FROMLIST: [PATCH v5 04/12] arm: vdso: do calculations outside reader loops
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / fs / dcache.c
1 /*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9 /*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42
43 #include "internal.h"
44 #include "mount.h"
45 #ifdef CONFIG_RKP_NS_PROT
46 u8 ns_prot = 0;
47 #endif
48
49 /*
50 * Usage:
51 * dcache->d_inode->i_lock protects:
52 * - i_dentry, d_u.d_alias, d_inode of aliases
53 * dcache_hash_bucket lock protects:
54 * - the dcache hash table
55 * s_anon bl list spinlock protects:
56 * - the s_anon list (see __d_drop)
57 * dentry->d_sb->s_dentry_lru_lock protects:
58 * - the dcache lru lists and counters
59 * d_lock protects:
60 * - d_flags
61 * - d_name
62 * - d_lru
63 * - d_count
64 * - d_unhashed()
65 * - d_parent and d_subdirs
66 * - childrens' d_child and d_parent
67 * - d_u.d_alias, d_inode
68 *
69 * Ordering:
70 * dentry->d_inode->i_lock
71 * dentry->d_lock
72 * dentry->d_sb->s_dentry_lru_lock
73 * dcache_hash_bucket lock
74 * s_anon lock
75 *
76 * If there is an ancestor relationship:
77 * dentry->d_parent->...->d_parent->d_lock
78 * ...
79 * dentry->d_parent->d_lock
80 * dentry->d_lock
81 *
82 * If no ancestor relationship:
83 * if (dentry1 < dentry2)
84 * dentry1->d_lock
85 * dentry2->d_lock
86 */
87 int sysctl_vfs_cache_pressure __read_mostly = 100;
88 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
89
90 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
91
92 EXPORT_SYMBOL(rename_lock);
93
94 static struct kmem_cache *dentry_cache __read_mostly;
95
96 /*
97 * This is the single most critical data structure when it comes
98 * to the dcache: the hashtable for lookups. Somebody should try
99 * to make this good - I've just made it work.
100 *
101 * This hash-function tries to avoid losing too many bits of hash
102 * information, yet avoid using a prime hash-size or similar.
103 */
104
105 static unsigned int d_hash_mask __read_mostly;
106 static unsigned int d_hash_shift __read_mostly;
107
108 static struct hlist_bl_head *dentry_hashtable __read_mostly;
109
110 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
111 unsigned int hash)
112 {
113 hash += (unsigned long) parent / L1_CACHE_BYTES;
114 return dentry_hashtable + hash_32(hash, d_hash_shift);
115 }
116
117 /* Statistics gathering. */
118 struct dentry_stat_t dentry_stat = {
119 .age_limit = 45,
120 };
121
122 static DEFINE_PER_CPU(long, nr_dentry);
123 static DEFINE_PER_CPU(long, nr_dentry_unused);
124
125 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
126
127 /*
128 * Here we resort to our own counters instead of using generic per-cpu counters
129 * for consistency with what the vfs inode code does. We are expected to harvest
130 * better code and performance by having our own specialized counters.
131 *
132 * Please note that the loop is done over all possible CPUs, not over all online
133 * CPUs. The reason for this is that we don't want to play games with CPUs going
134 * on and off. If one of them goes off, we will just keep their counters.
135 *
136 * glommer: See cffbc8a for details, and if you ever intend to change this,
137 * please update all vfs counters to match.
138 */
139 static long get_nr_dentry(void)
140 {
141 int i;
142 long sum = 0;
143 for_each_possible_cpu(i)
144 sum += per_cpu(nr_dentry, i);
145 return sum < 0 ? 0 : sum;
146 }
147
148 static long get_nr_dentry_unused(void)
149 {
150 int i;
151 long sum = 0;
152 for_each_possible_cpu(i)
153 sum += per_cpu(nr_dentry_unused, i);
154 return sum < 0 ? 0 : sum;
155 }
156
157 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
158 size_t *lenp, loff_t *ppos)
159 {
160 dentry_stat.nr_dentry = get_nr_dentry();
161 dentry_stat.nr_unused = get_nr_dentry_unused();
162 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
163 }
164 #endif
165
166 /*
167 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
168 * The strings are both count bytes long, and count is non-zero.
169 */
170 #ifdef CONFIG_DCACHE_WORD_ACCESS
171
172 #include <asm/word-at-a-time.h>
173 /*
174 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
175 * aligned allocation for this particular component. We don't
176 * strictly need the load_unaligned_zeropad() safety, but it
177 * doesn't hurt either.
178 *
179 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
180 * need the careful unaligned handling.
181 */
182 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
183 {
184 unsigned long a,b,mask;
185
186 for (;;) {
187 a = *(unsigned long *)cs;
188 b = load_unaligned_zeropad(ct);
189 if (tcount < sizeof(unsigned long))
190 break;
191 if (unlikely(a != b))
192 return 1;
193 cs += sizeof(unsigned long);
194 ct += sizeof(unsigned long);
195 tcount -= sizeof(unsigned long);
196 if (!tcount)
197 return 0;
198 }
199 mask = bytemask_from_count(tcount);
200 return unlikely(!!((a ^ b) & mask));
201 }
202
203 #else
204
205 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
206 {
207 do {
208 if (*cs != *ct)
209 return 1;
210 cs++;
211 ct++;
212 tcount--;
213 } while (tcount);
214 return 0;
215 }
216
217 #endif
218
219 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
220 {
221 const unsigned char *cs;
222 /*
223 * Be careful about RCU walk racing with rename:
224 * use ACCESS_ONCE to fetch the name pointer.
225 *
226 * NOTE! Even if a rename will mean that the length
227 * was not loaded atomically, we don't care. The
228 * RCU walk will check the sequence count eventually,
229 * and catch it. And we won't overrun the buffer,
230 * because we're reading the name pointer atomically,
231 * and a dentry name is guaranteed to be properly
232 * terminated with a NUL byte.
233 *
234 * End result: even if 'len' is wrong, we'll exit
235 * early because the data cannot match (there can
236 * be no NUL in the ct/tcount data)
237 */
238 cs = ACCESS_ONCE(dentry->d_name.name);
239 smp_read_barrier_depends();
240 return dentry_string_cmp(cs, ct, tcount);
241 }
242
243 struct external_name {
244 union {
245 atomic_t count;
246 struct rcu_head head;
247 } u;
248 unsigned char name[];
249 };
250
251 static inline struct external_name *external_name(struct dentry *dentry)
252 {
253 return container_of(dentry->d_name.name, struct external_name, name[0]);
254 }
255
256 static void __d_free(struct rcu_head *head)
257 {
258 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
259
260 kmem_cache_free(dentry_cache, dentry);
261 }
262
263 static void __d_free_external(struct rcu_head *head)
264 {
265 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
266 kfree(external_name(dentry));
267 kmem_cache_free(dentry_cache, dentry);
268 }
269
270 static inline int dname_external(const struct dentry *dentry)
271 {
272 return dentry->d_name.name != dentry->d_iname;
273 }
274
275 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
276 {
277 spin_lock(&dentry->d_lock);
278 if (unlikely(dname_external(dentry))) {
279 struct external_name *p = external_name(dentry);
280 atomic_inc(&p->u.count);
281 spin_unlock(&dentry->d_lock);
282 name->name = p->name;
283 } else {
284 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
285 spin_unlock(&dentry->d_lock);
286 name->name = name->inline_name;
287 }
288 }
289 EXPORT_SYMBOL(take_dentry_name_snapshot);
290
291 void release_dentry_name_snapshot(struct name_snapshot *name)
292 {
293 if (unlikely(name->name != name->inline_name)) {
294 struct external_name *p;
295 p = container_of(name->name, struct external_name, name[0]);
296 if (unlikely(atomic_dec_and_test(&p->u.count)))
297 kfree_rcu(p, u.head);
298 }
299 }
300 EXPORT_SYMBOL(release_dentry_name_snapshot);
301
302 static inline void __d_set_inode_and_type(struct dentry *dentry,
303 struct inode *inode,
304 unsigned type_flags)
305 {
306 unsigned flags;
307
308 dentry->d_inode = inode;
309 flags = READ_ONCE(dentry->d_flags);
310 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
311 flags |= type_flags;
312 WRITE_ONCE(dentry->d_flags, flags);
313 }
314
315 static inline void __d_clear_type_and_inode(struct dentry *dentry)
316 {
317 unsigned flags = READ_ONCE(dentry->d_flags);
318
319 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
320 WRITE_ONCE(dentry->d_flags, flags);
321 dentry->d_inode = NULL;
322 }
323
324 static void dentry_free(struct dentry *dentry)
325 {
326 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
327 if (unlikely(dname_external(dentry))) {
328 struct external_name *p = external_name(dentry);
329 if (likely(atomic_dec_and_test(&p->u.count))) {
330 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
331 return;
332 }
333 }
334 /* if dentry was never visible to RCU, immediate free is OK */
335 if (!(dentry->d_flags & DCACHE_RCUACCESS))
336 __d_free(&dentry->d_u.d_rcu);
337 else
338 call_rcu(&dentry->d_u.d_rcu, __d_free);
339 }
340
341 /**
342 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
343 * @dentry: the target dentry
344 * After this call, in-progress rcu-walk path lookup will fail. This
345 * should be called after unhashing, and after changing d_inode (if
346 * the dentry has not already been unhashed).
347 */
348 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
349 {
350 lockdep_assert_held(&dentry->d_lock);
351 /* Go through am invalidation barrier */
352 write_seqcount_invalidate(&dentry->d_seq);
353 }
354
355 /*
356 * Release the dentry's inode, using the filesystem
357 * d_iput() operation if defined. Dentry has no refcount
358 * and is unhashed.
359 */
360 static void dentry_iput(struct dentry * dentry)
361 __releases(dentry->d_lock)
362 __releases(dentry->d_inode->i_lock)
363 {
364 struct inode *inode = dentry->d_inode;
365 if (inode) {
366 __d_clear_type_and_inode(dentry);
367 hlist_del_init(&dentry->d_u.d_alias);
368 spin_unlock(&dentry->d_lock);
369 spin_unlock(&inode->i_lock);
370 if (!inode->i_nlink)
371 fsnotify_inoderemove(inode);
372 if (dentry->d_op && dentry->d_op->d_iput)
373 dentry->d_op->d_iput(dentry, inode);
374 else
375 iput(inode);
376 } else {
377 spin_unlock(&dentry->d_lock);
378 }
379 }
380
381 /*
382 * Release the dentry's inode, using the filesystem
383 * d_iput() operation if defined. dentry remains in-use.
384 */
385 static void dentry_unlink_inode(struct dentry * dentry)
386 __releases(dentry->d_lock)
387 __releases(dentry->d_inode->i_lock)
388 {
389 struct inode *inode = dentry->d_inode;
390
391 raw_write_seqcount_begin(&dentry->d_seq);
392 __d_clear_type_and_inode(dentry);
393 hlist_del_init(&dentry->d_u.d_alias);
394 raw_write_seqcount_end(&dentry->d_seq);
395 spin_unlock(&dentry->d_lock);
396 spin_unlock(&inode->i_lock);
397 if (!inode->i_nlink)
398 fsnotify_inoderemove(inode);
399 if (dentry->d_op && dentry->d_op->d_iput)
400 dentry->d_op->d_iput(dentry, inode);
401 else
402 iput(inode);
403 }
404
405 /*
406 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
407 * is in use - which includes both the "real" per-superblock
408 * LRU list _and_ the DCACHE_SHRINK_LIST use.
409 *
410 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
411 * on the shrink list (ie not on the superblock LRU list).
412 *
413 * The per-cpu "nr_dentry_unused" counters are updated with
414 * the DCACHE_LRU_LIST bit.
415 *
416 * These helper functions make sure we always follow the
417 * rules. d_lock must be held by the caller.
418 */
419 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
420 static void d_lru_add(struct dentry *dentry)
421 {
422 D_FLAG_VERIFY(dentry, 0);
423 dentry->d_flags |= DCACHE_LRU_LIST;
424 this_cpu_inc(nr_dentry_unused);
425 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
426 }
427
428 static void d_lru_del(struct dentry *dentry)
429 {
430 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
431 dentry->d_flags &= ~DCACHE_LRU_LIST;
432 this_cpu_dec(nr_dentry_unused);
433 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
434 }
435
436 static void d_shrink_del(struct dentry *dentry)
437 {
438 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
439 list_del_init(&dentry->d_lru);
440 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
441 this_cpu_dec(nr_dentry_unused);
442 }
443
444 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
445 {
446 D_FLAG_VERIFY(dentry, 0);
447 list_add(&dentry->d_lru, list);
448 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
449 this_cpu_inc(nr_dentry_unused);
450 }
451
452 /*
453 * These can only be called under the global LRU lock, ie during the
454 * callback for freeing the LRU list. "isolate" removes it from the
455 * LRU lists entirely, while shrink_move moves it to the indicated
456 * private list.
457 */
458 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
459 {
460 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
461 dentry->d_flags &= ~DCACHE_LRU_LIST;
462 this_cpu_dec(nr_dentry_unused);
463 list_lru_isolate(lru, &dentry->d_lru);
464 }
465
466 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
467 struct list_head *list)
468 {
469 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
470 dentry->d_flags |= DCACHE_SHRINK_LIST;
471 list_lru_isolate_move(lru, &dentry->d_lru, list);
472 }
473
474 /*
475 * dentry_lru_(add|del)_list) must be called with d_lock held.
476 */
477 static void dentry_lru_add(struct dentry *dentry)
478 {
479 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
480 d_lru_add(dentry);
481 }
482
483 /**
484 * d_drop - drop a dentry
485 * @dentry: dentry to drop
486 *
487 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
488 * be found through a VFS lookup any more. Note that this is different from
489 * deleting the dentry - d_delete will try to mark the dentry negative if
490 * possible, giving a successful _negative_ lookup, while d_drop will
491 * just make the cache lookup fail.
492 *
493 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
494 * reason (NFS timeouts or autofs deletes).
495 *
496 * __d_drop requires dentry->d_lock.
497 */
498 void __d_drop(struct dentry *dentry)
499 {
500 if (!d_unhashed(dentry)) {
501 struct hlist_bl_head *b;
502 /*
503 * Hashed dentries are normally on the dentry hashtable,
504 * with the exception of those newly allocated by
505 * d_obtain_alias, which are always IS_ROOT:
506 */
507 if (unlikely(IS_ROOT(dentry)))
508 b = &dentry->d_sb->s_anon;
509 else
510 b = d_hash(dentry->d_parent, dentry->d_name.hash);
511
512 hlist_bl_lock(b);
513 __hlist_bl_del(&dentry->d_hash);
514 dentry->d_hash.pprev = NULL;
515 hlist_bl_unlock(b);
516 dentry_rcuwalk_invalidate(dentry);
517 }
518 }
519 EXPORT_SYMBOL(__d_drop);
520
521 void d_drop(struct dentry *dentry)
522 {
523 spin_lock(&dentry->d_lock);
524 __d_drop(dentry);
525 spin_unlock(&dentry->d_lock);
526 }
527 EXPORT_SYMBOL(d_drop);
528
529 static void __dentry_kill(struct dentry *dentry)
530 {
531 struct dentry *parent = NULL;
532 bool can_free = true;
533 if (!IS_ROOT(dentry))
534 parent = dentry->d_parent;
535
536 /*
537 * The dentry is now unrecoverably dead to the world.
538 */
539 lockref_mark_dead(&dentry->d_lockref);
540
541 /*
542 * inform the fs via d_prune that this dentry is about to be
543 * unhashed and destroyed.
544 */
545 if (dentry->d_flags & DCACHE_OP_PRUNE)
546 dentry->d_op->d_prune(dentry);
547
548 if (dentry->d_flags & DCACHE_LRU_LIST) {
549 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
550 d_lru_del(dentry);
551 }
552 /* if it was on the hash then remove it */
553 __d_drop(dentry);
554 __list_del_entry(&dentry->d_child);
555 /*
556 * Inform d_walk() that we are no longer attached to the
557 * dentry tree
558 */
559 dentry->d_flags |= DCACHE_DENTRY_KILLED;
560 if (parent)
561 spin_unlock(&parent->d_lock);
562 dentry_iput(dentry);
563 /*
564 * dentry_iput drops the locks, at which point nobody (except
565 * transient RCU lookups) can reach this dentry.
566 */
567 BUG_ON(dentry->d_lockref.count > 0);
568 this_cpu_dec(nr_dentry);
569 if (dentry->d_op && dentry->d_op->d_release)
570 dentry->d_op->d_release(dentry);
571
572 spin_lock(&dentry->d_lock);
573 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
574 dentry->d_flags |= DCACHE_MAY_FREE;
575 can_free = false;
576 }
577 spin_unlock(&dentry->d_lock);
578 if (likely(can_free))
579 dentry_free(dentry);
580 }
581
582 /*
583 * Finish off a dentry we've decided to kill.
584 * dentry->d_lock must be held, returns with it unlocked.
585 * If ref is non-zero, then decrement the refcount too.
586 * Returns dentry requiring refcount drop, or NULL if we're done.
587 */
588 static struct dentry *dentry_kill(struct dentry *dentry)
589 __releases(dentry->d_lock)
590 {
591 struct inode *inode = dentry->d_inode;
592 struct dentry *parent = NULL;
593
594 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
595 goto failed;
596
597 if (!IS_ROOT(dentry)) {
598 parent = dentry->d_parent;
599 if (unlikely(!spin_trylock(&parent->d_lock))) {
600 if (inode)
601 spin_unlock(&inode->i_lock);
602 goto failed;
603 }
604 }
605
606 __dentry_kill(dentry);
607 return parent;
608
609 failed:
610 spin_unlock(&dentry->d_lock);
611 return dentry; /* try again with same dentry */
612 }
613
614 static inline struct dentry *lock_parent(struct dentry *dentry)
615 {
616 struct dentry *parent = dentry->d_parent;
617 if (IS_ROOT(dentry))
618 return NULL;
619 if (unlikely(dentry->d_lockref.count < 0))
620 return NULL;
621 if (likely(spin_trylock(&parent->d_lock)))
622 return parent;
623 rcu_read_lock();
624 spin_unlock(&dentry->d_lock);
625 again:
626 parent = ACCESS_ONCE(dentry->d_parent);
627 spin_lock(&parent->d_lock);
628 /*
629 * We can't blindly lock dentry until we are sure
630 * that we won't violate the locking order.
631 * Any changes of dentry->d_parent must have
632 * been done with parent->d_lock held, so
633 * spin_lock() above is enough of a barrier
634 * for checking if it's still our child.
635 */
636 if (unlikely(parent != dentry->d_parent)) {
637 spin_unlock(&parent->d_lock);
638 goto again;
639 }
640 rcu_read_unlock();
641 if (parent != dentry)
642 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
643 else
644 parent = NULL;
645 return parent;
646 }
647
648 /*
649 * Try to do a lockless dput(), and return whether that was successful.
650 *
651 * If unsuccessful, we return false, having already taken the dentry lock.
652 *
653 * The caller needs to hold the RCU read lock, so that the dentry is
654 * guaranteed to stay around even if the refcount goes down to zero!
655 */
656 static inline bool fast_dput(struct dentry *dentry)
657 {
658 int ret;
659 unsigned int d_flags;
660
661 /*
662 * If we have a d_op->d_delete() operation, we sould not
663 * let the dentry count go to zero, so use "put_or_lock".
664 */
665 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
666 return lockref_put_or_lock(&dentry->d_lockref);
667
668 /*
669 * .. otherwise, we can try to just decrement the
670 * lockref optimistically.
671 */
672 ret = lockref_put_return(&dentry->d_lockref);
673
674 /*
675 * If the lockref_put_return() failed due to the lock being held
676 * by somebody else, the fast path has failed. We will need to
677 * get the lock, and then check the count again.
678 */
679 if (unlikely(ret < 0)) {
680 spin_lock(&dentry->d_lock);
681 if (dentry->d_lockref.count > 1) {
682 dentry->d_lockref.count--;
683 spin_unlock(&dentry->d_lock);
684 return 1;
685 }
686 return 0;
687 }
688
689 /*
690 * If we weren't the last ref, we're done.
691 */
692 if (ret)
693 return 1;
694
695 /*
696 * Careful, careful. The reference count went down
697 * to zero, but we don't hold the dentry lock, so
698 * somebody else could get it again, and do another
699 * dput(), and we need to not race with that.
700 *
701 * However, there is a very special and common case
702 * where we don't care, because there is nothing to
703 * do: the dentry is still hashed, it does not have
704 * a 'delete' op, and it's referenced and already on
705 * the LRU list.
706 *
707 * NOTE! Since we aren't locked, these values are
708 * not "stable". However, it is sufficient that at
709 * some point after we dropped the reference the
710 * dentry was hashed and the flags had the proper
711 * value. Other dentry users may have re-gotten
712 * a reference to the dentry and change that, but
713 * our work is done - we can leave the dentry
714 * around with a zero refcount.
715 */
716 smp_rmb();
717 d_flags = ACCESS_ONCE(dentry->d_flags);
718 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
719
720 /* Nothing to do? Dropping the reference was all we needed? */
721 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
722 return 1;
723
724 /*
725 * Not the fast normal case? Get the lock. We've already decremented
726 * the refcount, but we'll need to re-check the situation after
727 * getting the lock.
728 */
729 spin_lock(&dentry->d_lock);
730
731 /*
732 * Did somebody else grab a reference to it in the meantime, and
733 * we're no longer the last user after all? Alternatively, somebody
734 * else could have killed it and marked it dead. Either way, we
735 * don't need to do anything else.
736 */
737 if (dentry->d_lockref.count) {
738 spin_unlock(&dentry->d_lock);
739 return 1;
740 }
741
742 /*
743 * Re-get the reference we optimistically dropped. We hold the
744 * lock, and we just tested that it was zero, so we can just
745 * set it to 1.
746 */
747 dentry->d_lockref.count = 1;
748 return 0;
749 }
750
751
752 /*
753 * This is dput
754 *
755 * This is complicated by the fact that we do not want to put
756 * dentries that are no longer on any hash chain on the unused
757 * list: we'd much rather just get rid of them immediately.
758 *
759 * However, that implies that we have to traverse the dentry
760 * tree upwards to the parents which might _also_ now be
761 * scheduled for deletion (it may have been only waiting for
762 * its last child to go away).
763 *
764 * This tail recursion is done by hand as we don't want to depend
765 * on the compiler to always get this right (gcc generally doesn't).
766 * Real recursion would eat up our stack space.
767 */
768
769 /*
770 * dput - release a dentry
771 * @dentry: dentry to release
772 *
773 * Release a dentry. This will drop the usage count and if appropriate
774 * call the dentry unlink method as well as removing it from the queues and
775 * releasing its resources. If the parent dentries were scheduled for release
776 * they too may now get deleted.
777 */
778 void dput(struct dentry *dentry)
779 {
780 if (unlikely(!dentry))
781 return;
782
783 repeat:
784 might_sleep();
785
786 rcu_read_lock();
787 if (likely(fast_dput(dentry))) {
788 rcu_read_unlock();
789 return;
790 }
791
792 /* Slow case: now with the dentry lock held */
793 rcu_read_unlock();
794
795 /* Unreachable? Get rid of it */
796 if (unlikely(d_unhashed(dentry)))
797 goto kill_it;
798
799 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
800 goto kill_it;
801
802 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
803 if (dentry->d_op->d_delete(dentry))
804 goto kill_it;
805 }
806
807 if (!(dentry->d_flags & DCACHE_REFERENCED))
808 dentry->d_flags |= DCACHE_REFERENCED;
809 dentry_lru_add(dentry);
810
811 dentry->d_lockref.count--;
812 spin_unlock(&dentry->d_lock);
813 return;
814
815 kill_it:
816 dentry = dentry_kill(dentry);
817 if (dentry) {
818 cond_resched();
819 goto repeat;
820 }
821 }
822 EXPORT_SYMBOL(dput);
823
824
825 /* This must be called with d_lock held */
826 static inline void __dget_dlock(struct dentry *dentry)
827 {
828 dentry->d_lockref.count++;
829 }
830
831 static inline void __dget(struct dentry *dentry)
832 {
833 lockref_get(&dentry->d_lockref);
834 }
835
836 struct dentry *dget_parent(struct dentry *dentry)
837 {
838 int gotref;
839 struct dentry *ret;
840
841 /*
842 * Do optimistic parent lookup without any
843 * locking.
844 */
845 rcu_read_lock();
846 ret = ACCESS_ONCE(dentry->d_parent);
847 gotref = lockref_get_not_zero(&ret->d_lockref);
848 rcu_read_unlock();
849 if (likely(gotref)) {
850 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
851 return ret;
852 dput(ret);
853 }
854
855 repeat:
856 /*
857 * Don't need rcu_dereference because we re-check it was correct under
858 * the lock.
859 */
860 rcu_read_lock();
861 ret = dentry->d_parent;
862 spin_lock(&ret->d_lock);
863 if (unlikely(ret != dentry->d_parent)) {
864 spin_unlock(&ret->d_lock);
865 rcu_read_unlock();
866 goto repeat;
867 }
868 rcu_read_unlock();
869 BUG_ON(!ret->d_lockref.count);
870 ret->d_lockref.count++;
871 spin_unlock(&ret->d_lock);
872 return ret;
873 }
874 EXPORT_SYMBOL(dget_parent);
875
876 /**
877 * d_find_alias - grab a hashed alias of inode
878 * @inode: inode in question
879 *
880 * If inode has a hashed alias, or is a directory and has any alias,
881 * acquire the reference to alias and return it. Otherwise return NULL.
882 * Notice that if inode is a directory there can be only one alias and
883 * it can be unhashed only if it has no children, or if it is the root
884 * of a filesystem, or if the directory was renamed and d_revalidate
885 * was the first vfs operation to notice.
886 *
887 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
888 * any other hashed alias over that one.
889 */
890 static struct dentry *__d_find_alias(struct inode *inode)
891 {
892 struct dentry *alias, *discon_alias;
893
894 again:
895 discon_alias = NULL;
896 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
897 spin_lock(&alias->d_lock);
898 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
899 if (IS_ROOT(alias) &&
900 (alias->d_flags & DCACHE_DISCONNECTED)) {
901 discon_alias = alias;
902 } else {
903 __dget_dlock(alias);
904 spin_unlock(&alias->d_lock);
905 return alias;
906 }
907 }
908 spin_unlock(&alias->d_lock);
909 }
910 if (discon_alias) {
911 alias = discon_alias;
912 spin_lock(&alias->d_lock);
913 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
914 __dget_dlock(alias);
915 spin_unlock(&alias->d_lock);
916 return alias;
917 }
918 spin_unlock(&alias->d_lock);
919 goto again;
920 }
921 return NULL;
922 }
923
924 struct dentry *d_find_alias(struct inode *inode)
925 {
926 struct dentry *de = NULL;
927
928 if (!hlist_empty(&inode->i_dentry)) {
929 spin_lock(&inode->i_lock);
930 de = __d_find_alias(inode);
931 spin_unlock(&inode->i_lock);
932 }
933 return de;
934 }
935 EXPORT_SYMBOL(d_find_alias);
936
937 /*
938 * Try to kill dentries associated with this inode.
939 * WARNING: you must own a reference to inode.
940 */
941 void d_prune_aliases(struct inode *inode)
942 {
943 struct dentry *dentry;
944 restart:
945 spin_lock(&inode->i_lock);
946 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
947 spin_lock(&dentry->d_lock);
948 if (!dentry->d_lockref.count) {
949 struct dentry *parent = lock_parent(dentry);
950 if (likely(!dentry->d_lockref.count)) {
951 __dentry_kill(dentry);
952 dput(parent);
953 goto restart;
954 }
955 if (parent)
956 spin_unlock(&parent->d_lock);
957 }
958 spin_unlock(&dentry->d_lock);
959 }
960 spin_unlock(&inode->i_lock);
961 }
962 EXPORT_SYMBOL(d_prune_aliases);
963
964 static void shrink_dentry_list(struct list_head *list)
965 {
966 struct dentry *dentry, *parent;
967
968 while (!list_empty(list)) {
969 struct inode *inode;
970 dentry = list_entry(list->prev, struct dentry, d_lru);
971 spin_lock(&dentry->d_lock);
972 parent = lock_parent(dentry);
973
974 /*
975 * The dispose list is isolated and dentries are not accounted
976 * to the LRU here, so we can simply remove it from the list
977 * here regardless of whether it is referenced or not.
978 */
979 d_shrink_del(dentry);
980
981 /*
982 * We found an inuse dentry which was not removed from
983 * the LRU because of laziness during lookup. Do not free it.
984 */
985 if (dentry->d_lockref.count > 0) {
986 spin_unlock(&dentry->d_lock);
987 if (parent)
988 spin_unlock(&parent->d_lock);
989 continue;
990 }
991
992
993 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
994 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
995 spin_unlock(&dentry->d_lock);
996 if (parent)
997 spin_unlock(&parent->d_lock);
998 if (can_free)
999 dentry_free(dentry);
1000 continue;
1001 }
1002
1003 inode = dentry->d_inode;
1004 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1005 d_shrink_add(dentry, list);
1006 spin_unlock(&dentry->d_lock);
1007 if (parent)
1008 spin_unlock(&parent->d_lock);
1009 continue;
1010 }
1011
1012 __dentry_kill(dentry);
1013
1014 /*
1015 * We need to prune ancestors too. This is necessary to prevent
1016 * quadratic behavior of shrink_dcache_parent(), but is also
1017 * expected to be beneficial in reducing dentry cache
1018 * fragmentation.
1019 */
1020 dentry = parent;
1021 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1022 parent = lock_parent(dentry);
1023 if (dentry->d_lockref.count != 1) {
1024 dentry->d_lockref.count--;
1025 spin_unlock(&dentry->d_lock);
1026 if (parent)
1027 spin_unlock(&parent->d_lock);
1028 break;
1029 }
1030 inode = dentry->d_inode; /* can't be NULL */
1031 if (unlikely(!spin_trylock(&inode->i_lock))) {
1032 spin_unlock(&dentry->d_lock);
1033 if (parent)
1034 spin_unlock(&parent->d_lock);
1035 cpu_relax();
1036 continue;
1037 }
1038 __dentry_kill(dentry);
1039 dentry = parent;
1040 }
1041 }
1042 }
1043
1044 static enum lru_status dentry_lru_isolate(struct list_head *item,
1045 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1046 {
1047 struct list_head *freeable = arg;
1048 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1049
1050
1051 /*
1052 * we are inverting the lru lock/dentry->d_lock here,
1053 * so use a trylock. If we fail to get the lock, just skip
1054 * it
1055 */
1056 if (!spin_trylock(&dentry->d_lock))
1057 return LRU_SKIP;
1058
1059 /*
1060 * Referenced dentries are still in use. If they have active
1061 * counts, just remove them from the LRU. Otherwise give them
1062 * another pass through the LRU.
1063 */
1064 if (dentry->d_lockref.count) {
1065 d_lru_isolate(lru, dentry);
1066 spin_unlock(&dentry->d_lock);
1067 return LRU_REMOVED;
1068 }
1069
1070 if (dentry->d_flags & DCACHE_REFERENCED) {
1071 dentry->d_flags &= ~DCACHE_REFERENCED;
1072 spin_unlock(&dentry->d_lock);
1073
1074 /*
1075 * The list move itself will be made by the common LRU code. At
1076 * this point, we've dropped the dentry->d_lock but keep the
1077 * lru lock. This is safe to do, since every list movement is
1078 * protected by the lru lock even if both locks are held.
1079 *
1080 * This is guaranteed by the fact that all LRU management
1081 * functions are intermediated by the LRU API calls like
1082 * list_lru_add and list_lru_del. List movement in this file
1083 * only ever occur through this functions or through callbacks
1084 * like this one, that are called from the LRU API.
1085 *
1086 * The only exceptions to this are functions like
1087 * shrink_dentry_list, and code that first checks for the
1088 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1089 * operating only with stack provided lists after they are
1090 * properly isolated from the main list. It is thus, always a
1091 * local access.
1092 */
1093 return LRU_ROTATE;
1094 }
1095
1096 d_lru_shrink_move(lru, dentry, freeable);
1097 spin_unlock(&dentry->d_lock);
1098
1099 return LRU_REMOVED;
1100 }
1101
1102 /**
1103 * prune_dcache_sb - shrink the dcache
1104 * @sb: superblock
1105 * @sc: shrink control, passed to list_lru_shrink_walk()
1106 *
1107 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1108 * is done when we need more memory and called from the superblock shrinker
1109 * function.
1110 *
1111 * This function may fail to free any resources if all the dentries are in
1112 * use.
1113 */
1114 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1115 {
1116 LIST_HEAD(dispose);
1117 long freed;
1118
1119 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1120 dentry_lru_isolate, &dispose);
1121 shrink_dentry_list(&dispose);
1122 return freed;
1123 }
1124
1125 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1126 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1127 {
1128 struct list_head *freeable = arg;
1129 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1130
1131 /*
1132 * we are inverting the lru lock/dentry->d_lock here,
1133 * so use a trylock. If we fail to get the lock, just skip
1134 * it
1135 */
1136 if (!spin_trylock(&dentry->d_lock))
1137 return LRU_SKIP;
1138
1139 d_lru_shrink_move(lru, dentry, freeable);
1140 spin_unlock(&dentry->d_lock);
1141
1142 return LRU_REMOVED;
1143 }
1144
1145
1146 /**
1147 * shrink_dcache_sb - shrink dcache for a superblock
1148 * @sb: superblock
1149 *
1150 * Shrink the dcache for the specified super block. This is used to free
1151 * the dcache before unmounting a file system.
1152 */
1153 void shrink_dcache_sb(struct super_block *sb)
1154 {
1155 long freed;
1156
1157 do {
1158 LIST_HEAD(dispose);
1159
1160 freed = list_lru_walk(&sb->s_dentry_lru,
1161 dentry_lru_isolate_shrink, &dispose, 1024);
1162
1163 this_cpu_sub(nr_dentry_unused, freed);
1164 shrink_dentry_list(&dispose);
1165 cond_resched();
1166 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1167 }
1168 EXPORT_SYMBOL(shrink_dcache_sb);
1169
1170 /**
1171 * enum d_walk_ret - action to talke during tree walk
1172 * @D_WALK_CONTINUE: contrinue walk
1173 * @D_WALK_QUIT: quit walk
1174 * @D_WALK_NORETRY: quit when retry is needed
1175 * @D_WALK_SKIP: skip this dentry and its children
1176 */
1177 enum d_walk_ret {
1178 D_WALK_CONTINUE,
1179 D_WALK_QUIT,
1180 D_WALK_NORETRY,
1181 D_WALK_SKIP,
1182 };
1183
1184 /**
1185 * d_walk - walk the dentry tree
1186 * @parent: start of walk
1187 * @data: data passed to @enter() and @finish()
1188 * @enter: callback when first entering the dentry
1189 * @finish: callback when successfully finished the walk
1190 *
1191 * The @enter() and @finish() callbacks are called with d_lock held.
1192 */
1193 static void d_walk(struct dentry *parent, void *data,
1194 enum d_walk_ret (*enter)(void *, struct dentry *),
1195 void (*finish)(void *))
1196 {
1197 struct dentry *this_parent;
1198 struct list_head *next;
1199 unsigned seq = 0;
1200 enum d_walk_ret ret;
1201 bool retry = true;
1202
1203 again:
1204 read_seqbegin_or_lock(&rename_lock, &seq);
1205 this_parent = parent;
1206 spin_lock(&this_parent->d_lock);
1207
1208 ret = enter(data, this_parent);
1209 switch (ret) {
1210 case D_WALK_CONTINUE:
1211 break;
1212 case D_WALK_QUIT:
1213 case D_WALK_SKIP:
1214 goto out_unlock;
1215 case D_WALK_NORETRY:
1216 retry = false;
1217 break;
1218 }
1219 repeat:
1220 next = this_parent->d_subdirs.next;
1221 resume:
1222 while (next != &this_parent->d_subdirs) {
1223 struct list_head *tmp = next;
1224 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1225 next = tmp->next;
1226
1227 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1228
1229 ret = enter(data, dentry);
1230 switch (ret) {
1231 case D_WALK_CONTINUE:
1232 break;
1233 case D_WALK_QUIT:
1234 spin_unlock(&dentry->d_lock);
1235 goto out_unlock;
1236 case D_WALK_NORETRY:
1237 retry = false;
1238 break;
1239 case D_WALK_SKIP:
1240 spin_unlock(&dentry->d_lock);
1241 continue;
1242 }
1243
1244 if (!list_empty(&dentry->d_subdirs)) {
1245 spin_unlock(&this_parent->d_lock);
1246 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1247 this_parent = dentry;
1248 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1249 goto repeat;
1250 }
1251 spin_unlock(&dentry->d_lock);
1252 }
1253 /*
1254 * All done at this level ... ascend and resume the search.
1255 */
1256 rcu_read_lock();
1257 ascend:
1258 if (this_parent != parent) {
1259 struct dentry *child = this_parent;
1260 this_parent = child->d_parent;
1261
1262 spin_unlock(&child->d_lock);
1263 spin_lock(&this_parent->d_lock);
1264
1265 /* might go back up the wrong parent if we have had a rename. */
1266 if (need_seqretry(&rename_lock, seq))
1267 goto rename_retry;
1268 /* go into the first sibling still alive */
1269 do {
1270 next = child->d_child.next;
1271 if (next == &this_parent->d_subdirs)
1272 goto ascend;
1273 child = list_entry(next, struct dentry, d_child);
1274 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1275 rcu_read_unlock();
1276 goto resume;
1277 }
1278 if (need_seqretry(&rename_lock, seq))
1279 goto rename_retry;
1280 rcu_read_unlock();
1281 if (finish)
1282 finish(data);
1283
1284 out_unlock:
1285 spin_unlock(&this_parent->d_lock);
1286 done_seqretry(&rename_lock, seq);
1287 return;
1288
1289 rename_retry:
1290 spin_unlock(&this_parent->d_lock);
1291 rcu_read_unlock();
1292 BUG_ON(seq & 1);
1293 if (!retry)
1294 return;
1295 seq = 1;
1296 goto again;
1297 }
1298
1299 /*
1300 * Search for at least 1 mount point in the dentry's subdirs.
1301 * We descend to the next level whenever the d_subdirs
1302 * list is non-empty and continue searching.
1303 */
1304
1305 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1306 {
1307 int *ret = data;
1308 if (d_mountpoint(dentry)) {
1309 *ret = 1;
1310 return D_WALK_QUIT;
1311 }
1312 return D_WALK_CONTINUE;
1313 }
1314
1315 /**
1316 * have_submounts - check for mounts over a dentry
1317 * @parent: dentry to check.
1318 *
1319 * Return true if the parent or its subdirectories contain
1320 * a mount point
1321 */
1322 int have_submounts(struct dentry *parent)
1323 {
1324 int ret = 0;
1325
1326 d_walk(parent, &ret, check_mount, NULL);
1327
1328 return ret;
1329 }
1330 EXPORT_SYMBOL(have_submounts);
1331
1332 /*
1333 * Called by mount code to set a mountpoint and check if the mountpoint is
1334 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1335 * subtree can become unreachable).
1336 *
1337 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1338 * this reason take rename_lock and d_lock on dentry and ancestors.
1339 */
1340 int d_set_mounted(struct dentry *dentry)
1341 {
1342 struct dentry *p;
1343 int ret = -ENOENT;
1344 write_seqlock(&rename_lock);
1345 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1346 /* Need exclusion wrt. d_invalidate() */
1347 spin_lock(&p->d_lock);
1348 if (unlikely(d_unhashed(p))) {
1349 spin_unlock(&p->d_lock);
1350 goto out;
1351 }
1352 spin_unlock(&p->d_lock);
1353 }
1354 spin_lock(&dentry->d_lock);
1355 if (!d_unlinked(dentry)) {
1356 ret = -EBUSY;
1357 if (!d_mountpoint(dentry)) {
1358 dentry->d_flags |= DCACHE_MOUNTED;
1359 ret = 0;
1360 }
1361 }
1362 spin_unlock(&dentry->d_lock);
1363 out:
1364 write_sequnlock(&rename_lock);
1365 return ret;
1366 }
1367
1368 /*
1369 * Search the dentry child list of the specified parent,
1370 * and move any unused dentries to the end of the unused
1371 * list for prune_dcache(). We descend to the next level
1372 * whenever the d_subdirs list is non-empty and continue
1373 * searching.
1374 *
1375 * It returns zero iff there are no unused children,
1376 * otherwise it returns the number of children moved to
1377 * the end of the unused list. This may not be the total
1378 * number of unused children, because select_parent can
1379 * drop the lock and return early due to latency
1380 * constraints.
1381 */
1382
1383 struct select_data {
1384 struct dentry *start;
1385 struct list_head dispose;
1386 int found;
1387 };
1388
1389 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1390 {
1391 struct select_data *data = _data;
1392 enum d_walk_ret ret = D_WALK_CONTINUE;
1393
1394 if (data->start == dentry)
1395 goto out;
1396
1397 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1398 data->found++;
1399 } else {
1400 if (dentry->d_flags & DCACHE_LRU_LIST)
1401 d_lru_del(dentry);
1402 if (!dentry->d_lockref.count) {
1403 d_shrink_add(dentry, &data->dispose);
1404 data->found++;
1405 }
1406 }
1407 /*
1408 * We can return to the caller if we have found some (this
1409 * ensures forward progress). We'll be coming back to find
1410 * the rest.
1411 */
1412 if (!list_empty(&data->dispose))
1413 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1414 out:
1415 return ret;
1416 }
1417
1418 /**
1419 * shrink_dcache_parent - prune dcache
1420 * @parent: parent of entries to prune
1421 *
1422 * Prune the dcache to remove unused children of the parent dentry.
1423 */
1424 void shrink_dcache_parent(struct dentry *parent)
1425 {
1426 for (;;) {
1427 struct select_data data;
1428
1429 INIT_LIST_HEAD(&data.dispose);
1430 data.start = parent;
1431 data.found = 0;
1432
1433 d_walk(parent, &data, select_collect, NULL);
1434 if (!data.found)
1435 break;
1436
1437 shrink_dentry_list(&data.dispose);
1438 cond_resched();
1439 }
1440 }
1441 EXPORT_SYMBOL(shrink_dcache_parent);
1442
1443 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1444 {
1445 /* it has busy descendents; complain about those instead */
1446 if (!list_empty(&dentry->d_subdirs))
1447 return D_WALK_CONTINUE;
1448
1449 /* root with refcount 1 is fine */
1450 if (dentry == _data && dentry->d_lockref.count == 1)
1451 return D_WALK_CONTINUE;
1452
1453 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1454 " still in use (%d) [unmount of %s %s]\n",
1455 dentry,
1456 dentry->d_inode ?
1457 dentry->d_inode->i_ino : 0UL,
1458 dentry,
1459 dentry->d_lockref.count,
1460 dentry->d_sb->s_type->name,
1461 dentry->d_sb->s_id);
1462 WARN_ON(1);
1463 return D_WALK_CONTINUE;
1464 }
1465
1466 static void do_one_tree(struct dentry *dentry)
1467 {
1468 shrink_dcache_parent(dentry);
1469 d_walk(dentry, dentry, umount_check, NULL);
1470 d_drop(dentry);
1471 dput(dentry);
1472 }
1473
1474 /*
1475 * destroy the dentries attached to a superblock on unmounting
1476 */
1477 void shrink_dcache_for_umount(struct super_block *sb)
1478 {
1479 struct dentry *dentry;
1480
1481 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1482
1483 dentry = sb->s_root;
1484 sb->s_root = NULL;
1485 do_one_tree(dentry);
1486
1487 while (!hlist_bl_empty(&sb->s_anon)) {
1488 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1489 do_one_tree(dentry);
1490 }
1491 }
1492
1493 struct detach_data {
1494 struct select_data select;
1495 struct dentry *mountpoint;
1496 };
1497 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1498 {
1499 struct detach_data *data = _data;
1500
1501 if (d_mountpoint(dentry)) {
1502 __dget_dlock(dentry);
1503 data->mountpoint = dentry;
1504 return D_WALK_QUIT;
1505 }
1506
1507 return select_collect(&data->select, dentry);
1508 }
1509
1510 static void check_and_drop(void *_data)
1511 {
1512 struct detach_data *data = _data;
1513
1514 if (!data->mountpoint && list_empty(&data->select.dispose))
1515 __d_drop(data->select.start);
1516 }
1517
1518 /**
1519 * d_invalidate - detach submounts, prune dcache, and drop
1520 * @dentry: dentry to invalidate (aka detach, prune and drop)
1521 *
1522 * no dcache lock.
1523 *
1524 * The final d_drop is done as an atomic operation relative to
1525 * rename_lock ensuring there are no races with d_set_mounted. This
1526 * ensures there are no unhashed dentries on the path to a mountpoint.
1527 */
1528 void d_invalidate(struct dentry *dentry)
1529 {
1530 /*
1531 * If it's already been dropped, return OK.
1532 */
1533 spin_lock(&dentry->d_lock);
1534 if (d_unhashed(dentry)) {
1535 spin_unlock(&dentry->d_lock);
1536 return;
1537 }
1538 spin_unlock(&dentry->d_lock);
1539
1540 /* Negative dentries can be dropped without further checks */
1541 if (!dentry->d_inode) {
1542 d_drop(dentry);
1543 return;
1544 }
1545
1546 for (;;) {
1547 struct detach_data data;
1548
1549 data.mountpoint = NULL;
1550 INIT_LIST_HEAD(&data.select.dispose);
1551 data.select.start = dentry;
1552 data.select.found = 0;
1553
1554 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1555
1556 if (!list_empty(&data.select.dispose))
1557 shrink_dentry_list(&data.select.dispose);
1558 else if (!data.mountpoint)
1559 return;
1560
1561 if (data.mountpoint) {
1562 detach_mounts(data.mountpoint);
1563 dput(data.mountpoint);
1564 }
1565 cond_resched();
1566 }
1567 }
1568 EXPORT_SYMBOL(d_invalidate);
1569
1570 /**
1571 * __d_alloc - allocate a dcache entry
1572 * @sb: filesystem it will belong to
1573 * @name: qstr of the name
1574 *
1575 * Allocates a dentry. It returns %NULL if there is insufficient memory
1576 * available. On a success the dentry is returned. The name passed in is
1577 * copied and the copy passed in may be reused after this call.
1578 */
1579
1580 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1581 {
1582 struct dentry *dentry;
1583 char *dname;
1584
1585 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1586 if (!dentry)
1587 return NULL;
1588
1589 /*
1590 * We guarantee that the inline name is always NUL-terminated.
1591 * This way the memcpy() done by the name switching in rename
1592 * will still always have a NUL at the end, even if we might
1593 * be overwriting an internal NUL character
1594 */
1595 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1596 if (name->len > DNAME_INLINE_LEN-1) {
1597 size_t size = offsetof(struct external_name, name[1]);
1598 struct external_name *p = kmalloc(size + name->len, GFP_KERNEL);
1599 if (!p) {
1600 kmem_cache_free(dentry_cache, dentry);
1601 return NULL;
1602 }
1603 atomic_set(&p->u.count, 1);
1604 dname = p->name;
1605 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1606 kasan_unpoison_shadow(dname,
1607 round_up(name->len + 1, sizeof(unsigned long)));
1608 } else {
1609 dname = dentry->d_iname;
1610 }
1611
1612 dentry->d_name.len = name->len;
1613 dentry->d_name.hash = name->hash;
1614 memcpy(dname, name->name, name->len);
1615 dname[name->len] = 0;
1616
1617 /* Make sure we always see the terminating NUL character */
1618 smp_wmb();
1619 dentry->d_name.name = dname;
1620
1621 dentry->d_lockref.count = 1;
1622 dentry->d_flags = 0;
1623 spin_lock_init(&dentry->d_lock);
1624 seqcount_init(&dentry->d_seq);
1625 dentry->d_inode = NULL;
1626 dentry->d_parent = dentry;
1627 dentry->d_sb = sb;
1628 dentry->d_op = NULL;
1629 dentry->d_fsdata = NULL;
1630 INIT_HLIST_BL_NODE(&dentry->d_hash);
1631 INIT_LIST_HEAD(&dentry->d_lru);
1632 INIT_LIST_HEAD(&dentry->d_subdirs);
1633 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1634 INIT_LIST_HEAD(&dentry->d_child);
1635 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1636
1637 this_cpu_inc(nr_dentry);
1638
1639 return dentry;
1640 }
1641
1642 /**
1643 * d_alloc - allocate a dcache entry
1644 * @parent: parent of entry to allocate
1645 * @name: qstr of the name
1646 *
1647 * Allocates a dentry. It returns %NULL if there is insufficient memory
1648 * available. On a success the dentry is returned. The name passed in is
1649 * copied and the copy passed in may be reused after this call.
1650 */
1651 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1652 {
1653 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1654 if (!dentry)
1655 return NULL;
1656 dentry->d_flags |= DCACHE_RCUACCESS;
1657 spin_lock(&parent->d_lock);
1658 /*
1659 * don't need child lock because it is not subject
1660 * to concurrency here
1661 */
1662 __dget_dlock(parent);
1663 dentry->d_parent = parent;
1664 list_add(&dentry->d_child, &parent->d_subdirs);
1665 spin_unlock(&parent->d_lock);
1666
1667 return dentry;
1668 }
1669 EXPORT_SYMBOL(d_alloc);
1670
1671 /**
1672 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1673 * @sb: the superblock
1674 * @name: qstr of the name
1675 *
1676 * For a filesystem that just pins its dentries in memory and never
1677 * performs lookups at all, return an unhashed IS_ROOT dentry.
1678 */
1679 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1680 {
1681 return __d_alloc(sb, name);
1682 }
1683 EXPORT_SYMBOL(d_alloc_pseudo);
1684
1685 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1686 {
1687 struct qstr q;
1688
1689 q.name = name;
1690 q.len = strlen(name);
1691 q.hash = full_name_hash(q.name, q.len);
1692 return d_alloc(parent, &q);
1693 }
1694 EXPORT_SYMBOL(d_alloc_name);
1695
1696 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1697 {
1698 WARN_ON_ONCE(dentry->d_op);
1699 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1700 DCACHE_OP_COMPARE |
1701 DCACHE_OP_REVALIDATE |
1702 DCACHE_OP_WEAK_REVALIDATE |
1703 DCACHE_OP_DELETE |
1704 DCACHE_OP_SELECT_INODE |
1705 DCACHE_OP_REAL));
1706 dentry->d_op = op;
1707 if (!op)
1708 return;
1709 if (op->d_hash)
1710 dentry->d_flags |= DCACHE_OP_HASH;
1711 if (op->d_compare)
1712 dentry->d_flags |= DCACHE_OP_COMPARE;
1713 if (op->d_revalidate)
1714 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1715 if (op->d_weak_revalidate)
1716 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1717 if (op->d_delete)
1718 dentry->d_flags |= DCACHE_OP_DELETE;
1719 if (op->d_prune)
1720 dentry->d_flags |= DCACHE_OP_PRUNE;
1721 if (op->d_select_inode)
1722 dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1723 if (op->d_real)
1724 dentry->d_flags |= DCACHE_OP_REAL;
1725
1726 }
1727 EXPORT_SYMBOL(d_set_d_op);
1728
1729
1730 /*
1731 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1732 * @dentry - The dentry to mark
1733 *
1734 * Mark a dentry as falling through to the lower layer (as set with
1735 * d_pin_lower()). This flag may be recorded on the medium.
1736 */
1737 void d_set_fallthru(struct dentry *dentry)
1738 {
1739 spin_lock(&dentry->d_lock);
1740 dentry->d_flags |= DCACHE_FALLTHRU;
1741 spin_unlock(&dentry->d_lock);
1742 }
1743 EXPORT_SYMBOL(d_set_fallthru);
1744
1745 static unsigned d_flags_for_inode(struct inode *inode)
1746 {
1747 unsigned add_flags = DCACHE_REGULAR_TYPE;
1748
1749 if (!inode)
1750 return DCACHE_MISS_TYPE;
1751
1752 if (S_ISDIR(inode->i_mode)) {
1753 add_flags = DCACHE_DIRECTORY_TYPE;
1754 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1755 if (unlikely(!inode->i_op->lookup))
1756 add_flags = DCACHE_AUTODIR_TYPE;
1757 else
1758 inode->i_opflags |= IOP_LOOKUP;
1759 }
1760 goto type_determined;
1761 }
1762
1763 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1764 if (unlikely(inode->i_op->follow_link)) {
1765 add_flags = DCACHE_SYMLINK_TYPE;
1766 goto type_determined;
1767 }
1768 inode->i_opflags |= IOP_NOFOLLOW;
1769 }
1770
1771 if (unlikely(!S_ISREG(inode->i_mode)))
1772 add_flags = DCACHE_SPECIAL_TYPE;
1773
1774 type_determined:
1775 if (unlikely(IS_AUTOMOUNT(inode)))
1776 add_flags |= DCACHE_NEED_AUTOMOUNT;
1777 return add_flags;
1778 }
1779
1780 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1781 {
1782 unsigned add_flags = d_flags_for_inode(inode);
1783
1784 spin_lock(&dentry->d_lock);
1785 if (inode)
1786 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1787 raw_write_seqcount_begin(&dentry->d_seq);
1788 __d_set_inode_and_type(dentry, inode, add_flags);
1789 raw_write_seqcount_end(&dentry->d_seq);
1790 spin_unlock(&dentry->d_lock);
1791 fsnotify_d_instantiate(dentry, inode);
1792 }
1793
1794 /**
1795 * d_instantiate - fill in inode information for a dentry
1796 * @entry: dentry to complete
1797 * @inode: inode to attach to this dentry
1798 *
1799 * Fill in inode information in the entry.
1800 *
1801 * This turns negative dentries into productive full members
1802 * of society.
1803 *
1804 * NOTE! This assumes that the inode count has been incremented
1805 * (or otherwise set) by the caller to indicate that it is now
1806 * in use by the dcache.
1807 */
1808
1809 void d_instantiate(struct dentry *entry, struct inode * inode)
1810 {
1811 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1812 if (inode)
1813 spin_lock(&inode->i_lock);
1814 __d_instantiate(entry, inode);
1815 if (inode)
1816 spin_unlock(&inode->i_lock);
1817 security_d_instantiate(entry, inode);
1818 }
1819 EXPORT_SYMBOL(d_instantiate);
1820
1821 /**
1822 * d_instantiate_unique - instantiate a non-aliased dentry
1823 * @entry: dentry to instantiate
1824 * @inode: inode to attach to this dentry
1825 *
1826 * Fill in inode information in the entry. On success, it returns NULL.
1827 * If an unhashed alias of "entry" already exists, then we return the
1828 * aliased dentry instead and drop one reference to inode.
1829 *
1830 * Note that in order to avoid conflicts with rename() etc, the caller
1831 * had better be holding the parent directory semaphore.
1832 *
1833 * This also assumes that the inode count has been incremented
1834 * (or otherwise set) by the caller to indicate that it is now
1835 * in use by the dcache.
1836 */
1837 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1838 struct inode *inode)
1839 {
1840 struct dentry *alias;
1841 int len = entry->d_name.len;
1842 const char *name = entry->d_name.name;
1843 unsigned int hash = entry->d_name.hash;
1844
1845 if (!inode) {
1846 __d_instantiate(entry, NULL);
1847 return NULL;
1848 }
1849
1850 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1851 /*
1852 * Don't need alias->d_lock here, because aliases with
1853 * d_parent == entry->d_parent are not subject to name or
1854 * parent changes, because the parent inode i_mutex is held.
1855 */
1856 if (alias->d_name.hash != hash)
1857 continue;
1858 if (alias->d_parent != entry->d_parent)
1859 continue;
1860 if (alias->d_name.len != len)
1861 continue;
1862 if (dentry_cmp(alias, name, len))
1863 continue;
1864 __dget(alias);
1865 return alias;
1866 }
1867
1868 __d_instantiate(entry, inode);
1869 return NULL;
1870 }
1871
1872 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1873 {
1874 struct dentry *result;
1875
1876 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1877
1878 if (inode)
1879 spin_lock(&inode->i_lock);
1880 result = __d_instantiate_unique(entry, inode);
1881 if (inode)
1882 spin_unlock(&inode->i_lock);
1883
1884 if (!result) {
1885 security_d_instantiate(entry, inode);
1886 return NULL;
1887 }
1888
1889 BUG_ON(!d_unhashed(result));
1890 iput(inode);
1891 return result;
1892 }
1893
1894 EXPORT_SYMBOL(d_instantiate_unique);
1895
1896 /**
1897 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1898 * @entry: dentry to complete
1899 * @inode: inode to attach to this dentry
1900 *
1901 * Fill in inode information in the entry. If a directory alias is found, then
1902 * return an error (and drop inode). Together with d_materialise_unique() this
1903 * guarantees that a directory inode may never have more than one alias.
1904 */
1905 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1906 {
1907 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1908
1909 spin_lock(&inode->i_lock);
1910 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1911 spin_unlock(&inode->i_lock);
1912 iput(inode);
1913 return -EBUSY;
1914 }
1915 __d_instantiate(entry, inode);
1916 spin_unlock(&inode->i_lock);
1917 security_d_instantiate(entry, inode);
1918
1919 return 0;
1920 }
1921 EXPORT_SYMBOL(d_instantiate_no_diralias);
1922
1923 struct dentry *d_make_root(struct inode *root_inode)
1924 {
1925 struct dentry *res = NULL;
1926
1927 if (root_inode) {
1928 static const struct qstr name = QSTR_INIT("/", 1);
1929
1930 res = __d_alloc(root_inode->i_sb, &name);
1931 if (res)
1932 d_instantiate(res, root_inode);
1933 else
1934 iput(root_inode);
1935 }
1936 return res;
1937 }
1938 EXPORT_SYMBOL(d_make_root);
1939
1940 static struct dentry * __d_find_any_alias(struct inode *inode)
1941 {
1942 struct dentry *alias;
1943
1944 if (hlist_empty(&inode->i_dentry))
1945 return NULL;
1946 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1947 __dget(alias);
1948 return alias;
1949 }
1950
1951 /**
1952 * d_find_any_alias - find any alias for a given inode
1953 * @inode: inode to find an alias for
1954 *
1955 * If any aliases exist for the given inode, take and return a
1956 * reference for one of them. If no aliases exist, return %NULL.
1957 */
1958 struct dentry *d_find_any_alias(struct inode *inode)
1959 {
1960 struct dentry *de;
1961
1962 spin_lock(&inode->i_lock);
1963 de = __d_find_any_alias(inode);
1964 spin_unlock(&inode->i_lock);
1965 return de;
1966 }
1967 EXPORT_SYMBOL(d_find_any_alias);
1968
1969 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1970 {
1971 static const struct qstr anonstring = QSTR_INIT("/", 1);
1972 struct dentry *tmp;
1973 struct dentry *res;
1974 unsigned add_flags;
1975
1976 if (!inode)
1977 return ERR_PTR(-ESTALE);
1978 if (IS_ERR(inode))
1979 return ERR_CAST(inode);
1980
1981 res = d_find_any_alias(inode);
1982 if (res)
1983 goto out_iput;
1984
1985 tmp = __d_alloc(inode->i_sb, &anonstring);
1986 if (!tmp) {
1987 res = ERR_PTR(-ENOMEM);
1988 goto out_iput;
1989 }
1990
1991 spin_lock(&inode->i_lock);
1992 res = __d_find_any_alias(inode);
1993 if (res) {
1994 spin_unlock(&inode->i_lock);
1995 dput(tmp);
1996 goto out_iput;
1997 }
1998
1999 /* attach a disconnected dentry */
2000 add_flags = d_flags_for_inode(inode);
2001
2002 if (disconnected)
2003 add_flags |= DCACHE_DISCONNECTED;
2004
2005 spin_lock(&tmp->d_lock);
2006 __d_set_inode_and_type(tmp, inode, add_flags);
2007 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
2008 hlist_bl_lock(&tmp->d_sb->s_anon);
2009 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
2010 hlist_bl_unlock(&tmp->d_sb->s_anon);
2011 spin_unlock(&tmp->d_lock);
2012 spin_unlock(&inode->i_lock);
2013 security_d_instantiate(tmp, inode);
2014
2015 return tmp;
2016
2017 out_iput:
2018 if (res && !IS_ERR(res))
2019 security_d_instantiate(res, inode);
2020 iput(inode);
2021 return res;
2022 }
2023
2024 /**
2025 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2026 * @inode: inode to allocate the dentry for
2027 *
2028 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2029 * similar open by handle operations. The returned dentry may be anonymous,
2030 * or may have a full name (if the inode was already in the cache).
2031 *
2032 * When called on a directory inode, we must ensure that the inode only ever
2033 * has one dentry. If a dentry is found, that is returned instead of
2034 * allocating a new one.
2035 *
2036 * On successful return, the reference to the inode has been transferred
2037 * to the dentry. In case of an error the reference on the inode is released.
2038 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2039 * be passed in and the error will be propagated to the return value,
2040 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2041 */
2042 struct dentry *d_obtain_alias(struct inode *inode)
2043 {
2044 return __d_obtain_alias(inode, 1);
2045 }
2046 EXPORT_SYMBOL(d_obtain_alias);
2047
2048 /**
2049 * d_obtain_root - find or allocate a dentry for a given inode
2050 * @inode: inode to allocate the dentry for
2051 *
2052 * Obtain an IS_ROOT dentry for the root of a filesystem.
2053 *
2054 * We must ensure that directory inodes only ever have one dentry. If a
2055 * dentry is found, that is returned instead of allocating a new one.
2056 *
2057 * On successful return, the reference to the inode has been transferred
2058 * to the dentry. In case of an error the reference on the inode is
2059 * released. A %NULL or IS_ERR inode may be passed in and will be the
2060 * error will be propagate to the return value, with a %NULL @inode
2061 * replaced by ERR_PTR(-ESTALE).
2062 */
2063 struct dentry *d_obtain_root(struct inode *inode)
2064 {
2065 return __d_obtain_alias(inode, 0);
2066 }
2067 EXPORT_SYMBOL(d_obtain_root);
2068
2069 /**
2070 * d_add_ci - lookup or allocate new dentry with case-exact name
2071 * @inode: the inode case-insensitive lookup has found
2072 * @dentry: the negative dentry that was passed to the parent's lookup func
2073 * @name: the case-exact name to be associated with the returned dentry
2074 *
2075 * This is to avoid filling the dcache with case-insensitive names to the
2076 * same inode, only the actual correct case is stored in the dcache for
2077 * case-insensitive filesystems.
2078 *
2079 * For a case-insensitive lookup match and if the the case-exact dentry
2080 * already exists in in the dcache, use it and return it.
2081 *
2082 * If no entry exists with the exact case name, allocate new dentry with
2083 * the exact case, and return the spliced entry.
2084 */
2085 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2086 struct qstr *name)
2087 {
2088 struct dentry *found;
2089 struct dentry *new;
2090
2091 /*
2092 * First check if a dentry matching the name already exists,
2093 * if not go ahead and create it now.
2094 */
2095 found = d_hash_and_lookup(dentry->d_parent, name);
2096 if (!found) {
2097 new = d_alloc(dentry->d_parent, name);
2098 if (!new) {
2099 found = ERR_PTR(-ENOMEM);
2100 } else {
2101 found = d_splice_alias(inode, new);
2102 if (found) {
2103 dput(new);
2104 return found;
2105 }
2106 return new;
2107 }
2108 }
2109 iput(inode);
2110 return found;
2111 }
2112 EXPORT_SYMBOL(d_add_ci);
2113
2114 /*
2115 * Do the slow-case of the dentry name compare.
2116 *
2117 * Unlike the dentry_cmp() function, we need to atomically
2118 * load the name and length information, so that the
2119 * filesystem can rely on them, and can use the 'name' and
2120 * 'len' information without worrying about walking off the
2121 * end of memory etc.
2122 *
2123 * Thus the read_seqcount_retry() and the "duplicate" info
2124 * in arguments (the low-level filesystem should not look
2125 * at the dentry inode or name contents directly, since
2126 * rename can change them while we're in RCU mode).
2127 */
2128 enum slow_d_compare {
2129 D_COMP_OK,
2130 D_COMP_NOMATCH,
2131 D_COMP_SEQRETRY,
2132 };
2133
2134 static noinline enum slow_d_compare slow_dentry_cmp(
2135 const struct dentry *parent,
2136 struct dentry *dentry,
2137 unsigned int seq,
2138 const struct qstr *name)
2139 {
2140 int tlen = dentry->d_name.len;
2141 const char *tname = dentry->d_name.name;
2142
2143 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2144 cpu_relax();
2145 return D_COMP_SEQRETRY;
2146 }
2147 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2148 return D_COMP_NOMATCH;
2149 return D_COMP_OK;
2150 }
2151
2152 /**
2153 * __d_lookup_rcu - search for a dentry (racy, store-free)
2154 * @parent: parent dentry
2155 * @name: qstr of name we wish to find
2156 * @seqp: returns d_seq value at the point where the dentry was found
2157 * Returns: dentry, or NULL
2158 *
2159 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2160 * resolution (store-free path walking) design described in
2161 * Documentation/filesystems/path-lookup.txt.
2162 *
2163 * This is not to be used outside core vfs.
2164 *
2165 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2166 * held, and rcu_read_lock held. The returned dentry must not be stored into
2167 * without taking d_lock and checking d_seq sequence count against @seq
2168 * returned here.
2169 *
2170 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2171 * function.
2172 *
2173 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2174 * the returned dentry, so long as its parent's seqlock is checked after the
2175 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2176 * is formed, giving integrity down the path walk.
2177 *
2178 * NOTE! The caller *has* to check the resulting dentry against the sequence
2179 * number we've returned before using any of the resulting dentry state!
2180 */
2181 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2182 const struct qstr *name,
2183 unsigned *seqp)
2184 {
2185 u64 hashlen = name->hash_len;
2186 const unsigned char *str = name->name;
2187 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2188 struct hlist_bl_node *node;
2189 struct dentry *dentry;
2190
2191 /*
2192 * Note: There is significant duplication with __d_lookup_rcu which is
2193 * required to prevent single threaded performance regressions
2194 * especially on architectures where smp_rmb (in seqcounts) are costly.
2195 * Keep the two functions in sync.
2196 */
2197
2198 /*
2199 * The hash list is protected using RCU.
2200 *
2201 * Carefully use d_seq when comparing a candidate dentry, to avoid
2202 * races with d_move().
2203 *
2204 * It is possible that concurrent renames can mess up our list
2205 * walk here and result in missing our dentry, resulting in the
2206 * false-negative result. d_lookup() protects against concurrent
2207 * renames using rename_lock seqlock.
2208 *
2209 * See Documentation/filesystems/path-lookup.txt for more details.
2210 */
2211 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2212 unsigned seq;
2213
2214 seqretry:
2215 /*
2216 * The dentry sequence count protects us from concurrent
2217 * renames, and thus protects parent and name fields.
2218 *
2219 * The caller must perform a seqcount check in order
2220 * to do anything useful with the returned dentry.
2221 *
2222 * NOTE! We do a "raw" seqcount_begin here. That means that
2223 * we don't wait for the sequence count to stabilize if it
2224 * is in the middle of a sequence change. If we do the slow
2225 * dentry compare, we will do seqretries until it is stable,
2226 * and if we end up with a successful lookup, we actually
2227 * want to exit RCU lookup anyway.
2228 */
2229 seq = raw_seqcount_begin(&dentry->d_seq);
2230 if (dentry->d_parent != parent)
2231 continue;
2232 if (d_unhashed(dentry))
2233 continue;
2234
2235 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2236 if (dentry->d_name.hash != hashlen_hash(hashlen))
2237 continue;
2238 *seqp = seq;
2239 switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2240 case D_COMP_OK:
2241 return dentry;
2242 case D_COMP_NOMATCH:
2243 continue;
2244 default:
2245 goto seqretry;
2246 }
2247 }
2248
2249 if (dentry->d_name.hash_len != hashlen)
2250 continue;
2251 *seqp = seq;
2252 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2253 return dentry;
2254 }
2255 return NULL;
2256 }
2257
2258 /**
2259 * d_lookup - search for a dentry
2260 * @parent: parent dentry
2261 * @name: qstr of name we wish to find
2262 * Returns: dentry, or NULL
2263 *
2264 * d_lookup searches the children of the parent dentry for the name in
2265 * question. If the dentry is found its reference count is incremented and the
2266 * dentry is returned. The caller must use dput to free the entry when it has
2267 * finished using it. %NULL is returned if the dentry does not exist.
2268 */
2269 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2270 {
2271 struct dentry *dentry;
2272 unsigned seq;
2273
2274 do {
2275 seq = read_seqbegin(&rename_lock);
2276 dentry = __d_lookup(parent, name);
2277 if (dentry)
2278 break;
2279 } while (read_seqretry(&rename_lock, seq));
2280 return dentry;
2281 }
2282 EXPORT_SYMBOL(d_lookup);
2283
2284 /**
2285 * __d_lookup - search for a dentry (racy)
2286 * @parent: parent dentry
2287 * @name: qstr of name we wish to find
2288 * Returns: dentry, or NULL
2289 *
2290 * __d_lookup is like d_lookup, however it may (rarely) return a
2291 * false-negative result due to unrelated rename activity.
2292 *
2293 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2294 * however it must be used carefully, eg. with a following d_lookup in
2295 * the case of failure.
2296 *
2297 * __d_lookup callers must be commented.
2298 */
2299 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2300 {
2301 unsigned int len = name->len;
2302 unsigned int hash = name->hash;
2303 const unsigned char *str = name->name;
2304 struct hlist_bl_head *b = d_hash(parent, hash);
2305 struct hlist_bl_node *node;
2306 struct dentry *found = NULL;
2307 struct dentry *dentry;
2308
2309 /*
2310 * Note: There is significant duplication with __d_lookup_rcu which is
2311 * required to prevent single threaded performance regressions
2312 * especially on architectures where smp_rmb (in seqcounts) are costly.
2313 * Keep the two functions in sync.
2314 */
2315
2316 /*
2317 * The hash list is protected using RCU.
2318 *
2319 * Take d_lock when comparing a candidate dentry, to avoid races
2320 * with d_move().
2321 *
2322 * It is possible that concurrent renames can mess up our list
2323 * walk here and result in missing our dentry, resulting in the
2324 * false-negative result. d_lookup() protects against concurrent
2325 * renames using rename_lock seqlock.
2326 *
2327 * See Documentation/filesystems/path-lookup.txt for more details.
2328 */
2329 rcu_read_lock();
2330
2331 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2332
2333 if (dentry->d_name.hash != hash)
2334 continue;
2335
2336 spin_lock(&dentry->d_lock);
2337 if (dentry->d_parent != parent)
2338 goto next;
2339 if (d_unhashed(dentry))
2340 goto next;
2341
2342 /*
2343 * It is safe to compare names since d_move() cannot
2344 * change the qstr (protected by d_lock).
2345 */
2346 if (parent->d_flags & DCACHE_OP_COMPARE) {
2347 int tlen = dentry->d_name.len;
2348 const char *tname = dentry->d_name.name;
2349 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2350 goto next;
2351 } else {
2352 if (dentry->d_name.len != len)
2353 goto next;
2354 if (dentry_cmp(dentry, str, len))
2355 goto next;
2356 }
2357
2358 dentry->d_lockref.count++;
2359 found = dentry;
2360 spin_unlock(&dentry->d_lock);
2361 break;
2362 next:
2363 spin_unlock(&dentry->d_lock);
2364 }
2365 rcu_read_unlock();
2366
2367 return found;
2368 }
2369
2370 /**
2371 * d_hash_and_lookup - hash the qstr then search for a dentry
2372 * @dir: Directory to search in
2373 * @name: qstr of name we wish to find
2374 *
2375 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2376 */
2377 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2378 {
2379 /*
2380 * Check for a fs-specific hash function. Note that we must
2381 * calculate the standard hash first, as the d_op->d_hash()
2382 * routine may choose to leave the hash value unchanged.
2383 */
2384 name->hash = full_name_hash(name->name, name->len);
2385 if (dir->d_flags & DCACHE_OP_HASH) {
2386 int err = dir->d_op->d_hash(dir, name);
2387 if (unlikely(err < 0))
2388 return ERR_PTR(err);
2389 }
2390 return d_lookup(dir, name);
2391 }
2392 EXPORT_SYMBOL(d_hash_and_lookup);
2393
2394 /*
2395 * When a file is deleted, we have two options:
2396 * - turn this dentry into a negative dentry
2397 * - unhash this dentry and free it.
2398 *
2399 * Usually, we want to just turn this into
2400 * a negative dentry, but if anybody else is
2401 * currently using the dentry or the inode
2402 * we can't do that and we fall back on removing
2403 * it from the hash queues and waiting for
2404 * it to be deleted later when it has no users
2405 */
2406
2407 /**
2408 * d_delete - delete a dentry
2409 * @dentry: The dentry to delete
2410 *
2411 * Turn the dentry into a negative dentry if possible, otherwise
2412 * remove it from the hash queues so it can be deleted later
2413 */
2414
2415 void d_delete(struct dentry * dentry)
2416 {
2417 struct inode *inode;
2418 int isdir = 0;
2419 /*
2420 * Are we the only user?
2421 */
2422 again:
2423 spin_lock(&dentry->d_lock);
2424 inode = dentry->d_inode;
2425 isdir = S_ISDIR(inode->i_mode);
2426 if (dentry->d_lockref.count == 1) {
2427 if (!spin_trylock(&inode->i_lock)) {
2428 spin_unlock(&dentry->d_lock);
2429 cpu_relax();
2430 goto again;
2431 }
2432 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2433 dentry_unlink_inode(dentry);
2434 fsnotify_nameremove(dentry, isdir);
2435 return;
2436 }
2437
2438 if (!d_unhashed(dentry))
2439 __d_drop(dentry);
2440
2441 spin_unlock(&dentry->d_lock);
2442
2443 fsnotify_nameremove(dentry, isdir);
2444 }
2445 EXPORT_SYMBOL(d_delete);
2446
2447 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2448 {
2449 BUG_ON(!d_unhashed(entry));
2450 hlist_bl_lock(b);
2451 hlist_bl_add_head_rcu(&entry->d_hash, b);
2452 hlist_bl_unlock(b);
2453 }
2454
2455 static void _d_rehash(struct dentry * entry)
2456 {
2457 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2458 }
2459
2460 /**
2461 * d_rehash - add an entry back to the hash
2462 * @entry: dentry to add to the hash
2463 *
2464 * Adds a dentry to the hash according to its name.
2465 */
2466
2467 void d_rehash(struct dentry * entry)
2468 {
2469 spin_lock(&entry->d_lock);
2470 _d_rehash(entry);
2471 spin_unlock(&entry->d_lock);
2472 }
2473 EXPORT_SYMBOL(d_rehash);
2474
2475 /**
2476 * dentry_update_name_case - update case insensitive dentry with a new name
2477 * @dentry: dentry to be updated
2478 * @name: new name
2479 *
2480 * Update a case insensitive dentry with new case of name.
2481 *
2482 * dentry must have been returned by d_lookup with name @name. Old and new
2483 * name lengths must match (ie. no d_compare which allows mismatched name
2484 * lengths).
2485 *
2486 * Parent inode i_mutex must be held over d_lookup and into this call (to
2487 * keep renames and concurrent inserts, and readdir(2) away).
2488 */
2489 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2490 {
2491 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2492 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2493
2494 spin_lock(&dentry->d_lock);
2495 write_seqcount_begin(&dentry->d_seq);
2496 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2497 write_seqcount_end(&dentry->d_seq);
2498 spin_unlock(&dentry->d_lock);
2499 }
2500 EXPORT_SYMBOL(dentry_update_name_case);
2501
2502 static void swap_names(struct dentry *dentry, struct dentry *target)
2503 {
2504 if (unlikely(dname_external(target))) {
2505 if (unlikely(dname_external(dentry))) {
2506 /*
2507 * Both external: swap the pointers
2508 */
2509 swap(target->d_name.name, dentry->d_name.name);
2510 } else {
2511 /*
2512 * dentry:internal, target:external. Steal target's
2513 * storage and make target internal.
2514 */
2515 memcpy(target->d_iname, dentry->d_name.name,
2516 dentry->d_name.len + 1);
2517 dentry->d_name.name = target->d_name.name;
2518 target->d_name.name = target->d_iname;
2519 }
2520 } else {
2521 if (unlikely(dname_external(dentry))) {
2522 /*
2523 * dentry:external, target:internal. Give dentry's
2524 * storage to target and make dentry internal
2525 */
2526 memcpy(dentry->d_iname, target->d_name.name,
2527 target->d_name.len + 1);
2528 target->d_name.name = dentry->d_name.name;
2529 dentry->d_name.name = dentry->d_iname;
2530 } else {
2531 /*
2532 * Both are internal.
2533 */
2534 unsigned int i;
2535 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2536 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2537 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2538 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2539 swap(((long *) &dentry->d_iname)[i],
2540 ((long *) &target->d_iname)[i]);
2541 }
2542 }
2543 }
2544 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2545 }
2546
2547 static void copy_name(struct dentry *dentry, struct dentry *target)
2548 {
2549 struct external_name *old_name = NULL;
2550 if (unlikely(dname_external(dentry)))
2551 old_name = external_name(dentry);
2552 if (unlikely(dname_external(target))) {
2553 atomic_inc(&external_name(target)->u.count);
2554 dentry->d_name = target->d_name;
2555 } else {
2556 memcpy(dentry->d_iname, target->d_name.name,
2557 target->d_name.len + 1);
2558 dentry->d_name.name = dentry->d_iname;
2559 dentry->d_name.hash_len = target->d_name.hash_len;
2560 }
2561 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2562 kfree_rcu(old_name, u.head);
2563 }
2564
2565 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2566 {
2567 /*
2568 * XXXX: do we really need to take target->d_lock?
2569 */
2570 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2571 spin_lock(&target->d_parent->d_lock);
2572 else {
2573 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2574 spin_lock(&dentry->d_parent->d_lock);
2575 spin_lock_nested(&target->d_parent->d_lock,
2576 DENTRY_D_LOCK_NESTED);
2577 } else {
2578 spin_lock(&target->d_parent->d_lock);
2579 spin_lock_nested(&dentry->d_parent->d_lock,
2580 DENTRY_D_LOCK_NESTED);
2581 }
2582 }
2583 if (target < dentry) {
2584 spin_lock_nested(&target->d_lock, 2);
2585 spin_lock_nested(&dentry->d_lock, 3);
2586 } else {
2587 spin_lock_nested(&dentry->d_lock, 2);
2588 spin_lock_nested(&target->d_lock, 3);
2589 }
2590 }
2591
2592 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2593 {
2594 if (target->d_parent != dentry->d_parent)
2595 spin_unlock(&dentry->d_parent->d_lock);
2596 if (target->d_parent != target)
2597 spin_unlock(&target->d_parent->d_lock);
2598 spin_unlock(&target->d_lock);
2599 spin_unlock(&dentry->d_lock);
2600 }
2601
2602 /*
2603 * When switching names, the actual string doesn't strictly have to
2604 * be preserved in the target - because we're dropping the target
2605 * anyway. As such, we can just do a simple memcpy() to copy over
2606 * the new name before we switch, unless we are going to rehash
2607 * it. Note that if we *do* unhash the target, we are not allowed
2608 * to rehash it without giving it a new name/hash key - whether
2609 * we swap or overwrite the names here, resulting name won't match
2610 * the reality in filesystem; it's only there for d_path() purposes.
2611 * Note that all of this is happening under rename_lock, so the
2612 * any hash lookup seeing it in the middle of manipulations will
2613 * be discarded anyway. So we do not care what happens to the hash
2614 * key in that case.
2615 */
2616 /*
2617 * __d_move - move a dentry
2618 * @dentry: entry to move
2619 * @target: new dentry
2620 * @exchange: exchange the two dentries
2621 *
2622 * Update the dcache to reflect the move of a file name. Negative
2623 * dcache entries should not be moved in this way. Caller must hold
2624 * rename_lock, the i_mutex of the source and target directories,
2625 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2626 */
2627 static void __d_move(struct dentry *dentry, struct dentry *target,
2628 bool exchange)
2629 {
2630 if (!dentry->d_inode)
2631 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2632
2633 BUG_ON(d_ancestor(dentry, target));
2634 BUG_ON(d_ancestor(target, dentry));
2635
2636 dentry_lock_for_move(dentry, target);
2637
2638 write_seqcount_begin(&dentry->d_seq);
2639 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2640
2641 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2642
2643 /*
2644 * Move the dentry to the target hash queue. Don't bother checking
2645 * for the same hash queue because of how unlikely it is.
2646 */
2647 __d_drop(dentry);
2648 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2649
2650 /*
2651 * Unhash the target (d_delete() is not usable here). If exchanging
2652 * the two dentries, then rehash onto the other's hash queue.
2653 */
2654 __d_drop(target);
2655 if (exchange) {
2656 __d_rehash(target,
2657 d_hash(dentry->d_parent, dentry->d_name.hash));
2658 }
2659
2660 /* Switch the names.. */
2661 if (exchange)
2662 swap_names(dentry, target);
2663 else
2664 copy_name(dentry, target);
2665
2666 /* ... and switch them in the tree */
2667 if (IS_ROOT(dentry)) {
2668 /* splicing a tree */
2669 dentry->d_flags |= DCACHE_RCUACCESS;
2670 dentry->d_parent = target->d_parent;
2671 target->d_parent = target;
2672 list_del_init(&target->d_child);
2673 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2674 } else {
2675 /* swapping two dentries */
2676 swap(dentry->d_parent, target->d_parent);
2677 list_move(&target->d_child, &target->d_parent->d_subdirs);
2678 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2679 if (exchange)
2680 fsnotify_d_move(target);
2681 fsnotify_d_move(dentry);
2682 }
2683
2684 write_seqcount_end(&target->d_seq);
2685 write_seqcount_end(&dentry->d_seq);
2686
2687 dentry_unlock_for_move(dentry, target);
2688 }
2689
2690 /*
2691 * d_move - move a dentry
2692 * @dentry: entry to move
2693 * @target: new dentry
2694 *
2695 * Update the dcache to reflect the move of a file name. Negative
2696 * dcache entries should not be moved in this way. See the locking
2697 * requirements for __d_move.
2698 */
2699 void d_move(struct dentry *dentry, struct dentry *target)
2700 {
2701 write_seqlock(&rename_lock);
2702 __d_move(dentry, target, false);
2703 write_sequnlock(&rename_lock);
2704 }
2705 EXPORT_SYMBOL(d_move);
2706
2707 /*
2708 * d_exchange - exchange two dentries
2709 * @dentry1: first dentry
2710 * @dentry2: second dentry
2711 */
2712 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2713 {
2714 write_seqlock(&rename_lock);
2715
2716 WARN_ON(!dentry1->d_inode);
2717 WARN_ON(!dentry2->d_inode);
2718 WARN_ON(IS_ROOT(dentry1));
2719 WARN_ON(IS_ROOT(dentry2));
2720
2721 __d_move(dentry1, dentry2, true);
2722
2723 write_sequnlock(&rename_lock);
2724 }
2725
2726 /**
2727 * d_ancestor - search for an ancestor
2728 * @p1: ancestor dentry
2729 * @p2: child dentry
2730 *
2731 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2732 * an ancestor of p2, else NULL.
2733 */
2734 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2735 {
2736 struct dentry *p;
2737
2738 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2739 if (p->d_parent == p1)
2740 return p;
2741 }
2742 return NULL;
2743 }
2744
2745 /*
2746 * This helper attempts to cope with remotely renamed directories
2747 *
2748 * It assumes that the caller is already holding
2749 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2750 *
2751 * Note: If ever the locking in lock_rename() changes, then please
2752 * remember to update this too...
2753 */
2754 static int __d_unalias(struct inode *inode,
2755 struct dentry *dentry, struct dentry *alias)
2756 {
2757 struct mutex *m1 = NULL, *m2 = NULL;
2758 int ret = -ESTALE;
2759
2760 /* If alias and dentry share a parent, then no extra locks required */
2761 if (alias->d_parent == dentry->d_parent)
2762 goto out_unalias;
2763
2764 /* See lock_rename() */
2765 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2766 goto out_err;
2767 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2768 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2769 goto out_err;
2770 m2 = &alias->d_parent->d_inode->i_mutex;
2771 out_unalias:
2772 __d_move(alias, dentry, false);
2773 ret = 0;
2774 out_err:
2775 if (m2)
2776 mutex_unlock(m2);
2777 if (m1)
2778 mutex_unlock(m1);
2779 return ret;
2780 }
2781
2782 /**
2783 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2784 * @inode: the inode which may have a disconnected dentry
2785 * @dentry: a negative dentry which we want to point to the inode.
2786 *
2787 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2788 * place of the given dentry and return it, else simply d_add the inode
2789 * to the dentry and return NULL.
2790 *
2791 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2792 * we should error out: directories can't have multiple aliases.
2793 *
2794 * This is needed in the lookup routine of any filesystem that is exportable
2795 * (via knfsd) so that we can build dcache paths to directories effectively.
2796 *
2797 * If a dentry was found and moved, then it is returned. Otherwise NULL
2798 * is returned. This matches the expected return value of ->lookup.
2799 *
2800 * Cluster filesystems may call this function with a negative, hashed dentry.
2801 * In that case, we know that the inode will be a regular file, and also this
2802 * will only occur during atomic_open. So we need to check for the dentry
2803 * being already hashed only in the final case.
2804 */
2805 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2806 {
2807 if (IS_ERR(inode))
2808 return ERR_CAST(inode);
2809
2810 BUG_ON(!d_unhashed(dentry));
2811
2812 if (!inode) {
2813 __d_instantiate(dentry, NULL);
2814 goto out;
2815 }
2816 spin_lock(&inode->i_lock);
2817 if (S_ISDIR(inode->i_mode)) {
2818 struct dentry *new = __d_find_any_alias(inode);
2819 if (unlikely(new)) {
2820 /* The reference to new ensures it remains an alias */
2821 spin_unlock(&inode->i_lock);
2822 write_seqlock(&rename_lock);
2823 if (unlikely(d_ancestor(new, dentry))) {
2824 write_sequnlock(&rename_lock);
2825 dput(new);
2826 new = ERR_PTR(-ELOOP);
2827 pr_warn_ratelimited(
2828 "VFS: Lookup of '%s' in %s %s"
2829 " would have caused loop\n",
2830 dentry->d_name.name,
2831 inode->i_sb->s_type->name,
2832 inode->i_sb->s_id);
2833 } else if (!IS_ROOT(new)) {
2834 int err = __d_unalias(inode, dentry, new);
2835 write_sequnlock(&rename_lock);
2836 if (err) {
2837 dput(new);
2838 new = ERR_PTR(err);
2839 }
2840 } else {
2841 __d_move(new, dentry, false);
2842 write_sequnlock(&rename_lock);
2843 security_d_instantiate(new, inode);
2844 }
2845 iput(inode);
2846 return new;
2847 }
2848 }
2849 /* already taking inode->i_lock, so d_add() by hand */
2850 __d_instantiate(dentry, inode);
2851 spin_unlock(&inode->i_lock);
2852 out:
2853 security_d_instantiate(dentry, inode);
2854 d_rehash(dentry);
2855 return NULL;
2856 }
2857 EXPORT_SYMBOL(d_splice_alias);
2858
2859 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2860 {
2861 *buflen -= namelen;
2862 if (*buflen < 0)
2863 return -ENAMETOOLONG;
2864 *buffer -= namelen;
2865 memcpy(*buffer, str, namelen);
2866 return 0;
2867 }
2868
2869 /**
2870 * prepend_name - prepend a pathname in front of current buffer pointer
2871 * @buffer: buffer pointer
2872 * @buflen: allocated length of the buffer
2873 * @name: name string and length qstr structure
2874 *
2875 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2876 * make sure that either the old or the new name pointer and length are
2877 * fetched. However, there may be mismatch between length and pointer.
2878 * The length cannot be trusted, we need to copy it byte-by-byte until
2879 * the length is reached or a null byte is found. It also prepends "/" at
2880 * the beginning of the name. The sequence number check at the caller will
2881 * retry it again when a d_move() does happen. So any garbage in the buffer
2882 * due to mismatched pointer and length will be discarded.
2883 *
2884 * Data dependency barrier is needed to make sure that we see that terminating
2885 * NUL. Alpha strikes again, film at 11...
2886 */
2887 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2888 {
2889 const char *dname = ACCESS_ONCE(name->name);
2890 u32 dlen = ACCESS_ONCE(name->len);
2891 char *p;
2892
2893 smp_read_barrier_depends();
2894
2895 *buflen -= dlen + 1;
2896 if (*buflen < 0)
2897 return -ENAMETOOLONG;
2898 p = *buffer -= dlen + 1;
2899 *p++ = '/';
2900 while (dlen--) {
2901 char c = *dname++;
2902 if (!c)
2903 break;
2904 *p++ = c;
2905 }
2906 return 0;
2907 }
2908
2909 /**
2910 * prepend_path - Prepend path string to a buffer
2911 * @path: the dentry/vfsmount to report
2912 * @root: root vfsmnt/dentry
2913 * @buffer: pointer to the end of the buffer
2914 * @buflen: pointer to buffer length
2915 *
2916 * The function will first try to write out the pathname without taking any
2917 * lock other than the RCU read lock to make sure that dentries won't go away.
2918 * It only checks the sequence number of the global rename_lock as any change
2919 * in the dentry's d_seq will be preceded by changes in the rename_lock
2920 * sequence number. If the sequence number had been changed, it will restart
2921 * the whole pathname back-tracing sequence again by taking the rename_lock.
2922 * In this case, there is no need to take the RCU read lock as the recursive
2923 * parent pointer references will keep the dentry chain alive as long as no
2924 * rename operation is performed.
2925 */
2926 static int prepend_path(const struct path *path,
2927 const struct path *root,
2928 char **buffer, int *buflen)
2929 {
2930 struct dentry *dentry;
2931 struct vfsmount *vfsmnt;
2932 struct mount *mnt;
2933 int error = 0;
2934 unsigned seq, m_seq = 0;
2935 char *bptr;
2936 int blen;
2937
2938 rcu_read_lock();
2939 restart_mnt:
2940 read_seqbegin_or_lock(&mount_lock, &m_seq);
2941 seq = 0;
2942 rcu_read_lock();
2943 restart:
2944 bptr = *buffer;
2945 blen = *buflen;
2946 error = 0;
2947 dentry = path->dentry;
2948 vfsmnt = path->mnt;
2949 mnt = real_mount(vfsmnt);
2950 read_seqbegin_or_lock(&rename_lock, &seq);
2951 while (dentry != root->dentry || vfsmnt != root->mnt) {
2952 struct dentry * parent;
2953
2954 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2955 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2956 /* Escaped? */
2957 if (dentry != vfsmnt->mnt_root) {
2958 bptr = *buffer;
2959 blen = *buflen;
2960 error = 3;
2961 break;
2962 }
2963 /* Global root? */
2964 if (mnt != parent) {
2965 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2966 mnt = parent;
2967 #ifdef CONFIG_RKP_NS_PROT
2968 vfsmnt = mnt->mnt;
2969 #else
2970 vfsmnt = &mnt->mnt;
2971 #endif
2972 continue;
2973 }
2974 if (!error)
2975 error = is_mounted(vfsmnt) ? 1 : 2;
2976 break;
2977 }
2978 parent = dentry->d_parent;
2979 prefetch(parent);
2980 error = prepend_name(&bptr, &blen, &dentry->d_name);
2981 if (error)
2982 break;
2983
2984 dentry = parent;
2985 }
2986 if (!(seq & 1))
2987 rcu_read_unlock();
2988 if (need_seqretry(&rename_lock, seq)) {
2989 seq = 1;
2990 goto restart;
2991 }
2992 done_seqretry(&rename_lock, seq);
2993
2994 if (!(m_seq & 1))
2995 rcu_read_unlock();
2996 if (need_seqretry(&mount_lock, m_seq)) {
2997 m_seq = 1;
2998 goto restart_mnt;
2999 }
3000 done_seqretry(&mount_lock, m_seq);
3001
3002 if (error >= 0 && bptr == *buffer) {
3003 if (--blen < 0)
3004 error = -ENAMETOOLONG;
3005 else
3006 *--bptr = '/';
3007 }
3008 *buffer = bptr;
3009 *buflen = blen;
3010 return error;
3011 }
3012
3013 /**
3014 * __d_path - return the path of a dentry
3015 * @path: the dentry/vfsmount to report
3016 * @root: root vfsmnt/dentry
3017 * @buf: buffer to return value in
3018 * @buflen: buffer length
3019 *
3020 * Convert a dentry into an ASCII path name.
3021 *
3022 * Returns a pointer into the buffer or an error code if the
3023 * path was too long.
3024 *
3025 * "buflen" should be positive.
3026 *
3027 * If the path is not reachable from the supplied root, return %NULL.
3028 */
3029 char *__d_path(const struct path *path,
3030 const struct path *root,
3031 char *buf, int buflen)
3032 {
3033 char *res = buf + buflen;
3034 int error;
3035
3036 prepend(&res, &buflen, "\0", 1);
3037 error = prepend_path(path, root, &res, &buflen);
3038
3039 if (error < 0)
3040 return ERR_PTR(error);
3041 if (error > 0)
3042 return NULL;
3043 return res;
3044 }
3045
3046 char *d_absolute_path(const struct path *path,
3047 char *buf, int buflen)
3048 {
3049 struct path root = {};
3050 char *res = buf + buflen;
3051 int error;
3052
3053 prepend(&res, &buflen, "\0", 1);
3054 error = prepend_path(path, &root, &res, &buflen);
3055
3056 if (error > 1)
3057 error = -EINVAL;
3058 if (error < 0)
3059 return ERR_PTR(error);
3060 return res;
3061 }
3062 EXPORT_SYMBOL(d_absolute_path);
3063
3064 /*
3065 * same as __d_path but appends "(deleted)" for unlinked files.
3066 */
3067 static int path_with_deleted(const struct path *path,
3068 const struct path *root,
3069 char **buf, int *buflen)
3070 {
3071 prepend(buf, buflen, "\0", 1);
3072 if (d_unlinked(path->dentry)) {
3073 int error = prepend(buf, buflen, " (deleted)", 10);
3074 if (error)
3075 return error;
3076 }
3077
3078 return prepend_path(path, root, buf, buflen);
3079 }
3080
3081 static int prepend_unreachable(char **buffer, int *buflen)
3082 {
3083 return prepend(buffer, buflen, "(unreachable)", 13);
3084 }
3085
3086 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3087 {
3088 unsigned seq;
3089
3090 do {
3091 seq = read_seqcount_begin(&fs->seq);
3092 *root = fs->root;
3093 } while (read_seqcount_retry(&fs->seq, seq));
3094 }
3095
3096 /**
3097 * d_path - return the path of a dentry
3098 * @path: path to report
3099 * @buf: buffer to return value in
3100 * @buflen: buffer length
3101 *
3102 * Convert a dentry into an ASCII path name. If the entry has been deleted
3103 * the string " (deleted)" is appended. Note that this is ambiguous.
3104 *
3105 * Returns a pointer into the buffer or an error code if the path was
3106 * too long. Note: Callers should use the returned pointer, not the passed
3107 * in buffer, to use the name! The implementation often starts at an offset
3108 * into the buffer, and may leave 0 bytes at the start.
3109 *
3110 * "buflen" should be positive.
3111 */
3112 char *d_path(const struct path *path, char *buf, int buflen)
3113 {
3114 char *res = buf + buflen;
3115 struct path root;
3116 int error;
3117
3118 /*
3119 * We have various synthetic filesystems that never get mounted. On
3120 * these filesystems dentries are never used for lookup purposes, and
3121 * thus don't need to be hashed. They also don't need a name until a
3122 * user wants to identify the object in /proc/pid/fd/. The little hack
3123 * below allows us to generate a name for these objects on demand:
3124 *
3125 * Some pseudo inodes are mountable. When they are mounted
3126 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3127 * and instead have d_path return the mounted path.
3128 */
3129 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3130 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3131 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3132
3133 rcu_read_lock();
3134 get_fs_root_rcu(current->fs, &root);
3135 error = path_with_deleted(path, &root, &res, &buflen);
3136 rcu_read_unlock();
3137
3138 if (error < 0)
3139 res = ERR_PTR(error);
3140 return res;
3141 }
3142 EXPORT_SYMBOL(d_path);
3143
3144 /*
3145 * Helper function for dentry_operations.d_dname() members
3146 */
3147 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3148 const char *fmt, ...)
3149 {
3150 va_list args;
3151 char temp[64];
3152 int sz;
3153
3154 va_start(args, fmt);
3155 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3156 va_end(args);
3157
3158 if (sz > sizeof(temp) || sz > buflen)
3159 return ERR_PTR(-ENAMETOOLONG);
3160
3161 buffer += buflen - sz;
3162 return memcpy(buffer, temp, sz);
3163 }
3164
3165 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3166 {
3167 char *end = buffer + buflen;
3168 /* these dentries are never renamed, so d_lock is not needed */
3169 if (prepend(&end, &buflen, " (deleted)", 11) ||
3170 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3171 prepend(&end, &buflen, "/", 1))
3172 end = ERR_PTR(-ENAMETOOLONG);
3173 return end;
3174 }
3175 EXPORT_SYMBOL(simple_dname);
3176
3177 /*
3178 * Write full pathname from the root of the filesystem into the buffer.
3179 */
3180 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3181 {
3182 struct dentry *dentry;
3183 char *end, *retval;
3184 int len, seq = 0;
3185 int error = 0;
3186
3187 if (buflen < 2)
3188 goto Elong;
3189
3190 rcu_read_lock();
3191 restart:
3192 dentry = d;
3193 end = buf + buflen;
3194 len = buflen;
3195 prepend(&end, &len, "\0", 1);
3196 /* Get '/' right */
3197 retval = end-1;
3198 *retval = '/';
3199 read_seqbegin_or_lock(&rename_lock, &seq);
3200 while (!IS_ROOT(dentry)) {
3201 struct dentry *parent = dentry->d_parent;
3202
3203 prefetch(parent);
3204 error = prepend_name(&end, &len, &dentry->d_name);
3205 if (error)
3206 break;
3207
3208 retval = end;
3209 dentry = parent;
3210 }
3211 if (!(seq & 1))
3212 rcu_read_unlock();
3213 if (need_seqretry(&rename_lock, seq)) {
3214 seq = 1;
3215 goto restart;
3216 }
3217 done_seqretry(&rename_lock, seq);
3218 if (error)
3219 goto Elong;
3220 return retval;
3221 Elong:
3222 return ERR_PTR(-ENAMETOOLONG);
3223 }
3224
3225 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3226 {
3227 return __dentry_path(dentry, buf, buflen);
3228 }
3229 EXPORT_SYMBOL(dentry_path_raw);
3230
3231 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3232 {
3233 char *p = NULL;
3234 char *retval;
3235
3236 if (d_unlinked(dentry)) {
3237 p = buf + buflen;
3238 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3239 goto Elong;
3240 buflen++;
3241 }
3242 retval = __dentry_path(dentry, buf, buflen);
3243 if (!IS_ERR(retval) && p)
3244 *p = '/'; /* restore '/' overriden with '\0' */
3245 return retval;
3246 Elong:
3247 return ERR_PTR(-ENAMETOOLONG);
3248 }
3249
3250 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3251 struct path *pwd)
3252 {
3253 unsigned seq;
3254
3255 do {
3256 seq = read_seqcount_begin(&fs->seq);
3257 *root = fs->root;
3258 *pwd = fs->pwd;
3259 } while (read_seqcount_retry(&fs->seq, seq));
3260 }
3261
3262 /*
3263 * NOTE! The user-level library version returns a
3264 * character pointer. The kernel system call just
3265 * returns the length of the buffer filled (which
3266 * includes the ending '\0' character), or a negative
3267 * error value. So libc would do something like
3268 *
3269 * char *getcwd(char * buf, size_t size)
3270 * {
3271 * int retval;
3272 *
3273 * retval = sys_getcwd(buf, size);
3274 * if (retval >= 0)
3275 * return buf;
3276 * errno = -retval;
3277 * return NULL;
3278 * }
3279 */
3280 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3281 {
3282 int error;
3283 struct path pwd, root;
3284 char *page = __getname();
3285
3286 if (!page)
3287 return -ENOMEM;
3288
3289 rcu_read_lock();
3290 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3291
3292 error = -ENOENT;
3293 if (!d_unlinked(pwd.dentry)) {
3294 unsigned long len;
3295 char *cwd = page + PATH_MAX;
3296 int buflen = PATH_MAX;
3297
3298 prepend(&cwd, &buflen, "\0", 1);
3299 error = prepend_path(&pwd, &root, &cwd, &buflen);
3300 rcu_read_unlock();
3301
3302 if (error < 0)
3303 goto out;
3304
3305 /* Unreachable from current root */
3306 if (error > 0) {
3307 error = prepend_unreachable(&cwd, &buflen);
3308 if (error)
3309 goto out;
3310 }
3311
3312 error = -ERANGE;
3313 len = PATH_MAX + page - cwd;
3314 if (len <= size) {
3315 error = len;
3316 if (copy_to_user(buf, cwd, len))
3317 error = -EFAULT;
3318 }
3319 } else {
3320 rcu_read_unlock();
3321 }
3322
3323 out:
3324 __putname(page);
3325 return error;
3326 }
3327
3328 /*
3329 * Test whether new_dentry is a subdirectory of old_dentry.
3330 *
3331 * Trivially implemented using the dcache structure
3332 */
3333
3334 /**
3335 * is_subdir - is new dentry a subdirectory of old_dentry
3336 * @new_dentry: new dentry
3337 * @old_dentry: old dentry
3338 *
3339 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3340 * Returns 0 otherwise.
3341 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3342 */
3343
3344 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3345 {
3346 int result;
3347 unsigned seq;
3348
3349 if (new_dentry == old_dentry)
3350 return 1;
3351
3352 do {
3353 /* for restarting inner loop in case of seq retry */
3354 seq = read_seqbegin(&rename_lock);
3355 /*
3356 * Need rcu_readlock to protect against the d_parent trashing
3357 * due to d_move
3358 */
3359 rcu_read_lock();
3360 if (d_ancestor(old_dentry, new_dentry))
3361 result = 1;
3362 else
3363 result = 0;
3364 rcu_read_unlock();
3365 } while (read_seqretry(&rename_lock, seq));
3366
3367 return result;
3368 }
3369
3370 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3371 {
3372 struct dentry *root = data;
3373 if (dentry != root) {
3374 if (d_unhashed(dentry) || !dentry->d_inode)
3375 return D_WALK_SKIP;
3376
3377 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3378 dentry->d_flags |= DCACHE_GENOCIDE;
3379 dentry->d_lockref.count--;
3380 }
3381 }
3382 return D_WALK_CONTINUE;
3383 }
3384
3385 void d_genocide(struct dentry *parent)
3386 {
3387 d_walk(parent, parent, d_genocide_kill, NULL);
3388 }
3389
3390 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3391 {
3392 inode_dec_link_count(inode);
3393 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3394 !hlist_unhashed(&dentry->d_u.d_alias) ||
3395 !d_unlinked(dentry));
3396 spin_lock(&dentry->d_parent->d_lock);
3397 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3398 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3399 (unsigned long long)inode->i_ino);
3400 spin_unlock(&dentry->d_lock);
3401 spin_unlock(&dentry->d_parent->d_lock);
3402 d_instantiate(dentry, inode);
3403 }
3404 EXPORT_SYMBOL(d_tmpfile);
3405
3406 static __initdata unsigned long dhash_entries;
3407 static int __init set_dhash_entries(char *str)
3408 {
3409 if (!str)
3410 return 0;
3411 dhash_entries = simple_strtoul(str, &str, 0);
3412 return 1;
3413 }
3414 __setup("dhash_entries=", set_dhash_entries);
3415
3416 static void __init dcache_init_early(void)
3417 {
3418 unsigned int loop;
3419
3420 /* If hashes are distributed across NUMA nodes, defer
3421 * hash allocation until vmalloc space is available.
3422 */
3423 if (hashdist)
3424 return;
3425
3426 dentry_hashtable =
3427 alloc_large_system_hash("Dentry cache",
3428 sizeof(struct hlist_bl_head),
3429 dhash_entries,
3430 13,
3431 HASH_EARLY,
3432 &d_hash_shift,
3433 &d_hash_mask,
3434 0,
3435 0);
3436
3437 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3438 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3439 }
3440
3441 static void __init dcache_init(void)
3442 {
3443 unsigned int loop;
3444
3445 /*
3446 * A constructor could be added for stable state like the lists,
3447 * but it is probably not worth it because of the cache nature
3448 * of the dcache.
3449 */
3450 dentry_cache = KMEM_CACHE(dentry,
3451 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3452
3453 /* Hash may have been set up in dcache_init_early */
3454 if (!hashdist)
3455 return;
3456
3457 dentry_hashtable =
3458 alloc_large_system_hash("Dentry cache",
3459 sizeof(struct hlist_bl_head),
3460 dhash_entries,
3461 13,
3462 0,
3463 &d_hash_shift,
3464 &d_hash_mask,
3465 0,
3466 0);
3467
3468 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3469 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3470 }
3471
3472 /* SLAB cache for __getname() consumers */
3473 struct kmem_cache *names_cachep __read_mostly;
3474 EXPORT_SYMBOL(names_cachep);
3475
3476 EXPORT_SYMBOL(d_genocide);
3477
3478 void __init vfs_caches_init_early(void)
3479 {
3480 dcache_init_early();
3481 inode_init_early();
3482 }
3483
3484 void __init vfs_caches_init(void)
3485 {
3486 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3487 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3488
3489 dcache_init();
3490 inode_init();
3491 files_init();
3492 files_maxfiles_init();
3493 mnt_init();
3494 bdev_cache_init();
3495 chrdev_init();
3496 #ifdef CONFIG_RKP_NS_PROT
3497 ns_prot = 1;
3498 #endif
3499 }