buffer, str, namelen);
3074 return 0;
3075 }
3076
3077 /**
3078 * prepend_name - prepend a pathname in front of current buffer pointer
3079 * @buffer: buffer pointer
3080 * @buflen: allocated length of the buffer
3081 * @name: name string and length qstr structure
3082 *
3083 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3084 * make sure that either the old or the new name pointer and length are
3085 * fetched. However, there may be mismatch between length and pointer.
3086 * The length cannot be trusted, we need to copy it byte-by-byte until
3087 * the length is reached or a null byte is found. It also prepends "/" at
3088 * the beginning of the name. The sequence number check at the caller will
3089 * retry it again when a d_move() does happen. So any garbage in the buffer
3090 * due to mismatched pointer and length will be discarded.
3091 *
3092 * Data dependency barrier is needed to make sure that we see that terminating
3093 * NUL. Alpha strikes again, film at 11...
3094 */
3095 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3096 {
3097 const char *dname = ACCESS_ONCE(name->name);
3098 u32 dlen = ACCESS_ONCE(name->len);
3099 char *p;
3100
3101 smp_read_barrier_depends();
3102
3103 *buflen -= dlen + 1;
3104 if (*buflen < 0)
3105 return -ENAMETOOLONG;
3106 p = *buffer -= dlen + 1;
3107 *p++ = '/';
3108 while (dlen--) {
3109 char c = *dname++;
3110 if (!c)
3111 break;
3112 *p++ = c;
3113 }
3114 return 0;
3115 }
3116
3117 /**
3118 * prepend_path - Prepend path string to a buffer
3119 * @path: the dentry/vfsmount to report
3120 * @root: root vfsmnt/dentry
3121 * @buffer: pointer to the end of the buffer
3122 * @buflen: pointer to buffer length
3123 *
3124 * The function will first try to write out the pathname without taking any
3125 * lock other than the RCU read lock to make sure that dentries won't go away.
3126 * It only checks the sequence number of the global rename_lock as any change
3127 * in the dentry's d_seq will be preceded by changes in the rename_lock
3128 * sequence number. If the sequence number had been changed, it will restart
3129 * the whole pathname back-tracing sequence again by taking the rename_lock.
3130 * In this case, there is no need to take the RCU read lock as the recursive
3131 * parent pointer references will keep the dentry chain alive as long as no
3132 * rename operation is performed.
3133 */
3134 static int prepend_path(const struct path *path,
3135 const struct path *root,
3136 char **buffer, int *buflen)
3137 {
3138 struct dentry *dentry;
3139 struct vfsmount *vfsmnt;
3140 struct mount *mnt;
3141 int error = 0;
3142 unsigned seq, m_seq = 0;
3143 char *bptr;
3144 int blen;
3145
3146 rcu_read_lock();
3147 restart_mnt:
3148 read_seqbegin_or_lock(&mount_lock, &m_seq);
3149 seq = 0;
3150 rcu_read_lock();
3151 restart:
3152 bptr = *buffer;
3153 blen = *buflen;
3154 error = 0;
3155 dentry = path->dentry;
3156 vfsmnt = path->mnt;
3157 mnt = real_mount(vfsmnt);
3158 read_seqbegin_or_lock(&rename_lock, &seq);
3159 while (dentry != root->dentry || vfsmnt != root->mnt) {
3160 struct dentry * parent;
3161
3162 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3163 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3164 /* Escaped? */
3165 if (dentry != vfsmnt->mnt_root) {
3166 bptr = *buffer;
3167 blen = *buflen;
3168 error = 3;
3169 break;
3170 }
3171 /* Global root? */
3172 if (mnt != parent) {
3173 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3174 mnt = parent;
3175 vfsmnt = &mnt->mnt;
3176 continue;
3177 }
3178 if (!error)
3179 error = is_mounted(vfsmnt) ? 1 : 2;
3180 break;
3181 }
3182 parent = dentry->d_parent;
3183 prefetch(parent);
3184 error = prepend_name(&bptr, &blen, &dentry->d_name);
3185 if (error)
3186 break;
3187
3188 dentry = parent;
3189 }
3190 if (!(seq & 1))
3191 rcu_read_unlock();
3192 if (need_seqretry(&rename_lock, seq)) {
3193 seq = 1;
3194 goto restart;
3195 }
3196 done_seqretry(&rename_lock, seq);
3197
3198 if (!(m_seq & 1))
3199 rcu_read_unlock();
3200 if (need_seqretry(&mount_lock, m_seq)) {
3201 m_seq = 1;
3202 goto restart_mnt;
3203 }
3204 done_seqretry(&mount_lock, m_seq);
3205
3206 if (error >= 0 && bptr == *buffer) {
3207 if (--blen < 0)
3208 error = -ENAMETOOLONG;
3209 else
3210 *--bptr = '/';
3211 }
3212 *buffer = bptr;
3213 *buflen = blen;
3214 return error;
3215 }
3216
3217 /**
3218 * __d_path - return the path of a dentry
3219 * @path: the dentry/vfsmount to report
3220 * @root: root vfsmnt/dentry
3221 * @buf: buffer to return value in
3222 * @buflen: buffer length
3223 *
3224 * Convert a dentry into an ASCII path name.
3225 *
3226 * Returns a pointer into the buffer or an error code if the
3227 * path was too long.
3228 *
3229 * "buflen" should be positive.
3230 *
3231 * If the path is not reachable from the supplied root, return %NULL.
3232 */
3233 char *__d_path(const struct path *path,
3234 const struct path *root,
3235 char *buf, int buflen)
3236 {
3237 char *res = buf + buflen;
3238 int error;
3239
3240 prepend(&res, &buflen, "\0", 1);
3241 error = prepend_path(path, root, &res, &buflen);
3242
3243 if (error < 0)
3244 return ERR_PTR(error);
3245 if (error > 0)
3246 return NULL;
3247 return res;
3248 }
3249
3250 char *d_absolute_path(const struct path *path,
3251 char *buf, int buflen)
3252 {
3253 struct path root = {};
3254 char *res = buf + buflen;
3255 int error;
3256
3257 prepend(&res, &buflen, "\0", 1);
3258 error = prepend_path(path, &root, &res, &buflen);
3259
3260 if (error > 1)
3261 error = -EINVAL;
3262 if (error < 0)
3263 return ERR_PTR(error);
3264 return res;
3265 }
3266 EXPORT_SYMBOL(d_absolute_path);
3267
3268 /*
3269 * same as __d_path but appends "(deleted)" for unlinked files.
3270 */
3271 static int path_with_deleted(const struct path *path,
3272 const struct path *root,
3273 char **buf, int *buflen)
3274 {
3275 prepend(buf, buflen, "\0", 1);
3276 if (d_unlinked(path->dentry)) {
3277 int error = prepend(buf, buflen, " (deleted)", 10);
3278 if (error)
3279 return error;
3280 }
3281
3282 return prepend_path(path, root, buf, buflen);
3283 }
3284
3285 static int prepend_unreachable(char **buffer, int *buflen)
3286 {
3287 return prepend(buffer, buflen, "(unreachable)", 13);
3288 }
3289
3290 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3291 {
3292 unsigned seq;
3293
3294 do {
3295 seq = read_seqcount_begin(&fs->seq);
3296 *root = fs->root;
3297 } while (read_seqcount_retry(&fs->seq, seq));
3298 }
3299
3300 /**
3301 * d_path - return the path of a dentry
3302 * @path: path to report
3303 * @buf: buffer to return value in
3304 * @buflen: buffer length
3305 *
3306 * Convert a dentry into an ASCII path name. If the entry has been deleted
3307 * the string " (deleted)" is appended. Note that this is ambiguous.
3308 *
3309 * Returns a pointer into the buffer or an error code if the path was
3310 * too long. Note: Callers should use the returned pointer, not the passed
3311 * in buffer, to use the name! The implementation often starts at an offset
3312 * into the buffer, and may leave 0 bytes at the start.
3313 *
3314 * "buflen" should be positive.
3315 */
3316 char *d_path(const struct path *path, char *buf, int buflen)
3317 {
3318 char *res = buf + buflen;
3319 struct path root;
3320 int error;
3321
3322 /*
3323 * We have various synthetic filesystems that never get mounted. On
3324 * these filesystems dentries are never used for lookup purposes, and
3325 * thus don't need to be hashed. They also don't need a name until a
3326 * user wants to identify the object in /proc/pid/fd/. The little hack
3327 * below allows us to generate a name for these objects on demand:
3328 *
3329 * Some pseudo inodes are mountable. When they are mounted
3330 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3331 * and instead have d_path return the mounted path.
3332 */
3333 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3334 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3335 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3336
3337 rcu_read_lock();
3338 get_fs_root_rcu(current->fs, &root);
3339 error = path_with_deleted(path, &root, &res, &buflen);
3340 rcu_read_unlock();
3341
3342 if (error < 0)
3343 res = ERR_PTR(error);
3344 return res;
3345 }
3346 EXPORT_SYMBOL(d_path);
3347
3348 /*
3349 * Helper function for dentry_operations.d_dname() members
3350 */
3351 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3352 const char *fmt, ...)
3353 {
3354 va_list args;
3355 char temp[64];
3356 int sz;
3357
3358 va_start(args, fmt);
3359 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3360 va_end(args);
3361
3362 if (sz > sizeof(temp) || sz > buflen)
3363 return ERR_PTR(-ENAMETOOLONG);
3364
3365 buffer += buflen - sz;
3366 return memcpy(buffer, temp, sz);
3367 }
3368
3369 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3370 {
3371 char *end = buffer + buflen;
3372 /* these dentries are never renamed, so d_lock is not needed */
3373 if (prepend(&end, &buflen, " (deleted)", 11) ||
3374 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3375 prepend(&end, &buflen, "/", 1))
3376 end = ERR_PTR(-ENAMETOOLONG);
3377 return end;
3378 }
3379 EXPORT_SYMBOL(simple_dname);
3380
3381 /*
3382 * Write full pathname from the root of the filesystem into the buffer.
3383 */
3384 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3385 {
3386 struct dentry *dentry;
3387 char *end, *retval;
3388 int len, seq = 0;
3389 int error = 0;
3390
3391 if (buflen < 2)
3392 goto Elong;
3393
3394 rcu_read_lock();
3395 restart:
3396 dentry = d;
3397 end = buf + buflen;
3398 len = buflen;
3399 prepend(&end, &len, "\0", 1);
3400 /* Get '/' right */
3401 retval = end-1;
3402 *retval = '/';
3403 read_seqbegin_or_lock(&rename_lock, &seq);
3404 while (!IS_ROOT(dentry)) {
3405 struct dentry *parent = dentry->d_parent;
3406
3407 prefetch(parent);
3408 error = prepend_name(&end, &len, &dentry->d_name);
3409 if (error)
3410 break;
3411
3412 retval = end;
3413 dentry = parent;
3414 }
3415 if (!(seq & 1))
3416 rcu_read_unlock();
3417 if (need_seqretry(&rename_lock, seq)) {
3418 seq = 1;
3419 goto restart;
3420 }
3421 done_seqretry(&rename_lock, seq);
3422 if (error)
3423 goto Elong;
3424 return retval;
3425 Elong:
3426 return ERR_PTR(-ENAMETOOLONG);
3427 }
3428
3429 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3430 {
3431 return __dentry_path(dentry, buf, buflen);
3432 }
3433 EXPORT_SYMBOL(dentry_path_raw);
3434
3435 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3436 {
3437 char *p = NULL;
3438 char *retval;
3439
3440 if (d_unlinked(dentry)) {
3441 p = buf + buflen;
3442 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3443 goto Elong;
3444 buflen++;
3445 }
3446 retval = __dentry_path(dentry, buf, buflen);
3447 if (!IS_ERR(retval) && p)
3448 *p = '/'; /* restore '/' overriden with '\0' */
3449 return retval;
3450 Elong:
3451 return ERR_PTR(-ENAMETOOLONG);
3452 }
3453
3454 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3455 struct path *pwd)
3456 {
3457 unsigned seq;
3458
3459 do {
3460 seq = read_seqcount_begin(&fs->seq);
3461 *root = fs->root;
3462 *pwd = fs->pwd;
3463 } while (read_seqcount_retry(&fs->seq, seq));
3464 }
3465
3466 /*
3467 * NOTE! The user-level library version returns a
3468 * character pointer. The kernel system call just
3469 * returns the length of the buffer filled (which
3470 * includes the ending '\0' character), or a negative
3471 * error value. So libc would do something like
3472 *
3473 * char *getcwd(char * buf, size_t size)
3474 * {
3475 * int retval;
3476 *
3477 * retval = sys_getcwd(buf, size);
3478 * if (retval >= 0)
3479 * return buf;
3480 * errno = -retval;
3481 * return NULL;
3482 * }
3483 */
3484 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3485 {
3486 int error;
3487 struct path pwd, root;
3488 char *page = __getname();
3489
3490 if (!page)
3491 return -ENOMEM;
3492
3493 rcu_read_lock();
3494 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3495
3496 error = -ENOENT;
3497 if (!d_unlinked(pwd.dentry)) {
3498 unsigned long len;
3499 char *cwd = page + PATH_MAX;
3500 int buflen = PATH_MAX;
3501
3502 prepend(&cwd, &buflen, "\0", 1);
3503 error = prepend_path(&pwd, &root, &cwd, &buflen);
3504 rcu_read_unlock();
3505
3506 if (error < 0)
3507 goto out;
3508
3509 /* Unreachable from current root */
3510 if (error > 0) {
3511 error = prepend_unreachable(&cwd, &buflen);
3512 if (error)
3513 goto out;
3514 }
3515
3516 error = -ERANGE;
3517 len = PATH_MAX + page - cwd;
3518 if (len <= size) {
3519 error = len;
3520 if (copy_to_user(buf, cwd, len))
3521 error = -EFAULT;
3522 }
3523 } else {
3524 rcu_read_unlock();
3525 }
3526
3527 out:
3528 __putname(page);
3529 return error;
3530 }
3531
3532 /*
3533 * Test whether new_dentry is a subdirectory of old_dentry.
3534 *
3535 * Trivially implemented using the dcache structure
3536 */
3537
3538 /**
3539 * is_subdir - is new dentry a subdirectory of old_dentry
3540 * @new_dentry: new dentry
3541 * @old_dentry: old dentry
3542 *
3543 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3544 * Returns false otherwise.
3545 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3546 */
3547
3548 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3549 {
3550 bool result;
3551 unsigned seq;
3552
3553 if (new_dentry == old_dentry)
3554 return true;
3555
3556 do {
3557 /* for restarting inner loop in case of seq retry */
3558 seq = read_seqbegin(&rename_lock);
3559 /*
3560 * Need rcu_readlock to protect against the d_parent trashing
3561 * due to d_move
3562 */
3563 rcu_read_lock();
3564 if (d_ancestor(old_dentry, new_dentry))
3565 result = true;
3566 else
3567 result = false;
3568 rcu_read_unlock();
3569 } while (read_seqretry(&rename_lock, seq));
3570
3571 return result;
3572 }
3573
3574 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3575 {
3576 struct dentry *root = data;
3577 if (dentry != root) {
3578 if (d_unhashed(dentry) || !dentry->d_inode)
3579 return D_WALK_SKIP;
3580
3581 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3582 dentry->d_flags |= DCACHE_GENOCIDE;
3583 dentry->d_lockref.count--;
3584 }
3585 }
3586 return D_WALK_CONTINUE;
3587 }
3588
3589 void d_genocide(struct dentry *parent)
3590 {
3591 d_walk(parent, parent, d_genocide_kill, NULL);
3592 }
3593
3594 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3595 {
3596 inode_dec_link_count(inode);
3597 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3598 !hlist_unhashed(&dentry->d_u.d_alias) ||
3599 !d_unlinked(dentry));
3600 spin_lock(&dentry->d_parent->d_lock);
3601 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3602 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3603 (unsigned long long)inode->i_ino);
3604 spin_unlock(&dentry->d_lock);
3605 spin_unlock(&dentry->d_parent->d_lock);
3606 d_instantiate(dentry, inode);
3607 }
3608 EXPORT_SYMBOL(d_tmpfile);
3609
3610 static __initdata unsigned long dhash_entries;
3611 static int __init set_dhash_entries(char *str)
3612 {
3613 if (!str)
3614 return 0;
3615 dhash_entries = simple_strtoul(str, &str, 0);
3616 return 1;
3617 }
3618 __setup("dhash_entries=", set_dhash_entries);
3619
3620 static void __init dcache_init_early(void)
3621 {
3622 /* If hashes are distributed across NUMA nodes, defer
3623 * hash allocation until vmalloc space is available.
3624 */
3625 if (hashdist)
3626 return;
3627
3628 dentry_hashtable =
3629 alloc_large_system_hash("Dentry cache",
3630 sizeof(struct hlist_bl_head),
3631 dhash_entries,
3632 13,
3633 HASH_EARLY | HASH_ZERO,
3634 &d_hash_shift,
3635 &d_hash_mask,
3636 0,
3637 0);
3638 }
3639
3640 static void __init dcache_init(void)
3641 {
3642 /*
3643 * A constructor could be added for stable state like the lists,
3644 * but it is probably not worth it because of the cache nature
3645 * of the dcache.
3646 */
3647 dentry_cache = KMEM_CACHE(dentry,
3648 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3649
3650 /* Hash may have been set up in dcache_init_early */
3651 if (!hashdist)
3652 return;
3653
3654 dentry_hashtable =
3655 alloc_large_system_hash("Dentry cache",
3656 sizeof(struct hlist_bl_head),
3657 dhash_entries,
3658 13,
3659 HASH_ZERO,
3660 &d_hash_shift,
3661 &d_hash_mask,
3662 0,
3663 0);
3664 }
3665
3666 /* SLAB cache for __getname() consumers */
3667 struct kmem_cache *names_cachep __read_mostly;
3668 EXPORT_SYMBOL(names_cachep);
3669
3670 EXPORT_SYMBOL(d_genocide);
3671
3672 void __init vfs_caches_init_early(void)
3673 {
3674 int i;
3675
3676 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3677 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3678
3679 dcache_init_early();
3680 inode_init_early();
3681 }
3682
3683 void __init vfs_caches_init(void)
3684 {
3685 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3686 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3687
3688 dcache_init();
3689 inode_init();
3690 files_init();
3691 files_maxfiles_init();
3692 mnt_init();
3693 bdev_cache_init();
3694 chrdev_init();
3695 }