getxattr: use correct xattr length
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42
43 #include "internal.h"
44 #include "mount.h"
45
46 /*
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
65 *
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
72 *
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
78 *
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
83 */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88
89 EXPORT_SYMBOL(rename_lock);
90
91 static struct kmem_cache *dentry_cache __read_mostly;
92
93 const struct qstr empty_name = QSTR_INIT("", 0);
94 EXPORT_SYMBOL(empty_name);
95 const struct qstr slash_name = QSTR_INIT("/", 1);
96 EXPORT_SYMBOL(slash_name);
97
98 /*
99 * This is the single most critical data structure when it comes
100 * to the dcache: the hashtable for lookups. Somebody should try
101 * to make this good - I've just made it work.
102 *
103 * This hash-function tries to avoid losing too many bits of hash
104 * information, yet avoid using a prime hash-size or similar.
105 */
106
107 static unsigned int d_hash_mask __read_mostly;
108 static unsigned int d_hash_shift __read_mostly;
109
110 static struct hlist_bl_head *dentry_hashtable __read_mostly;
111
112 static inline struct hlist_bl_head *d_hash(unsigned int hash)
113 {
114 return dentry_hashtable + (hash >> (32 - d_hash_shift));
115 }
116
117 #define IN_LOOKUP_SHIFT 10
118 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
119
120 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
121 unsigned int hash)
122 {
123 hash += (unsigned long) parent / L1_CACHE_BYTES;
124 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
125 }
126
127
128 /* Statistics gathering. */
129 struct dentry_stat_t dentry_stat = {
130 .age_limit = 45,
131 };
132
133 static DEFINE_PER_CPU(long, nr_dentry);
134 static DEFINE_PER_CPU(long, nr_dentry_unused);
135
136 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
137
138 /*
139 * Here we resort to our own counters instead of using generic per-cpu counters
140 * for consistency with what the vfs inode code does. We are expected to harvest
141 * better code and performance by having our own specialized counters.
142 *
143 * Please note that the loop is done over all possible CPUs, not over all online
144 * CPUs. The reason for this is that we don't want to play games with CPUs going
145 * on and off. If one of them goes off, we will just keep their counters.
146 *
147 * glommer: See cffbc8a for details, and if you ever intend to change this,
148 * please update all vfs counters to match.
149 */
150 static long get_nr_dentry(void)
151 {
152 int i;
153 long sum = 0;
154 for_each_possible_cpu(i)
155 sum += per_cpu(nr_dentry, i);
156 return sum < 0 ? 0 : sum;
157 }
158
159 static long get_nr_dentry_unused(void)
160 {
161 int i;
162 long sum = 0;
163 for_each_possible_cpu(i)
164 sum += per_cpu(nr_dentry_unused, i);
165 return sum < 0 ? 0 : sum;
166 }
167
168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
169 size_t *lenp, loff_t *ppos)
170 {
171 dentry_stat.nr_dentry = get_nr_dentry();
172 dentry_stat.nr_unused = get_nr_dentry_unused();
173 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
174 }
175 #endif
176
177 /*
178 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
179 * The strings are both count bytes long, and count is non-zero.
180 */
181 #ifdef CONFIG_DCACHE_WORD_ACCESS
182
183 #include <asm/word-at-a-time.h>
184 /*
185 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
186 * aligned allocation for this particular component. We don't
187 * strictly need the load_unaligned_zeropad() safety, but it
188 * doesn't hurt either.
189 *
190 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
191 * need the careful unaligned handling.
192 */
193 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
194 {
195 unsigned long a,b,mask;
196
197 for (;;) {
198 a = *(unsigned long *)cs;
199 b = load_unaligned_zeropad(ct);
200 if (tcount < sizeof(unsigned long))
201 break;
202 if (unlikely(a != b))
203 return 1;
204 cs += sizeof(unsigned long);
205 ct += sizeof(unsigned long);
206 tcount -= sizeof(unsigned long);
207 if (!tcount)
208 return 0;
209 }
210 mask = bytemask_from_count(tcount);
211 return unlikely(!!((a ^ b) & mask));
212 }
213
214 #else
215
216 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
217 {
218 do {
219 if (*cs != *ct)
220 return 1;
221 cs++;
222 ct++;
223 tcount--;
224 } while (tcount);
225 return 0;
226 }
227
228 #endif
229
230 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
231 {
232 /*
233 * Be careful about RCU walk racing with rename:
234 * use 'READ_ONCE' to fetch the name pointer.
235 *
236 * NOTE! Even if a rename will mean that the length
237 * was not loaded atomically, we don't care. The
238 * RCU walk will check the sequence count eventually,
239 * and catch it. And we won't overrun the buffer,
240 * because we're reading the name pointer atomically,
241 * and a dentry name is guaranteed to be properly
242 * terminated with a NUL byte.
243 *
244 * End result: even if 'len' is wrong, we'll exit
245 * early because the data cannot match (there can
246 * be no NUL in the ct/tcount data)
247 */
248 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
249
250 return dentry_string_cmp(cs, ct, tcount);
251 }
252
253 struct external_name {
254 union {
255 atomic_t count;
256 struct rcu_head head;
257 } u;
258 unsigned char name[];
259 };
260
261 static inline struct external_name *external_name(struct dentry *dentry)
262 {
263 return container_of(dentry->d_name.name, struct external_name, name[0]);
264 }
265
266 static void __d_free(struct rcu_head *head)
267 {
268 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
269
270 kmem_cache_free(dentry_cache, dentry);
271 }
272
273 static void __d_free_external(struct rcu_head *head)
274 {
275 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
276 kfree(external_name(dentry));
277 kmem_cache_free(dentry_cache, dentry);
278 }
279
280 static inline int dname_external(const struct dentry *dentry)
281 {
282 return dentry->d_name.name != dentry->d_iname;
283 }
284
285 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
286 {
287 spin_lock(&dentry->d_lock);
288 if (unlikely(dname_external(dentry))) {
289 struct external_name *p = external_name(dentry);
290 atomic_inc(&p->u.count);
291 spin_unlock(&dentry->d_lock);
292 name->name = p->name;
293 } else {
294 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
295 spin_unlock(&dentry->d_lock);
296 name->name = name->inline_name;
297 }
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300
301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303 if (unlikely(name->name != name->inline_name)) {
304 struct external_name *p;
305 p = container_of(name->name, struct external_name, name[0]);
306 if (unlikely(atomic_dec_and_test(&p->u.count)))
307 kfree_rcu(p, u.head);
308 }
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313 struct inode *inode,
314 unsigned type_flags)
315 {
316 unsigned flags;
317
318 dentry->d_inode = inode;
319 flags = READ_ONCE(dentry->d_flags);
320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 flags |= type_flags;
322 WRITE_ONCE(dentry->d_flags, flags);
323 }
324
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327 unsigned flags = READ_ONCE(dentry->d_flags);
328
329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 WRITE_ONCE(dentry->d_flags, flags);
331 dentry->d_inode = NULL;
332 }
333
334 static void dentry_free(struct dentry *dentry)
335 {
336 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
337 if (unlikely(dname_external(dentry))) {
338 struct external_name *p = external_name(dentry);
339 if (likely(atomic_dec_and_test(&p->u.count))) {
340 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
341 return;
342 }
343 }
344 /* if dentry was never visible to RCU, immediate free is OK */
345 if (!(dentry->d_flags & DCACHE_RCUACCESS))
346 __d_free(&dentry->d_u.d_rcu);
347 else
348 call_rcu(&dentry->d_u.d_rcu, __d_free);
349 }
350
351 /*
352 * Release the dentry's inode, using the filesystem
353 * d_iput() operation if defined.
354 */
355 static void dentry_unlink_inode(struct dentry * dentry)
356 __releases(dentry->d_lock)
357 __releases(dentry->d_inode->i_lock)
358 {
359 struct inode *inode = dentry->d_inode;
360
361 raw_write_seqcount_begin(&dentry->d_seq);
362 __d_clear_type_and_inode(dentry);
363 hlist_del_init(&dentry->d_u.d_alias);
364 raw_write_seqcount_end(&dentry->d_seq);
365 spin_unlock(&dentry->d_lock);
366 spin_unlock(&inode->i_lock);
367 if (!inode->i_nlink)
368 fsnotify_inoderemove(inode);
369 if (dentry->d_op && dentry->d_op->d_iput)
370 dentry->d_op->d_iput(dentry, inode);
371 else
372 iput(inode);
373 }
374
375 /*
376 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
377 * is in use - which includes both the "real" per-superblock
378 * LRU list _and_ the DCACHE_SHRINK_LIST use.
379 *
380 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
381 * on the shrink list (ie not on the superblock LRU list).
382 *
383 * The per-cpu "nr_dentry_unused" counters are updated with
384 * the DCACHE_LRU_LIST bit.
385 *
386 * These helper functions make sure we always follow the
387 * rules. d_lock must be held by the caller.
388 */
389 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
390 static void d_lru_add(struct dentry *dentry)
391 {
392 D_FLAG_VERIFY(dentry, 0);
393 dentry->d_flags |= DCACHE_LRU_LIST;
394 this_cpu_inc(nr_dentry_unused);
395 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
396 }
397
398 static void d_lru_del(struct dentry *dentry)
399 {
400 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
401 dentry->d_flags &= ~DCACHE_LRU_LIST;
402 this_cpu_dec(nr_dentry_unused);
403 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
404 }
405
406 static void d_shrink_del(struct dentry *dentry)
407 {
408 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
409 list_del_init(&dentry->d_lru);
410 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
411 this_cpu_dec(nr_dentry_unused);
412 }
413
414 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
415 {
416 D_FLAG_VERIFY(dentry, 0);
417 list_add(&dentry->d_lru, list);
418 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
419 this_cpu_inc(nr_dentry_unused);
420 }
421
422 /*
423 * These can only be called under the global LRU lock, ie during the
424 * callback for freeing the LRU list. "isolate" removes it from the
425 * LRU lists entirely, while shrink_move moves it to the indicated
426 * private list.
427 */
428 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
429 {
430 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
431 dentry->d_flags &= ~DCACHE_LRU_LIST;
432 this_cpu_dec(nr_dentry_unused);
433 list_lru_isolate(lru, &dentry->d_lru);
434 }
435
436 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
437 struct list_head *list)
438 {
439 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
440 dentry->d_flags |= DCACHE_SHRINK_LIST;
441 list_lru_isolate_move(lru, &dentry->d_lru, list);
442 }
443
444 /*
445 * dentry_lru_(add|del)_list) must be called with d_lock held.
446 */
447 static void dentry_lru_add(struct dentry *dentry)
448 {
449 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
450 d_lru_add(dentry);
451 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
452 dentry->d_flags |= DCACHE_REFERENCED;
453 }
454
455 /**
456 * d_drop - drop a dentry
457 * @dentry: dentry to drop
458 *
459 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
460 * be found through a VFS lookup any more. Note that this is different from
461 * deleting the dentry - d_delete will try to mark the dentry negative if
462 * possible, giving a successful _negative_ lookup, while d_drop will
463 * just make the cache lookup fail.
464 *
465 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
466 * reason (NFS timeouts or autofs deletes).
467 *
468 * __d_drop requires dentry->d_lock
469 * ___d_drop doesn't mark dentry as "unhashed"
470 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
471 */
472 static void ___d_drop(struct dentry *dentry)
473 {
474 if (!d_unhashed(dentry)) {
475 struct hlist_bl_head *b;
476 /*
477 * Hashed dentries are normally on the dentry hashtable,
478 * with the exception of those newly allocated by
479 * d_obtain_alias, which are always IS_ROOT:
480 */
481 if (unlikely(IS_ROOT(dentry)))
482 b = &dentry->d_sb->s_anon;
483 else
484 b = d_hash(dentry->d_name.hash);
485
486 hlist_bl_lock(b);
487 __hlist_bl_del(&dentry->d_hash);
488 hlist_bl_unlock(b);
489 /* After this call, in-progress rcu-walk path lookup will fail. */
490 write_seqcount_invalidate(&dentry->d_seq);
491 }
492 }
493
494 void __d_drop(struct dentry *dentry)
495 {
496 ___d_drop(dentry);
497 dentry->d_hash.pprev = NULL;
498 }
499 EXPORT_SYMBOL(__d_drop);
500
501 void d_drop(struct dentry *dentry)
502 {
503 spin_lock(&dentry->d_lock);
504 __d_drop(dentry);
505 spin_unlock(&dentry->d_lock);
506 }
507 EXPORT_SYMBOL(d_drop);
508
509 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
510 {
511 struct dentry *next;
512 /*
513 * Inform d_walk() and shrink_dentry_list() that we are no longer
514 * attached to the dentry tree
515 */
516 dentry->d_flags |= DCACHE_DENTRY_KILLED;
517 if (unlikely(list_empty(&dentry->d_child)))
518 return;
519 __list_del_entry(&dentry->d_child);
520 /*
521 * Cursors can move around the list of children. While we'd been
522 * a normal list member, it didn't matter - ->d_child.next would've
523 * been updated. However, from now on it won't be and for the
524 * things like d_walk() it might end up with a nasty surprise.
525 * Normally d_walk() doesn't care about cursors moving around -
526 * ->d_lock on parent prevents that and since a cursor has no children
527 * of its own, we get through it without ever unlocking the parent.
528 * There is one exception, though - if we ascend from a child that
529 * gets killed as soon as we unlock it, the next sibling is found
530 * using the value left in its ->d_child.next. And if _that_
531 * pointed to a cursor, and cursor got moved (e.g. by lseek())
532 * before d_walk() regains parent->d_lock, we'll end up skipping
533 * everything the cursor had been moved past.
534 *
535 * Solution: make sure that the pointer left behind in ->d_child.next
536 * points to something that won't be moving around. I.e. skip the
537 * cursors.
538 */
539 while (dentry->d_child.next != &parent->d_subdirs) {
540 next = list_entry(dentry->d_child.next, struct dentry, d_child);
541 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
542 break;
543 dentry->d_child.next = next->d_child.next;
544 }
545 }
546
547 static void __dentry_kill(struct dentry *dentry)
548 {
549 struct dentry *parent = NULL;
550 bool can_free = true;
551 if (!IS_ROOT(dentry))
552 parent = dentry->d_parent;
553
554 /*
555 * The dentry is now unrecoverably dead to the world.
556 */
557 lockref_mark_dead(&dentry->d_lockref);
558
559 /*
560 * inform the fs via d_prune that this dentry is about to be
561 * unhashed and destroyed.
562 */
563 if (dentry->d_flags & DCACHE_OP_PRUNE)
564 dentry->d_op->d_prune(dentry);
565
566 if (dentry->d_flags & DCACHE_LRU_LIST) {
567 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
568 d_lru_del(dentry);
569 }
570 /* if it was on the hash then remove it */
571 __d_drop(dentry);
572 dentry_unlist(dentry, parent);
573 if (parent)
574 spin_unlock(&parent->d_lock);
575 if (dentry->d_inode)
576 dentry_unlink_inode(dentry);
577 else
578 spin_unlock(&dentry->d_lock);
579 this_cpu_dec(nr_dentry);
580 if (dentry->d_op && dentry->d_op->d_release)
581 dentry->d_op->d_release(dentry);
582
583 spin_lock(&dentry->d_lock);
584 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
585 dentry->d_flags |= DCACHE_MAY_FREE;
586 can_free = false;
587 }
588 spin_unlock(&dentry->d_lock);
589 if (likely(can_free))
590 dentry_free(dentry);
591 }
592
593 /*
594 * Finish off a dentry we've decided to kill.
595 * dentry->d_lock must be held, returns with it unlocked.
596 * If ref is non-zero, then decrement the refcount too.
597 * Returns dentry requiring refcount drop, or NULL if we're done.
598 */
599 static struct dentry *dentry_kill(struct dentry *dentry)
600 __releases(dentry->d_lock)
601 {
602 struct inode *inode = dentry->d_inode;
603 struct dentry *parent = NULL;
604
605 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
606 goto failed;
607
608 if (!IS_ROOT(dentry)) {
609 parent = dentry->d_parent;
610 if (unlikely(!spin_trylock(&parent->d_lock))) {
611 if (inode)
612 spin_unlock(&inode->i_lock);
613 goto failed;
614 }
615 }
616
617 __dentry_kill(dentry);
618 return parent;
619
620 failed:
621 spin_unlock(&dentry->d_lock);
622 return dentry; /* try again with same dentry */
623 }
624
625 static inline struct dentry *lock_parent(struct dentry *dentry)
626 {
627 struct dentry *parent = dentry->d_parent;
628 if (IS_ROOT(dentry))
629 return NULL;
630 if (unlikely(dentry->d_lockref.count < 0))
631 return NULL;
632 if (likely(spin_trylock(&parent->d_lock)))
633 return parent;
634 rcu_read_lock();
635 spin_unlock(&dentry->d_lock);
636 again:
637 parent = ACCESS_ONCE(dentry->d_parent);
638 spin_lock(&parent->d_lock);
639 /*
640 * We can't blindly lock dentry until we are sure
641 * that we won't violate the locking order.
642 * Any changes of dentry->d_parent must have
643 * been done with parent->d_lock held, so
644 * spin_lock() above is enough of a barrier
645 * for checking if it's still our child.
646 */
647 if (unlikely(parent != dentry->d_parent)) {
648 spin_unlock(&parent->d_lock);
649 goto again;
650 }
651 if (parent != dentry) {
652 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
653 if (unlikely(dentry->d_lockref.count < 0)) {
654 spin_unlock(&parent->d_lock);
655 parent = NULL;
656 }
657 } else {
658 parent = NULL;
659 }
660 rcu_read_unlock();
661 return parent;
662 }
663
664 /*
665 * Try to do a lockless dput(), and return whether that was successful.
666 *
667 * If unsuccessful, we return false, having already taken the dentry lock.
668 *
669 * The caller needs to hold the RCU read lock, so that the dentry is
670 * guaranteed to stay around even if the refcount goes down to zero!
671 */
672 static inline bool fast_dput(struct dentry *dentry)
673 {
674 int ret;
675 unsigned int d_flags;
676
677 /*
678 * If we have a d_op->d_delete() operation, we sould not
679 * let the dentry count go to zero, so use "put_or_lock".
680 */
681 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
682 return lockref_put_or_lock(&dentry->d_lockref);
683
684 /*
685 * .. otherwise, we can try to just decrement the
686 * lockref optimistically.
687 */
688 ret = lockref_put_return(&dentry->d_lockref);
689
690 /*
691 * If the lockref_put_return() failed due to the lock being held
692 * by somebody else, the fast path has failed. We will need to
693 * get the lock, and then check the count again.
694 */
695 if (unlikely(ret < 0)) {
696 spin_lock(&dentry->d_lock);
697 if (dentry->d_lockref.count > 1) {
698 dentry->d_lockref.count--;
699 spin_unlock(&dentry->d_lock);
700 return 1;
701 }
702 return 0;
703 }
704
705 /*
706 * If we weren't the last ref, we're done.
707 */
708 if (ret)
709 return 1;
710
711 /*
712 * Careful, careful. The reference count went down
713 * to zero, but we don't hold the dentry lock, so
714 * somebody else could get it again, and do another
715 * dput(), and we need to not race with that.
716 *
717 * However, there is a very special and common case
718 * where we don't care, because there is nothing to
719 * do: the dentry is still hashed, it does not have
720 * a 'delete' op, and it's referenced and already on
721 * the LRU list.
722 *
723 * NOTE! Since we aren't locked, these values are
724 * not "stable". However, it is sufficient that at
725 * some point after we dropped the reference the
726 * dentry was hashed and the flags had the proper
727 * value. Other dentry users may have re-gotten
728 * a reference to the dentry and change that, but
729 * our work is done - we can leave the dentry
730 * around with a zero refcount.
731 */
732 smp_rmb();
733 d_flags = ACCESS_ONCE(dentry->d_flags);
734 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
735
736 /* Nothing to do? Dropping the reference was all we needed? */
737 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
738 return 1;
739
740 /*
741 * Not the fast normal case? Get the lock. We've already decremented
742 * the refcount, but we'll need to re-check the situation after
743 * getting the lock.
744 */
745 spin_lock(&dentry->d_lock);
746
747 /*
748 * Did somebody else grab a reference to it in the meantime, and
749 * we're no longer the last user after all? Alternatively, somebody
750 * else could have killed it and marked it dead. Either way, we
751 * don't need to do anything else.
752 */
753 if (dentry->d_lockref.count) {
754 spin_unlock(&dentry->d_lock);
755 return 1;
756 }
757
758 /*
759 * Re-get the reference we optimistically dropped. We hold the
760 * lock, and we just tested that it was zero, so we can just
761 * set it to 1.
762 */
763 dentry->d_lockref.count = 1;
764 return 0;
765 }
766
767
768 /*
769 * This is dput
770 *
771 * This is complicated by the fact that we do not want to put
772 * dentries that are no longer on any hash chain on the unused
773 * list: we'd much rather just get rid of them immediately.
774 *
775 * However, that implies that we have to traverse the dentry
776 * tree upwards to the parents which might _also_ now be
777 * scheduled for deletion (it may have been only waiting for
778 * its last child to go away).
779 *
780 * This tail recursion is done by hand as we don't want to depend
781 * on the compiler to always get this right (gcc generally doesn't).
782 * Real recursion would eat up our stack space.
783 */
784
785 /*
786 * dput - release a dentry
787 * @dentry: dentry to release
788 *
789 * Release a dentry. This will drop the usage count and if appropriate
790 * call the dentry unlink method as well as removing it from the queues and
791 * releasing its resources. If the parent dentries were scheduled for release
792 * they too may now get deleted.
793 */
794 void dput(struct dentry *dentry)
795 {
796 if (unlikely(!dentry))
797 return;
798
799 repeat:
800 might_sleep();
801
802 rcu_read_lock();
803 if (likely(fast_dput(dentry))) {
804 rcu_read_unlock();
805 return;
806 }
807
808 /* Slow case: now with the dentry lock held */
809 rcu_read_unlock();
810
811 WARN_ON(d_in_lookup(dentry));
812
813 /* Unreachable? Get rid of it */
814 if (unlikely(d_unhashed(dentry)))
815 goto kill_it;
816
817 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
818 goto kill_it;
819
820 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
821 if (dentry->d_op->d_delete(dentry))
822 goto kill_it;
823 }
824
825 dentry_lru_add(dentry);
826
827 dentry->d_lockref.count--;
828 spin_unlock(&dentry->d_lock);
829 return;
830
831 kill_it:
832 dentry = dentry_kill(dentry);
833 if (dentry) {
834 cond_resched();
835 goto repeat;
836 }
837 }
838 EXPORT_SYMBOL(dput);
839
840
841 /* This must be called with d_lock held */
842 static inline void __dget_dlock(struct dentry *dentry)
843 {
844 dentry->d_lockref.count++;
845 }
846
847 static inline void __dget(struct dentry *dentry)
848 {
849 lockref_get(&dentry->d_lockref);
850 }
851
852 struct dentry *dget_parent(struct dentry *dentry)
853 {
854 int gotref;
855 struct dentry *ret;
856
857 /*
858 * Do optimistic parent lookup without any
859 * locking.
860 */
861 rcu_read_lock();
862 ret = ACCESS_ONCE(dentry->d_parent);
863 gotref = lockref_get_not_zero(&ret->d_lockref);
864 rcu_read_unlock();
865 if (likely(gotref)) {
866 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
867 return ret;
868 dput(ret);
869 }
870
871 repeat:
872 /*
873 * Don't need rcu_dereference because we re-check it was correct under
874 * the lock.
875 */
876 rcu_read_lock();
877 ret = dentry->d_parent;
878 spin_lock(&ret->d_lock);
879 if (unlikely(ret != dentry->d_parent)) {
880 spin_unlock(&ret->d_lock);
881 rcu_read_unlock();
882 goto repeat;
883 }
884 rcu_read_unlock();
885 BUG_ON(!ret->d_lockref.count);
886 ret->d_lockref.count++;
887 spin_unlock(&ret->d_lock);
888 return ret;
889 }
890 EXPORT_SYMBOL(dget_parent);
891
892 /**
893 * d_find_alias - grab a hashed alias of inode
894 * @inode: inode in question
895 *
896 * If inode has a hashed alias, or is a directory and has any alias,
897 * acquire the reference to alias and return it. Otherwise return NULL.
898 * Notice that if inode is a directory there can be only one alias and
899 * it can be unhashed only if it has no children, or if it is the root
900 * of a filesystem, or if the directory was renamed and d_revalidate
901 * was the first vfs operation to notice.
902 *
903 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
904 * any other hashed alias over that one.
905 */
906 static struct dentry *__d_find_alias(struct inode *inode)
907 {
908 struct dentry *alias, *discon_alias;
909
910 again:
911 discon_alias = NULL;
912 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
913 spin_lock(&alias->d_lock);
914 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
915 if (IS_ROOT(alias) &&
916 (alias->d_flags & DCACHE_DISCONNECTED)) {
917 discon_alias = alias;
918 } else {
919 __dget_dlock(alias);
920 spin_unlock(&alias->d_lock);
921 return alias;
922 }
923 }
924 spin_unlock(&alias->d_lock);
925 }
926 if (discon_alias) {
927 alias = discon_alias;
928 spin_lock(&alias->d_lock);
929 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
930 __dget_dlock(alias);
931 spin_unlock(&alias->d_lock);
932 return alias;
933 }
934 spin_unlock(&alias->d_lock);
935 goto again;
936 }
937 return NULL;
938 }
939
940 struct dentry *d_find_alias(struct inode *inode)
941 {
942 struct dentry *de = NULL;
943
944 if (!hlist_empty(&inode->i_dentry)) {
945 spin_lock(&inode->i_lock);
946 de = __d_find_alias(inode);
947 spin_unlock(&inode->i_lock);
948 }
949 return de;
950 }
951 EXPORT_SYMBOL(d_find_alias);
952
953 /*
954 * Try to kill dentries associated with this inode.
955 * WARNING: you must own a reference to inode.
956 */
957 void d_prune_aliases(struct inode *inode)
958 {
959 struct dentry *dentry;
960 restart:
961 spin_lock(&inode->i_lock);
962 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
963 spin_lock(&dentry->d_lock);
964 if (!dentry->d_lockref.count) {
965 struct dentry *parent = lock_parent(dentry);
966 if (likely(!dentry->d_lockref.count)) {
967 __dentry_kill(dentry);
968 dput(parent);
969 goto restart;
970 }
971 if (parent)
972 spin_unlock(&parent->d_lock);
973 }
974 spin_unlock(&dentry->d_lock);
975 }
976 spin_unlock(&inode->i_lock);
977 }
978 EXPORT_SYMBOL(d_prune_aliases);
979
980 static void shrink_dentry_list(struct list_head *list)
981 {
982 struct dentry *dentry, *parent;
983
984 while (!list_empty(list)) {
985 struct inode *inode;
986 dentry = list_entry(list->prev, struct dentry, d_lru);
987 spin_lock(&dentry->d_lock);
988 parent = lock_parent(dentry);
989
990 /*
991 * The dispose list is isolated and dentries are not accounted
992 * to the LRU here, so we can simply remove it from the list
993 * here regardless of whether it is referenced or not.
994 */
995 d_shrink_del(dentry);
996
997 /*
998 * We found an inuse dentry which was not removed from
999 * the LRU because of laziness during lookup. Do not free it.
1000 */
1001 if (dentry->d_lockref.count > 0) {
1002 spin_unlock(&dentry->d_lock);
1003 if (parent)
1004 spin_unlock(&parent->d_lock);
1005 continue;
1006 }
1007
1008
1009 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
1010 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1011 spin_unlock(&dentry->d_lock);
1012 if (parent)
1013 spin_unlock(&parent->d_lock);
1014 if (can_free)
1015 dentry_free(dentry);
1016 continue;
1017 }
1018
1019 inode = dentry->d_inode;
1020 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1021 d_shrink_add(dentry, list);
1022 spin_unlock(&dentry->d_lock);
1023 if (parent)
1024 spin_unlock(&parent->d_lock);
1025 continue;
1026 }
1027
1028 __dentry_kill(dentry);
1029
1030 /*
1031 * We need to prune ancestors too. This is necessary to prevent
1032 * quadratic behavior of shrink_dcache_parent(), but is also
1033 * expected to be beneficial in reducing dentry cache
1034 * fragmentation.
1035 */
1036 dentry = parent;
1037 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1038 parent = lock_parent(dentry);
1039 if (dentry->d_lockref.count != 1) {
1040 dentry->d_lockref.count--;
1041 spin_unlock(&dentry->d_lock);
1042 if (parent)
1043 spin_unlock(&parent->d_lock);
1044 break;
1045 }
1046 inode = dentry->d_inode; /* can't be NULL */
1047 if (unlikely(!spin_trylock(&inode->i_lock))) {
1048 spin_unlock(&dentry->d_lock);
1049 if (parent)
1050 spin_unlock(&parent->d_lock);
1051 cpu_relax();
1052 continue;
1053 }
1054 __dentry_kill(dentry);
1055 dentry = parent;
1056 }
1057 }
1058 }
1059
1060 static enum lru_status dentry_lru_isolate(struct list_head *item,
1061 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1062 {
1063 struct list_head *freeable = arg;
1064 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1065
1066
1067 /*
1068 * we are inverting the lru lock/dentry->d_lock here,
1069 * so use a trylock. If we fail to get the lock, just skip
1070 * it
1071 */
1072 if (!spin_trylock(&dentry->d_lock))
1073 return LRU_SKIP;
1074
1075 /*
1076 * Referenced dentries are still in use. If they have active
1077 * counts, just remove them from the LRU. Otherwise give them
1078 * another pass through the LRU.
1079 */
1080 if (dentry->d_lockref.count) {
1081 d_lru_isolate(lru, dentry);
1082 spin_unlock(&dentry->d_lock);
1083 return LRU_REMOVED;
1084 }
1085
1086 if (dentry->d_flags & DCACHE_REFERENCED) {
1087 dentry->d_flags &= ~DCACHE_REFERENCED;
1088 spin_unlock(&dentry->d_lock);
1089
1090 /*
1091 * The list move itself will be made by the common LRU code. At
1092 * this point, we've dropped the dentry->d_lock but keep the
1093 * lru lock. This is safe to do, since every list movement is
1094 * protected by the lru lock even if both locks are held.
1095 *
1096 * This is guaranteed by the fact that all LRU management
1097 * functions are intermediated by the LRU API calls like
1098 * list_lru_add and list_lru_del. List movement in this file
1099 * only ever occur through this functions or through callbacks
1100 * like this one, that are called from the LRU API.
1101 *
1102 * The only exceptions to this are functions like
1103 * shrink_dentry_list, and code that first checks for the
1104 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1105 * operating only with stack provided lists after they are
1106 * properly isolated from the main list. It is thus, always a
1107 * local access.
1108 */
1109 return LRU_ROTATE;
1110 }
1111
1112 d_lru_shrink_move(lru, dentry, freeable);
1113 spin_unlock(&dentry->d_lock);
1114
1115 return LRU_REMOVED;
1116 }
1117
1118 /**
1119 * prune_dcache_sb - shrink the dcache
1120 * @sb: superblock
1121 * @sc: shrink control, passed to list_lru_shrink_walk()
1122 *
1123 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1124 * is done when we need more memory and called from the superblock shrinker
1125 * function.
1126 *
1127 * This function may fail to free any resources if all the dentries are in
1128 * use.
1129 */
1130 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1131 {
1132 LIST_HEAD(dispose);
1133 long freed;
1134
1135 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1136 dentry_lru_isolate, &dispose);
1137 shrink_dentry_list(&dispose);
1138 return freed;
1139 }
1140
1141 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1142 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1143 {
1144 struct list_head *freeable = arg;
1145 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1146
1147 /*
1148 * we are inverting the lru lock/dentry->d_lock here,
1149 * so use a trylock. If we fail to get the lock, just skip
1150 * it
1151 */
1152 if (!spin_trylock(&dentry->d_lock))
1153 return LRU_SKIP;
1154
1155 d_lru_shrink_move(lru, dentry, freeable);
1156 spin_unlock(&dentry->d_lock);
1157
1158 return LRU_REMOVED;
1159 }
1160
1161
1162 /**
1163 * shrink_dcache_sb - shrink dcache for a superblock
1164 * @sb: superblock
1165 *
1166 * Shrink the dcache for the specified super block. This is used to free
1167 * the dcache before unmounting a file system.
1168 */
1169 void shrink_dcache_sb(struct super_block *sb)
1170 {
1171 long freed;
1172
1173 do {
1174 LIST_HEAD(dispose);
1175
1176 freed = list_lru_walk(&sb->s_dentry_lru,
1177 dentry_lru_isolate_shrink, &dispose, 1024);
1178
1179 this_cpu_sub(nr_dentry_unused, freed);
1180 shrink_dentry_list(&dispose);
1181 cond_resched();
1182 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1183 }
1184 EXPORT_SYMBOL(shrink_dcache_sb);
1185
1186 /**
1187 * enum d_walk_ret - action to talke during tree walk
1188 * @D_WALK_CONTINUE: contrinue walk
1189 * @D_WALK_QUIT: quit walk
1190 * @D_WALK_NORETRY: quit when retry is needed
1191 * @D_WALK_SKIP: skip this dentry and its children
1192 */
1193 enum d_walk_ret {
1194 D_WALK_CONTINUE,
1195 D_WALK_QUIT,
1196 D_WALK_NORETRY,
1197 D_WALK_SKIP,
1198 };
1199
1200 /**
1201 * d_walk - walk the dentry tree
1202 * @parent: start of walk
1203 * @data: data passed to @enter() and @finish()
1204 * @enter: callback when first entering the dentry
1205 * @finish: callback when successfully finished the walk
1206 *
1207 * The @enter() and @finish() callbacks are called with d_lock held.
1208 */
1209 static void d_walk(struct dentry *parent, void *data,
1210 enum d_walk_ret (*enter)(void *, struct dentry *),
1211 void (*finish)(void *))
1212 {
1213 struct dentry *this_parent;
1214 struct list_head *next;
1215 unsigned seq = 0;
1216 enum d_walk_ret ret;
1217 bool retry = true;
1218
1219 again:
1220 read_seqbegin_or_lock(&rename_lock, &seq);
1221 this_parent = parent;
1222 spin_lock(&this_parent->d_lock);
1223
1224 ret = enter(data, this_parent);
1225 switch (ret) {
1226 case D_WALK_CONTINUE:
1227 break;
1228 case D_WALK_QUIT:
1229 case D_WALK_SKIP:
1230 goto out_unlock;
1231 case D_WALK_NORETRY:
1232 retry = false;
1233 break;
1234 }
1235 repeat:
1236 next = this_parent->d_subdirs.next;
1237 resume:
1238 while (next != &this_parent->d_subdirs) {
1239 struct list_head *tmp = next;
1240 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1241 next = tmp->next;
1242
1243 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1244 continue;
1245
1246 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1247
1248 ret = enter(data, dentry);
1249 switch (ret) {
1250 case D_WALK_CONTINUE:
1251 break;
1252 case D_WALK_QUIT:
1253 spin_unlock(&dentry->d_lock);
1254 goto out_unlock;
1255 case D_WALK_NORETRY:
1256 retry = false;
1257 break;
1258 case D_WALK_SKIP:
1259 spin_unlock(&dentry->d_lock);
1260 continue;
1261 }
1262
1263 if (!list_empty(&dentry->d_subdirs)) {
1264 spin_unlock(&this_parent->d_lock);
1265 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1266 this_parent = dentry;
1267 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1268 goto repeat;
1269 }
1270 spin_unlock(&dentry->d_lock);
1271 }
1272 /*
1273 * All done at this level ... ascend and resume the search.
1274 */
1275 rcu_read_lock();
1276 ascend:
1277 if (this_parent != parent) {
1278 struct dentry *child = this_parent;
1279 this_parent = child->d_parent;
1280
1281 spin_unlock(&child->d_lock);
1282 spin_lock(&this_parent->d_lock);
1283
1284 /* might go back up the wrong parent if we have had a rename. */
1285 if (need_seqretry(&rename_lock, seq))
1286 goto rename_retry;
1287 /* go into the first sibling still alive */
1288 do {
1289 next = child->d_child.next;
1290 if (next == &this_parent->d_subdirs)
1291 goto ascend;
1292 child = list_entry(next, struct dentry, d_child);
1293 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1294 rcu_read_unlock();
1295 goto resume;
1296 }
1297 if (need_seqretry(&rename_lock, seq))
1298 goto rename_retry;
1299 rcu_read_unlock();
1300 if (finish)
1301 finish(data);
1302
1303 out_unlock:
1304 spin_unlock(&this_parent->d_lock);
1305 done_seqretry(&rename_lock, seq);
1306 return;
1307
1308 rename_retry:
1309 spin_unlock(&this_parent->d_lock);
1310 rcu_read_unlock();
1311 BUG_ON(seq & 1);
1312 if (!retry)
1313 return;
1314 seq = 1;
1315 goto again;
1316 }
1317
1318 struct check_mount {
1319 struct vfsmount *mnt;
1320 unsigned int mounted;
1321 };
1322
1323 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1324 {
1325 struct check_mount *info = data;
1326 struct path path = { .mnt = info->mnt, .dentry = dentry };
1327
1328 if (likely(!d_mountpoint(dentry)))
1329 return D_WALK_CONTINUE;
1330 if (__path_is_mountpoint(&path)) {
1331 info->mounted = 1;
1332 return D_WALK_QUIT;
1333 }
1334 return D_WALK_CONTINUE;
1335 }
1336
1337 /**
1338 * path_has_submounts - check for mounts over a dentry in the
1339 * current namespace.
1340 * @parent: path to check.
1341 *
1342 * Return true if the parent or its subdirectories contain
1343 * a mount point in the current namespace.
1344 */
1345 int path_has_submounts(const struct path *parent)
1346 {
1347 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1348
1349 read_seqlock_excl(&mount_lock);
1350 d_walk(parent->dentry, &data, path_check_mount, NULL);
1351 read_sequnlock_excl(&mount_lock);
1352
1353 return data.mounted;
1354 }
1355 EXPORT_SYMBOL(path_has_submounts);
1356
1357 /*
1358 * Called by mount code to set a mountpoint and check if the mountpoint is
1359 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1360 * subtree can become unreachable).
1361 *
1362 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1363 * this reason take rename_lock and d_lock on dentry and ancestors.
1364 */
1365 int d_set_mounted(struct dentry *dentry)
1366 {
1367 struct dentry *p;
1368 int ret = -ENOENT;
1369 write_seqlock(&rename_lock);
1370 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1371 /* Need exclusion wrt. d_invalidate() */
1372 spin_lock(&p->d_lock);
1373 if (unlikely(d_unhashed(p))) {
1374 spin_unlock(&p->d_lock);
1375 goto out;
1376 }
1377 spin_unlock(&p->d_lock);
1378 }
1379 spin_lock(&dentry->d_lock);
1380 if (!d_unlinked(dentry)) {
1381 ret = -EBUSY;
1382 if (!d_mountpoint(dentry)) {
1383 dentry->d_flags |= DCACHE_MOUNTED;
1384 ret = 0;
1385 }
1386 }
1387 spin_unlock(&dentry->d_lock);
1388 out:
1389 write_sequnlock(&rename_lock);
1390 return ret;
1391 }
1392
1393 /*
1394 * Search the dentry child list of the specified parent,
1395 * and move any unused dentries to the end of the unused
1396 * list for prune_dcache(). We descend to the next level
1397 * whenever the d_subdirs list is non-empty and continue
1398 * searching.
1399 *
1400 * It returns zero iff there are no unused children,
1401 * otherwise it returns the number of children moved to
1402 * the end of the unused list. This may not be the total
1403 * number of unused children, because select_parent can
1404 * drop the lock and return early due to latency
1405 * constraints.
1406 */
1407
1408 struct select_data {
1409 struct dentry *start;
1410 struct list_head dispose;
1411 int found;
1412 };
1413
1414 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1415 {
1416 struct select_data *data = _data;
1417 enum d_walk_ret ret = D_WALK_CONTINUE;
1418
1419 if (data->start == dentry)
1420 goto out;
1421
1422 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1423 data->found++;
1424 } else {
1425 if (dentry->d_flags & DCACHE_LRU_LIST)
1426 d_lru_del(dentry);
1427 if (!dentry->d_lockref.count) {
1428 d_shrink_add(dentry, &data->dispose);
1429 data->found++;
1430 }
1431 }
1432 /*
1433 * We can return to the caller if we have found some (this
1434 * ensures forward progress). We'll be coming back to find
1435 * the rest.
1436 */
1437 if (!list_empty(&data->dispose))
1438 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1439 out:
1440 return ret;
1441 }
1442
1443 /**
1444 * shrink_dcache_parent - prune dcache
1445 * @parent: parent of entries to prune
1446 *
1447 * Prune the dcache to remove unused children of the parent dentry.
1448 */
1449 void shrink_dcache_parent(struct dentry *parent)
1450 {
1451 for (;;) {
1452 struct select_data data;
1453
1454 INIT_LIST_HEAD(&data.dispose);
1455 data.start = parent;
1456 data.found = 0;
1457
1458 d_walk(parent, &data, select_collect, NULL);
1459 if (!data.found)
1460 break;
1461
1462 shrink_dentry_list(&data.dispose);
1463 cond_resched();
1464 }
1465 }
1466 EXPORT_SYMBOL(shrink_dcache_parent);
1467
1468 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1469 {
1470 /* it has busy descendents; complain about those instead */
1471 if (!list_empty(&dentry->d_subdirs))
1472 return D_WALK_CONTINUE;
1473
1474 /* root with refcount 1 is fine */
1475 if (dentry == _data && dentry->d_lockref.count == 1)
1476 return D_WALK_CONTINUE;
1477
1478 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1479 " still in use (%d) [unmount of %s %s]\n",
1480 dentry,
1481 dentry->d_inode ?
1482 dentry->d_inode->i_ino : 0UL,
1483 dentry,
1484 dentry->d_lockref.count,
1485 dentry->d_sb->s_type->name,
1486 dentry->d_sb->s_id);
1487 WARN_ON(1);
1488 return D_WALK_CONTINUE;
1489 }
1490
1491 static void do_one_tree(struct dentry *dentry)
1492 {
1493 shrink_dcache_parent(dentry);
1494 d_walk(dentry, dentry, umount_check, NULL);
1495 d_drop(dentry);
1496 dput(dentry);
1497 }
1498
1499 /*
1500 * destroy the dentries attached to a superblock on unmounting
1501 */
1502 void shrink_dcache_for_umount(struct super_block *sb)
1503 {
1504 struct dentry *dentry;
1505
1506 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1507
1508 dentry = sb->s_root;
1509 sb->s_root = NULL;
1510 do_one_tree(dentry);
1511
1512 while (!hlist_bl_empty(&sb->s_anon)) {
1513 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1514 do_one_tree(dentry);
1515 }
1516 }
1517
1518 struct detach_data {
1519 struct select_data select;
1520 struct dentry *mountpoint;
1521 };
1522 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1523 {
1524 struct detach_data *data = _data;
1525
1526 if (d_mountpoint(dentry)) {
1527 __dget_dlock(dentry);
1528 data->mountpoint = dentry;
1529 return D_WALK_QUIT;
1530 }
1531
1532 return select_collect(&data->select, dentry);
1533 }
1534
1535 static void check_and_drop(void *_data)
1536 {
1537 struct detach_data *data = _data;
1538
1539 if (!data->mountpoint && list_empty(&data->select.dispose))
1540 __d_drop(data->select.start);
1541 }
1542
1543 /**
1544 * d_invalidate - detach submounts, prune dcache, and drop
1545 * @dentry: dentry to invalidate (aka detach, prune and drop)
1546 *
1547 * no dcache lock.
1548 *
1549 * The final d_drop is done as an atomic operation relative to
1550 * rename_lock ensuring there are no races with d_set_mounted. This
1551 * ensures there are no unhashed dentries on the path to a mountpoint.
1552 */
1553 void d_invalidate(struct dentry *dentry)
1554 {
1555 /*
1556 * If it's already been dropped, return OK.
1557 */
1558 spin_lock(&dentry->d_lock);
1559 if (d_unhashed(dentry)) {
1560 spin_unlock(&dentry->d_lock);
1561 return;
1562 }
1563 spin_unlock(&dentry->d_lock);
1564
1565 /* Negative dentries can be dropped without further checks */
1566 if (!dentry->d_inode) {
1567 d_drop(dentry);
1568 return;
1569 }
1570
1571 for (;;) {
1572 struct detach_data data;
1573
1574 data.mountpoint = NULL;
1575 INIT_LIST_HEAD(&data.select.dispose);
1576 data.select.start = dentry;
1577 data.select.found = 0;
1578
1579 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1580
1581 if (!list_empty(&data.select.dispose))
1582 shrink_dentry_list(&data.select.dispose);
1583 else if (!data.mountpoint)
1584 return;
1585
1586 if (data.mountpoint) {
1587 detach_mounts(data.mountpoint);
1588 dput(data.mountpoint);
1589 }
1590 cond_resched();
1591 }
1592 }
1593 EXPORT_SYMBOL(d_invalidate);
1594
1595 /**
1596 * __d_alloc - allocate a dcache entry
1597 * @sb: filesystem it will belong to
1598 * @name: qstr of the name
1599 *
1600 * Allocates a dentry. It returns %NULL if there is insufficient memory
1601 * available. On a success the dentry is returned. The name passed in is
1602 * copied and the copy passed in may be reused after this call.
1603 */
1604
1605 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1606 {
1607 struct dentry *dentry;
1608 char *dname;
1609 int err;
1610
1611 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1612 if (!dentry)
1613 return NULL;
1614
1615 /*
1616 * We guarantee that the inline name is always NUL-terminated.
1617 * This way the memcpy() done by the name switching in rename
1618 * will still always have a NUL at the end, even if we might
1619 * be overwriting an internal NUL character
1620 */
1621 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1622 if (unlikely(!name)) {
1623 name = &slash_name;
1624 dname = dentry->d_iname;
1625 } else if (name->len > DNAME_INLINE_LEN-1) {
1626 size_t size = offsetof(struct external_name, name[1]);
1627 struct external_name *p = kmalloc(size + name->len,
1628 GFP_KERNEL_ACCOUNT);
1629 if (!p) {
1630 kmem_cache_free(dentry_cache, dentry);
1631 return NULL;
1632 }
1633 atomic_set(&p->u.count, 1);
1634 dname = p->name;
1635 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1636 kasan_unpoison_shadow(dname,
1637 round_up(name->len + 1, sizeof(unsigned long)));
1638 } else {
1639 dname = dentry->d_iname;
1640 }
1641
1642 dentry->d_name.len = name->len;
1643 dentry->d_name.hash = name->hash;
1644 memcpy(dname, name->name, name->len);
1645 dname[name->len] = 0;
1646
1647 /* Make sure we always see the terminating NUL character */
1648 smp_wmb();
1649 dentry->d_name.name = dname;
1650
1651 dentry->d_lockref.count = 1;
1652 dentry->d_flags = 0;
1653 spin_lock_init(&dentry->d_lock);
1654 seqcount_init(&dentry->d_seq);
1655 dentry->d_inode = NULL;
1656 dentry->d_parent = dentry;
1657 dentry->d_sb = sb;
1658 dentry->d_op = NULL;
1659 dentry->d_fsdata = NULL;
1660 INIT_HLIST_BL_NODE(&dentry->d_hash);
1661 INIT_LIST_HEAD(&dentry->d_lru);
1662 INIT_LIST_HEAD(&dentry->d_subdirs);
1663 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1664 INIT_LIST_HEAD(&dentry->d_child);
1665 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1666
1667 if (dentry->d_op && dentry->d_op->d_init) {
1668 err = dentry->d_op->d_init(dentry);
1669 if (err) {
1670 if (dname_external(dentry))
1671 kfree(external_name(dentry));
1672 kmem_cache_free(dentry_cache, dentry);
1673 return NULL;
1674 }
1675 }
1676
1677 this_cpu_inc(nr_dentry);
1678
1679 return dentry;
1680 }
1681
1682 /**
1683 * d_alloc - allocate a dcache entry
1684 * @parent: parent of entry to allocate
1685 * @name: qstr of the name
1686 *
1687 * Allocates a dentry. It returns %NULL if there is insufficient memory
1688 * available. On a success the dentry is returned. The name passed in is
1689 * copied and the copy passed in may be reused after this call.
1690 */
1691 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1692 {
1693 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1694 if (!dentry)
1695 return NULL;
1696 dentry->d_flags |= DCACHE_RCUACCESS;
1697 spin_lock(&parent->d_lock);
1698 /*
1699 * don't need child lock because it is not subject
1700 * to concurrency here
1701 */
1702 __dget_dlock(parent);
1703 dentry->d_parent = parent;
1704 list_add(&dentry->d_child, &parent->d_subdirs);
1705 spin_unlock(&parent->d_lock);
1706
1707 return dentry;
1708 }
1709 EXPORT_SYMBOL(d_alloc);
1710
1711 struct dentry *d_alloc_cursor(struct dentry * parent)
1712 {
1713 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1714 if (dentry) {
1715 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1716 dentry->d_parent = dget(parent);
1717 }
1718 return dentry;
1719 }
1720
1721 /**
1722 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1723 * @sb: the superblock
1724 * @name: qstr of the name
1725 *
1726 * For a filesystem that just pins its dentries in memory and never
1727 * performs lookups at all, return an unhashed IS_ROOT dentry.
1728 */
1729 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1730 {
1731 return __d_alloc(sb, name);
1732 }
1733 EXPORT_SYMBOL(d_alloc_pseudo);
1734
1735 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1736 {
1737 struct qstr q;
1738
1739 q.name = name;
1740 q.hash_len = hashlen_string(parent, name);
1741 return d_alloc(parent, &q);
1742 }
1743 EXPORT_SYMBOL(d_alloc_name);
1744
1745 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1746 {
1747 WARN_ON_ONCE(dentry->d_op);
1748 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1749 DCACHE_OP_COMPARE |
1750 DCACHE_OP_REVALIDATE |
1751 DCACHE_OP_WEAK_REVALIDATE |
1752 DCACHE_OP_DELETE |
1753 DCACHE_OP_REAL));
1754 dentry->d_op = op;
1755 if (!op)
1756 return;
1757 if (op->d_hash)
1758 dentry->d_flags |= DCACHE_OP_HASH;
1759 if (op->d_compare)
1760 dentry->d_flags |= DCACHE_OP_COMPARE;
1761 if (op->d_revalidate)
1762 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1763 if (op->d_weak_revalidate)
1764 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1765 if (op->d_delete)
1766 dentry->d_flags |= DCACHE_OP_DELETE;
1767 if (op->d_prune)
1768 dentry->d_flags |= DCACHE_OP_PRUNE;
1769 if (op->d_real)
1770 dentry->d_flags |= DCACHE_OP_REAL;
1771
1772 }
1773 EXPORT_SYMBOL(d_set_d_op);
1774
1775
1776 /*
1777 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1778 * @dentry - The dentry to mark
1779 *
1780 * Mark a dentry as falling through to the lower layer (as set with
1781 * d_pin_lower()). This flag may be recorded on the medium.
1782 */
1783 void d_set_fallthru(struct dentry *dentry)
1784 {
1785 spin_lock(&dentry->d_lock);
1786 dentry->d_flags |= DCACHE_FALLTHRU;
1787 spin_unlock(&dentry->d_lock);
1788 }
1789 EXPORT_SYMBOL(d_set_fallthru);
1790
1791 static unsigned d_flags_for_inode(struct inode *inode)
1792 {
1793 unsigned add_flags = DCACHE_REGULAR_TYPE;
1794
1795 if (!inode)
1796 return DCACHE_MISS_TYPE;
1797
1798 if (S_ISDIR(inode->i_mode)) {
1799 add_flags = DCACHE_DIRECTORY_TYPE;
1800 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1801 if (unlikely(!inode->i_op->lookup))
1802 add_flags = DCACHE_AUTODIR_TYPE;
1803 else
1804 inode->i_opflags |= IOP_LOOKUP;
1805 }
1806 goto type_determined;
1807 }
1808
1809 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1810 if (unlikely(inode->i_op->get_link)) {
1811 add_flags = DCACHE_SYMLINK_TYPE;
1812 goto type_determined;
1813 }
1814 inode->i_opflags |= IOP_NOFOLLOW;
1815 }
1816
1817 if (unlikely(!S_ISREG(inode->i_mode)))
1818 add_flags = DCACHE_SPECIAL_TYPE;
1819
1820 type_determined:
1821 if (unlikely(IS_AUTOMOUNT(inode)))
1822 add_flags |= DCACHE_NEED_AUTOMOUNT;
1823 return add_flags;
1824 }
1825
1826 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1827 {
1828 unsigned add_flags = d_flags_for_inode(inode);
1829 WARN_ON(d_in_lookup(dentry));
1830
1831 spin_lock(&dentry->d_lock);
1832 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1833 raw_write_seqcount_begin(&dentry->d_seq);
1834 __d_set_inode_and_type(dentry, inode, add_flags);
1835 raw_write_seqcount_end(&dentry->d_seq);
1836 fsnotify_update_flags(dentry);
1837 spin_unlock(&dentry->d_lock);
1838 }
1839
1840 /**
1841 * d_instantiate - fill in inode information for a dentry
1842 * @entry: dentry to complete
1843 * @inode: inode to attach to this dentry
1844 *
1845 * Fill in inode information in the entry.
1846 *
1847 * This turns negative dentries into productive full members
1848 * of society.
1849 *
1850 * NOTE! This assumes that the inode count has been incremented
1851 * (or otherwise set) by the caller to indicate that it is now
1852 * in use by the dcache.
1853 */
1854
1855 void d_instantiate(struct dentry *entry, struct inode * inode)
1856 {
1857 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1858 if (inode) {
1859 security_d_instantiate(entry, inode);
1860 spin_lock(&inode->i_lock);
1861 __d_instantiate(entry, inode);
1862 spin_unlock(&inode->i_lock);
1863 }
1864 }
1865 EXPORT_SYMBOL(d_instantiate);
1866
1867 /*
1868 * This should be equivalent to d_instantiate() + unlock_new_inode(),
1869 * with lockdep-related part of unlock_new_inode() done before
1870 * anything else. Use that instead of open-coding d_instantiate()/
1871 * unlock_new_inode() combinations.
1872 */
1873 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1874 {
1875 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1876 BUG_ON(!inode);
1877 lockdep_annotate_inode_mutex_key(inode);
1878 security_d_instantiate(entry, inode);
1879 spin_lock(&inode->i_lock);
1880 __d_instantiate(entry, inode);
1881 WARN_ON(!(inode->i_state & I_NEW));
1882 inode->i_state &= ~I_NEW;
1883 smp_mb();
1884 wake_up_bit(&inode->i_state, __I_NEW);
1885 spin_unlock(&inode->i_lock);
1886 }
1887 EXPORT_SYMBOL(d_instantiate_new);
1888
1889 /**
1890 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1891 * @entry: dentry to complete
1892 * @inode: inode to attach to this dentry
1893 *
1894 * Fill in inode information in the entry. If a directory alias is found, then
1895 * return an error (and drop inode). Together with d_materialise_unique() this
1896 * guarantees that a directory inode may never have more than one alias.
1897 */
1898 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1899 {
1900 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1901
1902 security_d_instantiate(entry, inode);
1903 spin_lock(&inode->i_lock);
1904 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1905 spin_unlock(&inode->i_lock);
1906 iput(inode);
1907 return -EBUSY;
1908 }
1909 __d_instantiate(entry, inode);
1910 spin_unlock(&inode->i_lock);
1911
1912 return 0;
1913 }
1914 EXPORT_SYMBOL(d_instantiate_no_diralias);
1915
1916 struct dentry *d_make_root(struct inode *root_inode)
1917 {
1918 struct dentry *res = NULL;
1919
1920 if (root_inode) {
1921 res = __d_alloc(root_inode->i_sb, NULL);
1922 if (res) {
1923 res->d_flags |= DCACHE_RCUACCESS;
1924 d_instantiate(res, root_inode);
1925 } else {
1926 iput(root_inode);
1927 }
1928 }
1929 return res;
1930 }
1931 EXPORT_SYMBOL(d_make_root);
1932
1933 static struct dentry * __d_find_any_alias(struct inode *inode)
1934 {
1935 struct dentry *alias;
1936
1937 if (hlist_empty(&inode->i_dentry))
1938 return NULL;
1939 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1940 __dget(alias);
1941 return alias;
1942 }
1943
1944 /**
1945 * d_find_any_alias - find any alias for a given inode
1946 * @inode: inode to find an alias for
1947 *
1948 * If any aliases exist for the given inode, take and return a
1949 * reference for one of them. If no aliases exist, return %NULL.
1950 */
1951 struct dentry *d_find_any_alias(struct inode *inode)
1952 {
1953 struct dentry *de;
1954
1955 spin_lock(&inode->i_lock);
1956 de = __d_find_any_alias(inode);
1957 spin_unlock(&inode->i_lock);
1958 return de;
1959 }
1960 EXPORT_SYMBOL(d_find_any_alias);
1961
1962 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1963 {
1964 struct dentry *tmp;
1965 struct dentry *res;
1966 unsigned add_flags;
1967
1968 if (!inode)
1969 return ERR_PTR(-ESTALE);
1970 if (IS_ERR(inode))
1971 return ERR_CAST(inode);
1972
1973 res = d_find_any_alias(inode);
1974 if (res)
1975 goto out_iput;
1976
1977 tmp = __d_alloc(inode->i_sb, NULL);
1978 if (!tmp) {
1979 res = ERR_PTR(-ENOMEM);
1980 goto out_iput;
1981 }
1982
1983 security_d_instantiate(tmp, inode);
1984 spin_lock(&inode->i_lock);
1985 res = __d_find_any_alias(inode);
1986 if (res) {
1987 spin_unlock(&inode->i_lock);
1988 dput(tmp);
1989 goto out_iput;
1990 }
1991
1992 /* attach a disconnected dentry */
1993 add_flags = d_flags_for_inode(inode);
1994
1995 if (disconnected)
1996 add_flags |= DCACHE_DISCONNECTED;
1997
1998 spin_lock(&tmp->d_lock);
1999 __d_set_inode_and_type(tmp, inode, add_flags);
2000 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
2001 hlist_bl_lock(&tmp->d_sb->s_anon);
2002 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
2003 hlist_bl_unlock(&tmp->d_sb->s_anon);
2004 spin_unlock(&tmp->d_lock);
2005 spin_unlock(&inode->i_lock);
2006
2007 return tmp;
2008
2009 out_iput:
2010 iput(inode);
2011 return res;
2012 }
2013
2014 /**
2015 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2016 * @inode: inode to allocate the dentry for
2017 *
2018 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2019 * similar open by handle operations. The returned dentry may be anonymous,
2020 * or may have a full name (if the inode was already in the cache).
2021 *
2022 * When called on a directory inode, we must ensure that the inode only ever
2023 * has one dentry. If a dentry is found, that is returned instead of
2024 * allocating a new one.
2025 *
2026 * On successful return, the reference to the inode has been transferred
2027 * to the dentry. In case of an error the reference on the inode is released.
2028 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2029 * be passed in and the error will be propagated to the return value,
2030 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2031 */
2032 struct dentry *d_obtain_alias(struct inode *inode)
2033 {
2034 return __d_obtain_alias(inode, 1);
2035 }
2036 EXPORT_SYMBOL(d_obtain_alias);
2037
2038 /**
2039 * d_obtain_root - find or allocate a dentry for a given inode
2040 * @inode: inode to allocate the dentry for
2041 *
2042 * Obtain an IS_ROOT dentry for the root of a filesystem.
2043 *
2044 * We must ensure that directory inodes only ever have one dentry. If a
2045 * dentry is found, that is returned instead of allocating a new one.
2046 *
2047 * On successful return, the reference to the inode has been transferred
2048 * to the dentry. In case of an error the reference on the inode is
2049 * released. A %NULL or IS_ERR inode may be passed in and will be the
2050 * error will be propagate to the return value, with a %NULL @inode
2051 * replaced by ERR_PTR(-ESTALE).
2052 */
2053 struct dentry *d_obtain_root(struct inode *inode)
2054 {
2055 return __d_obtain_alias(inode, 0);
2056 }
2057 EXPORT_SYMBOL(d_obtain_root);
2058
2059 /**
2060 * d_add_ci - lookup or allocate new dentry with case-exact name
2061 * @inode: the inode case-insensitive lookup has found
2062 * @dentry: the negative dentry that was passed to the parent's lookup func
2063 * @name: the case-exact name to be associated with the returned dentry
2064 *
2065 * This is to avoid filling the dcache with case-insensitive names to the
2066 * same inode, only the actual correct case is stored in the dcache for
2067 * case-insensitive filesystems.
2068 *
2069 * For a case-insensitive lookup match and if the the case-exact dentry
2070 * already exists in in the dcache, use it and return it.
2071 *
2072 * If no entry exists with the exact case name, allocate new dentry with
2073 * the exact case, and return the spliced entry.
2074 */
2075 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2076 struct qstr *name)
2077 {
2078 struct dentry *found, *res;
2079
2080 /*
2081 * First check if a dentry matching the name already exists,
2082 * if not go ahead and create it now.
2083 */
2084 found = d_hash_and_lookup(dentry->d_parent, name);
2085 if (found) {
2086 iput(inode);
2087 return found;
2088 }
2089 if (d_in_lookup(dentry)) {
2090 found = d_alloc_parallel(dentry->d_parent, name,
2091 dentry->d_wait);
2092 if (IS_ERR(found) || !d_in_lookup(found)) {
2093 iput(inode);
2094 return found;
2095 }
2096 } else {
2097 found = d_alloc(dentry->d_parent, name);
2098 if (!found) {
2099 iput(inode);
2100 return ERR_PTR(-ENOMEM);
2101 }
2102 }
2103 res = d_splice_alias(inode, found);
2104 if (res) {
2105 dput(found);
2106 return res;
2107 }
2108 return found;
2109 }
2110 EXPORT_SYMBOL(d_add_ci);
2111
2112
2113 static inline bool d_same_name(const struct dentry *dentry,
2114 const struct dentry *parent,
2115 const struct qstr *name)
2116 {
2117 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2118 if (dentry->d_name.len != name->len)
2119 return false;
2120 return dentry_cmp(dentry, name->name, name->len) == 0;
2121 }
2122 return parent->d_op->d_compare(dentry,
2123 dentry->d_name.len, dentry->d_name.name,
2124 name) == 0;
2125 }
2126
2127 /**
2128 * __d_lookup_rcu - search for a dentry (racy, store-free)
2129 * @parent: parent dentry
2130 * @name: qstr of name we wish to find
2131 * @seqp: returns d_seq value at the point where the dentry was found
2132 * Returns: dentry, or NULL
2133 *
2134 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2135 * resolution (store-free path walking) design described in
2136 * Documentation/filesystems/path-lookup.txt.
2137 *
2138 * This is not to be used outside core vfs.
2139 *
2140 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2141 * held, and rcu_read_lock held. The returned dentry must not be stored into
2142 * without taking d_lock and checking d_seq sequence count against @seq
2143 * returned here.
2144 *
2145 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2146 * function.
2147 *
2148 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2149 * the returned dentry, so long as its parent's seqlock is checked after the
2150 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2151 * is formed, giving integrity down the path walk.
2152 *
2153 * NOTE! The caller *has* to check the resulting dentry against the sequence
2154 * number we've returned before using any of the resulting dentry state!
2155 */
2156 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2157 const struct qstr *name,
2158 unsigned *seqp)
2159 {
2160 u64 hashlen = name->hash_len;
2161 const unsigned char *str = name->name;
2162 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2163 struct hlist_bl_node *node;
2164 struct dentry *dentry;
2165
2166 /*
2167 * Note: There is significant duplication with __d_lookup_rcu which is
2168 * required to prevent single threaded performance regressions
2169 * especially on architectures where smp_rmb (in seqcounts) are costly.
2170 * Keep the two functions in sync.
2171 */
2172
2173 /*
2174 * The hash list is protected using RCU.
2175 *
2176 * Carefully use d_seq when comparing a candidate dentry, to avoid
2177 * races with d_move().
2178 *
2179 * It is possible that concurrent renames can mess up our list
2180 * walk here and result in missing our dentry, resulting in the
2181 * false-negative result. d_lookup() protects against concurrent
2182 * renames using rename_lock seqlock.
2183 *
2184 * See Documentation/filesystems/path-lookup.txt for more details.
2185 */
2186 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2187 unsigned seq;
2188
2189 seqretry:
2190 /*
2191 * The dentry sequence count protects us from concurrent
2192 * renames, and thus protects parent and name fields.
2193 *
2194 * The caller must perform a seqcount check in order
2195 * to do anything useful with the returned dentry.
2196 *
2197 * NOTE! We do a "raw" seqcount_begin here. That means that
2198 * we don't wait for the sequence count to stabilize if it
2199 * is in the middle of a sequence change. If we do the slow
2200 * dentry compare, we will do seqretries until it is stable,
2201 * and if we end up with a successful lookup, we actually
2202 * want to exit RCU lookup anyway.
2203 *
2204 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2205 * we are still guaranteed NUL-termination of ->d_name.name.
2206 */
2207 seq = raw_seqcount_begin(&dentry->d_seq);
2208 if (dentry->d_parent != parent)
2209 continue;
2210 if (d_unhashed(dentry))
2211 continue;
2212
2213 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2214 int tlen;
2215 const char *tname;
2216 if (dentry->d_name.hash != hashlen_hash(hashlen))
2217 continue;
2218 tlen = dentry->d_name.len;
2219 tname = dentry->d_name.name;
2220 /* we want a consistent (name,len) pair */
2221 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2222 cpu_relax();
2223 goto seqretry;
2224 }
2225 if (parent->d_op->d_compare(dentry,
2226 tlen, tname, name) != 0)
2227 continue;
2228 } else {
2229 if (dentry->d_name.hash_len != hashlen)
2230 continue;
2231 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2232 continue;
2233 }
2234 *seqp = seq;
2235 return dentry;
2236 }
2237 return NULL;
2238 }
2239
2240 /**
2241 * d_lookup - search for a dentry
2242 * @parent: parent dentry
2243 * @name: qstr of name we wish to find
2244 * Returns: dentry, or NULL
2245 *
2246 * d_lookup searches the children of the parent dentry for the name in
2247 * question. If the dentry is found its reference count is incremented and the
2248 * dentry is returned. The caller must use dput to free the entry when it has
2249 * finished using it. %NULL is returned if the dentry does not exist.
2250 */
2251 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2252 {
2253 struct dentry *dentry;
2254 unsigned seq;
2255
2256 do {
2257 seq = read_seqbegin(&rename_lock);
2258 dentry = __d_lookup(parent, name);
2259 if (dentry)
2260 break;
2261 } while (read_seqretry(&rename_lock, seq));
2262 return dentry;
2263 }
2264 EXPORT_SYMBOL(d_lookup);
2265
2266 /**
2267 * __d_lookup - search for a dentry (racy)
2268 * @parent: parent dentry
2269 * @name: qstr of name we wish to find
2270 * Returns: dentry, or NULL
2271 *
2272 * __d_lookup is like d_lookup, however it may (rarely) return a
2273 * false-negative result due to unrelated rename activity.
2274 *
2275 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2276 * however it must be used carefully, eg. with a following d_lookup in
2277 * the case of failure.
2278 *
2279 * __d_lookup callers must be commented.
2280 */
2281 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2282 {
2283 unsigned int hash = name->hash;
2284 struct hlist_bl_head *b = d_hash(hash);
2285 struct hlist_bl_node *node;
2286 struct dentry *found = NULL;
2287 struct dentry *dentry;
2288
2289 /*
2290 * Note: There is significant duplication with __d_lookup_rcu which is
2291 * required to prevent single threaded performance regressions
2292 * especially on architectures where smp_rmb (in seqcounts) are costly.
2293 * Keep the two functions in sync.
2294 */
2295
2296 /*
2297 * The hash list is protected using RCU.
2298 *
2299 * Take d_lock when comparing a candidate dentry, to avoid races
2300 * with d_move().
2301 *
2302 * It is possible that concurrent renames can mess up our list
2303 * walk here and result in missing our dentry, resulting in the
2304 * false-negative result. d_lookup() protects against concurrent
2305 * renames using rename_lock seqlock.
2306 *
2307 * See Documentation/filesystems/path-lookup.txt for more details.
2308 */
2309 rcu_read_lock();
2310
2311 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2312
2313 if (dentry->d_name.hash != hash)
2314 continue;
2315
2316 spin_lock(&dentry->d_lock);
2317 if (dentry->d_parent != parent)
2318 goto next;
2319 if (d_unhashed(dentry))
2320 goto next;
2321
2322 if (!d_same_name(dentry, parent, name))
2323 goto next;
2324
2325 dentry->d_lockref.count++;
2326 found = dentry;
2327 spin_unlock(&dentry->d_lock);
2328 break;
2329 next:
2330 spin_unlock(&dentry->d_lock);
2331 }
2332 rcu_read_unlock();
2333
2334 return found;
2335 }
2336
2337 /**
2338 * d_hash_and_lookup - hash the qstr then search for a dentry
2339 * @dir: Directory to search in
2340 * @name: qstr of name we wish to find
2341 *
2342 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2343 */
2344 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2345 {
2346 /*
2347 * Check for a fs-specific hash function. Note that we must
2348 * calculate the standard hash first, as the d_op->d_hash()
2349 * routine may choose to leave the hash value unchanged.
2350 */
2351 name->hash = full_name_hash(dir, name->name, name->len);
2352 if (dir->d_flags & DCACHE_OP_HASH) {
2353 int err = dir->d_op->d_hash(dir, name);
2354 if (unlikely(err < 0))
2355 return ERR_PTR(err);
2356 }
2357 return d_lookup(dir, name);
2358 }
2359 EXPORT_SYMBOL(d_hash_and_lookup);
2360
2361 /*
2362 * When a file is deleted, we have two options:
2363 * - turn this dentry into a negative dentry
2364 * - unhash this dentry and free it.
2365 *
2366 * Usually, we want to just turn this into
2367 * a negative dentry, but if anybody else is
2368 * currently using the dentry or the inode
2369 * we can't do that and we fall back on removing
2370 * it from the hash queues and waiting for
2371 * it to be deleted later when it has no users
2372 */
2373
2374 /**
2375 * d_delete - delete a dentry
2376 * @dentry: The dentry to delete
2377 *
2378 * Turn the dentry into a negative dentry if possible, otherwise
2379 * remove it from the hash queues so it can be deleted later
2380 */
2381
2382 void d_delete(struct dentry * dentry)
2383 {
2384 struct inode *inode;
2385 int isdir = 0;
2386 /*
2387 * Are we the only user?
2388 */
2389 again:
2390 spin_lock(&dentry->d_lock);
2391 inode = dentry->d_inode;
2392 isdir = S_ISDIR(inode->i_mode);
2393 if (dentry->d_lockref.count == 1) {
2394 if (!spin_trylock(&inode->i_lock)) {
2395 spin_unlock(&dentry->d_lock);
2396 cpu_relax();
2397 goto again;
2398 }
2399 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2400 dentry_unlink_inode(dentry);
2401 fsnotify_nameremove(dentry, isdir);
2402 return;
2403 }
2404
2405 if (!d_unhashed(dentry))
2406 __d_drop(dentry);
2407
2408 spin_unlock(&dentry->d_lock);
2409
2410 fsnotify_nameremove(dentry, isdir);
2411 }
2412 EXPORT_SYMBOL(d_delete);
2413
2414 static void __d_rehash(struct dentry *entry)
2415 {
2416 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2417
2418 hlist_bl_lock(b);
2419 hlist_bl_add_head_rcu(&entry->d_hash, b);
2420 hlist_bl_unlock(b);
2421 }
2422
2423 /**
2424 * d_rehash - add an entry back to the hash
2425 * @entry: dentry to add to the hash
2426 *
2427 * Adds a dentry to the hash according to its name.
2428 */
2429
2430 void d_rehash(struct dentry * entry)
2431 {
2432 spin_lock(&entry->d_lock);
2433 __d_rehash(entry);
2434 spin_unlock(&entry->d_lock);
2435 }
2436 EXPORT_SYMBOL(d_rehash);
2437
2438 static inline unsigned start_dir_add(struct inode *dir)
2439 {
2440
2441 for (;;) {
2442 unsigned n = dir->i_dir_seq;
2443 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2444 return n;
2445 cpu_relax();
2446 }
2447 }
2448
2449 static inline void end_dir_add(struct inode *dir, unsigned n)
2450 {
2451 smp_store_release(&dir->i_dir_seq, n + 2);
2452 }
2453
2454 static void d_wait_lookup(struct dentry *dentry)
2455 {
2456 if (d_in_lookup(dentry)) {
2457 DECLARE_WAITQUEUE(wait, current);
2458 add_wait_queue(dentry->d_wait, &wait);
2459 do {
2460 set_current_state(TASK_UNINTERRUPTIBLE);
2461 spin_unlock(&dentry->d_lock);
2462 schedule();
2463 spin_lock(&dentry->d_lock);
2464 } while (d_in_lookup(dentry));
2465 }
2466 }
2467
2468 struct dentry *d_alloc_parallel(struct dentry *parent,
2469 const struct qstr *name,
2470 wait_queue_head_t *wq)
2471 {
2472 unsigned int hash = name->hash;
2473 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2474 struct hlist_bl_node *node;
2475 struct dentry *new = d_alloc(parent, name);
2476 struct dentry *dentry;
2477 unsigned seq, r_seq, d_seq;
2478
2479 if (unlikely(!new))
2480 return ERR_PTR(-ENOMEM);
2481
2482 retry:
2483 rcu_read_lock();
2484 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2485 r_seq = read_seqbegin(&rename_lock);
2486 dentry = __d_lookup_rcu(parent, name, &d_seq);
2487 if (unlikely(dentry)) {
2488 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2489 rcu_read_unlock();
2490 goto retry;
2491 }
2492 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2493 rcu_read_unlock();
2494 dput(dentry);
2495 goto retry;
2496 }
2497 rcu_read_unlock();
2498 dput(new);
2499 return dentry;
2500 }
2501 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2502 rcu_read_unlock();
2503 goto retry;
2504 }
2505
2506 if (unlikely(seq & 1)) {
2507 rcu_read_unlock();
2508 goto retry;
2509 }
2510
2511 hlist_bl_lock(b);
2512 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2513 hlist_bl_unlock(b);
2514 rcu_read_unlock();
2515 goto retry;
2516 }
2517 /*
2518 * No changes for the parent since the beginning of d_lookup().
2519 * Since all removals from the chain happen with hlist_bl_lock(),
2520 * any potential in-lookup matches are going to stay here until
2521 * we unlock the chain. All fields are stable in everything
2522 * we encounter.
2523 */
2524 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2525 if (dentry->d_name.hash != hash)
2526 continue;
2527 if (dentry->d_parent != parent)
2528 continue;
2529 if (!d_same_name(dentry, parent, name))
2530 continue;
2531 hlist_bl_unlock(b);
2532 /* now we can try to grab a reference */
2533 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2534 rcu_read_unlock();
2535 goto retry;
2536 }
2537
2538 rcu_read_unlock();
2539 /*
2540 * somebody is likely to be still doing lookup for it;
2541 * wait for them to finish
2542 */
2543 spin_lock(&dentry->d_lock);
2544 d_wait_lookup(dentry);
2545 /*
2546 * it's not in-lookup anymore; in principle we should repeat
2547 * everything from dcache lookup, but it's likely to be what
2548 * d_lookup() would've found anyway. If it is, just return it;
2549 * otherwise we really have to repeat the whole thing.
2550 */
2551 if (unlikely(dentry->d_name.hash != hash))
2552 goto mismatch;
2553 if (unlikely(dentry->d_parent != parent))
2554 goto mismatch;
2555 if (unlikely(d_unhashed(dentry)))
2556 goto mismatch;
2557 if (unlikely(!d_same_name(dentry, parent, name)))
2558 goto mismatch;
2559 /* OK, it *is* a hashed match; return it */
2560 spin_unlock(&dentry->d_lock);
2561 dput(new);
2562 return dentry;
2563 }
2564 rcu_read_unlock();
2565 /* we can't take ->d_lock here; it's OK, though. */
2566 new->d_flags |= DCACHE_PAR_LOOKUP;
2567 new->d_wait = wq;
2568 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2569 hlist_bl_unlock(b);
2570 return new;
2571 mismatch:
2572 spin_unlock(&dentry->d_lock);
2573 dput(dentry);
2574 goto retry;
2575 }
2576 EXPORT_SYMBOL(d_alloc_parallel);
2577
2578 void __d_lookup_done(struct dentry *dentry)
2579 {
2580 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2581 dentry->d_name.hash);
2582 hlist_bl_lock(b);
2583 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2584 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2585 wake_up_all(dentry->d_wait);
2586 dentry->d_wait = NULL;
2587 hlist_bl_unlock(b);
2588 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2589 INIT_LIST_HEAD(&dentry->d_lru);
2590 }
2591 EXPORT_SYMBOL(__d_lookup_done);
2592
2593 /* inode->i_lock held if inode is non-NULL */
2594
2595 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2596 {
2597 struct inode *dir = NULL;
2598 unsigned n;
2599 spin_lock(&dentry->d_lock);
2600 if (unlikely(d_in_lookup(dentry))) {
2601 dir = dentry->d_parent->d_inode;
2602 n = start_dir_add(dir);
2603 __d_lookup_done(dentry);
2604 }
2605 if (inode) {
2606 unsigned add_flags = d_flags_for_inode(inode);
2607 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2608 raw_write_seqcount_begin(&dentry->d_seq);
2609 __d_set_inode_and_type(dentry, inode, add_flags);
2610 raw_write_seqcount_end(&dentry->d_seq);
2611 fsnotify_update_flags(dentry);
2612 }
2613 __d_rehash(dentry);
2614 if (dir)
2615 end_dir_add(dir, n);
2616 spin_unlock(&dentry->d_lock);
2617 if (inode)
2618 spin_unlock(&inode->i_lock);
2619 }
2620
2621 /**
2622 * d_add - add dentry to hash queues
2623 * @entry: dentry to add
2624 * @inode: The inode to attach to this dentry
2625 *
2626 * This adds the entry to the hash queues and initializes @inode.
2627 * The entry was actually filled in earlier during d_alloc().
2628 */
2629
2630 void d_add(struct dentry *entry, struct inode *inode)
2631 {
2632 if (inode) {
2633 security_d_instantiate(entry, inode);
2634 spin_lock(&inode->i_lock);
2635 }
2636 __d_add(entry, inode);
2637 }
2638 EXPORT_SYMBOL(d_add);
2639
2640 /**
2641 * d_exact_alias - find and hash an exact unhashed alias
2642 * @entry: dentry to add
2643 * @inode: The inode to go with this dentry
2644 *
2645 * If an unhashed dentry with the same name/parent and desired
2646 * inode already exists, hash and return it. Otherwise, return
2647 * NULL.
2648 *
2649 * Parent directory should be locked.
2650 */
2651 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2652 {
2653 struct dentry *alias;
2654 unsigned int hash = entry->d_name.hash;
2655
2656 spin_lock(&inode->i_lock);
2657 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2658 /*
2659 * Don't need alias->d_lock here, because aliases with
2660 * d_parent == entry->d_parent are not subject to name or
2661 * parent changes, because the parent inode i_mutex is held.
2662 */
2663 if (alias->d_name.hash != hash)
2664 continue;
2665 if (alias->d_parent != entry->d_parent)
2666 continue;
2667 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2668 continue;
2669 spin_lock(&alias->d_lock);
2670 if (!d_unhashed(alias)) {
2671 spin_unlock(&alias->d_lock);
2672 alias = NULL;
2673 } else {
2674 __dget_dlock(alias);
2675 __d_rehash(alias);
2676 spin_unlock(&alias->d_lock);
2677 }
2678 spin_unlock(&inode->i_lock);
2679 return alias;
2680 }
2681 spin_unlock(&inode->i_lock);
2682 return NULL;
2683 }
2684 EXPORT_SYMBOL(d_exact_alias);
2685
2686 /**
2687 * dentry_update_name_case - update case insensitive dentry with a new name
2688 * @dentry: dentry to be updated
2689 * @name: new name
2690 *
2691 * Update a case insensitive dentry with new case of name.
2692 *
2693 * dentry must have been returned by d_lookup with name @name. Old and new
2694 * name lengths must match (ie. no d_compare which allows mismatched name
2695 * lengths).
2696 *
2697 * Parent inode i_mutex must be held over d_lookup and into this call (to
2698 * keep renames and concurrent inserts, and readdir(2) away).
2699 */
2700 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2701 {
2702 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2703 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2704
2705 spin_lock(&dentry->d_lock);
2706 write_seqcount_begin(&dentry->d_seq);
2707 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2708 write_seqcount_end(&dentry->d_seq);
2709 spin_unlock(&dentry->d_lock);
2710 }
2711 EXPORT_SYMBOL(dentry_update_name_case);
2712
2713 static void swap_names(struct dentry *dentry, struct dentry *target)
2714 {
2715 if (unlikely(dname_external(target))) {
2716 if (unlikely(dname_external(dentry))) {
2717 /*
2718 * Both external: swap the pointers
2719 */
2720 swap(target->d_name.name, dentry->d_name.name);
2721 } else {
2722 /*
2723 * dentry:internal, target:external. Steal target's
2724 * storage and make target internal.
2725 */
2726 memcpy(target->d_iname, dentry->d_name.name,
2727 dentry->d_name.len + 1);
2728 dentry->d_name.name = target->d_name.name;
2729 target->d_name.name = target->d_iname;
2730 }
2731 } else {
2732 if (unlikely(dname_external(dentry))) {
2733 /*
2734 * dentry:external, target:internal. Give dentry's
2735 * storage to target and make dentry internal
2736 */
2737 memcpy(dentry->d_iname, target->d_name.name,
2738 target->d_name.len + 1);
2739 target->d_name.name = dentry->d_name.name;
2740 dentry->d_name.name = dentry->d_iname;
2741 } else {
2742 /*
2743 * Both are internal.
2744 */
2745 unsigned int i;
2746 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2747 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2748 swap(((long *) &dentry->d_iname)[i],
2749 ((long *) &target->d_iname)[i]);
2750 }
2751 }
2752 }
2753 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2754 }
2755
2756 static void copy_name(struct dentry *dentry, struct dentry *target)
2757 {
2758 struct external_name *old_name = NULL;
2759 if (unlikely(dname_external(dentry)))
2760 old_name = external_name(dentry);
2761 if (unlikely(dname_external(target))) {
2762 atomic_inc(&external_name(target)->u.count);
2763 dentry->d_name = target->d_name;
2764 } else {
2765 memcpy(dentry->d_iname, target->d_name.name,
2766 target->d_name.len + 1);
2767 dentry->d_name.name = dentry->d_iname;
2768 dentry->d_name.hash_len = target->d_name.hash_len;
2769 }
2770 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2771 kfree_rcu(old_name, u.head);
2772 }
2773
2774 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2775 {
2776 /*
2777 * XXXX: do we really need to take target->d_lock?
2778 */
2779 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2780 spin_lock(&target->d_parent->d_lock);
2781 else {
2782 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2783 spin_lock(&dentry->d_parent->d_lock);
2784 spin_lock_nested(&target->d_parent->d_lock,
2785 DENTRY_D_LOCK_NESTED);
2786 } else {
2787 spin_lock(&target->d_parent->d_lock);
2788 spin_lock_nested(&dentry->d_parent->d_lock,
2789 DENTRY_D_LOCK_NESTED);
2790 }
2791 }
2792 if (target < dentry) {
2793 spin_lock_nested(&target->d_lock, 2);
2794 spin_lock_nested(&dentry->d_lock, 3);
2795 } else {
2796 spin_lock_nested(&dentry->d_lock, 2);
2797 spin_lock_nested(&target->d_lock, 3);
2798 }
2799 }
2800
2801 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2802 {
2803 if (target->d_parent != dentry->d_parent)
2804 spin_unlock(&dentry->d_parent->d_lock);
2805 if (target->d_parent != target)
2806 spin_unlock(&target->d_parent->d_lock);
2807 spin_unlock(&target->d_lock);
2808 spin_unlock(&dentry->d_lock);
2809 }
2810
2811 /*
2812 * When switching names, the actual string doesn't strictly have to
2813 * be preserved in the target - because we're dropping the target
2814 * anyway. As such, we can just do a simple memcpy() to copy over
2815 * the new name before we switch, unless we are going to rehash
2816 * it. Note that if we *do* unhash the target, we are not allowed
2817 * to rehash it without giving it a new name/hash key - whether
2818 * we swap or overwrite the names here, resulting name won't match
2819 * the reality in filesystem; it's only there for d_path() purposes.
2820 * Note that all of this is happening under rename_lock, so the
2821 * any hash lookup seeing it in the middle of manipulations will
2822 * be discarded anyway. So we do not care what happens to the hash
2823 * key in that case.
2824 */
2825 /*
2826 * __d_move - move a dentry
2827 * @dentry: entry to move
2828 * @target: new dentry
2829 * @exchange: exchange the two dentries
2830 *
2831 * Update the dcache to reflect the move of a file name. Negative
2832 * dcache entries should not be moved in this way. Caller must hold
2833 * rename_lock, the i_mutex of the source and target directories,
2834 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2835 */
2836 static void __d_move(struct dentry *dentry, struct dentry *target,
2837 bool exchange)
2838 {
2839 struct inode *dir = NULL;
2840 unsigned n;
2841 if (!dentry->d_inode)
2842 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2843
2844 BUG_ON(d_ancestor(dentry, target));
2845 BUG_ON(d_ancestor(target, dentry));
2846
2847 dentry_lock_for_move(dentry, target);
2848 if (unlikely(d_in_lookup(target))) {
2849 dir = target->d_parent->d_inode;
2850 n = start_dir_add(dir);
2851 __d_lookup_done(target);
2852 }
2853
2854 write_seqcount_begin(&dentry->d_seq);
2855 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2856
2857 /* unhash both */
2858 /* ___d_drop does write_seqcount_barrier, but they're OK to nest. */
2859 ___d_drop(dentry);
2860 ___d_drop(target);
2861
2862 /* Switch the names.. */
2863 if (exchange)
2864 swap_names(dentry, target);
2865 else
2866 copy_name(dentry, target);
2867
2868 /* rehash in new place(s) */
2869 __d_rehash(dentry);
2870 if (exchange)
2871 __d_rehash(target);
2872 else
2873 target->d_hash.pprev = NULL;
2874
2875 /* ... and switch them in the tree */
2876 if (IS_ROOT(dentry)) {
2877 /* splicing a tree */
2878 dentry->d_flags |= DCACHE_RCUACCESS;
2879 dentry->d_parent = target->d_parent;
2880 target->d_parent = target;
2881 list_del_init(&target->d_child);
2882 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2883 } else {
2884 /* swapping two dentries */
2885 swap(dentry->d_parent, target->d_parent);
2886 list_move(&target->d_child, &target->d_parent->d_subdirs);
2887 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2888 if (exchange)
2889 fsnotify_update_flags(target);
2890 fsnotify_update_flags(dentry);
2891 }
2892
2893 write_seqcount_end(&target->d_seq);
2894 write_seqcount_end(&dentry->d_seq);
2895
2896 if (dir)
2897 end_dir_add(dir, n);
2898 dentry_unlock_for_move(dentry, target);
2899 }
2900
2901 /*
2902 * d_move - move a dentry
2903 * @dentry: entry to move
2904 * @target: new dentry
2905 *
2906 * Update the dcache to reflect the move of a file name. Negative
2907 * dcache entries should not be moved in this way. See the locking
2908 * requirements for __d_move.
2909 */
2910 void d_move(struct dentry *dentry, struct dentry *target)
2911 {
2912 write_seqlock(&rename_lock);
2913 __d_move(dentry, target, false);
2914 write_sequnlock(&rename_lock);
2915 }
2916 EXPORT_SYMBOL(d_move);
2917
2918 /*
2919 * d_exchange - exchange two dentries
2920 * @dentry1: first dentry
2921 * @dentry2: second dentry
2922 */
2923 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2924 {
2925 write_seqlock(&rename_lock);
2926
2927 WARN_ON(!dentry1->d_inode);
2928 WARN_ON(!dentry2->d_inode);
2929 WARN_ON(IS_ROOT(dentry1));
2930 WARN_ON(IS_ROOT(dentry2));
2931
2932 __d_move(dentry1, dentry2, true);
2933
2934 write_sequnlock(&rename_lock);
2935 }
2936
2937 /**
2938 * d_ancestor - search for an ancestor
2939 * @p1: ancestor dentry
2940 * @p2: child dentry
2941 *
2942 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2943 * an ancestor of p2, else NULL.
2944 */
2945 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2946 {
2947 struct dentry *p;
2948
2949 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2950 if (p->d_parent == p1)
2951 return p;
2952 }
2953 return NULL;
2954 }
2955
2956 /*
2957 * This helper attempts to cope with remotely renamed directories
2958 *
2959 * It assumes that the caller is already holding
2960 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2961 *
2962 * Note: If ever the locking in lock_rename() changes, then please
2963 * remember to update this too...
2964 */
2965 static int __d_unalias(struct inode *inode,
2966 struct dentry *dentry, struct dentry *alias)
2967 {
2968 struct mutex *m1 = NULL;
2969 struct rw_semaphore *m2 = NULL;
2970 int ret = -ESTALE;
2971
2972 /* If alias and dentry share a parent, then no extra locks required */
2973 if (alias->d_parent == dentry->d_parent)
2974 goto out_unalias;
2975
2976 /* See lock_rename() */
2977 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2978 goto out_err;
2979 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2980 if (!inode_trylock_shared(alias->d_parent->d_inode))
2981 goto out_err;
2982 m2 = &alias->d_parent->d_inode->i_rwsem;
2983 out_unalias:
2984 __d_move(alias, dentry, false);
2985 ret = 0;
2986 out_err:
2987 if (m2)
2988 up_read(m2);
2989 if (m1)
2990 mutex_unlock(m1);
2991 return ret;
2992 }
2993
2994 /**
2995 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2996 * @inode: the inode which may have a disconnected dentry
2997 * @dentry: a negative dentry which we want to point to the inode.
2998 *
2999 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3000 * place of the given dentry and return it, else simply d_add the inode
3001 * to the dentry and return NULL.
3002 *
3003 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3004 * we should error out: directories can't have multiple aliases.
3005 *
3006 * This is needed in the lookup routine of any filesystem that is exportable
3007 * (via knfsd) so that we can build dcache paths to directories effectively.
3008 *
3009 * If a dentry was found and moved, then it is returned. Otherwise NULL
3010 * is returned. This matches the expected return value of ->lookup.
3011 *
3012 * Cluster filesystems may call this function with a negative, hashed dentry.
3013 * In that case, we know that the inode will be a regular file, and also this
3014 * will only occur during atomic_open. So we need to check for the dentry
3015 * being already hashed only in the final case.
3016 */
3017 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3018 {
3019 if (IS_ERR(inode))
3020 return ERR_CAST(inode);
3021
3022 BUG_ON(!d_unhashed(dentry));
3023
3024 if (!inode)
3025 goto out;
3026
3027 security_d_instantiate(dentry, inode);
3028 spin_lock(&inode->i_lock);
3029 if (S_ISDIR(inode->i_mode)) {
3030 struct dentry *new = __d_find_any_alias(inode);
3031 if (unlikely(new)) {
3032 /* The reference to new ensures it remains an alias */
3033 spin_unlock(&inode->i_lock);
3034 write_seqlock(&rename_lock);
3035 if (unlikely(d_ancestor(new, dentry))) {
3036 write_sequnlock(&rename_lock);
3037 dput(new);
3038 new = ERR_PTR(-ELOOP);
3039 pr_warn_ratelimited(
3040 "VFS: Lookup of '%s' in %s %s"
3041 " would have caused loop\n",
3042 dentry->d_name.name,
3043 inode->i_sb->s_type->name,
3044 inode->i_sb->s_id);
3045 } else if (!IS_ROOT(new)) {
3046 int err = __d_unalias(inode, dentry, new);
3047 write_sequnlock(&rename_lock);
3048 if (err) {
3049 dput(new);
3050 new = ERR_PTR(err);
3051 }
3052 } else {
3053 __d_move(new, dentry, false);
3054 write_sequnlock(&rename_lock);
3055 }
3056 iput(inode);
3057 return new;
3058 }
3059 }
3060 out:
3061 __d_add(dentry, inode);
3062 return NULL;
3063 }
3064 EXPORT_SYMBOL(d_splice_alias);
3065
3066 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3067 {
3068 *buflen -= namelen;
3069 if (*buflen < 0)
3070 return -ENAMETOOLONG;
3071 *buffer -= namelen;
3072 memcpy(*buffer, str, namelen);
3073 return 0;
3074 }
3075
3076 /**
3077 * prepend_name - prepend a pathname in front of current buffer pointer
3078 * @buffer: buffer pointer
3079 * @buflen: allocated length of the buffer
3080 * @name: name string and length qstr structure
3081 *
3082 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3083 * make sure that either the old or the new name pointer and length are
3084 * fetched. However, there may be mismatch between length and pointer.
3085 * The length cannot be trusted, we need to copy it byte-by-byte until
3086 * the length is reached or a null byte is found. It also prepends "/" at
3087 * the beginning of the name. The sequence number check at the caller will
3088 * retry it again when a d_move() does happen. So any garbage in the buffer
3089 * due to mismatched pointer and length will be discarded.
3090 *
3091 * Data dependency barrier is needed to make sure that we see that terminating
3092 * NUL. Alpha strikes again, film at 11...
3093 */
3094 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3095 {
3096 const char *dname = ACCESS_ONCE(name->name);
3097 u32 dlen = ACCESS_ONCE(name->len);
3098 char *p;
3099
3100 smp_read_barrier_depends();
3101
3102 *buflen -= dlen + 1;
3103 if (*buflen < 0)
3104 return -ENAMETOOLONG;
3105 p = *buffer -= dlen + 1;
3106 *p++ = '/';
3107 while (dlen--) {
3108 char c = *dname++;
3109 if (!c)
3110 break;
3111 *p++ = c;
3112 }
3113 return 0;
3114 }
3115
3116 /**
3117 * prepend_path - Prepend path string to a buffer
3118 * @path: the dentry/vfsmount to report
3119 * @root: root vfsmnt/dentry
3120 * @buffer: pointer to the end of the buffer
3121 * @buflen: pointer to buffer length
3122 *
3123 * The function will first try to write out the pathname without taking any
3124 * lock other than the RCU read lock to make sure that dentries won't go away.
3125 * It only checks the sequence number of the global rename_lock as any change
3126 * in the dentry's d_seq will be preceded by changes in the rename_lock
3127 * sequence number. If the sequence number had been changed, it will restart
3128 * the whole pathname back-tracing sequence again by taking the rename_lock.
3129 * In this case, there is no need to take the RCU read lock as the recursive
3130 * parent pointer references will keep the dentry chain alive as long as no
3131 * rename operation is performed.
3132 */
3133 static int prepend_path(const struct path *path,
3134 const struct path *root,
3135 char **buffer, int *buflen)
3136 {
3137 struct dentry *dentry;
3138 struct vfsmount *vfsmnt;
3139 struct mount *mnt;
3140 int error = 0;
3141 unsigned seq, m_seq = 0;
3142 char *bptr;
3143 int blen;
3144
3145 rcu_read_lock();
3146 restart_mnt:
3147 read_seqbegin_or_lock(&mount_lock, &m_seq);
3148 seq = 0;
3149 rcu_read_lock();
3150 restart:
3151 bptr = *buffer;
3152 blen = *buflen;
3153 error = 0;
3154 dentry = path->dentry;
3155 vfsmnt = path->mnt;
3156 mnt = real_mount(vfsmnt);
3157 read_seqbegin_or_lock(&rename_lock, &seq);
3158 while (dentry != root->dentry || vfsmnt != root->mnt) {
3159 struct dentry * parent;
3160
3161 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3162 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3163 /* Escaped? */
3164 if (dentry != vfsmnt->mnt_root) {
3165 bptr = *buffer;
3166 blen = *buflen;
3167 error = 3;
3168 break;
3169 }
3170 /* Global root? */
3171 if (mnt != parent) {
3172 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3173 mnt = parent;
3174 vfsmnt = &mnt->mnt;
3175 continue;
3176 }
3177 if (!error)
3178 error = is_mounted(vfsmnt) ? 1 : 2;
3179 break;
3180 }
3181 parent = dentry->d_parent;
3182 prefetch(parent);
3183 error = prepend_name(&bptr, &blen, &dentry->d_name);
3184 if (error)
3185 break;
3186
3187 dentry = parent;
3188 }
3189 if (!(seq & 1))
3190 rcu_read_unlock();
3191 if (need_seqretry(&rename_lock, seq)) {
3192 seq = 1;
3193 goto restart;
3194 }
3195 done_seqretry(&rename_lock, seq);
3196
3197 if (!(m_seq & 1))
3198 rcu_read_unlock();
3199 if (need_seqretry(&mount_lock, m_seq)) {
3200 m_seq = 1;
3201 goto restart_mnt;
3202 }
3203 done_seqretry(&mount_lock, m_seq);
3204
3205 if (error >= 0 && bptr == *buffer) {
3206 if (--blen < 0)
3207 error = -ENAMETOOLONG;
3208 else
3209 *--bptr = '/';
3210 }
3211 *buffer = bptr;
3212 *buflen = blen;
3213 return error;
3214 }
3215
3216 /**
3217 * __d_path - return the path of a dentry
3218 * @path: the dentry/vfsmount to report
3219 * @root: root vfsmnt/dentry
3220 * @buf: buffer to return value in
3221 * @buflen: buffer length
3222 *
3223 * Convert a dentry into an ASCII path name.
3224 *
3225 * Returns a pointer into the buffer or an error code if the
3226 * path was too long.
3227 *
3228 * "buflen" should be positive.
3229 *
3230 * If the path is not reachable from the supplied root, return %NULL.
3231 */
3232 char *__d_path(const struct path *path,
3233 const struct path *root,
3234 char *buf, int buflen)
3235 {
3236 char *res = buf + buflen;
3237 int error;
3238
3239 prepend(&res, &buflen, "\0", 1);
3240 error = prepend_path(path, root, &res, &buflen);
3241
3242 if (error < 0)
3243 return ERR_PTR(error);
3244 if (error > 0)
3245 return NULL;
3246 return res;
3247 }
3248
3249 char *d_absolute_path(const struct path *path,
3250 char *buf, int buflen)
3251 {
3252 struct path root = {};
3253 char *res = buf + buflen;
3254 int error;
3255
3256 prepend(&res, &buflen, "\0", 1);
3257 error = prepend_path(path, &root, &res, &buflen);
3258
3259 if (error > 1)
3260 error = -EINVAL;
3261 if (error < 0)
3262 return ERR_PTR(error);
3263 return res;
3264 }
3265
3266 /*
3267 * same as __d_path but appends "(deleted)" for unlinked files.
3268 */
3269 static int path_with_deleted(const struct path *path,
3270 const struct path *root,
3271 char **buf, int *buflen)
3272 {
3273 prepend(buf, buflen, "\0", 1);
3274 if (d_unlinked(path->dentry)) {
3275 int error = prepend(buf, buflen, " (deleted)", 10);
3276 if (error)
3277 return error;
3278 }
3279
3280 return prepend_path(path, root, buf, buflen);
3281 }
3282
3283 static int prepend_unreachable(char **buffer, int *buflen)
3284 {
3285 return prepend(buffer, buflen, "(unreachable)", 13);
3286 }
3287
3288 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3289 {
3290 unsigned seq;
3291
3292 do {
3293 seq = read_seqcount_begin(&fs->seq);
3294 *root = fs->root;
3295 } while (read_seqcount_retry(&fs->seq, seq));
3296 }
3297
3298 /**
3299 * d_path - return the path of a dentry
3300 * @path: path to report
3301 * @buf: buffer to return value in
3302 * @buflen: buffer length
3303 *
3304 * Convert a dentry into an ASCII path name. If the entry has been deleted
3305 * the string " (deleted)" is appended. Note that this is ambiguous.
3306 *
3307 * Returns a pointer into the buffer or an error code if the path was
3308 * too long. Note: Callers should use the returned pointer, not the passed
3309 * in buffer, to use the name! The implementation often starts at an offset
3310 * into the buffer, and may leave 0 bytes at the start.
3311 *
3312 * "buflen" should be positive.
3313 */
3314 char *d_path(const struct path *path, char *buf, int buflen)
3315 {
3316 char *res = buf + buflen;
3317 struct path root;
3318 int error;
3319
3320 /*
3321 * We have various synthetic filesystems that never get mounted. On
3322 * these filesystems dentries are never used for lookup purposes, and
3323 * thus don't need to be hashed. They also don't need a name until a
3324 * user wants to identify the object in /proc/pid/fd/. The little hack
3325 * below allows us to generate a name for these objects on demand:
3326 *
3327 * Some pseudo inodes are mountable. When they are mounted
3328 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3329 * and instead have d_path return the mounted path.
3330 */
3331 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3332 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3333 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3334
3335 rcu_read_lock();
3336 get_fs_root_rcu(current->fs, &root);
3337 error = path_with_deleted(path, &root, &res, &buflen);
3338 rcu_read_unlock();
3339
3340 if (error < 0)
3341 res = ERR_PTR(error);
3342 return res;
3343 }
3344 EXPORT_SYMBOL(d_path);
3345
3346 /*
3347 * Helper function for dentry_operations.d_dname() members
3348 */
3349 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3350 const char *fmt, ...)
3351 {
3352 va_list args;
3353 char temp[64];
3354 int sz;
3355
3356 va_start(args, fmt);
3357 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3358 va_end(args);
3359
3360 if (sz > sizeof(temp) || sz > buflen)
3361 return ERR_PTR(-ENAMETOOLONG);
3362
3363 buffer += buflen - sz;
3364 return memcpy(buffer, temp, sz);
3365 }
3366
3367 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3368 {
3369 char *end = buffer + buflen;
3370 /* these dentries are never renamed, so d_lock is not needed */
3371 if (prepend(&end, &buflen, " (deleted)", 11) ||
3372 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3373 prepend(&end, &buflen, "/", 1))
3374 end = ERR_PTR(-ENAMETOOLONG);
3375 return end;
3376 }
3377 EXPORT_SYMBOL(simple_dname);
3378
3379 /*
3380 * Write full pathname from the root of the filesystem into the buffer.
3381 */
3382 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3383 {
3384 struct dentry *dentry;
3385 char *end, *retval;
3386 int len, seq = 0;
3387 int error = 0;
3388
3389 if (buflen < 2)
3390 goto Elong;
3391
3392 rcu_read_lock();
3393 restart:
3394 dentry = d;
3395 end = buf + buflen;
3396 len = buflen;
3397 prepend(&end, &len, "\0", 1);
3398 /* Get '/' right */
3399 retval = end-1;
3400 *retval = '/';
3401 read_seqbegin_or_lock(&rename_lock, &seq);
3402 while (!IS_ROOT(dentry)) {
3403 struct dentry *parent = dentry->d_parent;
3404
3405 prefetch(parent);
3406 error = prepend_name(&end, &len, &dentry->d_name);
3407 if (error)
3408 break;
3409
3410 retval = end;
3411 dentry = parent;
3412 }
3413 if (!(seq & 1))
3414 rcu_read_unlock();
3415 if (need_seqretry(&rename_lock, seq)) {
3416 seq = 1;
3417 goto restart;
3418 }
3419 done_seqretry(&rename_lock, seq);
3420 if (error)
3421 goto Elong;
3422 return retval;
3423 Elong:
3424 return ERR_PTR(-ENAMETOOLONG);
3425 }
3426
3427 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3428 {
3429 return __dentry_path(dentry, buf, buflen);
3430 }
3431 EXPORT_SYMBOL(dentry_path_raw);
3432
3433 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3434 {
3435 char *p = NULL;
3436 char *retval;
3437
3438 if (d_unlinked(dentry)) {
3439 p = buf + buflen;
3440 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3441 goto Elong;
3442 buflen++;
3443 }
3444 retval = __dentry_path(dentry, buf, buflen);
3445 if (!IS_ERR(retval) && p)
3446 *p = '/'; /* restore '/' overriden with '\0' */
3447 return retval;
3448 Elong:
3449 return ERR_PTR(-ENAMETOOLONG);
3450 }
3451
3452 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3453 struct path *pwd)
3454 {
3455 unsigned seq;
3456
3457 do {
3458 seq = read_seqcount_begin(&fs->seq);
3459 *root = fs->root;
3460 *pwd = fs->pwd;
3461 } while (read_seqcount_retry(&fs->seq, seq));
3462 }
3463
3464 /*
3465 * NOTE! The user-level library version returns a
3466 * character pointer. The kernel system call just
3467 * returns the length of the buffer filled (which
3468 * includes the ending '\0' character), or a negative
3469 * error value. So libc would do something like
3470 *
3471 * char *getcwd(char * buf, size_t size)
3472 * {
3473 * int retval;
3474 *
3475 * retval = sys_getcwd(buf, size);
3476 * if (retval >= 0)
3477 * return buf;
3478 * errno = -retval;
3479 * return NULL;
3480 * }
3481 */
3482 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3483 {
3484 int error;
3485 struct path pwd, root;
3486 char *page = __getname();
3487
3488 if (!page)
3489 return -ENOMEM;
3490
3491 rcu_read_lock();
3492 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3493
3494 error = -ENOENT;
3495 if (!d_unlinked(pwd.dentry)) {
3496 unsigned long len;
3497 char *cwd = page + PATH_MAX;
3498 int buflen = PATH_MAX;
3499
3500 prepend(&cwd, &buflen, "\0", 1);
3501 error = prepend_path(&pwd, &root, &cwd, &buflen);
3502 rcu_read_unlock();
3503
3504 if (error < 0)
3505 goto out;
3506
3507 /* Unreachable from current root */
3508 if (error > 0) {
3509 error = prepend_unreachable(&cwd, &buflen);
3510 if (error)
3511 goto out;
3512 }
3513
3514 error = -ERANGE;
3515 len = PATH_MAX + page - cwd;
3516 if (len <= size) {
3517 error = len;
3518 if (copy_to_user(buf, cwd, len))
3519 error = -EFAULT;
3520 }
3521 } else {
3522 rcu_read_unlock();
3523 }
3524
3525 out:
3526 __putname(page);
3527 return error;
3528 }
3529
3530 /*
3531 * Test whether new_dentry is a subdirectory of old_dentry.
3532 *
3533 * Trivially implemented using the dcache structure
3534 */
3535
3536 /**
3537 * is_subdir - is new dentry a subdirectory of old_dentry
3538 * @new_dentry: new dentry
3539 * @old_dentry: old dentry
3540 *
3541 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3542 * Returns false otherwise.
3543 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3544 */
3545
3546 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3547 {
3548 bool result;
3549 unsigned seq;
3550
3551 if (new_dentry == old_dentry)
3552 return true;
3553
3554 do {
3555 /* for restarting inner loop in case of seq retry */
3556 seq = read_seqbegin(&rename_lock);
3557 /*
3558 * Need rcu_readlock to protect against the d_parent trashing
3559 * due to d_move
3560 */
3561 rcu_read_lock();
3562 if (d_ancestor(old_dentry, new_dentry))
3563 result = true;
3564 else
3565 result = false;
3566 rcu_read_unlock();
3567 } while (read_seqretry(&rename_lock, seq));
3568
3569 return result;
3570 }
3571
3572 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3573 {
3574 struct dentry *root = data;
3575 if (dentry != root) {
3576 if (d_unhashed(dentry) || !dentry->d_inode)
3577 return D_WALK_SKIP;
3578
3579 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3580 dentry->d_flags |= DCACHE_GENOCIDE;
3581 dentry->d_lockref.count--;
3582 }
3583 }
3584 return D_WALK_CONTINUE;
3585 }
3586
3587 void d_genocide(struct dentry *parent)
3588 {
3589 d_walk(parent, parent, d_genocide_kill, NULL);
3590 }
3591
3592 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3593 {
3594 inode_dec_link_count(inode);
3595 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3596 !hlist_unhashed(&dentry->d_u.d_alias) ||
3597 !d_unlinked(dentry));
3598 spin_lock(&dentry->d_parent->d_lock);
3599 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3600 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3601 (unsigned long long)inode->i_ino);
3602 spin_unlock(&dentry->d_lock);
3603 spin_unlock(&dentry->d_parent->d_lock);
3604 d_instantiate(dentry, inode);
3605 }
3606 EXPORT_SYMBOL(d_tmpfile);
3607
3608 static __initdata unsigned long dhash_entries;
3609 static int __init set_dhash_entries(char *str)
3610 {
3611 if (!str)
3612 return 0;
3613 dhash_entries = simple_strtoul(str, &str, 0);
3614 return 1;
3615 }
3616 __setup("dhash_entries=", set_dhash_entries);
3617
3618 static void __init dcache_init_early(void)
3619 {
3620 /* If hashes are distributed across NUMA nodes, defer
3621 * hash allocation until vmalloc space is available.
3622 */
3623 if (hashdist)
3624 return;
3625
3626 dentry_hashtable =
3627 alloc_large_system_hash("Dentry cache",
3628 sizeof(struct hlist_bl_head),
3629 dhash_entries,
3630 13,
3631 HASH_EARLY | HASH_ZERO,
3632 &d_hash_shift,
3633 &d_hash_mask,
3634 0,
3635 0);
3636 }
3637
3638 static void __init dcache_init(void)
3639 {
3640 /*
3641 * A constructor could be added for stable state like the lists,
3642 * but it is probably not worth it because of the cache nature
3643 * of the dcache.
3644 */
3645 dentry_cache = KMEM_CACHE(dentry,
3646 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3647
3648 /* Hash may have been set up in dcache_init_early */
3649 if (!hashdist)
3650 return;
3651
3652 dentry_hashtable =
3653 alloc_large_system_hash("Dentry cache",
3654 sizeof(struct hlist_bl_head),
3655 dhash_entries,
3656 13,
3657 HASH_ZERO,
3658 &d_hash_shift,
3659 &d_hash_mask,
3660 0,
3661 0);
3662 }
3663
3664 /* SLAB cache for __getname() consumers */
3665 struct kmem_cache *names_cachep __read_mostly;
3666 EXPORT_SYMBOL(names_cachep);
3667
3668 EXPORT_SYMBOL(d_genocide);
3669
3670 void __init vfs_caches_init_early(void)
3671 {
3672 int i;
3673
3674 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3675 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3676
3677 dcache_init_early();
3678 inode_init_early();
3679 }
3680
3681 void __init vfs_caches_init(void)
3682 {
3683 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3684 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3685
3686 dcache_init();
3687 inode_init();
3688 files_init();
3689 files_maxfiles_init();
3690 mnt_init();
3691 bdev_cache_init();
3692 chrdev_init();
3693 }